Search tips
Search criteria

Results 1-25 (1502757)

Clipboard (0)

Related Articles

1.  In utero copper treatment for Menkes disease associated with a severe ATP7A mutation 
Molecular genetics and metabolism  2012;107(1-2):222-228.
Menkes disease is a lethal X-linked recessive neurodegenerative disorder of copper transport caused by mutations in ATP7A, which encodes a copper-transporting ATPase. Early postnatal treatment with copper injections often improves clinical outcomes in affected infants. While Menkes disease newborns appear normal neurologically, analyses of fetal tissues including placenta indicate abnormal copper distribution and suggest a prenatal onset of the metal transport defect. In an affected fetus whose parents found termination unacceptable and who understood the associated risks, we began in utero copper histidine treatment at 31.5 weeks gestational age. Copper histidine (900 μg per dose) was administered directly to the fetus by intramuscular injection (fetal quadriceps or gluteus) under ultrasound guidance. Percutaneous umbilical blood sampling enabled serial measurement of fetal copper and ceruloplasmin levels that were used to guide therapy over a four-week period. Fetal copper levels rose from 17 μg/dL prior to treatment to 45 μg/dL, and ceruloplasmin levels from 39 mg/L to 122 mg/L. After pulmonary maturity was confirmed biochemically, the baby was delivered at 35.5 weeks and daily copper histidine therapy (250 μg sc b.i.d.) was begun. Despite this very early intervention with copper, the infant showed hypotonia, developmental delay, and electroencephalographic abnormalities and died of respiratory failure at 5.5 months of age. The patient’s ATP7A mutation, which severely disrupted mRNA splicing, resulted in complete absence of ATP7A protein on Western blots. These investigations suggest that prenatally initiated copper replacement is inadequate to correct Menkes disease caused by severe loss-of-function mutations, and that postnatal ATP7A gene addition represents a rational approach in such circumstances.
PMCID: PMC3444639  PMID: 22695177
2.  Neonatal Diagnosis and Treatment of Menkes Disease 
The New England journal of medicine  2008;358(6):605-614.
Menkes disease is a fatal neurodegenerative disorder of infancy caused by diverse mutations in a copper-transport gene, ATP7A. Early treatment with copper injections may prevent death and illness, but presymptomatic detection is hindered by the inadequate sensitivity and specificity of diagnostic tests. Exploiting the deficiency of a copper enzyme, dopamine-β-hydroxylase, we prospectively evaluated the diagnostic usefulness of plasma neurochemical levels, assessed the clinical effect of early detection, and investigated the molecular bases for treatment outcomes.
Between May 1997 and July 2005, we measured plasma dopamine, norepinephrine, dihydroxyphenylacetic acid, and dihydroxyphenylglycol in 81 infants at risk. In 12 newborns who met the eligibility criteria and began copper-replacement therapy within 22 days after birth, we tracked survival and neurodevelopment longitudinally for 1.5 to 8 years. We characterized ATP7A mutations using yeast complementation, reverse-transcriptase–polymerase-chain-reaction analysis, and immunohistochemical analysis.
Of 81 infants at risk, 46 had abnormal neurochemical findings indicating low dopamine-β-hydroxylase activity. On the basis of longitudinal follow-up, patients were classified as affected or unaffected by Menkes disease, and the neurochemical profiles were shown to have high sensitivity and specificity for detecting disease. Among 12 newborns with positive screening tests who were treated early with copper, survival at a median follow-up of 4.6 years was 92%, as compared with 13% at a median follow-up of 1.8 years for a historical control group of 15 late-diagnosis and late-treatment patients. Two of the 12 patients had normal neurodevelopment and brain myelination; 1 of these patients had a mutation that complemented a Saccharomyces cerevisiae copper-transport mutation, indicating partial ATPase activity, and the other had a mutation that allowed some correct ATP7A splicing.
Neonatal diagnosis of Menkes disease by plasma neurochemical measurements and early treatment with copper may improve clinical outcomes. Affected newborns who have mutations that do not completely abrogate ATP7A function may be especially responsive to early copper treatment.
PMCID: PMC3477514  PMID: 18256395
3.  Identification of a Novel Mutation in the ATP7A Gene in a Korean Patient with Menkes Disease 
Journal of Korean Medical Science  2011;26(7):951-953.
Menkes disease is an infantile-onset X-linked recessive neurodegenerative disorder caused by diverse mutations in a copper-transport gene, ATP7A. Affected patients are characterized by progressive hypotonia, seizures, failure to thrive and death in early childhood. Here, we report a case of Menkes disease presented by intractable seizures and infantile spasms. A 3-month-old male infant had visited our pediatric clinic for lethargy, floppy muscle tone, poor oral intake and partial seizures. His hair was kinky, brown colored and fragile. Partial seizures became more frequent, generalized and intractable to antiseizure medications. An EEG showed frequent posteriorly dominant generalized spikes that were consistent with a generalized seizure. From a genetic analysis, a c.2743C>T (p.Gln915X) mutation was detected and diagnosed as Menkes disease. The mutation is a novel one that has not been previously reported as a cause of Menkes disease.
PMCID: PMC3124728  PMID: 21738351
Menkes Disease; MNK Gene; ATP7A Mutation
4.  ATP7A-related copper transport diseases—emerging concepts and future trends 
Nature reviews. Neurology  2011;7(1):15-29.
This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder—isolated distal motor neuropathy—has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot–Marie–Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.
PMCID: PMC4214867  PMID: 21221114
5.  Clinical Outcomes in Menkes Disease Patients with a Copper-Responsive ATP7A Mutation, G727R 
Molecular genetics and metabolism  2008;95(3):174-181.
Menkes disease is a fatal neurodegenerative disorder of infancy caused by defects in an X-linked copper transport gene, ATP7A. Evidence from a recent clinical trial indicates that favorable response to early treatment of this disorder with copper injections involves mutations that retain some copper transport capacity. In three unrelated infants, we identified the same mutation, G727R, in the second transmembrane segment of the ATP7A gene product that complemented a S. cerevisiae copper transport mutant, consistent with partial copper transport activity. Quantitative reverse transcription-polymerase chain reaction studies showed approximately normal levels of ATP7AG727R transcript in two patients’ fibroblasts compared to wild type controls, but Western blot analyses showed markedly reduced quantities of ATP7A protein, suggesting post-translational degradation. We confirmed the latter by comparing degradation rates of mutant and wild type ATP7A via cyclohexamide treatment of cultured fibroblasts; half-life of the G727R mutant was 2.9 hr and for the wild-type, 11.4 hr. We also documented a X-box binding protein 1 splice variant in G727R cells - known to be associated with the cellular misfolded protein response. Patient A, diagnosed 6 months of age, began treatment at 228 days (7.6 mos) of age. At his current age (2 years), his overall neurodevelopment remains at a 2 to 4 month level. In contrast, patients B and C were diagnosed in the neonatal period, began treatment within 25 days of age, and show near normal neurodevelopment at their current ages, 3 years (B), and 7 months (C). The poor clinical outcome in patient A with the same missense mutation as patients A and B with near normal oucomes, confirms the importance of early medical intervention in Menkes disease and highlights the critical potential benefit of newborn screening for this disorder.
PMCID: PMC2654537  PMID: 18752978
6.  Molecular correlates of epilepsy in early diagnosed and treated Menkes disease 
Epilepsy is a major feature of Menkes disease, an X-linked recessive infantile neurodegenerative disorder caused by mutations in ATP7A, which produces a copper-transporting ATPase. Three prior surveys indicated clinical seizures and electroencephalographic (EEG) abnormalities in a combined 27 of 29 (93%) symptomatic Menkes disease patients diagnosed at 2 months of age or older. To assess the influence of earlier, presymptomatic diagnosis and treatment on seizure semiology and brain electrical activity, we evaluated 71 EEGs in 24 Menkes disease patients who were diagnosed and treated with copper injections in early infancy (≤6 weeks of age), and whose ATP7A mutations we determined. Clinical seizures were observed in only 12.5% (3/24) of these patients, although 46% (11/24) had at least one abnormal EEG tracing, including 50% of patients with large deletions in ATP7A, 50% of those with small deletions, 60% of those with nonsense mutations, and 57% of those with canonical splice junction mutations. In contrast, five patients with mutations shown to retain partial function, either via some correct RNA splicing or residual copper transport capacity, had neither clinical seizures nor EEG abnormalities. Our findings suggest that early diagnosis and treatment improve brain electrical activity and decrease seizure occurrence in classical Menkes disease irrespective of the precise molecular defect. Subjects with ATP7A mutations that retain some function seem particularly well protected by early intervention against the possibility of epilepsy.
PMCID: PMC3113468  PMID: 20652413
7.  Prenatal Treatment of Mosaic Mice (Atp7a mo-ms) Mouse Model for Menkes Disease, with Copper Combined by Dimethyldithiocarbamate (DMDTC) 
PLoS ONE  2012;7(7):e40400.
Menkes disease is a fatal neurodegenerative disorder in infants caused by mutations in the gene ATP7A which encodes a copper (Cu) transporter. Defects in ATP7A lead to accumulated copper in the small intestine and kidneys and to copper deficiencies in the brain and the liver. The copper level in the kidney in postnatal copper-treated Menkes patients may reach toxic levels. The mouse model, mosaic Atp7a mo-ms recapitulates the Menkes phenotype and die about 15.75±1.5 days of age. In the present study we found that prenatal treatment of mosaic murine fetuses throughout gestation days 7, 11, 15 and 18 with a combination of CuCl2 (50 mg/kg) and dimethyldithiocarbamate (DMDTC) (280 mg/kg) leads to an increase in survival to about 76±25.3 days, whereas treatment with CuCl2 alone (50 mg/kg) only leads to survival for about 21 days ±5 days. These copper-DMDTC treated mutants showed an improved locomotor activity performance and a gain in body mass. In contrast to treatment with CuCl2 alone, a significant increase in the amount of copper was observed in the brain after prenatal copper-DMDTC treatment as well as a decrease in the amount of accumulated copper in the kidney, both leading towards a normalization of the copper level. Although copper-DMDTC prenatal treatment only leads to a small increase in the sub-normal copper concentration in the liver and to an increase of copper in the already overloaded small intestine, the combined results suggest that prenatal copper-DMDTC treatment also should be considered for humans.
PMCID: PMC3399861  PMID: 22815746
8.  Safety of Intracerebroventricular Copper Histidine in Adult Rats 
Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in a P-type ATPase (ATP7A) that normally delivers copper to the developing central nervous system. Infants with large deletions, or other mutations in ATP7A that incapacitate copper transport to the brain, show poor clinical outcomes and subnormal brain copper despite early subcutaneous copper histidine (CuHis) injections. These findings suggest a need for direct central nervous system approaches in such patients. To begin to evaluate an aggressive but potentially useful new strategy for metabolic improvement of this disorder, we studied the acute and chronic effects of CuHis administered by intracerebroventricular (ICV) injection in healthy adult rats. Magnetic resonance imaging (MRI) after ICV CuHis showed diffuse T1-signal enhancement, indicating wide brain distribution of copper after ICV administration, and implying the utility of this paramagnetic metal as a MRI contrast agent. The maximum tolerated dose (MTD) of CuHis, defined as the highest dose that did not induce overt toxicity, growth retardation, or reduce lifespan, was 0.5 mcg. Animals receiving multiple infusions of this MTD showed increased brain copper concentrations, but no significant differences in activity, behavior, and somatic growth, or brain histology compared to saline-injected controls. Based on estimates of the brain copper deficit in Menkes disease patients, CuHis doses 10-fold lower than the MTD found in this study may restore proper brain copper concentration. Our results suggest that ICV CuHis administration have potential as a novel treatment approach in Menkes disease infants with severe mutations. Future trials of direct CNS copper administration in mouse models of Menkes disease will be informative.
PMCID: PMC2570033  PMID: 17336116
Copper histidine; Intracerebral administration; Maximum tolerated dose; Menkes disease; Copper transport
9.  The Mild Form of Menkes Disease: A 34 Year Progress Report on the Original Case 
JIMD Reports  2012;9:81-84.
Classical Menkes disease is a neurodegenerative disorder caused by mutations in the copper-transporting ATPase ATP7A gene which, when untreated, is usually fatal in early childhood. A mild form of Menkes disease was originally reported in 1981 and clinical progress of the patient at 10 years described subsequently. The causative mutation is c.4085C>T in exon 21, causing an alanine to valine substitution in the highly conserved TM7 domain at the C-terminal end of the Menkes protein. Here we report his status at 34 years of age. Intellectual impairment is mild. Ataxia has nearly resolved but motor retardation, dysarthria and an extreme slow speech rate remain. In contrast to patients with the occipital horn syndrome, there have been no connective tissue complications of his mild Menkes disease. He has been under long-term copper therapy for more than 30 years and he continues to enjoy a good quality of life.
PMCID: PMC3565640  PMID: 23430551
10.  Somatic Mosaicism in Menkes Disease Suggests Choroid Plexus-mediated Copper Transport to the Developing Brain 
The primary mechanism of copper transport to the brain is unknown, although this process is drastically impaired in Menkes disease, an X-linked neurodevelopmental disorder caused by mutations in an evolutionarily conserved copper transporter, ATP7A. Potential central nervous system entry routes for copper include brain capillary endothelial cells that originate from mesodermal angioblasts and form the blood-brain barrier, and the choroid plexuses, which derive from embryonic ectoderm, and form the blood-cerebrospinal fluid barrier. We exploited a rare (and first reported) example of somatic mosaicism for an ATP7A mutation to shed light on questions about copper transport into the developing brain. In a 20-month-old Menkes disease patient evaluated before copper treatment, blood copper and catecholamine concentrations were normal, whereas levels in cerebrospinal fluid were abnormal and consistent with his neurologically severe phenotype. We documented disparate levels of mosaicism for an ATP7A missense mutation, P1001L, in tissues derived from different embryonic origins; allele quantitation showed P1001L in approximately 27% and 88% of DNA samples from blood cells (mesoderm-derived) and cultured fibroblasts (ectoderm-derived), respectively. These findings imply that the P1001L mutation in the patient preceded formation of the three primary embryonic lineages at gastrulation, with the ectoderm layer ultimately harboring a higher percentage of mutation-bearing cells than mesoderm or endoderm. Since choroid plexus epithelia are derived from neuroectoderm, and brain capillary endothelial cells from mesodermal angioblasts, the clinical and biochemical findings in this infant support a critical role for the blood-CSF barrier (choroid plexus epithelia) in copper entry to the developing brain.
PMCID: PMC3117432  PMID: 20799318
Somatic mosaicism; Menkes disease; ATP7A; copper metabolism; choroid plexus
11.  Inherited Copper Transport Disorders: Biochemical Mechanisms, Diagnosis, and Treatment 
Current Drug Metabolism  2012;13(3):237-250.
Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson’s disease.
Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome.
Wilson’s disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson’s disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson’s disease should be implemented in infants. Patients with Wilson’s disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson’s disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention.
PMCID: PMC3290776  PMID: 21838703
Menkes disease; Wilson’s disease; occipital horn syndrome; ATP7A; ATP7B; disulfiram; zinc; trientine.
12.  The copper-transporting capacity of ATP7A mutants associated with Menkes disease is ameliorated by COMMD1 as a result of improved protein expression 
Menkes disease (MD) is an X-linked recessive disorder characterized by copper deficiency resulting in a diminished function of copper-dependent enzymes. Most MD patients die in early childhood, although mild forms of MD have also been described. A diversity of mutations in the gene encoding of the Golgi-resident copper-transporting P1B-type ATPase ATP7A underlies MD. To elucidate the molecular consequences of the ATP7A mutations, various mutations in ATP7A associated with distinct phenotypes of MD (L873R, C1000R, N1304S, and A1362D) were analyzed in detail. All mutants studied displayed changes in protein expression and intracellular localization parallel to a dramatic decline in their copper-transporting capacity compared to ATP7A the wild-type. We restored these observed defects in ATP7A mutant proteins by culturing the cells at 30°C, which improves the quality of protein folding, similar to that which as has recently has been demonstrated for misfolded ATP7B, a copper transporter homologous to ATP7A. Further, the effect of the canine copper toxicosis protein COMMD1 on ATP7A function was examined as COMMD1 has been shown to regulate the proteolysis of ATP7B proteins. Interestingly, in addition to adjusted growth temperature, binding of COMMD1 partially restored the expression, subcellular localization, and copper-exporting activities of the ATP7A mutants. However, no effect of pharmacological chaperones was observed. Together, the presented data might provide a new direction for developing therapies to improve the residual exporting activity of unstable ATP7A mutant proteins, and suggests a potential role for COMMD1 in this process.
Electronic supplementary material
The online version of this article (doi:10.1007/s00018-011-0743-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3249196  PMID: 21667063
ATP7A; Copper; COMMD1; Menkes disease; Pharmacological chaperones; Protein folding
13.  Relative Efficiencies of Plasma Catechol Levels and Ratios for Neonatal Diagnosis of Menkes Disease 
Neurochemical research  2009;34(8):1464-1468.
Menkes disease is an X-linked recessive neurodevelopmental disorder resulting from mutation in a copper-transporting ATPase gene. Menkes disease can be detected by relatively high concentrations of dopamine (DA) and its metabolites compared to norepinephrine (NE) and its metabolites, presumably because dopamine-beta-hydroxylase (DBH) requires copper as a co-factor. The relative diagnostic efficiencies of levels of catechol analytes, alone or in combination, in neonates at genetic risk of Menkes disease have been unknown.
Plasma from 44 at-risk neonates less than 30 days old were assayed for DA, NE, and other catechols. Of the 44, 19 were diagnosed subsequently with Menkes disease, and 25 were unaffected.
Compared to unaffected at-risk infants, those with Menkes disease had high plasma DA (P < 10−6) and low NE (P < 10−6) levels. Considered alone, neither DA nor NE levels had perfect sensitivity, whereas the ratio of DA:NE was higher in all affected than in all unaffected subjects (P = 2 × 10−8). Analogously, levels of the DA metabolite, dihydroxyphenylacetic acid (DOPAC), and the NE metabolite, dihydroxyphenylglycol (DHPG), were imperfectly sensitive, whereas the DOPAC:DHPG ratio was higher in all affected than in all unaffected subjects (P = 2 × 10−4). Plasma dihydroxyphenylalanine (DOPA) and the ratio of epinephrine (EPI):NE levels were higher in affected than in unaffected neonates (P = 0.0015; P = 0.013).
Plasma DA:NE and DOPAC:DHPG ratios are remarkably sensitive and specific for diagnosing Menkes disease in at-risk newborns. Affected newborns also have elevated DOPA and EPI:NE ratios, which decreased DBH activity alone cannot explain.
PMCID: PMC3477515  PMID: 19234788
Menkes; Dopamine; Norepinephrine; Dopamine-β-hydroxylase; DHPG; DOPAC; Diagnosis
14.  Essential Roles in Development and Pigmentation for the Drosophila Copper Transporter DmATP7D⃞V⃞ 
Molecular Biology of the Cell  2006;17(1):475-484.
Defects in the mammalian Menkes and Wilson copper transporting P-type ATPases cause severe copper homeostasis disease phenotypes in humans. Here, we find that DmATP7, the sole Drosophila orthologue of the Menkes and Wilson genes, is vital for uptake of copper in vivo. Analysis of a DmATP7 loss-of-function allele shows that DmATP7 is essential in embryogenesis, early larval development, and adult pigmentation and is probably required for copper uptake from the diet. These phenotypes are analogous to those caused by mutation in the mouse and human Menkes genes, suggesting that like Menkes, DmATP7 plays at least two roles at the cellular level: delivering copper to cuproenzymes required for pigmentation and neuronal function and removing excess cellular copper via facilitated efflux. DmATP7 displays a dynamic and unexpected expression pattern in the developing embryo, implying novel functions for this copper pump and the lethality observed in DmATP7 mutant flies is the earliest seen for any copper homeostasis gene.
PMCID: PMC1345683  PMID: 16251357
15.  Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes 
Journal of Medical Genetics  2007;44(11):673-688.
The trace metal copper is essential for a variety of biological processes, but extremely toxic when present in excessive amounts. Therefore, concentrations of this metal in the body are kept under tight control. Central regulators of cellular copper metabolism are the copper‐transporting P‐type ATPases ATP7A and ATP7B. Mutations in ATP7A or ATP7B disrupt the homeostatic copper balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease), respectively. ATP7A and ATP7B exert their functions in copper transport through a variety of interdependent mechanisms and regulatory events, including their catalytic ATPase activity, copper‐induced trafficking, post‐translational modifications and protein–protein interactions. This paper reviews the extensive efforts that have been undertaken over the past few years to dissect and characterise these mechanisms, and how these are affected in Menkes and Wilson disease. As both disorders are characterised by an extensive clinical heterogeneity, we will discus how the underlying genetic defects correlate with the molecular functions of ATP7A and ATP7B and with the clinical expression of these disorders.
PMCID: PMC2752173  PMID: 17717039
copper; Menkes disease; ATP7A; Wilson disease; ATP7B
16.  Genomic organization of ATOX1, a human copper chaperone 
BMC Genetics  2003;4:4.
Copper is an essential trace element that plays a critical role in the survival of all living organisms. Menkes disease and occipital horn syndrome (OHS) are allelic disorders of copper transport caused by defects in a X-linked gene (ATP7A) that encodes a P-type ATPase that transports copper across cellular membranes, including the trans-Golgi network. Genetic studies in yeast recently revealed a new family of cytoplasmic proteins called copper chaperones which bind copper ions and deliver them to specific cellular pathways. Biochemical studies of the human homolog of one copper chaperone, ATOX1, indicate direct interaction with the Menkes/OHS protein. Although no disease-associated mutations have been reported in ATOX1, mice with disruption of the ATOX1 locus demonstrate perinatal mortality similar to that observed in the brindled mice (Mobr), a mouse model of Menkes disease. The cDNA sequence for ATOX1 is known, and the genomic organization has not been reported.
We determined the genomic structure of ATOX1. The gene contains 4 exons spanning a genomic distance of approximately 16 kb. The translation start codon is located in the 3' end of exon 1 and the termination codon in exon 3. We developed a PCR-based assay to amplify the coding regions and splice junctions from genomic DNA. We screened for ATOX1 mutations in two patients with classical Menkes disease phenotypes and one individual with occipital horn syndrome who had no alterations detected in ATP7A, as well as an adult female with chronic anemia, low serum copper and evidence of mild dopamine-beta-hydroxylase deficiency and no alterations in the ATOX1 coding or splice junction sequences were found.
In this study, we characterized the genomic structure of the human copper chaperone ATOX1 to facilitate screening of this gene from genomic DNA in patients whose clinical or biochemical phenotypes suggest impaired copper transport.
PMCID: PMC150598  PMID: 12594858
17.  Increased frequency of congenital heart defects in Menkes disease 
Clinical Dysmorphology  2012;21(2):59-63.
ATP7A is a copper-transporting ATPase critical for central and peripheral nervous system function. Mutations in ATP7A cause Menkes disease and occipital horn syndrome (OHS), allelic X-linked recessive conditions that feature vascular abnormalities ascribed to low activity of lysyl oxidase, a copper-dependent enzyme. From a recently created Menkes disease/OHS patient registry, we identified 4 of 95 subjects with major congenital heart defects (4.2%), a proportion exceeding the general population prevalence (≈1%). In conjunction with mouse models of Menkes disease, OHS, and lysyl oxidase deficiency, which feature aortic aneurysms, irregular attachment between vascular endothelium and mesoderm and other defects of embryological development, our observation suggests an important role of copper metabolism in cardiac development. Congenital heart disease may be an under-appreciated abnormality in Menkes disease, and should be considered in a broad differential diagnosis of cardiac defects found prenatally in male fetuses. Conversely, newborn infants with suspected or confirmed Menkes disease should be evaluated for heart disease by careful clinical examination and echocardiography, if indicated.
PMCID: PMC3385410  PMID: 22134099
ATP7A; congenital heart disease; lysyl oxidase; Menkes disease; occipital horn syndrome
18.  Phenotypic diversity of Menkes disease in mottled mice is associated with defects in localisation and trafficking of the ATP7A protein 
Journal of Medical Genetics  2007;44(10):641-646.
Owing to mutations in the copper‐transporting P‐type ATPase, ATP7A (or MNK), patients with Menkes disease (MD) have an inadequate supply of copper to various copper‐dependent enzymes. The ATP7A protein is located in the trans‐Golgi network, where it transports copper via secretory compartments to copper‐dependent enzymes. Raised copper concentrations result in the trafficking of ATP7A to the plasma membrane, where it functions in copper export. An important model of MD is the Mottled mouse, which possesses mutations in Atp7A. The Mottled mouse displays three distinct phenotypic severities: embryonic lethal, perinatal lethal and a longer‐lived viable phenotype. However, the effects of mutations from these phenotypic classes on the ATP7A protein are unknown. In this study, we found that these classes of mutation differentially affect the copper transport and trafficking functions of the ATP7A protein. The embryonic lethal mutation, Atp7amo11H (11H), caused mislocalisation of the protein to the endoplasmic reticulum, impaired glycosylation, and abolished copper delivery to the secretory pathway. In contrast, the perinatal lethal and viable mutations, Atp7amoMac (Macular) and Atp7amoVbr (Viable brindle) both resulted in a reduction in copper delivery to the secretory pathway and constitutive trafficking of the ATP7A protein to the plasma membrane in the absence of additional copper. In the case of Viable brindle, this hypertrafficking response was dependent on the catalytic phosphorylation site of ATP7A, whereas no such requirement was found for the Macular mutation. These findings provide evidence that the degree of MD severity in mice is associated with both copper transport and trafficking defects in the ATP7A protein.
PMCID: PMC2597975  PMID: 17483305
Menkes disease; mottled mice; copper; ATP7A; protein trafficking
19.  Menkes Disease Presenting with Epilepsia Partialis Continua 
Aim. We aim to describe a female patient with Menkes disease who presented with epilepsia partialis continua. Case Presentation. Seventeen-months-old Saudi infant was presented with repetitive seizures and was diagnosed to have epilepsia partialis continua. Discussion. Menkes disease (OMIM: 309400) is considered a rare, X-linked recessive neurodegenerative disorder resulting from a mutation in the gene coding for the copper transporting ATPase (ATP7A). Affected individuals usually present with kinky hair, skeletal changes, prolonged jaundice, hypothermia, developmental regression, decreased tone, spasticity, weakness, and therapy resistant seizures. Conclusion. Raising awareness of abnormal presentation of this rare disease may help in the control of seizures through subcutaneous copper supplementation.
PMCID: PMC4258917  PMID: 25506448
20.  Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis 
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
PMCID: PMC3750203  PMID: 23986700
copper; copper homeostasis; ATP7A; ATP7B; Menkes disease; Wilson disease; occipital horn syndrome; ATP7A-related motor neuropathy
21.  Altered ATP7A expression and other compensatory responses in a murine model of Menkes disease 
Neurobiology of disease  2007;27(3):278-291.
Mutations in the copper-transporter ATP7A lead to severe neurodegeneration in the mottled brindled hemizygous male (MoBr/y) mouse and human patients with Menkes disease. Our earlier studies demonstrated cell-type and stage-specific changes in ATP7A protein expression during postnatal neurodevelopment. Here we examined copper and cuproenzyme levels in MoBr/y mice to search for compensatory responses. While all MoBr/y neocortical subcellular fractions had decreased copper levels, the greatest decrease (8-fold) was observed in cytosol. Immunostaining for ATP7A revealed decreased levels in MoBr/y hippocampal pyramidal and cerebellar Purkinje neurons. In contrast, an upregulation of ATP7A protein occurred in MoBr/y endothelial cells, perhaps to compensate for a lack of copper in the neuropil. MoBr/y astrocytes and microglia increased their physical association with the blood-brain barrier. No alterations in ATP7A levels were observed in ependymal cells, arguing for specificity in the alteration observed at the blood-brain barrier. The decreased expression of ATP7A protein in MoBr/y Purkinje cells was associated with impaired synaptogenesis and dramatic cytoskeletal dysfunction. Immunoblotting failed to reveal any compensatory increase in levels of ATP7B. While total levels of several cuproenzymes (peptide amidating monooxygenase, SOD1, SOD3) were unaltered in the MoBr/y brain, levels of amidated cholecystokinin (CCK8) and amidated pituitary adenylate cyclase-activating polypeptide (PACAP38) were reduced in a tissue-specific fashion. The compensatory changes observed in the neurovascular unit provide insight into the success of copper injections within a defined neurodevelopmental period.
PMCID: PMC2040029  PMID: 17588765
22.  Exon duplications in the ATP7A gene: Frequency and Transcriptional Behaviour 
Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene.
The ATP7A gene was screened for exon duplications using multiplex ligation-dependent probe amplification (MLPA). The expression level of ATP7A was investigated by real-time PCR and detailed analysis of the ATP7A mRNA was performed by RT-PCR followed by sequencing. In order to investigate whether the identified duplicated fragments originated from a single or from two different X-chromosomes, polymorphic markers located in the duplicated fragments were analyzed.
Partial ATP7A gene duplication was identified in 20 unrelated patients including one patient with Occipital Horn Syndrome (OHS). Duplications in the ATP7A gene are estimated from our material to be the disease causing mutation in 4% of the Menkes disease patients. The duplicated regions consist of between 2 and 15 exons. In at least one of the cases, the duplication was due to an intra-chromosomal event. Characterization of the ATP7A mRNA transcripts in 11 patients revealed that the duplications were organized in tandem, in a head to tail direction. The reading frame was disrupted in all 11 cases. Small amounts of wild-type transcript were found in all patients as a result of exon-skipping events occurring in the duplicated regions. In the OHS patient with a duplication of exon 3 and 4, the duplicated out-of-frame transcript coexists with an almost equally represented wild-type transcript, presumably leading to the milder phenotype.
In general, patients with duplication of only 2 exons exhibit a milder phenotype as compared to patients with duplication of more than 2 exons. This study provides insight into exon duplications in the ATP7A gene.
PMCID: PMC3240829  PMID: 22074552
23.  Differences in ATP7A gene expression underlie intrafamilial variability in Menkes disease/occipital horn syndrome 
Journal of Medical Genetics  2007;44(8):492-497.
Pronounced intrafamilial variability is unusual in Menkes disease and its variants. We report two unrelated families featuring affected members with unusually disparate clinical and biochemical phenotypes and explore the underlying molecular mechanisms.
We measured biochemical markers of impaired copper transport in five patients from two unrelated families and used RNase protection, quantitative reverse transcription (RT)‐PCR, Western blot analysis and yeast complementation studies to characterise two ATP7A missense mutations, A1362D and S637L.
In two brothers (family A) with A1362D, RNase protection and Western blot analyses revealed higher amounts of ATP7A transcript and protein in the older, mildly affected patient, who also had a higher plasma copper level and lower cerebrospinal fluid dihydroxyphenylalanine : dihydroxyphenylglycol ratio. These findings indicate greater gastrointestinal absorption of copper and higher activity of dopamine‐β‐hydroxylase, a copper‐dependent enzyme, respectively. In family B, three males with a missense mutation (S637L) in an exon 8 splicing enhancer showed equally reduced amounts of ATP7A transcript and protein by quantitative RT‐PCR and western blot analysis, respectively, despite a more severe phenotype in the youngest. This patient's medical history was notable for cardiac arrest as a neonate, to which we attribute his more severe neurodevelopmental outcome.
These families illustrate that genetic and non‐genetic mechanisms may underlie intrafamilial variability in Menkes disease and its variants.
PMCID: PMC2597922  PMID: 17496194
Menkes disease; intrafamilial variation; gene expression, ATP7A; residual copper transport
24.  Menkes disease – An important cause of early onset refractory seizures 
Menkes disease is an X-linked multisystem disorder characterized by early onset of cerebral and cerebellar neurodegeneration, fair skin, hypopigmented sparse hair and connective tissue abnormalities.
We aimed to evaluate the clinical, electrophysiological and radiological features of children with Menkes disease seen at our institute.
The medical records of children diagnosed with Menkes disease admitted in the pediatric neurology ward or attending the special pediatric neurology clinic at a tertiary care and a referral hospital in North India, from January 2010 to December 2012, were retrospectively reviewed. The clinical data of each case was subsequently summarized and reported.
Statistical analysis used:
Descriptive statistics were used.
During the study period, 1174 children were seen. Out of these, 6 cases were diagnosed as Menkes disease on the basis of clinical phenotype, low serum copper and ceruloplasmin and supportive neuroimaging. All the children were males and had disease onset within 3 months of age, with 4 children presenting in the neonatal period. Global developmental delay and refractory seizures were the predominant clinical symptoms. Two children had symptomatic West syndrome. Other seizure semiologies included tonic-clonic (4), myoclonic (2) and tonic seizures (1). The electroencephalographic abnormalities included hypsarrythmia (2) and multifocal epileptiform discharges (3). The salient radiological features included white matter changes, temporal lobe abnormalities, global atrophy, subdural hygromas and tortuous cerebral blood vessels.
Menkes disease should be suspected in a case of refractory early onset seizures especially in the presence of subtle clinical clues. The neuroimaging findings may further support the diagnosis.
PMCID: PMC4040024  PMID: 24891895
Epileptic spasms; leukodystrophy; Menkes disease; neonatal seizures; subdural hygromas
25.  Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds 
Inflammation  2012;35(1):167-175.
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
PMCID: PMC3791630  PMID: 21336677
macrophage; copper; ATP7A

Results 1-25 (1502757)