Search tips
Search criteria

Results 1-25 (1087902)

Clipboard (0)

Related Articles

1.  Automated Ankle-Brachial Pressure Index Measurement by Clinical Staff for Peripheral Arterial Disease Diagnosis in Nondiabetic and Diabetic Patients 
Diabetes Care  2009;32(7):1231-1236.
Peripheral arterial disease (PAD) is a prognostic marker in cardiovascular disease. The use of Doppler-measured ankle-brachial pressure index (Dop-ABI) for PAD diagnosis is limited because of time, required training, and costs. We assessed automated oscillometric measurement of the ankle-brachial pressure index (Osc-ABI) by nurses and clinical staff.
Clinical staff obtained Osc-ABI with an automated oscillometric device in 146 patients (83 with diabetes) at the time of Dop-ABI measurement and ultrasound evaluation.
Measurements were obtained in most legs (Dop-ABI 98%; Osc-ABI 95.5%). Dop- and Osc-ABI were significantly related in diabetic and nondiabetic patients with good agreement over a wide range of values. When Dop-ABI ≤0.90 was used as the gold standard for PAD, receiver operating characteristic curve analysis showed that PAD was accurately diagnosed with Osc-ABI in diabetic patients. When ultrasound was used to define PAD, Dop-ABI had better diagnostic performance than Osc-ABI in the whole population and in diabetic patients (P = 0.026). Both methods gave similar results in nondiabetic patients. The cutoff values for the highest sensitivity and specificity for PAD screening were between 1.0 and 1.1. Estimation of cost with the French medical care system fees showed a potential reduction by three of the screening procedures.
PAD screening could be improved by using Osc-ABI measured by clinical staff with the benefit of greater cost-effectiveness but at the risk of lower diagnostic performance in diabetic patients.
PMCID: PMC2699730  PMID: 19366974
2.  Stenting for Peripheral Artery Disease of the Lower Extremities 
Executive Summary
In January 2010, the Medical Advisory Secretariat received an application from University Health Network to provide an evidentiary platform on stenting as a treatment management for peripheral artery disease. The purpose of this health technology assessment is to examine the effectiveness of primary stenting as a treatment management for peripheral artery disease of the lower extremities.
Clinical Need: Condition and Target Population
Peripheral artery disease (PAD) is a progressive disease occurring as a result of plaque accumulation (atherosclerosis) in the arterial system that carries blood to the extremities (arms and legs) as well as vital organs. The vessels that are most affected by PAD are the arteries of the lower extremities, the aorta, the visceral arterial branches, the carotid arteries and the arteries of the upper limbs. In the lower extremities, PAD affects three major arterial segments i) aortic-iliac, ii) femoro-popliteal (FP) and iii) infra-popliteal (primarily tibial) arteries. The disease is commonly classified clinically as asymptomatic claudication, rest pain and critical ischemia.
Although the prevalence of PAD in Canada is not known, it is estimated that 800,000 Canadians have PAD. The 2007 Trans Atlantic Intersociety Consensus (TASC) II Working Group for the Management of Peripheral Disease estimated that the prevalence of PAD in Europe and North America to be 27 million, of whom 88,000 are hospitalizations involving lower extremities. A higher prevalence of PAD among elderly individuals has been reported to range from 12% to 29%. The National Health and Nutrition Examination Survey (NHANES) estimated that the prevalence of PAD is 14.5% among individuals 70 years of age and over.
Modifiable and non-modifiable risk factors associated with PAD include advanced age, male gender, family history, smoking, diabetes, hypertension and hyperlipidemia. PAD is a strong predictor of myocardial infarction (MI), stroke and cardiovascular death. Annually, approximately 10% of ischemic cardiovascular and cerebrovascular events can be attributed to the progression of PAD. Compared with patients without PAD, the 10-year risk of all-cause mortality is 3-fold higher in patients with PAD with 4-5 times greater risk of dying from cardiovascular event. The risk of coronary heart disease is 6 times greater and increases 15-fold in patients with advanced or severe PAD. Among subjects with diabetes, the risk of PAD is often severe and associated with extensive arterial calcification. In these patients the risk of PAD increases two to four fold. The results of the Canadian public survey of knowledge of PAD demonstrated that Canadians are unaware of the morbidity and mortality associated with PAD. Despite its prevalence and cardiovascular risk implications, only 25% of PAD patients are undergoing treatment.
The diagnosis of PAD is difficult as most patients remain asymptomatic for many years. Symptoms do not present until there is at least 50% narrowing of an artery. In the general population, only 10% of persons with PAD have classic symptoms of claudication, 40% do not complain of leg pain, while the remaining 50% have a variety of leg symptoms different from classic claudication. The severity of symptoms depends on the degree of stenosis. The need to intervene is more urgent in patients with limb threatening ischemia as manifested by night pain, rest pain, ischemic ulcers or gangrene. Without successful revascularization those with critical ischemia have a limb loss (amputation) rate of 80-90% in one year.
Diagnosis of PAD is generally non-invasive and can be performed in the physician offices or on an outpatient basis in a hospital. Most common diagnostic procedure include: 1) Ankle Brachial Index (ABI), a ratio of the blood pressure readings between the highest ankle pressure and the highest brachial (arm) pressure; and 2) Doppler ultrasonography, a diagnostic imaging procedure that uses a combination of ultrasound and wave form recordings to evaluate arterial flow in blood vessels. The value of the ABI can provide an assessment of the severity of the disease. Other non invasive imaging techniques include: Computed Tomography (CT) and Magnetic Resonance Angiography (MRA). Definitive diagnosis of PAD can be made by an invasive catheter based angiography procedure which shows the roadmap of the arteries, depicting the exact location and length of the stenosis / occlusion. Angiography is the standard method against which all other imaging procedures are compared for accuracy.
More than 70% of the patients diagnosed with PAD remain stable or improve with conservative management of pharmacologic agents and life style modifications. Significant PAD symptoms are well known to negatively influence an individual quality of life. For those who do not improve, revascularization methods either invasive or non-invasive can be used to restore peripheral circulation.
Technology Under Review
A Stent is a wire mesh “scaffold” that is permanently implanted in the artery to keep the artery open and can be combined with angioplasty to treat PAD. There are two types of stents: i) balloon-expandable and ii) self expandable stents and are available in varying length. The former uses an angioplasty balloon to expand and set the stent within the arterial segment. Recently, drug-eluting stents have been developed and these types of stents release small amounts of medication intended to reduce neointimal hyperplasia, which can cause re-stenosis at the stent site. Endovascular stenting avoids the problem of early elastic recoil, residual stenosis and flow limiting dissection after balloon angioplasty.
Research Questions
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), is primary stenting more effective than percutaneous transluminal angioplasty (PTA) in improving patency?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), does primary stenting provide immediate success compared to PTA?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), is primary stenting associated with less complications compared to PTA?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion), does primary stenting compared to PTA reduce the rate of re-intervention?
In individuals with PAD of the lower extremities (superficial femoral artery, infra-popliteal, crural and iliac artery stenosis or occlusion) is primary stenting more effective than PTA in improving clinical and hemodynamic success?
Are drug eluting stents more effective than bare stents in improving patency, reducing rates of re-interventions or complications?
Research Methods
Literature Search
A literature search was performed on February 2, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA). Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
English language full-reports from 1950 to January Week 3, 2010
Comparative randomized controlled trials (RCTs), systematic reviews and meta-analyses of RCTs
Proven diagnosis of PAD of the lower extremities in all patients.
Adult patients at least 18 years of age.
Stent as at least one treatment arm.
Patency, re-stenosis, re-intervention, technical success, hemodynamic (ABI) and clinical improvement and complications as at least an outcome.
Exclusion Criteria
Non-randomized studies
Observational studies (cohort or retrospective studies) and case report
Feasibility studies
Studies that have evaluated stent but not as a primary intervention
Outcomes of Interest
The primary outcome measure was patency. Secondary measures included technical success, re-intervention, complications, hemodynamic (ankle brachial pressure index, treadmill walking distance) and clinical success or improvement according to Rutherford scale. It was anticipated, a priori, that there would be substantial differences among trials regarding the method of examination and definitions of patency or re-stenosis. Where studies reported only re-stenosis rates, patency rates were calculated as 1 minus re-stenosis rates.
Statistical Analysis
Odds ratios (for binary outcomes) or mean difference (for continuous outcomes) with 95% confidence intervals (CI) were calculated for each endpoint. An intention to treat principle (ITT) was used, with the total number of patients randomized to each study arm as the denominator for each proportion. Sensitivity analysis was performed using per protocol approach. A pooled odds ratio (POR) or mean difference for each endpoint was then calculated for all trials reporting that endpoint using a fixed effects model. PORs were calculated for comparisons of primary stenting versus PTA or other alternative procedures. Level of significance was set at alpha=0.05. Homogeneity was assessed using the chi-square test, I2 and by visual inspection of forest plots. If heterogeneity was encountered within groups (P < 0.10), a random effects model was used. All statistical analyses were performed using RevMan 5. Where sufficient data were available, these analyses were repeated within subgroups of patients defined by time of outcome assessment to evaluate sustainability of treatment benefit. Results were pooled based on the diseased artery and stent type.
Summary of Findings
Balloon-expandable stents vs PTA in superficial femoral artery disease
Based on a moderate quality of evidence, there is no significant difference in patency between primary stenting using balloon-expandable bare metal stents and PTA at 6, 12 and 24 months in patients with superficial femoral artery disease. The pooled OR for patency and their corresponding 95% CI are: 6 months 1.26 (0.74, 2.13); 12 months 0.95 (0.66, 1.38); and 24 months 0.72 (0.34. 1.55).
There is no significant difference in clinical improvement, re-interventions, peri and post operative complications, mortality and amputations between primary stenting using balloon-expandable bare stents and PTA in patients with superficial femoral artery. The pooled OR and their corresponding 95% CI are clinical improvement 0.85 (0.50, 1.42); ankle brachial index 0.01 (-0.02, 0.04) re-intervention 0.83 (0.26, 2.65); complications 0.73 (0.43, 1.22); all cause mortality 1.08 (0.59, 1.97) and amputation rates 0.41 (0.14, 1.18).
Self-expandable stents vs PTA in superficial femoral artery disease
Based on a moderate quality of evidence, primary stenting using self-expandable bare metal stents is associated with significant improvement in patency at 6, 12 and 24 months in patients with superficial femoral artery disease. The pooled OR for patency and their corresponding 95% CI are: 6 months 2.35 (1.06, 5.23); 12 months 1.54 (1.01, 2.35); and 24 months 2.18 (1.00. 4.78). However, the benefit of primary stenting is not observed for clinical improvement, re-interventions, peri and post operative complications, mortality and amputation in patients with superficial femoral artery disease. The pooled OR and their corresponding 95% CI are clinical improvement 0.61 (0.37, 1.01); ankle brachial index 0.01 (-0.06, 0.08) re-intervention 0.60 (0.36, 1.02); complications 1.60 (0.53, 4.85); all cause mortality 3.84 (0.74, 19.22) and amputation rates 1.96 (0.20, 18.86).
Balloon expandable stents vs PTA in iliac artery occlusive disease
Based on moderate quality of evidence, despite immediate technical success, 12.23 (7.17, 20.88), primary stenting is not associated with significant improvement in patency, clinical status, treadmill walking distance and reduction in re-intervention, complications, cardiovascular events, all cause mortality, QoL and amputation rates in patients with intermittent claudication caused by iliac artery occlusive disease. The pooled OR and their corresponding 95% CI are: patency 1.03 (0.56, 1.87); clinical improvement 1.08 (0.60, 1.94); walking distance 3.00 (12.96, 18.96); re-intervention 1.16 (0.71, 1.90); complications 0.56 (0.20, 1.53); all cause mortality 0.89 (0.47, 1.71); QoL 0.40 (-4.42, 5.52); cardiovascular event 1.16 (0.56, 2.40) and amputation rates 0.37 (0.11, 1.23). To date no RCTs are available evaluating self-expandable stents in the common or external iliac artery stenosis or occlusion.
Drug-eluting stent vs balloon-expandable bare metal stents in crural arteries
Based on a very low quality of evidence, at 6 months of follow-up, sirolimus drug-eluting stents are associated with a reduction in target vessel revascularization and re-stenosis rates in patients with atherosclerotic lesions of crural (tibial) arteries compared with balloon-expandable bare metal stent. The OR and their corresponding 95% CI are: re-stenosis 0.09 (0.03, 0.28) and TVR 0.15 (0.05, 0.47) in patients with atherosclerotic lesions of the crural arteries at 6 months follow-up. Both types of stents offer similar immediate success. Limitations of this study include: short follow-up period, small sample and no assessment of mortality as an outcome. Further research is needed to confirm its effect and safety.
PMCID: PMC3377569  PMID: 23074395
3.  To screen or not to screen for peripheral arterial disease in subjects aged 80 and over in primary health care: a cross-sectional analysis from the BELFRAIL study 
BMC Family Practice  2011;12:39.
Peripheral arterial disease (PAD) is common in older people. An ankle-brachial index (ABI) < 0.9 can be used as an indicator of PAD. Patients with low ABI have increased mortality and a higher risk of serious cardiovascular morbidity. However, because 80% of the patients are asymptomatic, PAD remains unrecognised in a large group of patients. The aims of this study were 1) to examine the prevalence of reduced ABI in subjects aged 80 and over, 2) to determine the diagnostic accuracy of the medical history and clinical examination for reduced ABI and 3) to investigate the difference in functioning and physical activity between patients with and without reduced ABI.
A cross-sectional study embedded within the BELFRAIL study. A general practitioner (GP) centre, located in Hoeilaart, Belgium, recruited 239 patients aged 80 or older. Only three criteria for exclusion were used: urgent medical need, palliative situation and known serious dementia. The GP recorded the medical history and performed a clinical examination. The clinical research assistant performed an extensive examination including Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS-15), Activities of Daily Living (ADL), Tinetti test and the LASA Physical Activity Questionnaire (LAPAQ). ABI was measured using an automatic oscillometric appliance.
In 40% of patients, a reduced ABI was found. Cardiovascular risk factors were unable to identify patients with low ABI. A negative correlation was found between the number of cardiovascular morbidities and ABI. Cardiovascular morbidity had a sensitivity of 65.7% (95% CI 53.4-76.7) and a specificity of 48.6% (95% CI 38.7-58.5). Palpation of the peripheral arteries showed the highest negative predictive value (77.7% (95% CI 71.8-82.9)). The LAPAQ score was significantly lower in the group with reduced ABI.
The prevalence of PAD is very high in patients aged 80 and over in general practice. The clinical examination, cardiovascular risk factors and the presence of cardiovascular morbidity were not able to identify patients with a low ABI. A screening strategy for PAD by determining ABI could be considered if effective interventions for those aged 80 and over with a low ABI become available through future research.
PMCID: PMC3121584  PMID: 21605447
4.  Comparison between oscillometric- and Doppler-ABI in elderly individuals 
Peripheral arterial disease (PAD) generally remains under-recognized, mainly due to the specialized technical skills required to detect the low values of the ankle-brachial index (ABI). As a simpler and faster alternative to the standard method using continuous-wave Doppler ultrasound, we evaluated automated oscillometric ABI measurement by VP-2000 with an elderly cohort of 113 subjects (age range, 61 to 88 years). The standard deviation in ABIs measured by the Doppler method was statistically greater than that measured by the oscillometric method for each of the two legs (P < 0.001). Correlations in ABIs between the two methods were 0.46 for the left leg and 0.61 for the right leg; this result appears to have been caused by interobserver variation in the Doppler ABI measurements. While the trend showing greater differences between average oscillometric- and Doppler-ABIs was significant at the lower ABI ranges, there was little indication of differences in measurements having an average ABI > 1.1. The difference between the methods was suggestively larger in subjects who were smokers than in non-smokers (P = 0.09), but the difference was not affected by other potential atherosclerotic risk factors, including age at examination (P > 0.50). A larger difference at lower ABIs led to better PAD detection by the Doppler method compared to the oscillometric method (sensitivity = 50%, specificity = 100%), although the overall agreement was not small (Cohen’s Kappa = 0.65). Our findings indicate that oscillometric devices can provide more accurate estimation of the prevalence of PAD in elderly individuals than the conventional Doppler method.
PMCID: PMC3593766  PMID: 23493262
ankle-brachial index; oscillometry; Doppler; peripheral arterial disease
5.  Measurement of the ankle brachial index with a non-mercury sphygmomanometer in diabetic patients: a concordance study 
The removal of mercury sphygmomanometers from health centers requires the validation of other instruments to measure blood pressure in the limbs to calculate the ankle-brachial index (ABI).
Descriptive cross-sectional study of agreement between two measurement methods in type 2 diabetes patients from three urban primary healthcare centres in the Barcelonès Nord i Maresme area (Catalonia, Spain).
ABI was determined with Doppler and mercury sphygmomanometer and Doppler and the “hybrid” sphygmomanometer OMRON HEM-907 model. Agreement was evaluated using the weighted kappa index. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated using the mercury sphygmomanometer as the gold standard.
211 patients were included, from these, 421 limbs were available for study. The mean age of the participants was 67 years (SD = 10), 51.7% were women.
The index of agreement between ABI measured with a mercury sphygmomanometer and with the OMRON HEM-907 blood pressure monitor was good (weighted kappa index = 0.68; CI 95%: [0.55–0.79]) and improved when the ABI cut-off value was set at ≤0.70 (weighted kappa index = 0.92; CI 95%: [0.81–1.00]). Sensitivity and specificity were 77.5% and 98.2%, respectively. PPV was 83.8% and NPV was 97.3%. With the ABI cut-off value ≤0.70, sensitivity and specificity increased to 85.7% and 100%, respectively, PPV to 100% and NPV to 99.4%.
The combination of a Doppler device with the hybrid sphygmomanometer is a simple and reliable method to measure ABI showing that hybrid sphygmomanometer is a good alternative to the use of mercury sphygmomanometers.
PMCID: PMC3614496  PMID: 23497339
Ankle brachial blood pressure index; Peripheral arterial disease; Blood pressure; Type 2 diabetes mellitus; Doppler; Sensitivity and specificity
6.  The validity of ankle-brachial index for the differential diagnosis of peripheral arterial disease and lumbar spinal stenosis in patients with atypical claudication 
European Spine Journal  2011;21(6):1165-1170.
Claudication is a typical symptom of peripheral arterial disease (PAD) and lumbar spinal stenosis (LSS). Differential diagnosis of PAD and LSS is often difficult due to the subjective natures of symptoms and atypical signs. The authors aimed to determine the usefulness of ankle-brachial index (ABI) measurement for the differential diagnosis of PAD and LSS when the etiology of claudication is uncertain.
Forty-two consecutive patients who had been referred by spine surgeons to a lower extremity vascular surgeon for atypical claudication were retrospectively analyzed. Atypical claudication was defined as claudication not caused by PAD, as determined by clinical manifestations, or by LSS, as determined by MR imaging. A final diagnosis of PAD was established by CT angiography (CTA) and of LSS by excluding PAD. Diagnostic validity of ABI for PAD in atypical presentation was assessed.
Sixty-two legs of 42 atypical claudication patients were analyzed. Mean patient age was 65.8 ± 8.2 years (38–85) and 29 (69.0%) had diabetes mellitus. Mean ABI was 0.73 ± 0.14 (0.53–0.94) in the PAD group and 0.92 ± 0.18 (0.52–1.10) in the LSS group (P < 0.001). Of the 33 legs with a low ABI (ABI < 0.9), 29 legs were diagnosed as true positives for PAD by CTA and 4 were false positives, and of the 29 legs with a high ABI, 5 were false negatives and 24 were true negatives. The sensitivity and specificity of ABI for the diagnosis of PAD in patients with atypical claudication were 85.3 and 85.7%, respectively, and its positive and negative predictive values were 87.9 and 82.8%.
ABI is a recommended screening test for the differential diagnosis of lower leg claudication when clinical symptoms are atypical.
PMCID: PMC3366123  PMID: 22105308
Claudication; Peripheral arterial disease; Lumbar spinal stenosis; Ankle-brachial index; Validity
7.  The accuracy of the physical examination for the detection of lower extremity peripheral arterial disease 
The Canadian Journal of Cardiology  2010;26(10):e346-e350.
Peripheral arterial disease (PAD) is a major risk factor for adverse cardiovascular events. There has been a definite push for wider use of the ankle-brachial index (ABI) as a simple screening tool for PAD. Perhaps this has occurred to the detriment of a thorough physical examination.
To assess the accuracy of the physical examination to detect clinically significant PAD compared with the ABI.
PADfile, the PAD module of CARDIOfile (the Kingston Heart Clinic’s cardiology database [Kingston, Ontario]), was searched for all patients who underwent peripheral arterial testing. Of 1619 patients, 1236 had all of the necessary data entered. Patients’ lower limbs were divided into two groups: those with a normal ABI between 0.91 and 1.30, and those with an abnormal ABI of 0.90 or lower. Peripheral pulses were graded as either absent or present. Absent was graded as 0/3, present but reduced (1/3), normal (2/3) or bounding (3/3). Femoral bruits were graded as either present (1) or absent (0). Using the ABI as the gold standard, the sensitivity, specificity, negative predictive value (NPV), positive predictive value and overall accuracy were calculated for the dorsalis pedis pulse, the posterior tibial pulse, both pedal pulses, the presence or absence of a femoral bruit and, finally, for a combination of both pedal pulses and the presence or absence of a femoral bruit.
In 1236 patients who underwent PAD testing and who underwent a complete peripheral vascular physical examination (all dorsalis pedis and posterior tibial pulses palpated and auscultation for a femoral bruit), the sensitivity, specificity, NPV, positive predictive value and accuracy for PAD were 58.2%, 98.3%, 94.9%, 81.1% and 93.8%, respectively.
The clinical examination of the peripheral arterial foot pulses and the auscultation for a femoral bruit had a high degree of accuracy (93.8%) for the detection or exclusion of PAD compared with the ABI using the cut-off of 0.90 or lower. If both peripheral foot pulses are present in both lower limbs and there are no femoral bruits, the specificity and NPV of 98.3% and 94.9%, respectively, make the measurement of the ABI seem redundant. The emphasis in PAD detection should be redirected toward encouraging a thorough physical examination.
PMCID: PMC3006105  PMID: 21165366
Ankle-brachial index; Peripheral arterial disease; Physical examination
8.  Progression of Peripheral Arterial Disease Predicts Cardiovascular Disease Morbidity and Mortality 
The purpose of this study was to examine the association of progressive versus stable peripheral arterial disease (PAD) with the risk of future cardiovascular disease (CVD) events.
An independent association between PAD, defined by low values of the ankle-brachial index (ABI), and future CVD risk has been demonstrated. However, the prognostic significance of declining versus stable ABI has not been studied.
We recruited 508 subjects (59 women, 449 men) from 2 hospital vascular laboratories in San Diego, California. ABI and CVD risk factors were measured at Visit 2 (1990 to 1994). ABI values from each subject’s earliest vascular laboratory examination (Visit 1) were abstracted from medical records. Mortality and morbidity were tracked for 6 years after Visit 2 using vital statistics and hospitalization data.
In multivariate models adjusted for CVD risk factors, very low (<0.70) and, in some cases, low (0.70 ≤ ABI <0.90) Visit 2 ABIs were associated with significantly elevated all-cause mortality, CVD mortality, and combined CVD morbidity/mortality at 3 and 6 years. Decreases in ABI of more than 0.15 between Visit 1 and Visit 2 were significantly associated with an increased risk of all-cause mortality (risk ratio [RR]: 2.4) and CVD mortality (RR: 2.8) at 3 years, and CVD morbidity/mortality (RR: 1.9) at 6 years, independent of Visit 2 ABI and other risk factors.
Progressive PAD (ABI decline >0.15) was significantly and independently associated with increased CVD risk. Patients with decreasing ABI may be candidates for more intensive cardiovascular risk factor management.
PMCID: PMC2871035  PMID: 19007695
peripheral vascular disease; cardiovascular diseases; risk factors; morbidity; mortality
9.  Pocket Doppler and vascular laboratory equipment yield comparable results for ankle brachial index measurement 
The ankle brachial index (ABI) is a well-established tool for screening and diagnosis of peripheral arterial disease (PAD). In this study we assessed the validity of ABI determination using a pocket Doppler device compared with automatic vascular laboratory measurement in patients suspected of PAD.
Consecutive patients with symptoms of PAD referred for ABI measurement between December 2006 and August 2007 were included. Resting ABI was determined with a pocket Doppler, followed by ABI measurement with automatic vascular laboratory equipment, performed by an experienced vascular technician. The leg with the lowest ABI was used for analysis.
From 99 patients the mean resting ABI was 0.80 measured with the pocket Doppler and 0.85 measured with vascular laboratory equipment. A Bland-Altman plot demonstrated great correspondence between the two methods. The mean difference between the two methods was 0.05 (P < .001). Multivariate linear regression analysis showed no dependency of the difference on either the average measured ABI or affected or unaffected leg.
Since the small, albeit statistically significant, difference between the two methods is not clinically relevant, our study demonstrates that ABI measurements with pocket Doppler and vascular laboratory equipment yield comparable results and can replace each other. Results support the use of the pocket Doppler for screening of PAD, allowing initiation of cardiovascular risk factor management in primary care, provided that the equipment operator is experienced.
PMCID: PMC2567287  PMID: 18840278
10.  The association of the ankle-brachial index with incident coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study, 1987–2001 
Peripheral arterial disease (PAD), defined by a low ankle-brachial index (ABI), is associated with an increased risk of cardiovascular events, but the risk of coronary heart disease (CHD) over the range of the ABI is not well characterized, nor described for African Americans.
The ABI was measured in 12186 white and African American men and women in the Atherosclerosis Risk in Communities Study in 1987–89. Fatal and non-fatal CHD events were ascertained through annual telephone contacts, surveys of hospital discharge lists and death certificate data, and clinical examinations, including electrocardiograms, every 3 years. Participants were followed for a median of 13.1 years. Age- and field-center-adjusted hazard ratios (HRs) were estimated using Cox regression models.
Over a median 13.1 years follow-up, 964 fatal or non-fatal CHD events accrued. In whites, the age- and field-center-adjusted CHD hazard ratio (HR, 95% CI) for PAD (ABI<0.90) was 2.81 (1.77–4.45) for men and 2.05 (1.20–3.53) for women. In African Americans, the HR for men was 4.86 (2.76–8.47) and for women was 2.34 (1.26–4.35). The CHD risk increased exponentially with decreasing ABI as a continuous function, and continued to decline at ABI values > 1.0, in all race-gender subgroups. The association between the ABI and CHD relative risk was similar for men and women in both race groups. A 0.10 lower ABI increased the CHD hazard by 25% (95% CI 17–34%) in white men, by 20% (8–33%) in white women, by 34% (19–50%) in African American men, and by 32% (17–50%) in African American women.
African American members of the ARIC cohort had higher prevalences of PAD and greater risk of CHD associated with ABI-defined PAD than did white participants. Unlike in other cohorts, in ARIC the CHD risk failed to increase at high (>1.3) ABI values. We conclude that at this time high ABI values should not be routinely considered a marker for increased CVD risk in the general population. Further research is needed on the value of the ABI at specific cutpoints for risk stratification in the context of traditional risk factors.
PMCID: PMC1784111  PMID: 17227586
11.  Utility of Toe-brachial Index for Diagnosis of Peripheral Artery Disease 
Archives of Plastic Surgery  2012;39(3):227-231.
The ankle brachial pressure index (ABI) is a simple, useful method for diagnosing peripheral artery disease (PAD). Although the ABI is an objective diagnostic method, it has limited reliability in certain scenarios. The aim of the present study was to determine the accuracy and reliability of the toe brachial index (TBI) as a diagnostic tool for detecting stenosis in PAD, associated with normal or low ABI values.
ABI and TBI values were measured in 15 patients with diabetic gangrene who were suspected of having lower extremity arterial insufficiency. The ABI and TBI values were measured using a device that allowed the simultaneous measurement of systolic blood pressure in the upper and lower extremities. In addition, the ABI and TBI values were compared pre- and post-angiography.
Patients with an ABI of 0.9-1.3 showed almost no difference between the 2 measurements. The patients with TBI >0.6 had no arterial insufficiency. The patients with TBI <0.6 required vascular intervention with ballooning. After the angiography, the gangrenous wounds decreased in size more rapidly than they did prior to the intervention.
Our findings suggest that TBI is the method of choice for evaluating lower limb perfusion disorders. This result requires further studies of TBI in a larger number of patients. Future long-term studies should therefore evaluate the utility of TBI as a means of screening for PAD and the present findings should be regarded as preliminary outcomes.
PMCID: PMC3385338  PMID: 22783531
Toe brachial index; Ankle brachial index; Peripheral arterial disease
12.  Accuracy of the ankle-brachial index using the SCVL®, an arm and ankle automated device with synchronized cuffs, in a population with increased cardiovascular risk 
To evaluate the accuracy of the ankle brachial index (ABI) measured with the SCVL® (“screening cardiovascular lab”; GenNov, Paris, France), an automated device with synchronized arm and ankle cuffs with an automatic ABI calculation.
Patients were consecutively included in a cardiovascular prevention unit if they presented with at least two cardiovascular risk factors. ABI measurements were made using the SCVL, following a synchronized assessment of brachial and ankle systolic pressure. These values were compared to the ABI obtained with the usual Doppler-assisted method.
We included 157 patients. Mean age was 59.1 years, 56.8% had hypertension, 22.3% had diabetes mellitus, and 17.6% were current smokers. An abnormal ABI was observed in 17.2% with the SCVL and in 16.2% with the Doppler. The prevalence rates of an abnormal ABI by patient measured with each device, ie, 15.7% (confidence interval [CI] 0.95: [11.8; 20.4]) or 14.3% (CI 0.95: [10.7; 18.9]), did not differ. The coefficient of variation of Doppler and SCVL measures was 15.8% and 15.1%, respectively. The regression line between the two measurement methods was statistically significant. The value-to-value comparison also shows a difference of mean equal to 0.010 (CI 0.95: [−0.272; 0.291]) (r = −0.055). Reproducibility of ABI measurements with the SCVL showed a difference of mean equal to 0.009 (CI 0.95: [−0.203; 0.222]), without heteroscedasticity (r = −0.003).
The SCVL is a fast and easy to use automated oscillometric device for the determination of ABI. The use of this two-synchronized-cuff device correlates well with the gold standard Doppler ultrasound method and is reproducible. The SCVL may ease the screening for peripheral arterial disease in routine medical practice.
PMCID: PMC3346267  PMID: 22566745
ankle brachial index; automated device; peripheral arterial disease screening
13.  Peripheral Arterial Disease and Ankle-Brachial Index Abnormalites in Young and Middle-Aged HIV-Positive Patients in Lower Silesia, Poland 
PLoS ONE  2014;9(12):e113857.
Peripheral arterial disease (PAD) is a clinical manifestation of atherosclerosis and mainly refers to elderly patients, having a negative impact on their functionality and quality of life. The findings of previous studies in HIV-infected patients have shown that cardiovascular risk is higher and PAD occurs more frequently than in the general population. There are also contradictory observations. Much less is known about the ankle-brachial index (ABI) value in asymptomatic HIV-infected patients. The aim of this study was to evaluate the prevalence of PAD and ankle-brachial index abnormalities as well as to determine risk factors related to the disease in a group of Polish HIV–positive patients.
Methods and Findings
One hundred and eleven young to middle aged HIV–positive subjects and 40 noninfected subjects were enrolled into the study. Resting ABI measurements were performed and cardiovascular risk was analysed as well. Subgroups were created according to the ABI values: low (PAD), borderline, normal, high and altered ABI. Symptomatic PAD was observed in 2 HIV–positive patients, asymptomatic PAD was not diagnosed. The ABI value is lower and more varied, in 22.5% of the study group altered ABI values were found. Six subjects demonstrated borderline ABI, and 15 high ABI, including >1.4. In the control group no low or very high values were reported. A relation between low ABI and cardiovascular family history and between altered ABI and high–density–lipoprotein cholesterol (HDL–C) level was demonstrated.
In young and middle–aged HIV–positive patients, symptomatic PAD prevalence is comparable to that observed in the overall population. Among asymptomatic patients PAD is not reported. The ABI value in HIV–positive patients is more varied compared to the HIV–negative subjects; the altered ABI shows a strong relation with low HDL–C levels and metabolic syndrome.
PMCID: PMC4264742  PMID: 25503743
14.  Current utility of the ankle-brachial index (ABI) in general practice: implications for its use in cardiovascular disease screening 
BMC Family Practice  2014;15:69.
Peripheral arterial disease (PAD) is a marker of systemic atherosclerosis and associated with a three to six fold increased risk of death from cardiovascular causes. Furthermore, it is typically asymptomatic and under-diagnosed; this has resulted in escalating calls for the instigation of Primary Care PAD screening via Ankle Brachial Index (ABI) measurement. However, there is limited evidence regarding the feasibility of this and if the requisite core skills and knowledge for such a task already exist within primary care. This study aimed to determine the current utility of ABI measurement in general practices across Wales, with consideration of the implications for its use as a cardiovascular risk screening tool.
A self-reporting questionnaire was distributed to all 478 General Practices within Wales, sent via their responsible Health Boards.
The survey response rate was 20%. ABI measurement is primarily performed by nurses (93%) for the purpose of wound management (90%). It is infrequently (73% < 4 times per month) and often incorrectly used (42% out of compliance with current ABI guidance). Only 52% of general practitioners and 16% of nurses reported that patients with an ABI of ≤ 0.9 require aggressive cardiovascular disease risk factor modification (as recommended by current national and international guidelines).
ABI measurement is an under-utilised and often incorrectly performed procedure in the surveyed general practices. Prior to its potential adoption as a formalised screening tool for cardiovascular disease, there is a need for a robust training programme with standardised methodology in order to optimise accuracy and consistency of results. The significance of a diagnosis of PAD, in terms of associated increased cardiovascular risk and the necessary risk factor modification, needs to be highlighted.
PMCID: PMC4021160  PMID: 24742018
Peripheral arterial disease; Doppler ultrasound; Atherosclerosis; Secondary prevention
15.  Association of Chronic Kidney Disease and Peripheral Artery Disease with Inappropriate Left Ventricular Mass 
PLoS ONE  2012;7(10):e48422.
Inappropriate left ventricular mass index (LVM) may develop as a response to particular hemodynamic and metabolic alterations. Inappropriate LVM and peripheral artery disease (PAD) characterized by abnormally low or high ankle-brachial index (ABI) are common in chronic kidney disease (CKD) patients, in whom there may be a close and cause-effect relationship. The aim of this study is to assess whether CKD and abnormal ABI has an independent and additive association with inappropriate LVM. A total of 1110 patients were included in the study. Inappropriate LVM was defined as observed LVM more than 28% of the predicted value. The ABI was measured using an ABI-form device. PAD was defined as ABI <0.9 or >1.3 in either leg. Multivariate analysis showed that patients with estimated glomerular filtration rate (eGFR) <45 ml/min/1.73 m2 (odds ratio [OR], 1.644; P = 0.011) and PAD (OR, 2.082; P = 0.002) were independently associated with inappropriate LVM. The interaction between eGFR <45 ml/min/1.73 m2 and PAD on inappropriate LVM was statistically significant (P = 0.044). Besides, eGFR<45 ml/min/1.73 m2 (change in observed/predicted LVM, 19.949; P<0.001) and PAD (change in observed/predicted LVM, 11.818; P = 0.003) were also significantly associated with observed/predicted LVM. Our findings show that eGFR <45 ml/min/1.73 m2 and PAD are independently and additively associated with inappropriate LVM and observed/predicted LVM. Assessments of eGFR and ABI may be useful in identifying patients with inappropriate LVM.
PMCID: PMC3485213  PMID: 23119010
16.  The Relevance of Different Methods of Calculating the Ankle-Brachial Index 
American Journal of Epidemiology  2009;171(3):368-376.
The authors aimed to determine differences in the prevalence of peripheral arterial disease (PAD) and its associations with cardiovascular disease (CVD) risk factors, using different methods of calculating the ankle-brachial index (ABI). Using measurements taken in the bilateral brachial, dorsalis pedis, and posterior tibial arteries, the authors calculated ABI in 3 ways: 1) with the lowest ankle pressure (dorsalis pedis artery or posterior tibial artery) (“ABI-LO”), 2) with the highest ankle pressure (“ABI-HI”), and 3) with the mean of the ankle pressures (“ABI-MN”). For all 3 methods, the index ABI was the lower of the ABIs calculated from the left and right legs. PAD was defined as an ABI less than 0.90. Among 6,590 subjects from a multiethnic cohort (baseline examination: 2000–2002), in comparison with ABI-HI, the relative prevalence of PAD was 3.95 times higher in women and 2.74 times higher in men when ABI-LO was used. The relative magnitudes of the associations were largest between PAD and both subclinical atherosclerosis and CVD risk factors when ABI-HI was used, except when risk estimates for PAD were less than 1.0, where the largest relative magnitudes of association were found using ABI-LO. PAD prevalence and its associations with CVD risk factors and subclinical atherosclerosis measures depend on the ankle pressure used to compute the ABI.
PMCID: PMC2842203  PMID: 20042436
ankle brachial index; cardiovascular diseases; continental population groups; ethnic groups; peripheral vascular diseases
17.  Utility of digital pulse oximetry in the screening of lower extremity arterial disease 
The aim of this study was to evaluate screening methods in the lower extremities by measurement of the digital pulse oximetry (oxygen percent saturation [SpO2]) of toes for peripheral arterial disease (PAD).
A prospective study was performed among 49 patients (98 limbs) with lower extremity arterial occlusive disease. We attempted to measure the ankle-brachial index (ABI), digital pulse oximetry (SpO2), and computerized tomographic angiography (CTA). Patients were divided into three groups by the traditional Fontaine classification system by symptom and CTA criteria: 1) Critical limb ischemia (Fontaine III and IV), 2) Claudication; (Fontaine II), and 3) asymptomatic limbs (Fontaine I).
The sensitivity, specificity, positive and negative predictive values between active treatment groups (group I and II; endovascular and open surgery) and conservative group (group III) are all statistically significant. ABI; 55.09%, 94%, 96.7%, 39.02% (R = 12.54, P < 0.000) SpO2; 87.06%, 87.8%, 84.3%, 90% (R = 40.11, P < 0.000). Pre-SpO2 and pre-ABI all show statistically significant correlation in group I vs. group II, symptomatic PAD (group I and II) vs. asymptomatic PAD (group III), and the total PAD comparison. The Pearson's correlation coefficient between SpO2 and ABI all show significant correlation in group II. Pre-SpO2 vs. Pre-ABI show strong positive correlation except asymptomatic group (group III).
Digital pulse oximetry can be a useful, simple, noninvasive screening device as well as ABI in PAD.
PMCID: PMC3278641  PMID: 22347711
Peripheral arterial disease; Digital; Pulse oximetry; Ankle-brachial index
18.  Transcutaneous Oxygen Tension as a Potential Predictor of Cardiovascular Events in Type 2 Diabetes 
Diabetes Care  2013;36(6):1720-1725.
Transcutaneous oxygen tension (TcPO2) measures tissue perfusion and is important in the management of peripheral artery disease (PAD). Ankle brachial index (ABI) is used for the diagnosis of PAD and represents a predictor of major adverse cardiovascular events (MACE), even if in diabetes its diagnostic and predictive value seems to be reduced. No study has evaluated TcPO2 as a predictor of cardiovascular events. Aim of this longitudinal study was to assess whether TcPO2 is better than ABI at predicting MACE in type 2 diabetic patients.
Among 361 consecutive patients with apparently uncomplicated diabetes, 67 MACE occurred during a follow-up period of 45.8 ± 23.2 months.
The percentage of both subjects with low ABI (≤0.9) and subjects with low TcPO2 (≤46 mmHg as measured by a receiver operating characteristic curve) was significantly (<0.001) greater among patients with than among those without MACEs (ABI 64.2 vs. 40.8; TcPO2 58.2 vs. 34%). The Kaplan-Meier method showed that both low ABI (Mantel log-rank test, 4.087; P = 0.043) and low TcPO2 (Mantel log-rank test, 33.748; P > 0.0001) were associated with a higher rate of MACEs. Cox regression analysis showed that low TcPO2 (hazard ratio 1.78 [95% CI 1.44–2.23]; P < 0.001) was a significant predictor of MACE, while ABI did not enter the model.
This longitudinal study showed that TcPO2 may be a potential predictor of MACE among patients with uncomplicated type 2 diabetes and that its predictive value seems to be greater than that of ABI.
PMCID: PMC3661826  PMID: 23404303
19.  Profound influence of different methods for determination of the ankle brachial index on the prevalence estimate of peripheral arterial disease 
BMC Public Health  2007;7:147.
The ankle brachial index (ABI) is an efficient tool for objectively documenting the presence of lower extremity peripheral arterial disease (PAD). However, different methods exist for ABI calculation, which might result in varying PAD prevalence estimates. To address this question, we compared five different methods of ABI calculation using Doppler ultrasound in 6,880 consecutive, unselected primary care patients ≥65 years in the observational getABI study.
In all calculations, the average systolic pressure of the right and left brachial artery was used as the denominator (however, in case of discrepancies of ≥10 mmHg, the higher reading was used). As nominators, the following pressures were used: the highest arterial ankle pressure of each leg (method #1), the lowest pressure (#2), only the systolic pressure of the tibial posterior artery (#3), only the systolic pressure of the tibial anterior artery (#4), and the systolic pressure of the tibial posterior artery after exercise (#5). An ABI < 0.9 was regarded as evidence of PAD.
The estimated prevalence of PAD was lowest using method #1 (18.0%) and highest using method #2 (34.5%), while the differences in methods #3–#5 were less pronounced. Method #1 resulted in the most accurate estimation of PAD prevalence in the general population. Using the different approaches, the odds ratio for the association of PAD and cardiovascular (CV) events varied between 1.7 and 2.2.
The data demonstrate that different methods for ABI determination clearly affect the estimation of PAD prevalence, but not substantially the strength of the associations between PAD and CV events. Nonetheless, to achieve improved comparability among different studies, one mode of calculation should be universally applied, preferentially method #1.
PMCID: PMC1950873  PMID: 18293542
20.  Aortic Augmentation Index is Associated with the Ankle Brachial Index; A Community Based Study 
Atherosclerosis  2007;195(2):248-253.
Increased arterial stiffness has been associated with greater risk of cardiovascular events. We investigated whether aortic augmentation index (AIx), a measure of arterial stiffness and wave reflection, was associated with the ankle-brachial index (ABI), a measure of peripheral arterial disease (PAD).
AIx and ABI were measured in a community-based sample of 475 adults without prior history of heart attack or stroke (mean age 59.3 years, 46.5% men). Radial artery pulse waveforms were obtained by applanation tonometry and an ascending aortic pressure waveform derived by a transfer function. AIx is the difference between the first and second systolic peak of the ascending aortic pressure waveform indexed to the central pulse pressure. ABI was measured using a standard protocol, and subjects with non-compressible vessels (ABI >1.5) were excluded from the analyses. Multivariable linear and logistic generalized estimating equations (GEE) analyses were used to assess whether AIx was associated with ABI and ABI <1.00 respectively, independent of conventional risk factors.
Mean (± SD) values were: AIx, 29.3±11.6 %; ABI, 1.12±0.13; 59 (12.4%) participants had an ABI <1.00. Variables associated with a lower ABI (and ABI <1.00) included older age, shorter height, female sex, higher total cholesterol, hypertension medication use, history of smoking, and higher AIx. After adjustment for mean arterial pressure and the above variables, higher AIx remained associated with a lower ABI (P=0.015) and ABI <1.00 (P=0.002). A significant interaction (P=0.007) was present between AIx and age in the prediction of ABI; the (inverse) association of AIx with ABI was stronger in older subjects (>65 years).
AIx, a measure of arterial stiffness and wave reflection, was independently associated with a lower ABI in asymptomatic subjects from the community, and this association was modified by age.
PMCID: PMC3249443  PMID: 17254587
arterial stiffness; ankle-brachial index; arteries
21.  Exercise-Ankle Brachial Pressure Index with One-Minute Treadmill Walking in Patients on Maintenance Hemodialysis 
Annals of Vascular Diseases  2012;6(1):52-56.
Background: The ankle-brachial pressure index (ABI) is widely used as a standard screening method for arterial occlusive lesion above the knee. However, the sensitivity of ABI is low in hemodialysis (HD) patients. Exercise stress (Ex-ABI) may reduce the false negative results.
Patients and Methods: After measuring resting ABI and toe-brachial pressure index (TBI), ankle pressure and ABI immediately after walking (Post-AP, Post-ABI) were measured using one-minute treadmill walking in 52 lower limbs of 26 HD patients. The definition of peripheral arterial occlusive disease (PAD) required an ABI value of less than 0.90, TBI value of less than 0.60, and decrease of more than 15% of the Post-ABI value and 20 mmHg of Post-AP in Ex-ABI. Computed tomographic angiography (CTA) was performed in 32 lower limbs of 16 HD patients. PAD is defined as presence of stenosis of more than 75% in the case of lesions from an iliac artery to knee on CTA.
Results: The accuracy of Ex-ABI (Sensitivity, 85.7%; Specificity, 77.7%) was higher than those of ABI (Sensitivity, 42.9%; Specificity, 83.3%) or TBI (Sensitivity, 78.6%; Specificity, 61.1%).
Conclusion: Ex-ABI with one-minute treadmill walking is the most useful tool for the screening of arterial occlusive lesions above the knee in maintenance HD patients.
PMCID: PMC3635000  PMID: 23641284
peripheral arterial disease; exercise; diagnosis; screening; hemodialysis
22.  Post-Exercise Ankle-Brachial Pressure Index Demonstrates Altered Endothelial Function in the Elderly 
The ankle-brachial pressure index (ABI), the ratio of the systolic blood pressure of the ankle to the systolic brachial pressure, is commonly measured at rest, but ABI values post-exercise enhance the sensitivity of the test and can be used to identify atherosclerotic vascular damage. However, it has not been established whether or not enhanced post-exercise ABI is also associated with endothelial dysfunction. We hypothesized that a decrease in post-exercise ABI is related to impaired endothelial function.
To investigate alterations in post-exercise ABI values and endothelial dysfunction in the elderly.
The study population comprised 35 men and women aged 51–77 years (mean age: 66 years). Patients with peripheral arterial disease or a history of heart failure were excluded. The ABI was estimated at rest and immediately after exercise. The exercise protocol comprised 2.5 min of active pedal flexion exercises at a speed of 60 times/min. Endothelial function was assessed by measuring flow-mediated vasodilation (FMD) in the brachial artery using ultrasound imaging.
No correlation was found between FMD and the ABI at rest. However, a weak correlation was found between FMD and post-exercise ABI (r = 0.46, P = 0.06). A strong correlation was observed between FMD and a decrease in post-exercise ABI compared to baseline readings (r = −0.52, P = 0.01). Multiple linear regression analysis was used to generate a prediction equation for FMD using the percentage decrease in post-exercise ABI. Significant correlations were observed between the ultrasound imaging-measured FMD and the predicted FMD (R2 = 0.27, P = 0.001).
Post-exercise ABI appears to be a simple surrogate marker for endothelial function in the elderly, although larger studies are required for validation.
PMCID: PMC3699488  PMID: 23885186
ABI; endothelial function; elder; FMD; exercise
We studied associations of borderline and low-normal ankle brachial index (ABI) values with functional decline over five-year follow-up.
Associations of borderline and low-normal ABI with functional decline are unknown.
The 666 participants included 412 with peripheral arterial disease (PAD). Participants were categorized as follows: Severe PAD (ABI < 0.50), moderate PAD (ABI 0.50-0.69), mild PAD (ABI 0.70 to 0.89), borderline ABI (0.90 to 0.99), low normal ABI (1.00 to 1.09), and normal ABI (ABI 1.10-1.30). Outcomes were assessed annually for five years. Mobility loss was defined as loss of the ability to walk ¼ mile or walk up and down one flight of stairs without assistance among those without baseline mobility impairment. Becoming unable to walk for six minutes continuously was defined as stopping during the six minute walk at follow-up among those who walked for six minutes continuously at baseline. Results adjust for age, sex, race, comorbidities, and other confounders.
Hazard ratios (HR) for mobility loss according to ABI category were as follows. Severe PAD: HR=4.16 (95% Confidence Interval (CI)=1.58-10.92), moderate PAD: HR=3.82 (95% CI=1.66-8.81), mild PAD: HR=3.22 (95% CI=1.43-7.21), borderline ABI: HR=3.07 (95% CI=1.21-7.84), low normal ABI: HR=2.61 (95% CI=1.08-6.32) (p trend=0.0018). Similar associations were observed for becoming unable to walk six-minutes continuously (p trend<0.0001).
At five-year follow-up, persons with borderline ABI values have a higher incidence of mobility loss and becoming unable to walk for six minutes continuously compared to persons with a normal baseline ABI. A low normal ABI is associated with an increased incidence of mobility loss compared to persons with a normal ABI.
We studied associations of borderline and low-normal ABI values with functional decline over five-year follow-up among 666 participants, including 412 with lower extremity peripheral arterial disease (PAD). At five year follow-up, participants with borderline ABI values at baseline (ABI 0.90 to 0.99) had significantly greater mobility loss and were more likely to become unable to walk for six-minutes continuously compared to those with a normal baseline ABI. Participants with low normal ABI values (ABI 1.00 to 1.09) had significantly greater mobility loss compared to those with a normal baseline ABI.
PMCID: PMC3215766  PMID: 19298919
ankle brachial index; physical functioning; peripheral arterial disease; intermittent claudication
24.  Ankle-brachial index and the incidence of cardiovascular events in the Mediterranean low cardiovascular risk population ARTPER cohort 
Peripheral arterial disease (PAD) of the lower limbs is a cardiovascular disease highly prevalent particularly in the asymptomatic form. Its prevalence starts to be a concern in low coronary risk countries like Spain. Few studies have analyzed the relationship between ankle-brachial index (ABI) and cardiovascular morbi-mortality in low cardiovascular risk countries like Spain where we observe significant low incidence of ischemic heart diseases together with high prevalence of cardiovascular risk factors. The objective of this study is to determine the relationship between pathological ABI and incidence of cardiovascular events (coronary disease, cerebrovascular disease, symptomatic aneurism of abdominal aorta, vascular surgery) and death in the >49 year population-based cohort in Spain (ARTPER).
Baseline ABI was measured in 3,786 randomly selected patients from 28 Primary Health Centers in Barcelona, distributed as: ABI<0.9 peripheral arterial disease (PAD), ABI ≥1.4 arterial calcification (AC), ABI 0.9-1.4 healthy; and followed during 4 years.
3,307 subjects were included after excluding those with previous vascular events. Subjects with abnormal ABI were older with higher proportion of men, smokers and diabetics. 260 people presented cardiovascular events (incidence 2,117/100,000 person-years) and 124 died from any cause (incidence 978/100,000 person-years). PAD had two-fold greater risk of coronary disease (adjusted hazard ratio (HR) = 2.0, 95% confidence interval (CI) 1.3-3.2) and increased risk of vascular surgery (HR = 5.6, 95%CI 2.8-11.5) and mortality (HR = 1.8, 95%CI 1.4-2.5). AC increased twice risk of cerebrovascular events (HR = 1.9, 95%CI 1.0-3.5) with no relationship with ischemic heart disease.
PAD increases coronary disease risk and AC cerebrovascular disease risk in low cardiovascular risk Mediterranean population. ABI could be a useful tool to detect patients at risk in Primary Health Care.
PMCID: PMC3878485  PMID: 24341531
Peripheral arterial disease; Ankle-brachial index; Cardiovascular diseases; Incidence; Primary health care; Cohort studies
25.  The reliability of the ankle-brachial index in the Atherosclerosis Risk in Communities (ARIC) study and the NHLBI Family Heart Study (FHS) 
A low ankle-brachial index (ABI) is associated with increased risk of coronary heart disease, stroke, and death. Regression model parameter estimates may be biased due to measurement error when the ABI is included as a predictor in regression models, but may be corrected if the reliability coefficient, R, is known. The R for the ABI computed from DINAMAP™ readings of the ankle and brachial SBP is not known.
A total of 119 participants in both the Atherosclerosis Risk in Communities (ARIC) study and the NHLBI Family Heart Study (FHS) had repeat ABIs taken within 1 year, using a common protocol, automated oscillometric blood pressure measurement devices, and technician pool.
The estimated reliability coefficient for the ankle systolic blood pressure (SBP) was 0.68 (95% CI: 0.57, 0.77) and for the brachial SBP was 0.74 (95% CI: 0.62, 0.83). The reliability for the ABI based on single ankle and arm SBPs was 0.61 (95% CI: 0.50, 0.70) and the reliability of the ABI computed as the ratio of the average of two ankle SBPs to two arm SBPs was estimated from simulated data as 0.70.
These reliability estimates may be used to obtain unbiased parameter estimates if the ABI is included in regression models. Our results suggest the need for repeated measures of the ABI in clinical practice, preferably within visits and also over time, before diagnosing peripheral artery disease and before making therapeutic decisions.
PMCID: PMC1435775  PMID: 16504033

Results 1-25 (1087902)