PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (633723)

Clipboard (0)
None

Related Articles

1.  Congenital Sensorineural Deafness in Australian Stumpy-Tail Cattle Dogs Is an Autosomal Recessive Trait That Maps to CFA10 
PLoS ONE  2010;5(10):e13364.
Background
Congenital sensorineural deafness is an inherited condition found in many dog breeds, including Australian Stumpy-tail Cattle Dogs (ASCD). This deafness is evident in young pups and may affect one ear (unilateral) or both ears (bilateral). The genetic locus/loci involved is unknown for all dog breeds. The aims of this study were to determine incidence, inheritance mechanism, and possible association of congenital sensorineural deafness with coat colour in ASCD and to identify the genetic locus underpinning this disease.
Methodology/Principal Findings
A total of 315 ASCD were tested for sensorineural deafness using the brain stem auditory evoked response (BAER) test. Disease penetrance was estimated directly, using the ratio of unilaterally to bilaterally deaf dogs, and segregation analysis was performed using Mendel. A complete genome screen was undertaken using 325 microsatellites spread throughout the genome, on a pedigree of 50 BAER tested ASCD in which deafness was segregating. Fifty-six dogs (17.8%) were deaf, with 17 bilaterally and 39 unilaterally deaf. Unilaterally deaf dogs showed no significant left/right bias (p = 0.19) and no significant difference was observed in frequencies between the sexes (p = 0.18). Penetrance of deafness was estimated as 0.72. Testing the association of red/blue coat colour and deafness without accounting for pedigree structure showed that red dogs were 1.8 times more likely to be deaf (p = 0.045). The within family association between red/blue coat colour and deafness was strongly significant (p = 0.00036), with red coat colour segregating more frequently with deafness (COR = 0.48). The relationship between deafness and coat speckling approached significance (p = 0.07), with the lack of statistical significance possibly due to only four families co-segregating for both deafness and speckling. The deafness phenotype was mapped to CFA10 (maximum linkage peak on CFA10 −log10 p-value = 3.64), as was both coat colour and speckling. Fine mapping was then performed on 45 of these 50 dogs and a further 48 dogs (n = 93). Sequencing candidate gene Sox10 in 6 hearing ASCD, 2 unilaterally deaf ASCD and 2 bilaterally deaf ASCD did not reveal any disease-associated mutations.
Conclusions
Deafness in ASCD is an incompletely penetrant autosomal recessive inherited disease that maps to CFA10.
doi:10.1371/journal.pone.0013364
PMCID: PMC2953516  PMID: 20967282
2.  Heritability and complex segregation analysis of deafness in Jack Russell Terriers 
Background
The association between patterns of pigmentation and deafness in the dog has a long-documented history, with reports dating back over one hundred years. Long suspected of having a genetic basis, the search for loci with a pronounced influence in the expression of hearing loss in the dog has yet to be successful. No studies in the dog to date have found a possible influence of a specific colour locus associated with deafness. The present study is intended to evaluate the heritability of deafness in the Jack Russell Terrier (JRT), characterize the mode of inheritance, and evaluate the existence of a sex, coat colour, or coat texture influence on the expression of sensorineural deafness.
Results
The estimation of heritability of deafness in the JRT was 0.22 when deafness was considered a binary (normal/deaf) trait and 0.31 when deafness was considered a three-category (normal/unilateral/bilateral deafness). The influence of coat colour in the incidence of JRT deafness was statistically significant, indicating that dogs with more white are more likely to be deaf. The influence of sex or coat texture was not statistically significant in the incidence of JRT deafness. Complex segregation analysis revealed a model of a single locus with a large effect on the binary measure of hearing loss is not supported.
Conclusion
This is the first attempt, to our knowledge, to characterize a genetic component responsible for deafness in the JRT. The heritability of deafness in the JRT was found to be 0.22 and 0.31 considering deafness to be a two-category or three-category trait, respectively. There appears to be an influence of coat colour on the expression of deafness. In an attempt to characterize the mode of inheritance of deafness in the JRT, a model of a single locus with a large effect on hearing loss is not supported with this data. Further study is needed to determine if a single locus may be influencing deafness in the JRT. While the absence of a clear mode of inheritance complicates genetic dissection of deafness in the JRT, the assembling of this pedigree provides a tool for eventually defining the genetic bases of this disorder.
doi:10.1186/1746-6148-3-31
PMCID: PMC2194672  PMID: 17999773
3.  The meaning of modern audiological tests in relation to noise-induced deafness: a review 
Wilmot, T. J. (1972).Brit. J. industr. Med.,29, 125-133. The meaning of modern audiological tests in relation to noise-induced deafness: a review. If noise-induced deafness becomes a prescribed disease, it is inevitable that a very large number of workers with hearing difficulties will be discovered and will pose serious problems for both industrial medical officers and otologists working in the National Health Service.
The two main problems are detection of deafness and a decision whether the hearing loss is attributable to noise damage. This paper is concerned largely with the second problem, and outlines in general terms the procedures likely to be required.
After a short discussion of the initial screening procedure the paper concentrates upon those who fail to pass the requisite standard, and describes how modern hearing tests help to differentiate between various types of hearing loss. The traditional belief that conductive deafness and sensorineural deafness are easily differentiated holds true only in classical examples. In practice, in many cases, there are often mixed elements of both. In these individuals the acoustic impedance meter may give important objective evidence on the functions of the Eustachian tube, the tympanic membrane and ossicular chain, and the small but important intratympanic muscles.
Even a pure sensorineural deafness may be present without being caused by noise, and the uses of speech tests and tests for `recruitment' are invaluable in the differential diagnosis of this type of hearing loss.
Whereas noise-induced deafness is usually bilateral, unilateral deafness can be caused or aggravated by noise, and our problems are increased in these cases as efficient `masking' of the good ear is essential before we can obtain any true information about the impaired hearing ear.
One of the other problems is malingering. This may be deliberate, or a person with good hearing may believe it to be impaired; both varieties are now usually known as non-organic hearing loss. Usually the simplest differentiating factor is the ability of someone with non-organic hearing loss to hear the spoken word much more easily than pure tones, and this sign should always make one suspicious of this type of disorder.
Modern auditory analysis should enable the otologist who is equipped with suitable apparatus to diagnose with some precision the site and extent of most auditory disorders and to evaluate the proportion of noise-induced hearing loss in each individual affected.
PMCID: PMC1009389  PMID: 4553812
4.  The Effect of Cochlear-Implant-Mediated Electrical Stimulation on Spiral Ganglion Cells in Congenitally Deaf White Cats 
It has long been observed that loss of auditory receptor cells is associated with the progressive degeneration of spiral ganglion cells. Chronic electrical stimulation via cochlear implantation has been used in an attempt to slow the rate of degeneration in cats neonatally deafened by ototoxic agents but with mixed results. The present study examined this issue using white cats with a history of hereditary deafness as an alternative animal model. Nineteen cats provided new data for this study: four normal-hearing cats, seven congenitally deaf white cats, and eight congenitally deaf white cats with unilateral cochlear implants. Data from additional cats were collected from the literature. Electrical stimulation began at 3 to 4 or 6 to 7 months after birth, and cats received stimulation for approximately 7 h a day, 5 days a week for 12 weeks. Quantitative analysis of spiral ganglion cell counts, cell density, and cell body size showed no marked improvement between cochlear-implanted and congenitally deaf subjects. Average ganglion cell size from cochlear-implanted and congenitally deaf cats was statistically similar and smaller than that of normal-hearing cats. Cell density from cats with cochlear implants tended to decrease within the upper basal and middle cochlear turns in comparison to congenitally deaf cats but remained at congenitally deaf levels within the lower basal and apical cochlear turns. These results provide no evidence that chronic electrical stimulation enhances spiral ganglion cell survival, cell density, or cell size compared to that of unstimulated congenitally deaf cats. Regardless of ganglion neuron status, there is unambiguous restoration of auditory nerve synapses in the cochlear nucleus of these cats implanted at the earlier age.
doi:10.1007/s10162-010-0234-3
PMCID: PMC2975880  PMID: 20821032
auditory nerve; cochlea; cochlear nucleus; cochleosaccular degeneration; congenital deafness
5.  Variation in Genes Related to Cochlear Biology Is Strongly Associated with Adult-Onset Deafness in Border Collies 
PLoS Genetics  2012;8(9):e1002898.
Domestic dogs can suffer from hearing losses that can have profound impacts on working ability and quality of life. We have identified a type of adult-onset hearing loss in Border Collies that appears to have a genetic cause, with an earlier age of onset (3–5 years) than typically expected for aging dogs (8–10 years). Studying this complex trait within pure breeds of dog may greatly increase our ability to identify genomic regions associated with risk of hearing impairment in dogs and in humans. We performed a genome-wide association study (GWAS) to detect loci underlying adult-onset deafness in a sample of 20 affected and 28 control Border Collies. We identified a region on canine chromosome 6 that demonstrates extended support for association surrounding SNP Chr6.25819273 (p-value = 1.09×10−13). To further localize disease-associated variants, targeted next-generation sequencing (NGS) of one affected and two unaffected dogs was performed. Through additional validation based on targeted genotyping of additional cases (n = 23 total) and controls (n = 101 total) and an independent replication cohort of 16 cases and 265 controls, we identified variants in USP31 that were strongly associated with adult-onset deafness in Border Collies, suggesting the involvement of the NF-κB pathway. We found additional support for involvement of RBBP6, which is critical for cochlear development. These findings highlight the utility of GWAS–guided fine-mapping of genetic loci using targeted NGS to study hereditary disorders of the domestic dog that may be analogous to human disorders.
Author Summary
The domestic dog offers a unique opportunity to study complex disorders similar to those seen in humans, but within the context of the much simpler genetic backgrounds of pure breeds, which represent closed populations. We performed a whole-genome search for genetic risk factors of adult-onset deafness in the Border Collie, a breed of herding dog that relies on acute hearing to perceive and respond to commands while working. Adult-onset deafness in Border Collies typically begins in early adulthood and is similar to age-related hearing loss in humans. This earlier onset has particular impact on the utility of working Border Collies and the livelihoods of their owners, and it appears to have a genetic cause. We identified three genetic variants that were strongly associated with adult-onset deafness in a sample of 405 Border Collies. These variants are located in two genes that have previously been linked to deafness, one involved in ear development and another that appears to mitigate tissue damage in the ear. These results provide new insight regarding genetic risk factors for age-related hearing loss in both dogs and humans.
doi:10.1371/journal.pgen.1002898
PMCID: PMC3441646  PMID: 23028339
6.  Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses 
PLoS Genetics  2012;8(4):e1002653.
During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes.
Author Summary
White spotting coat color phenotypes are the result of aberrations in the development of melanocytes. The analysis of domestic animals with heritable white spotting phenotypes thus helps to better understand the complicated genetic network controlling the proliferation, migration, differentiation, and survival of pigment producing cells. We analyzed the so-called splashed white phenotype in horses, which is characterized by a very distinctive large blaze, extended white markings on the legs, and blue eyes. Splashed white horses are also frequently deaf. However, the phenotype is quite variable and, in some horses with minimal expression, the splashed white phenotype cannot be unambiguously discriminated from the “common” white markings. We studied horses from various breeds and found one mutation in the PAX3 gene and two mutations in the MITF gene that cause the splashed white phenotype. A third mutation in the MITF gene, which we found in a single Franches-Montagnes horse, causes a new coat color phenotype, termed macchiato. Similar mutations in humans cause either Waardenburg or Tietz syndrome, which both are characterized by pigmentation defects and a predisposition for deafness. Our study reveals the molecular basis for a significant proportion of white spotting phenotypes that are intermediate between completely unpigmented horses and common white markings.
doi:10.1371/journal.pgen.1002653
PMCID: PMC3325211  PMID: 22511888
7.  Characterisation and genetic mapping of a new X linked deafness syndrome 
Journal of Medical Genetics  2000;37(11):836-841.
BACKGROUND—Hereditary forms of hearing loss are classified as syndromic, when deafness is associated with other clinical features, or non-syndromic, when deafness occurs without other clinical features. Many types of syndromic deafness have been described, some of which have been mapped to specific chromosomal regions.
METHODS—Here we describe a family with progressive sensorineural hearing loss, cognitive impairment, facial dysmorphism, and variable other features, transmitted by apparent X linked recessive inheritance. Haplotype analysis of PCR products spanning the X chromosome and direct sequencing of candidate genes were used to begin characterising the molecular basis of features transmitted in this family. Comparison to known syndromes involving deafness, mental retardation, facial dysmorphism, and other clinical features was performed by review of published reports and personal discussions.
RESULTS—Genetic mapping places the candidate locus for this syndrome within a 48 cM region on Xq1-21. Candidate genes including COL4A5, DIAPH, and POU3F4 were excluded by clinical and molecular analyses.
CONCLUSIONS—The constellation of clinical findings in this family (deafness, cognitive impairment, facial dysmorphism, variable renal and genitourinary abnormalities, and late onset pancytopenia), along with a shared haplotype on Xq1-21, suggests that this represents a new form of syndromic deafness. We discuss our findings in comparison to several other syndromic and non-syndromic deafness loci that have been mapped to the X chromosome.


Keywords: deafness; mental retardation; X chromosome; learning disorder
doi:10.1136/jmg.37.11.836
PMCID: PMC1734461  PMID: 11073537
8.  The effect of long-term unilateral deafness on the activation pattern in the auditory cortices of French-native speakers: influence of deafness side 
BMC Neuroscience  2009;10:23.
Background
In normal-hearing subjects, monaural stimulation produces a normal pattern of asynchrony and asymmetry over the auditory cortices in favour of the contralateral temporal lobe. While late onset unilateral deafness has been reported to change this pattern, the exact influence of the side of deafness on central auditory plasticity still remains unclear. The present study aimed at assessing whether left-sided and right-sided deafness had differential effects on the characteristics of neurophysiological responses over auditory areas. Eighteen unilaterally deaf and 16 normal hearing right-handed subjects participated. All unilaterally deaf subjects had post-lingual deafness. Long latency auditory evoked potentials (late-AEPs) were elicited by two types of stimuli, non-speech (1 kHz tone-burst) and speech-sounds (voiceless syllable/pa/) delivered to the intact ear at 50 dB SL. The latencies and amplitudes of the early exogenous components (N100 and P150) were measured using temporal scalp electrodes.
Results
Subjects with left-sided deafness showed major neurophysiological changes, in the form of a more symmetrical activation pattern over auditory areas in response to non-speech sound and even a significant reversal of the activation pattern in favour of the cortex ipsilateral to the stimulation in response to speech sound. This was observed not only for AEP amplitudes but also for AEP time course. In contrast, no significant changes were reported for late-AEP responses in subjects with right-sided deafness.
Conclusion
The results show that cortical reorganization induced by unilateral deafness mainly occurs in subjects with left-sided deafness. This suggests that anatomical and functional plastic changes are more likely to occur in the right than in the left auditory cortex. The possible perceptual correlates of such neurophysiological changes are discussed.
doi:10.1186/1471-2202-10-23
PMCID: PMC2662863  PMID: 19309511
9.  Unilateral hearing during development: hemispheric specificity in plastic reorganizations 
The present study investigates the hemispheric contributions of neuronal reorganization following early single-sided hearing (unilateral deafness). The experiments were performed on ten cats from our colony of deaf white cats. Two were identified in early hearing screening as unilaterally congenitally deaf. The remaining eight were bilaterally congenitally deaf, unilaterally implanted at different ages with a cochlear implant. Implanted animals were chronically stimulated using a single-channel portable signal processor for two to five months. Microelectrode recordings were performed at the primary auditory cortex under stimulation at the hearing and deaf ear with bilateral cochlear implants. Local field potentials (LFPs) were compared at the cortex ipsilateral and contralateral to the hearing ear. The focus of the study was on the morphology and the onset latency of the LFPs. With respect to morphology of LFPs, pronounced hemisphere-specific effects were observed. Morphology of amplitude-normalized LFPs for stimulation of the deaf and the hearing ear was similar for responses recorded at the same hemisphere. However, when comparisons were performed between the hemispheres, the morphology was more dissimilar even though the same ear was stimulated. This demonstrates hemispheric specificity of some cortical adaptations irrespective of the ear stimulated. The results suggest a specific adaptation process at the hemisphere ipsilateral to the hearing ear, involving specific (down-regulated inhibitory) mechanisms not found in the contralateral hemisphere. Finally, onset latencies revealed that the sensitive period for the cortex ipsilateral to the hearing ear is shorter than that for the contralateral cortex. Unilateral hearing experience leads to a functionally-asymmetric brain with different neuronal reorganizations and different sensitive periods involved.
doi:10.3389/fnsys.2013.00093
PMCID: PMC3841817  PMID: 24348345
cochlear implant; plasticity; single-sided deafness; critical periods; development
10.  Neural networks mediating sentence reading in the deaf 
The present work addresses the neural bases of sentence reading in deaf populations. To better understand the relative role of deafness and spoken language knowledge in shaping the neural networks that mediate sentence reading, three populations with different degrees of English knowledge and depth of hearing loss were included—deaf signers, oral deaf and hearing individuals. The three groups were matched for reading comprehension and scanned while reading sentences. A similar neural network of left perisylvian areas was observed, supporting the view of a shared network of areas for reading despite differences in hearing and English knowledge. However, differences were observed, in particular in the auditory cortex, with deaf signers and oral deaf showing greatest bilateral superior temporal gyrus (STG) recruitment as compared to hearing individuals. Importantly, within deaf individuals, the same STG area in the left hemisphere showed greater recruitment as hearing loss increased. To further understand the functional role of such auditory cortex re-organization after deafness, connectivity analyses were performed from the STG regions identified above. Connectivity from the left STG toward areas typically associated with semantic processing (BA45 and thalami) was greater in deaf signers and in oral deaf as compared to hearing. In contrast, connectivity from left STG toward areas identified with speech-based processing was greater in hearing and in oral deaf as compared to deaf signers. These results support the growing literature indicating recruitment of auditory areas after congenital deafness for visually-mediated language functions, and establish that both auditory deprivation and language experience shape its functional reorganization. Implications for differential reliance on semantic vs. phonological pathways during reading in the three groups is discussed.
doi:10.3389/fnhum.2014.00394
PMCID: PMC4050738  PMID: 24959127
reading; deaf; native signers; oral training; sentence comprehension; Superior Temporal Gyrus
11.  Assembly of the cochlear gap junction macromolecular complex requires connexin 26 
The Journal of Clinical Investigation  2014;124(4):1598-1607.
Hereditary deafness affects approximately 1 in 2,000 children. Mutations in the gene encoding the cochlear gap junction protein connexin 26 (CX26) cause prelingual, nonsyndromic deafness and are responsible for as many as 50% of hereditary deafness cases in certain populations. Connexin-associated deafness is thought to be the result of defective development of auditory sensory epithelium due to connexion dysfunction. Surprisingly, CX26 deficiency is not compensated for by the closely related connexin CX30, which is abundantly expressed in the same cochlear cells. Here, using two mouse models of CX26-associated deafness, we demonstrate that disruption of the CX26-dependent gap junction plaque (GJP) is the earliest observable change during embryonic development of mice with connexin-associated deafness. Loss of CX26 resulted in a drastic reduction in the GJP area and protein level and was associated with excessive endocytosis with increased expression of caveolin 1 and caveolin 2. Furthermore, expression of deafness-associated CX26 and CX30 in cell culture resulted in visible disruption of GJPs and loss of function. Our results demonstrate that deafness-associated mutations in CX26 induce the macromolecular degradation of large gap junction complexes accompanied by an increase in caveolar structures.
doi:10.1172/JCI67621
PMCID: PMC3973107  PMID: 24590285
12.  Detection of Deafness-Causing Mutations in the Greek Mitochondrial Genome 
Disease markers  2011;30(6):283-289.
Mitochondrion harbors its own DNA, known as mtDNA, encoding certain essential components of the mitochondrial respiratory chain and protein synthesis apparatus. mtDNA mutations have an impact on cellular ATP production and many of them are undoubtedly a factor that contributes to sensorineural deafness, including both syndromic and non-syndromic forms. Hot spot regions for deafness mutations are the MTRNR1 gene, encoding the 12S rRNA, the MTTS1 gene, encoding the tRNA for Ser(UCN), and the MTTL1 gene, encoding the tRNA for Leu(UUR). We investigated the impact of mtDNA mutations in the Greek hearing impaired population, by testing a cohort of 513 patients suffering from childhood onset prelingual or postlingual, bilateral, sensorineural, syndromic or non-syndromic hearing loss of any degree for six mitochondrial variants previously associated with deafness. Screening involved the MTRNR1 961delT/insC and A1555G mutations, the MTTL1 A3243G mutation, and the MTTS1 A7445G, 7472insC and T7510C mutations. Although two patients were tested positive for the A1555G mutation, we failed to identify any subject carrying the 961delT/insC, A3243G, A7445G, 7472insC, or T7510C mutations. Our findings strongly support our previously raised conclusion that mtDNA mutations are not a major risk factor for sensorineural deafness in the Greek population.
doi:10.3233/DMA-2011-0786
PMCID: PMC3825241  PMID: 21725156
961delT/insC; A1555G; A3243G; A7445G; 7472insC; T7510C; Greece; mitochondrial DNA; mutation; sensorineural deafness
13.  Multisensory Training Improves Auditory Spatial Processing following Bilateral Cochlear Implantation 
The Journal of Neuroscience  2014;34(33):11119-11130.
Cochlear implants (CIs) partially restore hearing to the deaf by directly stimulating the inner ear. In individuals fitted with CIs, lack of auditory experience due to loss of hearing before language acquisition can adversely impact outcomes. For example, adults with early-onset hearing loss generally do not integrate inputs from both ears effectively when fitted with bilateral CIs (BiCIs). Here, we used an animal model to investigate the effects of long-term deafness on auditory localization with BiCIs and approaches for promoting the use of binaural spatial cues. Ferrets were deafened either at the age of hearing onset or as adults. All animals were implanted in adulthood, either unilaterally or bilaterally, and were subsequently assessed for their ability to localize sound in the horizontal plane. The unilaterally implanted animals were unable to perform this task, regardless of the duration of deafness. Among animals with BiCIs, early-onset hearing loss was associated with poor auditory localization performance, compared with late-onset hearing loss. However, performance in the early-deafened group with BiCIs improved significantly after multisensory training with interleaved auditory and visual stimuli. We demonstrate a possible neural substrate for this by showing a training-induced improvement in the responsiveness of auditory cortical neurons and in their sensitivity to interaural level differences, the principal localization cue available to BiCI users. Importantly, our behavioral and physiological evidence demonstrates a facilitative role for vision in restoring auditory spatial processing following potential cross-modal reorganization. These findings support investigation of a similar training paradigm in human CI users.
doi:10.1523/JNEUROSCI.4767-13.2014
PMCID: PMC4131019  PMID: 25122908
auditory cortex; cochlear implant; cross-modal plasticity; hearing loss; multisensory; sound localization
14.  A new X linked recessive deafness syndrome with blindness, dystonia, fractures, and mental deficiency is linked to Xq22. 
Journal of Medical Genetics  1995;32(4):257-263.
X linked recessive deafness accounts for only 1.7% of all childhood deafness. Only a few of the at least 28 different X linked syndromes associated with hearing impairment have been characterised at the molecular level. In 1960, a large Norwegian family was reported with early onset progressive sensorineural deafness, which was indexed in McKusick as DFN-1, McKusick 304700. No associated symptoms were described at that time. This family has been restudied clinically. Extensive neurological, neurophysiological, neuroradiological, and biochemical, as well as molecular techniques, have been applied to characterise the X linked recessive syndrome. The family history and extensive characterisation of 16 affected males in five generations confirmed the X linked recessive inheritance and the postlingual progressive nature of the sensorineural deafness. Some obligate carrier females showed signs of minor neuropathy and mild hearing impairment. Restudy of the original DFN-1 family showed that the deafness is part of a progressive X linked recessive syndrome, which includes visual disability leading to cortical blindness, dystonia, fractures, and mental deficiency. Linkage analysis indicated that the gene was linked to locus DXS101 in Xq22 with a lod score of 5.37 (zero recombination). Based on lod-1 support interval of the multipoint analysis, the gene is located in a region spanning from 5 cM proximal to 3 cM distal to this locus. As the proteolipid protein gene (PLP) is within this region and mutations have been shown to be associated with non-classical PMD (Pelizaeus-Merzbacher disease), such as complex X linked hereditary spastic paraplegia, PLP may represent a candidate gene for this disorder. This family represents a new syndrome (Mohr-Tranebjaerg syndrome, MTS) and provides significant new information about a new X linked recessive sydromic type of deafness which was previously thought to be isolated deafness.
PMCID: PMC1050371  PMID: 7643352
15.  Bilateral sudden hearing loss following habitual abortion: a case report and review of literature 
Sudden sensorineural hearing loss (SSNHL) is usually unilateral and can be associated with tinnitus and vertigo. The most common causes of this disease are known to be the vascular and viral agents, but immune disorders are involved in the development of sudden deafness. The antiphospholipid syndrome (APS) is an acquired autoimmune system disorder, which is defined as the presence of antiphospholipid antibodies (APA) in the patient’s blood, then cause venous and/or arterial thrombosis in various organs of the body, for example, thrombosis can occur in the placenta and/or the inner ear. As a result, it can cause abortion and/or sudden deafness. Bilateral SSNHL following habitual abortion is a rare clinical event. Here, we report a case of 32-year-old woman who presented with bilateral sudden hearing loss following recurrent pregnancy loss (RPL) as the first manifestation of primary antiphospholipid syndrome. Combine the literature, the diagnosis, clinical implication and treatment are discussed.
PMCID: PMC3762631  PMID: 24040484
Sudden sensorineural hearing loss (SSNHL); autoimmune disease; habitual abortion; recurrent pregnancy loss (RPL); antiphospholipid syndrome (APS); antiphospholipid antibody (APA); anticardiolipin antibody (ACA); thrombosis
16.  Congenital Sensorineural Deafness in Dalmatian Dogs Associated with Quantitative Trait Loci 
PLoS ONE  2013;8(12):e80642.
A genome-wide association study (GWAS) was performed for 235 Dalmatian dogs using the canine Illumina high density bead chip to identify quantitative trait loci (QTL) associated with canine congenital sensorineural deafness (CCSD). Data analysis was performed for all Dalmatian dogs and in addition, separately for brown-eyed and blue-eyed dogs because of the significant influence of eye colour on CCSD in Dalmatian dogs. Mixed linear model analysis (MLM) revealed seven QTL with experiment-wide significant associations (-log10P>5.0) for CCSD in all Dalmatian dogs. Six QTL with experiment-wide significant associations for CCSD were found in brown-eyed Dalmatian dogs and in blue-eyed Dalmatian dogs, four experiment-wide significant QTL were detected. The experiment-wide CCSD-associated SNPs explained 82% of the phenotypic variance of CCSD. Five CCSD-loci on dog chromosomes (CFA) 6, 14, 27, 29 and 31 were in close vicinity of genes shown as causative for hearing loss in human and/or mouse.
doi:10.1371/journal.pone.0080642
PMCID: PMC3851758  PMID: 24324618
17.  Somatosensory and Visual Crossmodal Plasticity in the Anterior Auditory Field of Early-Deaf Cats 
Hearing research  2011;280(1-2):38-47.
It is well known that the postnatal loss of sensory input in one modality can result in crossmodal reorganization of the deprived cortical areas, but deafness fails to induce crossmodal effects in cat primary auditory cortex (A1). Because the core auditory regions (A1, and anterior auditory field AAF) are arranged as separate, parallel processors, it cannot be assumed that early-deafness affects one in the same manner as the other. The present experiments were conducted to determine if crossmodal effects occur in the anterior auditory field (AAF). Using mature cats (n=3), ototoxically deafened postnatally, single-unit recordings were made in the gyral and sulcal portions of the AAF. In contrast to the auditory responsivity found in the hearing controls, none of the neurons in early-deafened AAF were activated by auditory stimulation. Instead, the majority (78%) were activated by somatosensory cues, while fewer were driven by visual stimulation (44%; values include unisensory and bimodal neurons). Somatosensory responses could be activated from all locations on the body surface but most often occurred on the head, were often bilateral (e.g., occupied portions of both sides of the body), and were primarily excited by low-threshold hair receptors. Visual receptive fields were large, collectively represented the contralateral visual field, and exhibited conventional response properties such as movement direction and velocity preferences. These results indicate that, following postnatal deafness, both somatosensory and visual modalities participate in crossmodal re-innervation of the AAF, consistent with the growing literature that documents deafness-induced crossmodal plasticity outside A1.
doi:10.1016/j.heares.2011.02.004
PMCID: PMC3134631  PMID: 21354286
18.  Synaptic Plasticity after Chemical Deafening and Electrical Stimulation of the Auditory Nerve in Cats 
The Journal of comparative neurology  2010;518(7):1046-1063.
The effects of deafness on brain structure and function have been studied using animal models of congenital deafness that include surgical ablation of the organ of Corti, acoustic trauma, ototoxic drugs, and hereditary deafness. This report describes the morphologic plasticity of auditory nerve synapses in response to ototoxic deafening and chronic electrical stimulation of the auditory nerve. Normal kittens were deafened by neonatal administration of neomycin that eliminated auditory receptor cells. Some of these cats were raised deaf, whereas others were chronically implanted with cochlear electrodes at two months of age and electrically stimulated for up to 12 months. The large endings of the auditory nerve, endbulbs of Held, were studied because they hold a key position in the timing pathway for sound localization, are readily identifiable, and exhibit deafness-associated abnormalities. Compared to normal hearing cats, synapses of ototoxically deafened cats displayed expanded postsynaptic densities, a decrease in synaptic vesicle (SV) density, and a reduction in the somatic size of spherical bushy cells (SBCs). When compared to normal hearing cats, endbulbs of ototoxically deafened cats that received cochlear stimulation expressed postsynaptic densities (PSDs) that were statistically identical in size, showed a 32.8% reduction in SV density, and whose target SBCs had a 25.5% reduction in soma area. These results demonstrate that electrical stimulation via a cochlear implant in chemically-deafened cats preserves PSD size but not other aspects of synapse morphology. The results further suggest that the effects of ototoxic deafness are not identical to those of hereditary deafness.
doi:10.1002/cne.22262
PMCID: PMC2935524  PMID: 20127807
cochlear implant; deafness; electrical stimulation; endbulb of Held; ototoxicity
19.  Molecular epidemiology of DFNB1 deafness in France 
Background
Mutations in the GJB2 gene have been established as a major cause of inherited non syndromic deafness in different populations. A high number of sequence variations have been described in the GJB2 gene and the associated pathogenic effects are not always clearly established. The prevalence of a number of mutations is known to be population specific, and therefore population specific testing should be a prerequisite step when molecular diagnosis is offered. Moreover, population studies are needed to determine the contribution of GJB2 variants to deafness. We present our findings from the molecular diagnostic screening of the GJB2 and GJB6 genes over a three year period, together with a population-based study of GJB2 variants.
Methods and results
Molecular studies were performed using denaturing High Performance Liquid Chromatograghy (DHPLC) and sequencing of the GJB2 gene. Over the last 3 years we have studied 159 families presenting sensorineural hearing loss, including 84 with non syndromic, stable, bilateral deafness. Thirty families were genotyped with causative mutations. In parallel, we have performed a molecular epidemiology study on more than 3000 dried blood spots and established the frequency of the GJB2 variants in our population. Finally, we have compared the prevalence of the variants in the hearing impaired population with the general population.
Conclusion
Although a high heterogeneity of sequence variation was observed in patients and controls, the 35delG mutation remains the most common pathogenic mutation in our population. Genetic counseling is dependent on the knowledge of the pathogenicity of the mutations and remains difficult in a number of cases. By comparing the sequence variations observed in hearing impaired patients with those sequence variants observed in general population, from the same ethnic background, we show that the M34T, V37I and R127H variants can not be responsible for profound or severe deafness.
doi:10.1186/1471-2350-5-5
PMCID: PMC385234  PMID: 15070423
20.  Systematic review of the literature on the clinical effectiveness of the cochlear implant procedure in paediatric patients 
SUMMARY
The aim of this systematic review of the literature was to summarize the results of scientific publications on the clinical effectiveness of the cochlear implant (CI) procedure in children. The members of the Working Group first examined existing national and international literature and the principal international guidelines on the procedure. They considered as universally-accepted the usefulness/effectiveness of unilateral cochlear implantation in severely-profoundly deaf children. Accordingly, they focused attention on systematic reviews addressing clinical effectiveness and cost/efficacy of the CI procedure, with particular regard to the most controversial issues for which international consensus is lacking. The following aspects were evaluated: post-CI outcomes linked to precocity of CI; bilateral (simultaneous/ sequential) CI vs. unilateral CI and vs. bimodal stimulation; benefits derived from CI in deaf children with associated disabilities. With regard to the outcomes after implantation linked to precocity of intervention, there are few studies comparing post-CI outcomes in children implanted within the first year of life with those of children implanted in the second year. The selected studies suggest that children implanted within the first year of life present hearing and communicative outcomes that are better than those of children implanted after 12 months of age. Concerning children implanted after the first year of life, all studies confirm an advantage with respect to implant precocity, and many document an advantage in children who received cochlear implants under 18 months of age compared to those implanted at a later stage. With regard to bilateral CI, the studies demonstrate that compared to unilateral CI, bilateral CI offers advantages in terms of hearing in noise, sound localization and during hearing in a silent environment. There is, however, a wide range of variability. The studies also document the advantages after sequential bilateral CI. In these cases, a short interval between interventions, precocity of the first CI and precocity of the second CI are considered positive prognostic factors. In deaf children with associated disabilities, the studies analyzed evidence that the CI procedure is also suitable for children with disabilities associated with deafness, and that even these children may benefit from the procedure, even if these may be slower and inferior to those in children with isolated deafness, especially in terms of high communicative and perceptive skills.
PMCID: PMC3262414  PMID: 22287820
Cochlear implant; Bilateral cochlear implant; Severe to profound hearing loss; Disabilities
21.  Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats 
G3: Genes|Genomes|Genetics  2014;4(10):1881-1891.
The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P < 0.0001) and white spotting (P < 0.0001), respectively.
doi:10.1534/g3.114.013425
PMCID: PMC4199695  PMID: 25085922
White; domestic cat; deaf; white spotting; retrotransposition; FERV1
22.  Microcephaly, sensorineural deafness and Currarino triad with duplication–deletion of distal 7q 
European Journal of Pediatrics  2009;169(4):475-481.
Currarino syndrome (CS) is a peculiar form of caudal regression syndrome [also known as autosomal dominant sacral agenesis (OMIM no. 176450)] characterised by (1) partial absence of the sacrum with intact first sacral vertebra, (2) a pre-sacral mass and (3) anorectal anomalies (Currarino triad). We studied a 3-year-old girl with Currarino triad who had additional systemic features and performed array comparative genomic hybridisation to look for chromosomal abnormalities. This girl had the typical spectrum of anomalies of the CS including (a) partial sacral agenesis (hemisacrum with remnants of only sacral S1–S2 vertebrae and a residual S3 vertebral body) associated with complete coccygeal agenesis, (b) pre-intrasacral dermoid, (c) intra-dural lipoma, (d) ectopic anus and (e) tethered cord. She had, in addition, pre- and post-natal growth impairment (<3rd percentile), severe microcephaly (<−3 SD) with normal gyration pattern and lack of cortical thickening associated with a hypoplastic inferior vermis, facial dysmorphism, sensorineural deafness and decreased serum levels of IGF-1. A de novo 10.3-Mb duplication of 7q34–q35 and an 8.8-Mb deletion on 7q36 were identified in this patient. The Homeobox HLXB9 (CS) gene is contained within the deletion accounting for the CS phenotype including microcephaly. The spectrums of associated abnormalities in the IGF-1 deficiency growth retardation with sensorineural deafness and mental retardation syndrome (OMIM no. 608747) are discussed. To the best of our knowledge, this is the first reported case of a patient with distal 7q chromosomal imbalance and features of CS triad (including microcephaly) and the first documented case of a patient with normal gyration pattern microcephaly. The spectrum of associated anomalies in this newly recognised phenotype complex consists of growth failure, typical facial anomalies with additional (previously unreported) nervous system abnormalities (e.g. sensorineural deafness) and somatomedin C deficiency.
doi:10.1007/s00431-009-1061-6
PMCID: PMC2820683  PMID: 19838731
Caudal regression syndrome; Absence of sacrum; Pre-sacral mass; Anorectal anomalies; Microcephaly; Sensorineural deafness; IGF-1 deficiency
23.  Auditory Abilities after Cochlear Implantation in Adults with Unilateral Deafness: A Pilot Study 
Objective
This pilot study examined speech recognition, localization, temporal and spectral discrimination and subjective reports of cochlear implant (CI) recipients with unilateral deafness.
Study Design
Three adult males with short-term unilateral deafness (< 5 years) participated. All had sudden onset of severe to profound hearing loss in one ear, which then received a CI, and normal or near normal hearing in the other ear. Speech recognition in quiet and noise, localization, discrimination of temporal and spectral cues and a subjective questionnaire were obtained over several days. Listening conditions were CI, normal hearing (NH) ear, and bilaterally (CI and NH).
Results
All participants had open-set speech recognition and excellent audibility (250–6000 Hz) with the CI. Localization improved bilaterally compared to the NH ear alone. Word recognition in noise was significantly better bilaterally than with the NH ear for two participants. Sentence recognition in various noise conditions did not show significant bilateral improvement; however, the CI did not hinder performance in noise even when noise was toward the CI side. The addition of the CI improved temporal difference discrimination for two participants and spectral difference discrimination for all participants. Participants wore the CI full time and subjective reports were positive.
Conclusion
Overall, the CI recipients with unilateral deafness obtained open-set speech recognition, improved localization, improved word recognition in noise, and improved perception of their ability to hear in everyday life. A larger study is warranted to further quantify the benefits and limitations of cochlear implantation in individuals with unilateral deafness.
doi:10.1097/MAO.0b013e318268d52d
PMCID: PMC3603694  PMID: 22935813
cochlear implant; unilateral deafness; single-sided deafness; speech recognition; localization
24.  Role of auditory brain function assessment by spect in cochlear implant side selection 
SUMMARY
Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods.
PMCID: PMC3631813  PMID: 23620636
Brain SPECT; Cochlear implant; Auditory cortex activation; Pre-lingually deaf
25.  Bilateral Effects of Unilateral Cochlear Implantation in Congenitally Deaf Cats 
The Journal of comparative neurology  2010;518(12):2382-2404.
Congenital deafness results in synaptic abnormalities in auditory nerve endings. These abnormalities are most prominent in terminals called endbulbs of Held, which are large, axosomatic synaptic endings whose size and evolutionary conservation emphasize their importance. Transmission jitter, delay, or failures, which would corrupt the processing of timing information, are possible consequences of the perturbations at this synaptic junction. We sought to determine whether electrical stimulation of the congenitally deaf auditory system via cochlear implants would restore the endbulb synapses to their normal morphology. Three and 6-month-old congenitally deaf cats received unilateral cochlear implants and were stimulated for a period of 10–19 weeks by using human speech processors. Implanted cats exhibited acoustic startle responses and were trained to approach their food dish in response to a specific acoustic stimulus. Endbulb synapses were examined by using serial section electron microscopy from cohorts of cats with normal hearing, congenital deafness, or congenital deafness with a cochlear implant. Synapse restoration was evident in endbulb synapses on the stimulated side of cats implanted at 3 months of age but not at 6 months. In the young implanted cats, post-synaptic densities exhibited normal size, shape, and distribution, and synaptic vesicles had density values typical of hearing cats. Synapses of the contralateral auditory nerve in early implanted cats also exhibited synapses with more normal structural features. These results demonstrate that electrical stimulation with a cochlear implant can help preserve central auditory synapses through direct and indirect pathways in an age-dependent fashion.
doi:10.1002/cne.22339
PMCID: PMC3936022  PMID: 20437534
auditory; auditory nerve; cochlear nucleus; deafness; synapse; ultrastructure

Results 1-25 (633723)