PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1158155)

Clipboard (0)
None

Related Articles

1.  Ethnic and social disparity in glycaemic control in type 2 diabetes; cohort study in general practice 2004–9 
Objective
To determine whether ethnic group differences in glycated haemoglobin (HbA1c) changed over a 5-year period in people on medication for type 2 diabetes.
Design
Open cohort in 2004–9.
Setting
Electronic records of 100 of the 101 general practices in two inner London boroughs.
Participants
People aged 35 to 74 years on medication for type 2 diabetes.
Main outcome measures
Mean HbA1c and proportion with HbA1c controlled to ≤7.5%.
Results
In this cohort of 24,111 people, 22% were White, 58% South Asian and 17% Black African/Caribbean. From 2004 to 2009 mean HbA1c improved from 8.2% to 7.8% for White, from 8.5% to 8.0% for Black African/Caribbean and from 8.5% to 8.0% for South Asian people. The proportion with HbA1c controlled to 7.5% or less, increased from 44% to 56% in White, 38% to 53% in Black African/Caribbean and 34% to 48% in South Asian people. Ethnic group and social deprivation were independently associated with HbA1c. South Asian and Black African/Caribbean people were treated more intensively than White people.
Conclusion
HbA1c control improved for all ethnic groups between 2004–9. However, South Asian and Black African/Caribbean people had persistently worse control despite more intensive treatment and significantly more improvement than White people. Higher social deprivation was independently associated with worse control.
doi:10.1258/jrsm.2012.110289
PMCID: PMC3407404  PMID: 22396467
2.  Early Emergence of Ethnic Differences in Type 2 Diabetes Precursors in the UK: The Child Heart and Health Study in England (CHASE Study) 
PLoS Medicine  2010;7(4):e1000263.
Peter Whincup and colleagues carry out a cross-sectional study examining ethnic differences in precursors of of type 2 diabetes among children aged 9–10 living in three UK cities.
Background
Adults of South Asian origin living in the United Kingdom have high risks of type 2 diabetes and central obesity; raised circulating insulin, triglyceride, and C-reactive protein concentrations; and low HDL-cholesterol when compared with white Europeans. Adults of African-Caribbean origin living in the UK have smaller increases in type 2 diabetes risk, raised circulating insulin and HDL-cholesterol, and low triglyceride and C-reactive protein concentrations. We examined whether corresponding ethnic differences were apparent in childhood.
Methods and Findings
We performed a cross-sectional survey of 4,796 children aged 9–10 y in three UK cities who had anthropometric measurements (68% response) and provided blood samples (58% response); ethnicity was based on parental definition. In age-adjusted comparisons with white Europeans (n = 1,153), South Asian children (n = 1,306) had higher glycated haemoglobin (HbA1c) (% difference: 2.1, 95% CI 1.6 to 2.7), fasting insulin (% difference 30.0, 95% CI 23.4 to 36.9), triglyceride (% difference 12.9, 95% CI 9.4 to 16.5), and C-reactive protein (% difference 43.3, 95% CI 28.6 to 59.7), and lower HDL-cholesterol (% difference −2.9, 95% CI −4.5 to −1.3). Higher adiposity levels among South Asians (based on skinfolds and bioimpedance) did not account for these patterns. Black African-Caribbean children (n = 1,215) had higher levels of HbA1c, insulin, and C-reactive protein than white Europeans, though the ethnic differences were not as marked as in South Asians. Black African-Caribbean children had higher HDL-cholesterol and lower triglyceride levels than white Europeans; adiposity markers were not increased.
Conclusions
Ethnic differences in type 2 diabetes precursors, mostly following adult patterns, are apparent in UK children in the first decade. Some key determinants operate before adult life and may provide scope for early prevention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, nearly 250 million people have diabetes, and the number of people affected by this chronic disease is increasing rapidly. Diabetes is characterized by dangerous amounts of sugar (glucose) in the blood. Blood sugar levels are normally controlled by insulin, a hormone that the pancreas releases when blood sugar levels rise after eating (digestion of food produces glucose). In people with type 2 diabetes (the most common type of diabetes), blood sugar control fails because the fat and muscle cells that usually respond to insulin by removing sugar from the blood become less responsive to insulin (insulin resistant). Type 2 diabetes can be controlled with diet and exercise, and with drugs that help the pancreas make more insulin or that make cells more sensitive to insulin. Long-term complications of diabetes include kidney failure, blindness, nerve damage, and an increased risk of developing cardiovascular problems, including heart disease and stroke.
Why Was This Study Done?
South Asians and African-Caribbeans living in Western countries tend to have higher rates of type 2 diabetes than host populations. South Asian adults living in the UK, for example, have a 3-fold higher risk of developing type 2 diabetes than white Europeans. They also have higher fasting blood levels of glucose, insulin and triglycerides (a type of fat), higher blood levels of “glycated hemoglobin” (HbA1c; an indicator of average of blood-sugar levels over time), more body fat (increased adiposity), raised levels of a molecule called C-reactive protein, and lower levels of HDL-cholesterol (another type of fat) than white Europeans. Most of these “diabetes precursors” (risk factors) are also seen in black African-Caribbean adults living in the UK except that individuals in this ethnic group often have raised HDL-cholesterol levels and low triglyceride levels. Ethnic differences in type 2 diabetes precursors are also present in adolescents, but the extent to which they are present in childhood remains unclear. Knowing this information could have implications for diabetes prevention. In this population-based study, therefore, the researchers investigate patterns of diabetes precursors in 9- to 10-year-old UK children of white European, South Asian, and black African-Caribbean origin.
What Did the Researchers Do and Find?
The researchers enrolled nearly 5,000 children (including 1,153 white European, 1,306 South Asian and 1,215 black African-Caribbean children) from primary schools with high prevalences of ethnic minority pupils in London, Birmingham, and Leicester in the Child Heart and Health study in England (CHASE). They measured and weighed more than two-thirds of the enrolled children and determined their adiposity. They also took blood samples for measurement of diabetes precursors from nearly two-thirds of the children. The recorded ethnicity of each child was based on parental definition. The researchers' analysis of these data showed that, compared with white Europeans, South Asian children had higher levels of HbA1c, insulin, triglycerides, and C-reactive protein but lower HDL-cholesterol levels. In addition, they had higher adiposity levels than the white European children, but this did not account for the observed differences in the other diabetes precursors. Black African-Caribbean children also had higher levels of HbA1c, insulin, and C-reactive protein than white European children, although the differences were smaller than those between South Asians and white Europeans. Similar to black African-Caribbean adults, however, children of this ethnic origin had higher HDL-cholesterol and lower triglyceride levels than white Europeans.
What Do These Findings Mean?
These findings indicate that ethnic differences in diabetes precursors are already present in apparently healthy children before they are 10 years old. Furthermore, most of the ethnic differences in diabetes precursors seen among the children follow the pattern seen in adults. Although these findings need confirming in more children, they suggest that the ethnic differences in type 2 diabetes susceptibility first described in immigrants to the UK are persisting in UK-born South Asian and black African-Caribbean children. Most importantly, these findings suggest that some of the factors thought to be responsible for ethnic differences in type 2 diabetes—for example, varying levels of physical activity and dietary differences—are operating well before adult life. Interventions that target these factors early could, therefore, offer good opportunities for diabetes prevention in high-risk ethnic groups, provided such interventions are carefully tailored to the needs of these groups.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000263.
The International Diabetes Federation provides information about all aspects of diabetes (in English, French and Spanish)
The US National Diabetes Information Clearinghouse provides detailed information about diabetes for patients, health-care professionals and the general public, including information on diabetes in specific US populations (in English and Spanish)
The UK National Health Service also provides information for patients and carers about type 2 diabetes (in several languages)
MedlinePlus provides links to further resources and advice about diabetes (in English and Spanish)
The US Agency for Healthcare Research and Quality has a fact sheet on diabetes disparities among racial and ethnic minorities
doi:10.1371/journal.pmed.1000263
PMCID: PMC2857652  PMID: 20421924
3.  Ethnic Disparities in Diabetes Management and Pay-for-Performance in the UK: The Wandsworth Prospective Diabetes Study 
PLoS Medicine  2007;4(6):e191.
Background
Pay-for-performance rewards health-care providers by paying them more if they succeed in meeting performance targets. A new contract for general practitioners in the United Kingdom represents the most radical shift towards pay-for-performance seen in any health-care system. The contract provides an important opportunity to address disparities in chronic disease management between ethnic and socioeconomic groups. We examined disparities in management of people with diabetes and intermediate clinical outcomes within a multiethnic population in primary care before and after the introduction of the new contract in April 2004.
Methods and Findings
We conducted a population-based longitudinal survey, using electronic general practice records, in an ethnically diverse part of southwest London. Outcome measures were prescribing levels and achievement of national treatment targets (HbA1c ≤ 7.0%; blood pressure [BP] < 140/80 mm Hg; total cholesterol ≤ 5 mmol/l or 193 mg/dl). The proportion of patients reaching treatment targets for HbA1c, BP, and total cholesterol increased significantly after the implementation of the new contract. The extents of these increases were broadly uniform across ethnic groups, with the exception of the black Caribbean patient group, which had a significantly lower improvement in HbA1c (adjusted odds ratio [AOR] 0.75, 95% confidence interval [CI] 0.57–0.97) and BP control (AOR 0.65, 95% CI 0.53–0.81) relative to the white British patient group. Variations in prescribing and achievement of treatment targets between ethnic groups present in 2003 were not attenuated in 2005.
Conclusions
Pay-for-performance incentives have not addressed disparities in the management and control of diabetes between ethnic groups. Quality improvement initiatives must place greater emphasis on minority communities to avoid continued disparities in mortality from cardiovascular disease and the other major complications of diabetes.
Based on a population-based longitudinal survey, Christopher Millett and colleagues concluded that pay-for-performance incentives for UK general practitioners had not addressed disparities in the management and control of diabetes between ethnic groups.
Editors' Summary
Background.
When used in health care, the term “pay-for-performance” means rewarding health-care providers by paying them more if they succeed in meeting performance targets set by the government and other commissioners of health care. It is an approach to health service management that is becoming common, particularly in the US and the UK. For example, the UK's general practitioners (family doctors) agreed with the government in 2004 that they would receive increases to their income that would depend on how well they were judged to be performing according to 146 quality indicators that cover clinical care for ten chronic diseases, as well as “organization of care,” and “patient experience.” One of the chronic diseases is diabetes, a condition that has reached epidemic proportions in the UK, as it has also in many other countries.
  Ethnic minorities often suffer more from health problems than the majority population of the country they live in. They are also likely to be served less well by the health services. Diabetes is a case in point; in many countries—including the US and UK—the condition is much more common in minority groups. In addition, their diabetes is usually less well “managed”—i.e., it becomes more severe more rapidly and there are more complications. In the UK, the government recognizes the need to ensure that its health policies are applied to all sectors of the population, including minority ethnic communities. Nevertheless, the advances that have been made in the management of diabetes have not benefited the UK's ethnic minorities to the same extent as they have the majority population. It is hoped that the use of pay-for-performance management by the UK National Health Service will lead to more efficient delivery of health care, and that one consequence will be that different communities will be more equally served.
Why Was This Study Done?
The researchers wanted to find out whether the introduction of pay-for-performance management in general medical practice in the UK was leading to a reduction in the gap in the quality of care provided to people with diabetes who belonged to ethnic minorities and other people with diabetes.
What Did the Researchers Do and Find?
The research was carried out in Wandsworth, an area of southwest London that is considered to be “ethnically diverse.” Over 4,200 people with diabetes are registered with general practitioners in this area. The researchers used the electronic records kept by these doctors and they focused on diabetes “treatment targets” set by the government, according to which the blood pressure and cholesterol levels of people with diabetes should be kept below defined levels. There is also a target level for glycated hemoglobin (HbA1c), which is a substance that can be used to measure the extent to which a patient's diabetes is under control. The researchers calculated the percentage of patients who were meeting these treatment targets. Overall, more patients met their treatment targets after the introduction of pay-for-performance management than were doing so before. All ethnic groups seemed to have benefited, but the black Caribbean group did not benefit as much as the other groups; the number of these patients who met the targets did improve, but the gap between them and patients with diabetes from other ethnic groups remained about the same.
What Do These Findings Mean?
The researchers concluded that, while the introduction of pay-for-performance did seem to have been beneficial, it had not addressed disparities in the management and control of diabetes between ethnic groups. They say that, in all initiatives to improve the quality of health care, special efforts must be made to reduce such gaps. The UK's use of pay-for-performance in general practice is regarded internationally as a very bold step, but, as other countries are also considering moving in this direction, the lessons from the study will be relevant in many other parts of the world.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040191.
Wikipedia has an entry on pay-for-performance in health care (note: Wikipedia is a free online encyclopedia that anyone can edit)
Information about how the NHS works in England
Diabetes UK is the largest organization in the UK working for people with diabetes and its website includes a useful Guide to Diabetes
The London Health Observatory is one of nine health observatories set up by the NHS to monitor health and health care in England. There is a page devoted to “ethnic health intelligence”
Introductory information about diabetes as a medical condition may be found on the MedlinePlus website; there are several MedlinePlus pages on diabetes as well
doi:10.1371/journal.pmed.0040191
PMCID: PMC1891316  PMID: 17564486
4.  Motor Vehicle Crashes in Diabetic Patients with Tight Glycemic Control: A Population-based Case Control Analysis 
PLoS Medicine  2009;6(12):e1000192.
Using a population-based case control analysis, Donald Redelmeier and colleagues found that tighter glycemic control, as measured by the HbA1c, is associated with an increased risk of a motor vehicle crash.
Background
Complications from diabetes mellitus can compromise a driver's ability to safely operate a motor vehicle, yet little is known about whether euglycemia predicts normal driving risks among adults with diabetes. We studied the association between glycosylated hemoglobin (HbA1c) and the risk of a motor vehicle crash using a population-based case control analysis.
Methods and Findings
We identified consecutive drivers reported to vehicle licensing authorities between January 1, 2005 to January 1, 2007 who had a diagnosis of diabetes mellitus and a HbA1c documented. The risk of a crash was calculated taking into account potential confounders including blood glucose monitoring, complications, and treatments. A total of 57 patients were involved in a crash and 738 were not involved in a crash. The mean HbA1c was lower for those in a crash than controls (7.4% versus 7.9%, unpaired t-test, p = 0.019), equal to a 26% increase in the relative risk of a crash for each 1% reduction in HbA1c (odds ratio = 1.26, 95% confidence interval 1.03–1.54). The trend was evident across the range of HbA1c values and persisted after adjustment for measured confounders (odds ratio = 1.25, 95% confidence interval 1.02–1.55). The two other significant risk factors for a crash were a history of severe hypoglycemia requiring outside assistance (odds ratio = 4.07, 95% confidence interval 2.35–7.04) and later age at diabetes diagnosis (odds ratio per decade = 1.29, 95% confidence interval 1.07–1.57).
Conclusions
In this selected population, tighter glycemic control, as measured by the HbA1c, is associated with an increased risk of a motor vehicle crash.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Around 8% of the US population has diabetes, a group of diseases in which the body cannot control levels of glucose (sugar) in the blood. It can lead to serious complications and premature death, but suitable treatment can control the disease and lower the risk of complications.
Type 1 diabetes occurs when the body's immune system prevents the production of insulin, the hormone that controls blood glucose. It accounts for 5%–10% of diabetes cases in adults and the vast majority of cases in childhood. Patients with type 1 diabetes need to inject insulin to survive. Type 2 diabetes is associated with older age, obesity, family history of diabetes, lack of physical activity, and race/ethnicity. As obesity rates rise worldwide, it is expected that the prevalence of type 2 diabetes will increase.
Why Was This Study Done?
Some complications of diabetes affect the ability to drive safely. Prolonged periods of high blood sugar levels can damage eyesight and nerves throughout the body, resulting in pain, tingling, and reduction of feeling or muscle control. Over time, some diabetics may become unaware of the early symptoms of an abnormally low blood sugar level (hypoglycemia) that can cause confusion, clumsiness, or fainting. Severe hypoglycemia can result in seizures or a coma.
It is common for driver licensing authorities to require evidence that a diabetic person's condition is well controlled before they issue a driving license. One measure of this is the percentage of hemoglobin in their blood that has joined up with glucose, known as HbA1c. This provides a measure of average blood glucose levels over the previous 8–12 weeks. A lower reading is considered an indicator of good diabetic control, but conversely, a blood glucose level that is too low can cause hypoglycemia. Normal nondiabetic HbA1c is between 3.5% and 5.5%, but 6.5% is considered good for people with diabetes.
In this study the researchers tested whether blood glucose levels, as measured by levels of HbA1c, were statistically associated with the risk of a motor vehicle crash.
What Did the Researchers Do and Find?
The authors studied 795 diabetic adults who had been in contact with the driver licensing authority in Ontario, Canada between January 1, 2005 and January 1, 2007 and for whom HbA1c levels were recorded. HbA1c levels varied between 4.4% and 14.7%.
Of the drivers considered, 57 were involved in a car crash and 738 were not. The authors found that lower HbA1c levels were associated with an increased risk of a motor vehicle crash, even when they took into account other factors such as time since diagnosis, treatment, age, age when diagnosed, and, if taking insulin, age insulin started.
The authors also found that the risk of a crash quadrupled when a driver had a history of severe hypoglycemia that required outside help and that there was an increase in risk when diabetes had first been diagnosed at an older age.
What Do These Findings Mean?
The authors conclude by emphasizing the difficulty in knowing whether someone with diabetes is fit to drive. They suggest that a patient's HbA1c level is neither necessary nor sufficient to determine whether a diabetic person is fit to drive and these results, which agree with some other studies, call into question the current legal framework of the US, UK, Canada, Germany, Holland, and Australia, which single out diabetic drivers for medical review.
The finding that lower HbA1c levels are associated with an increased risk of a crash is surprising, as it suggests that a driver is less safe if they control their diabetes well. However, a statistical link does not prove that one event causes another. Unknown social or medical factors might explain the results. In this case, the authors point out that a major drawback of their study is that it is not randomized and drivers have free will in choosing how tightly to control their diabetes and also how carefully they drive. The authors considered whether time spent driving might explain the results, but discounted this for several reasons. One more plausible explanation is that intensive treatment to attain a lower HbA1c level for better general health raises the risk of hypoglycemic episodes.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000192.
Wikipedia includes an article on diabetes (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The American Diabetes Association publishes information on diabetes in English and Spanish
The American Diabetes Association also publishes information on US states regulation of drivers with diabetes
The World Health Organization of the United Nations Diabetes Programme works to prevent diabetes, minimize complications, and maximize quality of life
doi:10.1371/journal.pmed.1000192
PMCID: PMC2780354  PMID: 19997624
5.  Hemoglobin A1c Levels and Risk of Severe Hypoglycemia in Children and Young Adults with Type 1 Diabetes from Germany and Austria: A Trend Analysis in a Cohort of 37,539 Patients between 1995 and 2012 
PLoS Medicine  2014;11(10):e1001742.
In a cohort study, Beate Karges and colleagues find that the association between low hemoglobin A1C and severe hypoglycemia in children and young adults with type 1 diabetes has decreased over the period between 1995 and 2012.
Please see later in the article for the Editors' Summary
Background
Severe hypoglycemia is a major complication of insulin treatment in patients with type 1 diabetes, limiting full realization of glycemic control. It has been shown in the past that low levels of hemoglobin A1c (HbA1c), a marker of average plasma glucose, predict a high risk of severe hypoglycemia, but it is uncertain whether this association still exists. Based on advances in diabetes technology and pharmacotherapy, we hypothesized that the inverse association between severe hypoglycemia and HbA1c has decreased in recent years.
Methods and Findings
We analyzed data of 37,539 patients with type 1 diabetes (mean age ± standard deviation 14.4±3.8 y, range 1–20 y) from the DPV (Diabetes Patienten Verlaufsdokumentation) Initiative diabetes cohort prospectively documented between January 1, 1995, and December 31, 2012. The DPV cohort covers an estimated proportion of >80% of all pediatric diabetes patients in Germany and Austria. Associations of severe hypoglycemia, hypoglycemic coma, and HbA1c levels were assessed by multivariable regression analysis. From 1995 to 2012, the relative risk (RR) for severe hypoglycemia and coma per 1% HbA1c decrease declined from 1.28 (95% CI 1.19–1.37) to 1.05 (1.00–1.09) and from 1.39 (1.23–1.56) to 1.01 (0.93–1.10), respectively, corresponding to a risk reduction of 1.2% (95% CI 0.6–1.7, p<0.001) and 1.9% (0.8–2.9, p<0.001) each year, respectively. Risk reduction of severe hypoglycemia and coma was strongest in patients with HbA1c levels of 6.0%–6.9% (RR 0.96 and 0.90 each year) and 7.0%–7.9% (RR 0.96 and 0.89 each year). From 1995 to 2012, glucose monitoring frequency and the use of insulin analogs and insulin pumps increased (p<0.001). Our study was not designed to investigate the effects of different treatment modalities on hypoglycemia risk. Limitations are that associations between diabetes education and physical activity and severe hypoglycemia were not addressed in this study.
Conclusions
The previously strong association of low HbA1c with severe hypoglycemia and coma in young individuals with type 1 diabetes has substantially decreased in the last decade, allowing achievement of near-normal glycemic control in these patients.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people have diabetes, a chronic disorder characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone produced by the pancreas. In people with diabetes, blood sugar control fails because they make no insulin (type 1 diabetes) or because the cells that normally respond to insulin by removing sugar from the blood have become insulin-resistant (type 2 diabetes). Type 1 diabetes, which tends to develop in childhood or early adulthood, is responsible for about 10% of cases of diabetes in adults and is treated with injections of insulin. Type 2 diabetes can usually be treated with diet, exercise, and antidiabetic drugs. With both types of diabetes, it is important to keep blood sugar levels within the normal range (good glycemic control) to reduce the long-term complications of diabetes, which include kidney failure, blindness, and an increased risk of cardiovascular disease.
Why Was This Study Done?
Patients with type 1 diabetes can achieve strict glycemic control using intensive insulin therapy, but such treatment is associated with a risk of severe or fatal hypoglycemia (low blood sugar). Past studies have found an association between low levels of hemoglobin A1c (HbA1c, a marker of average blood sugar levels over the past 2–3 months; a low HbA1c percentage indicates good glycemic control) and a high risk of severe hypoglycemia. Because of this inverse association, people at risk of severe hypoglycemia are advised to aim for an HbA1c of 7.5% or less, which puts them at risk of diabetic complications (most adults with diabetes aim for an HbA1c of 6.5% or less; people without diabetes have Hb1Ac readings below 6.05%). With recent improvements in insulin therapy, it is not clear whether the inverse association between the incidence of severe hypoglycemia and HbA1c levels still exists. In this trend analysis, the researchers investigate the association over time between HbA1C levels and the risk of severe hypoglycemia in a large cohort (group) of Austrian and German children and young adults with type 1 diabetes.
What Did the Researchers Do and Find?
The researchers analyzed data on Hb1Ac levels and on incidents of severe hypoglycemia and hypoglycemic coma collected from 37,539 children and young adults with type 1 diabetes between 1995 and 2012 by the DPV (Diabetes Patienten Verlaufsdokumentation) Initiative for diabetes care. The DPV cohort includes around 80% of all children and young adults with type 1 diabetes in Germany and Austria. Over the study period, the use of insulin analogs (compounds related to insulin that keep blood sugar levels steadier than regular insulin injections) and of insulin pumps (which deliver constant amounts of short-acting insulin analogs to the body) increased, and there was an increase in how often patients monitored their blood sugar level. Notably, between 1995 and 2012, the relative risk for severe hypoglycemia per 1% decrease in Hb1Ac declined from 1.28 to 1.05, and the relative risk for hypoglycemic coma per 1% decrease in Hb1Ac declined from 1.39 to 1.01. That is, the strength of the inverse association between severe hypoglycemia or coma and HbA1c decreased during the study period. Expressed another way, between 1995 and 2012, the relative risk for severe hypoglycemia and coma per 1% HbA1c decrease dropped by 1.2% and 1.9%, respectively, each year.
What Do These Findings Mean?
These findings reveal a substantial decrease since 1995 in the previously strong inverse association between low HbA1c levels and severe hypoglycemia and hypoglycemic coma in this cohort of young Germans and Austrians with type 1 diabetes. This decrease mainly occurred because of substantial reductions in the risk of hypoglycemia in patients with HbA1c levels between 6.0% and 7.9%, but the study provides no information about the drivers of this reduction. Moreover, these findings may apply only to young type 1 diabetes patients of European descent, and their accuracy may be limited by other aspects of the study design. However, by showing that HbA1c has become a minor predictor for severe hypoglycemia in this group of patients, these findings suggest that strict glycemic control in young patients with type 1 diabetes has become safer in recent years. Thus, it should now be possible to reduce the risk of long-term diabetic complications in such patients through achievement of near-normal glycemic control without increasing patients' risk of severe hypoglycemia.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001742.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health care professionals, and the general public (in English and Spanish), including information on the HbA1c test and a description of a trial that compared the effects of intensive versus conventional treatment of blood glucose levels on the development of diabetic complications in patients with type 1 diabetes
The UK National Health Service Choices website provides information for patients and carers about type 1 diabetes, including a video that describes parents' experiences caring for a child with type 1 diabetes, and information about treating type 1 diabetes that includes a short video about HbA1c
The charity Diabetes UK provides detailed information about type 1 diabetes for patients and carers
The UK-based non-profit organization Healthtalkonline provides information about type 1 diabetes and young people, including interviews with young people about their experiences of the condition
MedlinePlus provides links to further resources and advice about type 1 diabetes (in English and Spanish)
Information about the DPV Initiative is available (mainly in German)
doi:10.1371/journal.pmed.1001742
PMCID: PMC4188517  PMID: 25289645
6.  Influence of Adiposity on Insulin Resistance and Glycemia Markers Among U.K. Children of South Asian, Black African-Caribbean, and White European Origin 
Diabetes Care  2013;36(6):1712-1719.
OBJECTIVE
Ethnic differences in type 2 diabetes risk between South Asians and white Europeans originate before adult life and are not fully explained by higher adiposity levels in South Asians. Although metabolic sensitivity to adiposity may differ between ethnic groups, this has been little studied in childhood. We have therefore examined the associations among adiposity, insulin resistance, and glycemia markers in children of different ethnic origins.
RESEARCH DESIGN AND METHODS
Cross-sectional study of 4,633 9- to 10-year-old children (response rate 68%) predominantly of South Asian, black African-Caribbean, and white European origin (n = 1,266, 1,176, and 1,109, respectively) who had homeostasis model assessments of insulin resistance (HOMA-IR), glycemia markers (HbA1c and fasting glucose), and adiposity (BMI, waist circumference, skinfold thicknesses, and bioimpedance [fat mass]).
RESULTS
All adiposity measures were positively associated with HOMA-IR in all ethnic groups, but associations were stronger among South Asians compared to black African-Caribbeans and white Europeans. For a 1-SD increase in fat mass percentage, percentage differences in HOMA-IR were 37.5% (95% CI 33.3–41.7), 29.7% (25.8–33.8), and 27.0% (22.9–31.2), respectively (P interaction < 0.001). All adiposity markers were positively associated with HbA1c in South Asians and black African-Caribbeans but not in white Europeans; for a 1-SD increase in fat mass percentage, percentage differences in HbA1c were 0.04% (95% CI 0.03–0.06), 0.04% (0.02–0.05), and 0.02% (−0.00 to 0.04), respectively (P interaction < 0.001). Patterns for fasting glucose were less consistent.
CONCLUSIONS
South Asian children are more metabolically sensitive to adiposity. Early prevention or treatment of childhood obesity may be critical for type 2 diabetes prevention, especially in South Asians.
doi:10.2337/dc12-1726
PMCID: PMC3661837  PMID: 23315600
7.  Regular Breakfast Consumption and Type 2 Diabetes Risk Markers in 9- to 10-Year-Old Children in the Child Heart and Health Study in England (CHASE): A Cross-Sectional Analysis 
PLoS Medicine  2014;11(9):e1001703.
Angela Donin and colleagues evaluated the association between breakfast consumption and composition and risk markers for diabetes and cardiovascular disease in 9- and 10-year-olds.
Please see later in the article for the Editors' Summary
Background
Regular breakfast consumption may protect against type 2 diabetes risk in adults but little is known about its influence on type 2 diabetes risk markers in children. We investigated the associations between breakfast consumption (frequency and content) and risk markers for type 2 diabetes (particularly insulin resistance and glycaemia) and cardiovascular disease in children.
Methods and Findings
We conducted a cross-sectional study of 4,116 UK primary school children aged 9–10 years. Participants provided information on breakfast frequency, had measurements of body composition, and gave fasting blood samples for measurements of blood lipids, insulin, glucose, and glycated haemoglobin (HbA1c). A subgroup of 2,004 children also completed a 24-hour dietary recall. Among 4,116 children studied, 3,056 (74%) ate breakfast daily, 450 (11%) most days, 372 (9%) some days, and 238 (6%) not usually. Graded associations between breakfast frequency and risk markers were observed; children who reported not usually having breakfast had higher fasting insulin (percent difference 26.4%, 95% CI 16.6%–37.0%), insulin resistance (percent difference 26.7%, 95% CI 17.0%–37.2%), HbA1c (percent difference 1.2%, 95% CI 0.4%–2.0%), glucose (percent difference 1.0%, 95% CI 0.0%–2.0%), and urate (percent difference 6%, 95% CI 3%–10%) than those who reported having breakfast daily; these differences were little affected by adjustment for adiposity, socioeconomic status, and physical activity levels. When the higher levels of triglyceride, systolic blood pressure, and C-reactive protein for those who usually did not eat breakfast relative to those who ate breakfast daily were adjusted for adiposity, the differences were no longer significant. Children eating a high fibre cereal breakfast had lower insulin resistance than those eating other breakfast types (p for heterogeneity <0.01). Differences in nutrient intakes between breakfast frequency groups did not account for the differences in type 2 diabetes markers.
Conclusions
Children who ate breakfast daily, particularly a high fibre cereal breakfast, had a more favourable type 2 diabetes risk profile. Trials are needed to quantify the protective effect of breakfast on emerging type 2 diabetes risk.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, more than 380 million people have diabetes, a disorder that is characterized by high levels of glucose (sugar) in the blood. Blood sugar levels are usually controlled by insulin, a hormone released by the pancreas after meals (digestion of food produces glucose). In people with type 2 diabetes (the commonest type of diabetes) blood sugar control fails because the fat and muscle cells that normally respond to insulin become insulin resistant. Type 2 diabetes can often be controlled initially with diet and exercise and with drugs such as metformin and sulfonylureas. However, many patients eventually need insulin injections to control their blood sugar levels. Long-term complications of diabetes, which include an increased risk of heart disease and stroke (cardiovascular disease), reduce the life expectancy of people with diabetes by about 10 years compared to people without diabetes. Risk factors for the condition include being over 40 years old and being overweight or obese.
Why Was This Study Done?
Experts predict that by 2035 nearly 600 million people will have diabetes so better strategies to prevent diabetes are urgently needed. Eating breakfast regularly—particularly a high fiber, cereal-based breakfast—has been associated with a reduced risk of type 2 diabetes (and a reduced risk of being overweight or obese) in adults. However, little is known about whether breakfast eating habits affect markers of type 2 diabetes risk in children. In this cross-sectional study (an observational investigation that studies a group of individuals at a single time point), the researchers examine the associations between breakfast consumption (both frequency and content) and risk markers for type 2 diabetes, particularly insulin resistance and glycemia (the presence of sugar in the blood), in an ethnically mixed population of children; insulin resistance and glycemia measurements in children provide important information about diabetes development later in life.
What Did the Researchers Do and Find?
The researchers invited 9–10 year old children attending 200 schools in London, Birmingham, and Leicester to participate in the Child Heart and Health Study in England (CHASE), a study examining risk factors for cardiovascular disease and type 2 diabetes in children of South Asian, black African-Caribbean, and white European origin. The researchers measured the body composition of the study participants and the levels of insulin, glucose, and other markers of diabetes risk in fasting blood samples (blood taken from the children 8–10 hours after their last meal or drink). All the participants (4,116 children) reported how often they ate breakfast; 2,004 children also completed a 24-hour dietary recall questionnaire. Seventy-four percent of the children reported that they ate breakfast every day, 11% and 9% reported that they ate breakfast most days and some days, respectively, whereas 6% reported that they rarely ate breakfast. Children who ate breakfast infrequently had higher fasting insulin levels and higher insulin resistance than children who ate breakfast every day. Moreover, the children who ate a high fiber, cereal-based breakfast had lower insulin resistance than children who ate other types of breakfast such as low fiber or toast-based breakfasts.
What Do These Findings Mean?
These findings indicate that children who ate breakfast every day, particularly those who ate a high fiber breakfast, had lower levels of risk markers for type 2 diabetes than children who rarely ate breakfast. Importantly, the association between eating breakfast and having a favorable type 2 diabetes risk profile remained after allowing for differences in socioeconomic status, physical activity levels, and amount of body fat (adiposity); in observational studies, it is important to allow for the possibility that individuals who share a measured characteristic and a health outcome also share another characteristic (a confounder) that is actually responsible for the outcome. Although trials are needed to establish whether altering the breakfast habits of children can alter their risk of developing type 2 diabetes, these findings are encouraging. Specifically, they suggest that if all the children in England who do not eat breakfast daily could be encouraged to do so, it might reduce population-wide fasting insulin levels by about 4%. Moreover, encouraging children to eat a high fiber breakfast instead of a low fiber breakfast might reduce population-wide fasting insulin levels by 11%–12%. Thus, persuading children to eat a high fiber breakfast regularly could be an important component in diabetes preventative strategies in England and potentially worldwide.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001703.
The US National Diabetes Information Clearinghouse provides information about diabetes for patients, health-care professionals, and the general public, including detailed information on diabetes prevention (in English and Spanish)
The UK National Health Service Choices website provides information for patients and carers about type 2 diabetes and about living with diabetes; it also provides people's stories about diabetes; Change4Life, a UK campaign that provides tips for healthy living, has a webpage about the importance of a healthy breakfast
The charity Diabetes UK provides detailed information for patients and carers in several languages, including information on healthy lifestyles for people with diabetes
The UK-based non-profit organization Healthtalkonline has interviews with people about their experiences of diabetes
MedlinePlus provides links to further resources and advice about diabetes and diabetes prevention (in English and Spanish)
Kidshealth, a US-based not-for-profit organization provides information for parents about the importance of breakfast and information for children
More information about the Child Heart and Health Study in England (CHASE) is available
doi:10.1371/journal.pmed.1001703
PMCID: PMC4151989  PMID: 25181492
8.  Ethnic Variation in the Prevalence of Visual Impairment in People Attending Diabetic Retinopathy Screening in the United Kingdom (DRIVE UK) 
PLoS ONE  2012;7(6):e39608.
Purpose
To provide estimates of visual impairment in people with diabetes attending screening in a multi-ethnic population in England (United Kingdom).
Methods
The Diabetic Retinopathy In Various Ethnic groups in UK (DRIVE UK) Study is a cross-sectional study on the ethnic variations of the prevalence of DR and visual impairment in two multi-racial cohorts in the UK. People on the diabetes register in West Yorkshire and South East London who were screened, treated or monitored between April 2008 to July 2009 (London) or August 2009 (West Yorkshire) were included in the study. Data on age, gender, ethnic group, visual acuity and diabetic retinopathy were collected. Ethnic group was defined according to the 2011 census classification. The two main ethnic minority groups represented here are Blacks (“Black/African/Caribbean/Black British”) and South Asians (“Asians originating from the Indian subcontinent”). We examined the prevalence of visual impairment in the better eye using three cut-off points (a) loss of vision sufficient for driving (approximately <6/9) (b) visual impairment (<6/12) and (c) severe visual impairment (<6/60), standardising the prevalence of visual impairment in the minority ethnic groups to the age-structure of the white population.
Results
Data on visual acuity and were available on 50,331individuals 3.4% of people diagnosed with diabetes and attending screening were visually impaired (95% confidence intervals (CI) 3.2% to 3.5%) and 0.39% severely visually impaired (0.33% to 0.44%). Blacks and South Asians had a higher prevalence of visual impairment (directly age standardised prevalence 4.6%, 95% CI 4.0% to 5.1% and 6.9%, 95% CI 5.8% to 8.0% respectively) compared to white people (3.3%, 95% CI 3.1% to 3.5%). Visual loss was also more prevalent with increasing age, type 1 diabetes and in people living in Yorkshire.
Conclusions
Visual impairment remains an important public health problem in people with diabetes, and is more prevalent in the minority ethnic groups in the UK.
doi:10.1371/journal.pone.0039608
PMCID: PMC3384630  PMID: 22761840
9.  Racial/ethnic differences in control of cardiovascular risk factors among type 2 diabetes patients in an insured, ambulatory care population☆,☆☆,★,★★ 
Aims
This paper examines differences in cardiovascular disease risk factor control among racial/ethnic minorities (Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese, Hispanic/Latino, Black/African Americans) with type 2 diabetes compared to Non-Hispanic Whites with type 2 diabetes in an insured, outpatient setting.
Methods
A three-year, cross-sectional sample of 15,826 patients with type 2 diabetes was studied between 2008 and 2010. Goal attainment rates for three cardiovascular disease risk factors (HbA1c, BP, LDL) were estimated. Logistic regression was used to determine the association between patient characteristics and control of risk factors.
Results
Only one fifth (21.1%) of patients achieved simultaneous goal attainment (HbA1c, BP, LDL). After adjustment for patient characteristics and treatment, Black/African American women and men, and Filipino and Hispanic/Latino men were significantly less likely to simultaneously achieve all three goals, compared to Non-Hispanic Whites. Of the three goals, patients were more likely to achieve HbA1c goals (68.7%) than BP (45.7%) or LDL (58.5%) goals. Racial/ethnic differences were more apparent in risk factors that were under better control (i.e. HbA1c).
Conclusions
Cardiovascular risk factor control in type 2 diabetes is suboptimal, even in an insured population. Special attention may be required for specific racial/ethnic/gender groups.
doi:10.1016/j.jdiacomp.2012.08.006
PMCID: PMC3587775  PMID: 23062328
Race/ethnicity; Primary prevention; Cardiovascular diseases; Disparities; Type 2 diabetes
10.  Ethnic Variations in the Prevalence of Diabetic Retinopathy in People with Diabetes Attending Screening in the United Kingdom (DRIVE UK) 
PLoS ONE  2012;7(3):e32182.
Aims
To compare the prevalence of diabetic retinopathy (DR) in people of various ethnic groups with diabetes in the United Kingdom (UK).
Methods
The Diabetic Retinopathy In Various Ethnic groups in UK (DRIVE UK) Study is a cross-sectional study on the ethnic variations of the prevalence of DR and visual impairment in two multi-racial cohorts in the UK. People on the diabetes register in West Yorkshire and South East London who were screened, treated or monitored between April 2008 to July 2009 (London) or August 2009 (West Yorkshire) were included in the study. Data included age, sex, ethnic group, type of diabetes, presenting visual acuity and the results of grading of diabetic retinopathy. Prevalence estimates for the ethnic groups were age-standardised to the white European population for comparison purposes.
Results
Out of 57,144 people on the two diabetic registers, data were available on 50,285 individuals (88.0%), of these 3,323 had type 1 and 46,962 had type 2 diabetes. In type 2 diabetes, the prevalence of any DR was 38.0% (95% confidence interval(CI) 37.4% to 38.5%) in white Europeans compared to 52.4% (51.2% to 53.6%) in African/Afro-Caribbeans and 42.3% (40.3% to 44.2%) in South Asians. Similarly, sight threatening DR was also significantly more prevalent in Afro-Caribbeans (11.5%, 95% CI 10.7% to 12.3%) and South Asians (10.3%, 9.0% to 11.5%) compared to white Europeans (5.5%, 5.3% to 5.8%). Differences observed in Type 1 diabetes did not achieve conventional levels of statistical significance, but there were lower numbers for these analyses.
Conclusions
Minority ethnic communities with type 2 diabetes in the UK are more prone to diabetic retinopathy, including sight-threatening retinopathy and maculopathy compared to white Europeans.
doi:10.1371/journal.pone.0032182
PMCID: PMC3297598  PMID: 22412857
11.  Facilitating the Recruitment of Minority Ethnic People into Research: Qualitative Case Study of South Asians and Asthma 
PLoS Medicine  2009;6(10):e1000148.
Aziz Sheikh and colleagues report on a qualitative study in the US and the UK to investigate ways to bolster recruitment of South Asians into asthma studies, including making inclusion of diverse populations mandatory.
Background
There is international interest in enhancing recruitment of minority ethnic people into research, particularly in disease areas with substantial ethnic inequalities. A recent systematic review and meta-analysis found that UK South Asians are at three times increased risk of hospitalisation for asthma when compared to white Europeans. US asthma trials are far more likely to report enrolling minority ethnic people into studies than those conducted in Europe. We investigated approaches to bolster recruitment of South Asians into UK asthma studies through qualitative research with US and UK researchers, and UK community leaders.
Methods and Findings
Interviews were conducted with 36 researchers (19 UK and 17 US) from diverse disciplinary backgrounds and ten community leaders from a range of ethnic, religious, and linguistic backgrounds, followed by self-completion questionnaires. Interviews were digitally recorded, translated where necessary, and transcribed. The Framework approach was used for analysis. Barriers to ethnic minority participation revolved around five key themes: (i) researchers' own attitudes, which ranged from empathy to antipathy to (in a minority of cases) misgivings about the scientific importance of the question under study; (ii) stereotypes and prejudices about the difficulties in engaging with minority ethnic populations; (iii) the logistical challenges posed by language, cultural differences, and research costs set against the need to demonstrate value for money; (iv) the unique contexts of the two countries; and (v) poorly developed understanding amongst some minority ethnic leaders of what research entails and aims to achieve. US researchers were considerably more positive than their UK counterparts about the importance and logistics of including ethnic minorities, which appeared to a large extent to reflect the longer-term impact of the National Institutes of Health's requirement to include minority ethnic people.
Conclusions
Most researchers and community leaders view the broadening of participation in research as important and are reasonably optimistic about the feasibility of recruiting South Asians into asthma studies provided that the barriers can be overcome. Suggested strategies for improving recruitment in the UK included a considerably improved support structure to provide academics with essential contextual information (e.g., languages of particular importance and contact with local gatekeepers), and the need to ensure that care is taken to engage with the minority ethnic communities in ways that are both culturally appropriate and sustainable; ensuring reciprocal benefits was seen as one key way of avoiding gatekeeper fatigue. Although voluntary measures to encourage researchers may have some impact, greater impact might be achieved if UK funding bodies followed the lead of the US National Institutes of Health requiring recruitment of ethnic minorities. Such a move is, however, likely in the short- to medium-term, to prove unpopular with many UK academics because of the added “hassle” factor in engaging with more diverse populations than many have hitherto been accustomed to.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In an ideal world, everyone would have the same access to health care and the same health outcomes (responses to health interventions). However, health inequalities—gaps in health care and in health between different parts of the population—exist in many countries. In particular, people belonging to ethnic minorities in the UK, the US, and elsewhere have poorer health outcomes for several conditions than people belonging to the ethnic majority (ethnicity is defined by social characteristics such as cultural tradition or national origin). For example, in the UK, people whose ancestors came from the Indian subcontinent (also known as South Asians and comprising in the main of people of Indian, Pakistani, and Bangladeshi origin) are three times as likely to be admitted to hospital for asthma as white Europeans. The reasons underpinning ethnic health inequalities are complex. Some inequalities may reflect intrinsic differences between groups of people—some ethnic minorities may inherit genes that alter their susceptibility to a specific disease. Other ethnic health inequalities may arise because of differences in socioeconomic status or because different cultural traditions affect the uptake of health care services.
Why Was This Study Done?
Minority ethnic groups are often under-represented in health research, which could limit the generalizability of research findings. That is, an asthma treatment that works well in a trial where all the participants are white Europeans might not be suitable for South Asians. Clinicians might nevertheless use the treatment in all their patients irrespective of their ethnicity and thus inadvertently increase ethnic health inequality. So, how can ethnic minorities be encouraged to enroll into research studies? In this qualitative study, the investigators try to answer this question by talking to US and UK asthma researchers and UK community leaders about how they feel about enrolling ethnic minorities into research studies. The investigators chose to compare the feelings of US and UK asthma researchers because minority ethnic people are more likely to enroll into US asthma studies than into UK studies, possibly because the US National Institute of Health's (NIH) Revitalization Act 1993 mandates that all NIH-funded clinical research must include people from ethnic minority groups; there is no similar mandatory policy in the UK.
What Did the Researchers Do and Find?
The investigators interviewed 16 UK and 17 US asthma researchers and three UK social researchers with experience of working with ethnic minorities. They also interviewed ten community leaders from diverse ethnic, religious and linguistic backgrounds. They then analyzed the interviews using the “Framework” approach, an analytical method in which qualitative data are classified and organized according to key themes and then interpreted. By comparing the data from the UK and US researchers, the investigators identified several barriers to ethnic minority participation in health research including: the attitudes of researchers towards the scientific importance of recruiting ethnic minority people into health research studies; prejudices about the difficulties of including ethnic minorities in health research; and the logistical challenges posed by language and cultural differences. In general, the US researchers were more positive than their UK counterparts about the importance and logistics of including ethnic minorities in health research. Finally, the investigators found that some community leaders had a poor understanding of what research entails and about its aims.
What Do These Findings Mean?
These findings reveal a large gap between US and UK researchers in terms of policy, attitudes, practices, and experiences in relation to including ethnic minorities in asthma research. However, they also suggest that most UK researchers and community leaders believe that it is both important and feasible to increase the participation of South Asians in asthma studies. Although some of these findings may have been affected by the study participants sometimes feeling obliged to give “politically correct” answers, these findings are likely to be generalizable to other diseases and to other parts of Europe. Given their findings, the researchers warn that a voluntary code of practice that encourages the recruitment of ethnic minority people into health research studies is unlikely to be successful. Instead, they suggest, the best way to increase the representation of ethnic minority people in health research in the UK might be to follow the US lead and introduce a policy that requires their inclusion in such research.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000148.
Families USA, a US nonprofit organization that campaigns for high-quality, affordable health care for all Americans, has information about many aspects of minority health in the US, including an interactive game about minority health issues
The US Agency for Healthcare Research and Quality has a section on minority health
The UK Department of Health provides information on health inequalities and a recent report on the experiences of patients in Black and minority ethnic groups
The UK Parliamentary Office of Science and Technology also has a short article on ethnicity and health
Information on the NIH Revitalization Act 1993 is available
NHS Evidences Ethnicity and Health has a variety of policy, clinical, and research resources on ethnicity and health
doi:10.1371/journal.pmed.1000148
PMCID: PMC2752116  PMID: 19823568
12.  Prevalence, detection, and management of cardiovascular risk factors in different ethnic groups in south London 
Heart  1997;78(6):555-563.
Objective—To assess the prevalence of cardiovascular risk factors and their level of detection and management in three ethnic groups.
Design—Population based survey during 1994 to 1996.
Setting—Former Wandsworth Health Authority in South London.
Subjects—1578 men and women, aged 40 to 59 years; 524 white, 549 of African descent, and 505 of South Asian origin.
Main outcome measures—Age adjusted prevalence of hypertension, diabetes, obesity, raised serum cholesterol, and smoking. 
Results—Ethnic minorities of both sexes had raised prevalence rates of hypertension and diabetes compared to white people. Age and sex standardised prevalence ratios for hypertension were 2.6 (95% confidence interval 2.1 to 3.2) in people of African descent and 1.8 (1.4 to 2.3) in those of South Asian origin. For diabetes, the ratios were 2.7 (1.8 to 4.0) in people of African descent and 3.8 (2.6 to 5.6) in those of South Asian origin. Hypertension and diabetes were equally common among Caribbeans and West Africans and among South Asian Hindus and Muslims. Prevalence of severe obesity was high overall, but particularly among women of African descent (40% (35% to 45%)). In contrast, raised serum cholesterol and smoking rates were higher among white people. Of hypertensives, 49% (216 of 442) had adequate blood pressure control. Overall, 18% (80 of 442) of hypertensives and 33% (62 of 188) of diabetics were undetected before our survey. Hypertensive subjects of African descent appeared more likely to have been detected (p = 0.034) but less likely to be adequately managed (p = 0.085).
Conclusions—Hypertension and diabetes are raised two- to threefold in South Asians, Caribbeans, and West Africans in Britain. Detection, management, and control of hypertension has improved, but there are still differences between ethnic groups. Obesity is above the Health of the Nation targets in all ethnic groups, particularly in women of African descent. Preventive and treatment strategies for different ethnic groups in Britain need to consider both cultural differences and underlying susceptibility to different vascular diseases.

 Keywords: cardiovascular risk factors;  hypertension;  diabetes;  obesity;  ethnic group
PMCID: PMC1892335  PMID: 9470870
13.  Ethnic differences and socio-demographic predictors of illness perceptions, self-management, and metabolic control of type 2 diabetes 
Objectives
This study investigated ethnic differences in diabetes-specific knowledge, illness perceptions, self-management, and metabolic control among black-African, black-Caribbean,and white-British populations with type 2 diabetes. The study also examined associations between demographic/disease characteristics and diabetes-specific knowledge, illness perceptions, self-management, and metabolic control in each of the three ethnic groups.
Design
Cross-sectional
Setting
Diabetes/retinal screening clinics in Hackney and Brent, London.
Methods
Black-African, black-Caribbean and white-British populations with type 2 diabetes were asked to participate. Questionnaires measuring demographic/disease characteristics, diabetes-specific knowledge, self-management, and illness perceptions were used for data collection. Data for glycated hemoglobin (HbA1c) and microvascular complications were obtained from medical records. Ethnic differences in diabetes-related measures were estimated using analysis of variance/covariance. Multiple regression techniques were used to determine relationships between demographic/disease characteristics and measured diabetes-related outcomes.
Results
Three hundred and fifty-nine patients participated in the study. White-British participants had high diabetes-specific knowledge compared to their black-African and black-Caribbean counterparts. Black-Africans reported better adherence to self-management recommendations than the other ethnic groups. Compared to the white-British patients, black-African and black-Caribbean participants perceived diabetes as a benign condition that could be cured. Educational status and treatment category were determinants of diabetes-specific knowledge in all three ethnic groups. However, different demographic/disease characteristics predicted adherence to self-management recommendations in each ethnic group.
Conclusion
Clearly, there is disease (diabetes) knowledge-perception variation between different ethnic groups in the UK which may partly influence overall disease outcome. It is plausible to recommend screening, identifying, and dispelling misconceptions about diabetes among ethnic minority patients by health care professionals as well as emphasizing the importance of self-management in managing chronic diseases such as diabetes.
doi:10.2147/IJGM.S46649
PMCID: PMC3735275  PMID: 23935384
black-African; black-Caribbean; white-British; diabetes; illness perceptions; self-management
14.  Pharmacological primary and secondary cardiovascular prevention among diabetic patients in a multiethnic general practice population: still room for improvements 
Background
Ethnic minority groups have higher prevalence of cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM). We assessed general practitioners’ (GPs’) performance with respect to the pharmacological prevention of CVD in patients with T2DM from different ethnic backgrounds in Oslo.
Methods
Of 1653 T2DM patients cared for by 49 GPs in 2005, 380 had a diagnosis of CVD. Ethnicity was categorized as Norwegian, South Asian and other. Risk factor levels, medication use, achievement of treatment targets (HbA1c ≤ 7.5%, systolic blood pressure (SBP) ≤ 140 mmHg, total cholesterol/HDL-cholesterol < 4) and therapeutic intensity (number of drugs targeting each risk factor) were recorded. Chi-square, Wald tests and multiple linear regression analyses were used.
Results
Of the 1273 patients receiving primary prevention, 1.5% had their Hb1Ac, 4.8% SBP and 12.7% lipids levels above treatment thresholds without relevant prescriptions. Among patients on pharmacological therapy, 66% reached the HbA1c, 62% SBP and 62% lipid target. Proportions not achieving the HbA1c target were 26% in Norwegians, 38% in South Asians and 29% in others (p = 0.008). Proportions not achieving the SBP target were 42% in Norwegians, 22% in South Asians and 25% in others (p ≤ 0.001). Of those not achieving the HbA1c and SBP targets, 43% and 35% respectively, used only one agent.
In secondary prevention, 0.8% of the patients had their HbA1c, 0.5% SBP and 7.4% lipid levels above treatment thresholds without relevant prescriptions. Among patients on pharmacological therapy, 65% reached the HbA1c, 64% SBP and 66% lipid target. Proportions not achieving the HbA1c target were 26% in Norwegians, 47% in South Asians and 40% in others (p = 0.03). Proportions not achieving the SBP target were 36% in Norwegians, 22% in South Asians and 56% in others (p = 0.050). Of those not achieving HbA1c and SBP targets, 49% and 21% respectively, were on mono-therapy.
Conclusions
Norwegian GPs comply reasonably well with guidelines for pharmacological prevention of CVD in T2DM patients across ethnic groups. However, lipid-lowering therapy was generally underused, and the achievement of treatment targets for HbA1c in ethnic minorities and for BP in Norwegians could be improved.
doi:10.1186/1472-6963-13-182
PMCID: PMC3664587  PMID: 23688317
Type 2 diabetes; CVD prevention; Ethnicity; General practice
15.  Home Telemonitoring for Type 2 Diabetes 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this report is to determine whether home telemonitoring and management of blood glucose is effective for improving glycemic control in adults with type 2 diabetes.
Background
An aging population coupled with a shortage of nurses and physicians in Ontario is increasing the demand for home care services for chronic diseases, including diabetes. In recent years, there has also been a concurrent rise in the number of blood glucose home telemonitoring technologies available for diabetes management. The Canadian Diabetes Association (CDA) currently recommends self-monitoring of blood glucose for patients with type 2 diabetes, particularly for individuals using insulin. With the emergence of home telemonitoring, there is potential for improving the impact of self-monitoring by linking patients with health care professionals who can monitor blood glucose values and then provide guided recommendations remotely. The MAS has, therefore, conducted a review of the available evidence on blood glucose home telemonitoring and management technologies for type 2 diabetes.
Evidence-Based Analysis of Effectiveness
Research Question
Is home telemonitoring of blood glucose for adults with type 2 diabetes more efficacious in improving glycemic control (i.e. can it reduce HbA1c levels) in comparison to usual care?
Literature Search
Inclusion Criteria
Intervention: Must involve the frequent transmission of remotely-collected blood glucose measurements by patients to health care professionals for routine monitoring through the use of home telemonitoring technology.
Intervention: Monitoring must be combined with a coordinated management and feedback system based on transmitted data.
Control: Usual diabetes care as provided by the usual care provider (usual care largely varies by jurisdiction and study).
Population: Adults ≥18 years of age with type 2 diabetes.
Follow-up: ≥6 months.
Sample size: ≥30 patients total.
Publication type: Randomized controlled trials (RCTs), systematic reviews, and/or meta-analyses.
Publication date range: January 1, 1998 to January 31, 2009.
Exclusion Criteria
Studies with a control group other than usual care.
Studies published in a language other than English.
Studies in which there is indication that the monitoring of patients’ diabetic measurements by a health care professional(s) was not occurring more frequently in intervention patients than in control patients receiving usual care.
Outcomes of Interest
The primary outcome of interest was a reduction in glycosylated hemoglobin (HbA1c) levels.
Search Strategy
A comprehensive literature search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, The Cochrane Library, and INAHTA for studies published between January 1, 2007 and January 31, 2009. The search was designed as a continuation of a search undertaken for a systematic review by the Canadian Agency for Drugs and Technologies in Health, originally encompassing studies published from 1950 up until July of 2008 and which reviewed home telemonitoring in comparison to usual care for the management of type 1 and type 2 diabetes.
Summary of Findings
A total of eight studies identified by the literature search were eligible for inclusion (one was excluded post-hoc from analysis). Studies varied considerably on characteristics of design, population, and intervention/control. Of note, few trials limited populations to type 2 diabetics only, thus trials with mixed populations (type 1 and type 2) were included, though in such cases, the majority of patients (>60%) had type 2 diabetes. No studies restricted inclusion or analyses by diabetes treatment type (i.e. populations were mixed with respect to those on insulin therapy vs. not) and studies further varied on whether intervention was provided in addition to usual care or as a replacement. Lastly, trials often included blood glucose home telemonitoring as an adjunct to other telemedicine components and thus the incremental value of adding home telemonitoring remains unclear. The overall grading of the quality of evidence was low, indicating that there is uncertainty in the findings.
Meta-analysis of the seven trials identified a moderate but significant reduction in HbA1c levels (~0.5% reduction) in favour blood glucose home telemonitoring compared to usual care for adults with type 2 diabetes). Subgroup analyses suggested differences in effect size depending on the type of intervention, however, these findings should be held under caution as the analyses were exploratory in nature and intervention components overlapped between subgroups.
Meta-Analyses of Reduction in HbA1c Values for Analyzed Studies
Conclusions
Based on low quality evidence, blood glucose home telemonitoring technologies confer a statistically significant reduction in HbA1c of ~0.50% in comparison to usual care when used adjunctively to a broader telemedicine initiative for adults with type 2 diabetes.
Exploratory analysis suggests differences in effect sizes for the primary outcome when analyzing by subgroup; however, this should only be viewed as exploratory or hypothesis-generating only.
Significant limitations and/or sources of clinical heterogeneity are present in the available literature, generating great uncertainty in conclusions.
More robust trials in type 2 diabetics only, utilizing more modern technologies, preferably performed in an Ontario or a similar setting (given the infrastructure demands and that the standard comparator is usual care), while separating out the effects of other telemedicine intervention components, are needed to clarify the effect of emerging remote blood glucose monitoring technologies.
PMCID: PMC3377533  PMID: 23074529
16.  Continuous Subcutaneous Insulin Infusion (CSII) Pumps for Type 1 and Type 2 Adult Diabetic Populations 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this analysis is to review the efficacy of continuous subcutaneous insulin infusion (CSII) pumps as compared to multiple daily injections (MDI) for the type 1 and type 2 adult diabetics.
Clinical Need and Target Population
Insulin therapy is an integral component of the treatment of many individuals with diabetes. Type 1, or juvenile-onset diabetes, is a life-long disorder that commonly manifests in children and adolescents, but onset can occur at any age. It represents about 10% of the total diabetes population and involves immune-mediated destruction of insulin producing cells in the pancreas. The loss of these cells results in a decrease in insulin production, which in turn necessitates exogenous insulin therapy.
Type 2, or ‘maturity-onset’ diabetes represents about 90% of the total diabetes population and is marked by a resistance to insulin or insufficient insulin secretion. The risk of developing type 2 diabetes increases with age, obesity, and lack of physical activity. The condition tends to develop gradually and may remain undiagnosed for many years. Approximately 30% of patients with type 2 diabetes eventually require insulin therapy.
CSII Pumps
In conventional therapy programs for diabetes, insulin is injected once or twice a day in some combination of short- and long-acting insulin preparations. Some patients require intensive therapy regimes known as multiple daily injection (MDI) programs, in which insulin is injected three or more times a day. It’s a time consuming process and usually requires an injection of slow acting basal insulin in the morning or evening and frequent doses of short-acting insulin prior to eating. The most common form of slower acting insulin used is neutral protamine gagedorn (NPH), which reaches peak activity 3 to 5 hours after injection. There are some concerns surrounding the use of NPH at night-time as, if injected immediately before bed, nocturnal hypoglycemia may occur. To combat nocturnal hypoglycemia and other issues related to absorption, alternative insulins have been developed, such as the slow-acting insulin glargine. Glargine has no peak action time and instead acts consistently over a twenty-four hour period, helping reduce the frequency of hypoglycemic episodes.
Alternatively, intensive therapy regimes can be administered by continuous insulin infusion (CSII) pumps. These devices attempt to closely mimic the behaviour of the pancreas, continuously providing a basal level insulin to the body with additional boluses at meal times. Modern CSII pumps are comprised of a small battery-driven pump that is designed to administer insulin subcutaneously through the abdominal wall via butterfly needle. The insulin dose is adjusted in response to measured capillary glucose values in a fashion similar to MDI and is thus often seen as a preferred method to multiple injection therapy. There are, however, still risks associated with the use of CSII pumps. Despite the increased use of CSII pumps, there is uncertainty around their effectiveness as compared to MDI for improving glycemic control.
Part A: Type 1 Diabetic Adults (≥19 years)
An evidence-based analysis on the efficacy of CSII pumps compared to MDI was carried out on both type 1 and type 2 adult diabetic populations.
Research Questions
Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 1 diabetes?
Are CSII pumps more effective than MDI for improving additional outcomes related to diabetes such as quality of life (QoL)?
Literature Search
Inclusion Criteria
Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, EMBASE, CINAHL
Adults (≥ 19 years)
Type 1 diabetes
Study evaluates CSII vs. MDI
Published between January 1, 2002 – March 24, 2009
Patient currently on intensive insulin therapy
Exclusion Criteria
Studies with <20 patients
Studies <5 weeks in duration
CSII applied only at night time and not 24 hours/day
Mixed group of diabetes patients (children, adults, type 1, type 2)
Pregnancy studies
Outcomes of Interest
The primary outcomes of interest were glycosylated hemoglobin (HbA1c) levels, mean daily blood glucose, glucose variability, and frequency of hypoglycaemic events. Other outcomes of interest were insulin requirements, adverse events, and quality of life.
Search Strategy
The literature search strategy employed keywords and subject headings to capture the concepts of:
1) insulin pumps, and
2) type 1 diabetes.
The search was run on July 6, 2008 in the following databases: Ovid MEDLINE (1996 to June Week 4 2008), OVID MEDLINE In-Process and Other Non-Indexed Citations, EMBASE (1980 to 2008 Week 26), OVID CINAHL (1982 to June Week 4 2008) the Cochrane Library, and the Centre for Reviews and Dissemination/International Agency for Health Technology Assessment. A search update was run on March 24, 2009 and studies published prior to 2002 were also examined for inclusion into the review. Parallel search strategies were developed for the remaining databases. Search results were limited to human and English-language published between January 2002 and March 24, 2009. Abstracts were reviewed, and studies meeting the inclusion criteria outlined above were obtained. Reference lists were also checked for relevant studies.
Summary of Findings
The database search identified 519 relevant citations published between 1996 and March 24, 2009. Of the 519 abstracts reviewed, four RCTs and one abstract met the inclusion criteria outlined above. While efficacy outcomes were reported in each of the trials, a meta-analysis was not possible due to missing data around standard deviations of change values as well as missing data for the first period of the crossover arm of the trial. Meta-analysis was not possible on other outcomes (quality of life, insulin requirements, frequency of hypoglycemia) due to differences in reporting.
HbA1c
In studies where no baseline data was reported, the final values were used. Two studies (Hanaire-Broutin et al. 2000, Hoogma et al. 2005) reported a slight reduction in HbA1c of 0.35% and 0.22% respectively for CSII pumps in comparison to MDI. A slightly larger reduction in HbA1c of 0.84% was reported by DeVries et al.; however, this study was the only study to include patients with poor glycemic control marked by higher baseline HbA1c levels. One study (Bruttomesso et al. 2008) showed no difference between CSII pumps and MDI on Hba1c levels and was the only study using insulin glargine (consistent with results of parallel RCT in abstract by Bolli 2004). While there is statistically significant reduction in HbA1c in three of four trials, there is no evidence to suggest these results are clinically significant.
Mean Blood Glucose
Three of four studies reported a statistically significant reduction in the mean daily blood glucose for patients using CSII pump, though these results were not clinically significant. One study (DeVries et al. 2002) did not report study data on mean blood glucose but noted that the differences were not statistically significant. There is difficulty with interpreting study findings as blood glucose was measured differently across studies. Three of four studies used a glucose diary, while one study used a memory meter. In addition, frequency of self monitoring of blood glucose (SMBG) varied from four to nine times per day. Measurements used to determine differences in mean daily blood glucose between the CSII pump group and MDI group at clinic visits were collected at varying time points. Two studies use measurements from the last day prior to the final visit (Hoogma et al. 2005, DeVries et al. 2002), while one study used measurements taken during the last 30 days and another study used measurements taken during the 14 days prior to the final visit of each treatment period.
Glucose Variability
All four studies showed a statistically significant reduction in glucose variability for patients using CSII pumps compared to those using MDI, though one, Bruttomesso et al. 2008, only showed a significant reduction at the morning time point. Brutomesso et al. also used alternate measures of glucose variability and found that both the Lability index and mean amplitude of glycemic excursions (MAGE) were in concordance with the findings using the standard deviation (SD) values of mean blood glucose, but the average daily risk range (ADRR) showed no difference between the CSII pump and MDI groups.
Hypoglycemic Events
There is conflicting evidence concerning the efficacy of CSII pumps in decreasing both mild and severe hypoglycemic events. For mild hypoglycemic events, DeVries et al. observed a higher number of events per patient week in the CSII pump group than the MDI group, while Hoogma et al. observed a higher number of events per patient year in the MDI group. The remaining two studies found no differences between the two groups in the frequency of mild hypoglycemic events. For severe hypoglycemic events, Hoogma et al. found an increase in events per patient year among MDI patients, however, all of the other RCTs showed no difference between the patient groups in this aspect.
Insulin Requirements and Adverse Events
In all four studies, insulin requirements were significantly lower in patients receiving CSII pump treatment in comparison to MDI. This difference was statistically significant in all studies. Adverse events were reported in three studies. Devries et al. found no difference in ketoacidotic episodes between CSII pump and MDI users. Bruttomesso et al. reported no adverse events during the study. Hanaire-Broutin et al. found that 30 patients experienced 58 serious adverse events (SAEs) during MDI and 23 patients had 33 SAEs during treatment out of a total of 256 patients. Most events were related to severe hypoglycemia and diabetic ketoacidosis.
Quality of Life and Patient Preference
QoL was measured in three studies and patient preference was measured in one. All three studies found an improvement in QoL for CSII users compared to those using MDI, although various instruments were used among the studies and possible reporting bias was evident as non-positive outcomes were not consistently reported. Moreover, there was also conflicting results in two of the studies using the Diabetes Treatment Satisfaction Questionnaire (DTSQ). DeVries et al. reported no difference in treatment satisfaction between CSII pump users and MDI users while Brutomesso et al. reported that treatment satisfaction improved among CSII pump users.
Patient preference for CSII pumps was demonstrated in just one study (Hanaire-Broutin et al. 2000) and there are considerable limitations with interpreting this data as it was gathered through interview and 72% of patients that preferred CSII pumps were previously on CSII pump therapy prior to the study. As all studies were industry sponsored, findings on QoL and patient preference must be interpreted with caution.
Quality of Evidence
Overall, the body of evidence was downgraded from high to low due to study quality and issues with directness as identified using the GRADE quality assessment tool (see Table 1) While blinding of patient to intervention/control was not feasible in these studies, blinding of study personnel during outcome assessment and allocation concealment were generally lacking. Trials reported consistent results for the outcomes HbA1c, mean blood glucose and glucose variability, but the directness or generalizability of studies, particularly with respect to the generalizability of the diabetic population, was questionable as most trials used highly motivated populations with fairly good glycemic control. In addition, the populations in each of the studies varied with respect to prior treatment regimens, which may not be generalizable to the population eligible for pumps in Ontario. For the outcome of hypoglycaemic events the evidence was further downgraded to very low since there was conflicting evidence between studies with respect to the frequency of mild and severe hypoglycaemic events in patients using CSII pumps as compared to CSII (see Table 2). The GRADE quality of evidence for the use of CSII in adults with type 1 diabetes is therefore low to very low and any estimate of effect is, therefore, uncertain.
GRADE Quality Assessment for CSII pumps vs. MDI on HbA1c, Mean Blood Glucose, and Glucose Variability for Adults with Type 1 Diabetes
Inadequate or unknown allocation concealment (3/4 studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; No ITT analysis (2/4 studies); possible bias SMBG (all studies)
HbA1c: 3/4 studies show consistency however magnitude of effect varies greatly; Single study uses insulin glargine instead of NPH; Mean Blood Glucose: 3/4 studies show consistency however magnitude of effect varies between studies; Glucose Variability: All studies show consistency but 1 study only showed a significant effect in the morning
Generalizability in question due to varying populations: highly motivated populations, educational component of interventions/ run-in phases, insulin pen use in 2/4 studies and varying levels of baseline glycemic control and experience with intensified insulin therapy, pumps and MDI.
GRADE Quality Assessment for CSII pumps vs. MDI on Frequency of Hypoglycemic
Inadequate or unknown allocation concealment (3/4 studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; No ITT analysis (2/4 studies); possible bias SMBG (all studies)
Conflicting evidence with respect to mild and severe hypoglycemic events reported in studies
Generalizability in question due to varying populations: highly motivated populations, educational component of interventions/ run-in phases, insulin pen use in 2/4 studies and varying levels of baseline glycemic control and experience with intensified insulin therapy, pumps and MDI.
Economic Analysis
One article was included in the analysis from the economic literature scan. Four other economic evaluations were identified but did not meet our inclusion criteria. Two of these articles did not compare CSII with MDI and the other two articles used summary estimates from a mixed population with Type 1 and 2 diabetes in their economic microsimulation to estimate costs and effects over time. Included were English articles that conducted comparisons between CSII and MDI with the outcome of Quality Adjusted Life Years (QALY) in an adult population with type 1 diabetes.
From one study, a subset of the population with type 1 diabetes was identified that may be suitable and benefit from using insulin pumps. There is, however, limited data in the literature addressing the cost-effectiveness of insulin pumps versus MDI in type 1 diabetes. Longer term models are required to estimate the long term costs and effects of pumps compared to MDI in this population.
Conclusions
CSII pumps for the treatment of adults with type 1 diabetes
Based on low-quality evidence, CSII pumps confer a statistically significant but not clinically significant reduction in HbA1c and mean daily blood glucose as compared to MDI in adults with type 1 diabetes (>19 years).
CSII pumps also confer a statistically significant reduction in glucose variability as compared to MDI in adults with type 1 diabetes (>19 years) however the clinical significance is unknown.
There is indirect evidence that the use of newer long-acting insulins (e.g. insulin glargine) in MDI regimens result in less of a difference between MDI and CSII compared to differences between MDI and CSII in which older insulins are used.
There is conflicting evidence regarding both mild and severe hypoglycemic events in this population when using CSII pumps as compared to MDI. These findings are based on very low-quality evidence.
There is an improved quality of life for patients using CSII pumps as compared to MDI however, limitations exist with this evidence.
Significant limitations of the literature exist specifically:
All studies sponsored by insulin pump manufacturers
All studies used crossover design
Prior treatment regimens varied
Types of insulins used in study varied (NPH vs. glargine)
Generalizability of studies in question as populations were highly motivated and half of studies used insulin pens as the mode of delivery for MDI
One short-term study concluded that pumps are cost-effective, although this was based on limited data and longer term models are required to estimate the long-term costs and effects of pumps compared to MDI in adults with type 1 diabetes.
Part B: Type 2 Diabetic Adults
Research Questions
Are CSII pumps more effective than MDI for improving glycemic control in adults (≥19 years) with type 2 diabetes?
Are CSII pumps more effective than MDI for improving other outcomes related to diabetes such as quality of life?
Literature Search
Inclusion Criteria
Randomized controlled trials, systematic reviews, meta-analysis and/or health technology assessments from MEDLINE, Excerpta Medica Database (EMBASE), Cumulative Index to Nursing & Allied Health Literature (CINAHL)
Any person with type 2 diabetes requiring insulin treatment intensive
Published between January 1, 2000 – August 2008
Exclusion Criteria
Studies with <10 patients
Studies <5 weeks in duration
CSII applied only at night time and not 24 hours/day
Mixed group of diabetes patients (children, adults, type 1, type 2)
Pregnancy studies
Outcomes of Interest
The primary outcome of interest was a reduction in glycosylated hemoglobin (HbA1c) levels. Other outcomes of interest were mean blood glucose level, glucose variability, insulin requirements, frequency of hypoglycemic events, adverse events, and quality of life.
Search Strategy
A comprehensive literature search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CINAHL, The Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1, 2000 and August 15, 2008. Studies meeting the inclusion criteria were selected from the search results. Data on the study characteristics, patient characteristics, primary and secondary treatment outcomes, and adverse events were abstracted. Reference lists of selected articles were also checked for relevant studies. The quality of the evidence was assessed as high, moderate, low, or very low according to the GRADE methodology.
Summary of Findings
The database search identified 286 relevant citations published between 1996 and August 2008. Of the 286 abstracts reviewed, four RCTs met the inclusion criteria outlined above. Upon examination, two studies were subsequently excluded from the meta-analysis due to small sample size and missing data (Berthe et al.), as well as outlier status and high drop out rate (Wainstein et al) which is consistent with previously reported meta-analyses on this topic (Jeitler et al 2008, and Fatourechi M et al. 2009).
HbA1c
The primary outcome in this analysis was reduction in HbA1c. Both studies demonstrated that both CSII pumps and MDI reduce HbA1c, but neither treatment modality was found to be superior to the other. The results of a random effects model meta-analysis showed a mean difference in HbA1c of -0.14 (-0.40, 0.13) between the two groups, which was found not to be statistically or clinically significant. There was no statistical heterogeneity observed between the two studies (I2=0%).
Forrest plot of two parallel, RCTs comparing CSII to MDI in type 2 diabetes
Secondary Outcomes
Mean Blood Glucose and Glucose Variability
Mean blood glucose was only used as an efficacy outcome in one study (Raskin et al. 2003). The authors found that the only time point in which there were consistently lower blood glucose values for the CSII group compared to the MDI group was 90 minutes after breakfast. Glucose variability was not examined in either study and the authors reported no difference in weight gain between the CSII pump group and MDI groups at the end of study. Conflicting results were reported regarding injection site reactions between the two studies. Herman et al. reported no difference in the number of subjects experiencing site problems between the two groups, while Raskin et al. reported that there were no injection site reactions in the MDI group but 15 such episodes among 8 participants in the CSII pump group.
Frequency of Hypoglycemic Events and Insulin Requirements
All studies reported that there were no differences in the number of mild hypoglycemic events in patients on CSII pumps versus MDI. Herman et al. also reported no differences in the number of severe hypoglycemic events in patients using CSII pumps compared to those on MDI. Raskin et al. reported that there were no severe hypoglycemic events in either group throughout the study duration. Insulin requirements were only examined in Herman et al., who found that daily insulin requirements were equal between the CSII pump and MDI treatment groups.
Quality of Life
QoL was measured by Herman et al. using the Diabetes Quality of Life Clinical Trial Questionnaire (DQOLCTQ). There were no differences reported between CSII users and MDI users for treatment satisfaction, diabetes impact, and worry-related scores. Patient satisfaction was measured in Raskin et al. using a patient satisfaction questionnaire, whose results indicated that patients in the CSII pump group had significantly greater improvement in overall treatment satisfaction at the end of the study compared to the MDI group. Although patient preference was also reported, it was only examined in the CSII pump group, thus results indicating a greater preference for CSII pumps in this groups (as compared to prior injectable insulin regimens) are biased and must be interpreted with caution.
Quality of Evidence
Overall, the body of evidence was downgraded from high to low according to study quality and issues with directness as identified using the GRADE quality assessment tool (see Table 3). While blinding of patient to intervention/control is not feasible in these studies, blinding of study personnel during outcome assessment and allocation concealment were generally lacking. ITT was not clearly explained in one study and heterogeneity between study populations was evident from participants’ treatment regimens prior to study initiation. Although trials reported consistent results for HbA1c outcomes, the directness or generalizability of studies, particularly with respect to the generalizability of the diabetic population, was questionable as trials required patients to adhere to an intense SMBG regimen. This suggests that patients were highly motivated. In addition, since prior treatment regimens varied between participants (no requirement for patients to be on MDI), study findings may not be generalizable to the population eligible for a pump in Ontario. The GRADE quality of evidence for the use of CSII in adults with type 2 diabetes is, therefore, low and any estimate of effect is uncertain.
GRADE Quality Assessment for CSII pumps vs. MDI on HbA1c Adults with Type 2 Diabetes
Inadequate or unknown allocation concealment (all studies); Unblinded assessment (all studies) however lack of blinding due to the nature of the study; ITT not well explained in 1 of 2 studies
Indirect due to lack of generalizability of findings since participants varied with respect to prior treatment regimens and intensive SMBG suggests highly motivated populations used in trials.
Economic Analysis
An economic analysis of CSII pumps was carried out using the Ontario Diabetes Economic Model (ODEM) and has been previously described in the report entitled “Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario”, part of the diabetes strategy evidence series. Based on the analysis, CSII pumps are not cost-effective for adults with type 2 diabetes, either for the age 65+ sub-group or for all patients in general. Details of the analysis can be found in the full report.
Conclusions
CSII pumps for the treatment of adults with type 2 diabetes
There is low quality evidence demonstrating that the efficacy of CSII pumps is not superior to MDI for adult type 2 diabetics.
There were no differences in the number of mild and severe hypoglycemic events in patients on CSII pumps versus MDI.
There are conflicting findings with respect to an improved quality of life for patients using CSII pumps as compared to MDI.
Significant limitations of the literature exist specifically:
All studies sponsored by insulin pump manufacturers
Prior treatment regimens varied
Types of insulins used in study varied (NPH vs. glargine)
Generalizability of studies in question as populations may not reflect eligible patient population in Ontario (participants not necessarily on MDI prior to study initiation, pen used in one study and frequency of SMBG required during study was high suggesting highly motivated participants)
Based on ODEM, insulin pumps are not cost-effective for adults with type 2 diabetes either for the age 65+ sub-group or for all patients in general.
PMCID: PMC3377523  PMID: 23074525
17.  Ethnic Differences in Glycaemic Control in People with Type 2 Diabetes Mellitus Living in Scotland 
PLoS ONE  2013;8(12):e83292.
Background and Aims
Previous studies have investigated the association between ethnicity and processes of care and intermediate outcomes of diabetes, but there are limited population-based studies available. The aim of this study was to use population-based data to investigate the relationships between ethnicity and glycaemic control in men and women with diabetes mellitus living in Scotland
Methods
We used a 2008 extract from the population-based national electronic diabetes database of Scotland. The association between ethnicity with mean glycaemic control in type 2 diabetes mellitus was examined in a retrospective cohort study, including adjustment for a number of variables including age, sex, socioeconomic status, body mass index (BMI), prescribed treatment and duration of diabetes.
Results
Complete data for analyses were available for 56,333 White Scottish adults, 2,535 Pakistanis, 857 Indians, 427 Chinese and 223 African-Caribbeans. All other ethnic groups had significantly (p<0.05) greater proportions of people with suboptimal glycaemic control (HbA1c >58 mmol/mol, 7.5%) compared to the White Scottish group, despite generally younger mean age and lower BMI. Fully adjusted odds ratios for suboptimal glycaemic control were significantly higher among Pakistanis and Indians (1.85, 95% CI: 1.68–2.04, and 1.62,95% CI: 1.38–1.89) respectively.
Conclusions
Pakistanis and Indians with type 2 diabetes mellitus were more likely to have suboptimal glycaemic control than the white Scottish population. Further research on health services and self-management are needed to understand the association between ethnicity and glycaemic control to address ethnic disparities in glycaemic control.
doi:10.1371/journal.pone.0083292
PMCID: PMC3865180  PMID: 24358273
18.  Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus 
Abstract
Concept of Diabetes Mellitus:
Diabetes mellitus is a group of diseases associated with various metabolic disorders, the main feature of which is chronic hyperglycemia due to insufficient insulin action. Its pathogenesis involves both genetic and environmental factors. The long‐term persistence of metabolic disorders can cause susceptibility to specific complications and also foster arteriosclerosis. Diabetes mellitus is associated with a broad range of clinical presentations, from being asymptomatic to ketoacidosis or coma, depending on the degree of metabolic disorder.
Classification (Tables 1 and 2, and Figure 1):
 Etiological classification of diabetes mellitus and glucose metabolism disorders
Note: Those that cannot at present be classified as any of the above are called unclassifiable.
The occurrence of diabetes‐specific complications has not been confirmed in some of these conditions.
 Diabetes mellitus and glucose metabolism disorders due to other specific mechanisms and diseases
The occurrence of diabetes‐specific complications has not been confirmed in some of these conditions.
 A scheme of the relationship between etiology (mechanism) and patho‐physiological stages (states) of diabetes mellitus. Arrows pointing right represent worsening of glucose metabolism disorders (including onset of diabetes mellitus). Among the arrow lines, indicates the condition classified as ‘diabetes mellitus’. Arrows pointing left represent improvement in the glucose metabolism disorder. The broken lines indicate events of low frequency. For example, in type 2 diabetes mellitus, infection can lead to ketoacidosis and require temporary insulin treatment for survival. Also, once diabetes mellitus has developed, it is treated as diabetes mellitus regardless of improvement in glucose metabolism, therefore, the arrow lines pointing left are filled in black. In such cases, a broken line is used, because complete normalization of glucose metabolism is rare.
The classification of glucose metabolism disorders is principally derived from etiology, and includes staging of pathophysiology based on the degree of deficiency of insulin action. These disorders are classified into four groups: (i) type 1 diabetes mellitus; (ii) type 2 diabetes mellitus; (iii) diabetes mellitus due to other specific mechanisms or diseases; and (iv) gestational diabetes mellitus. Type 1 diabetes is characterized by destruction of pancreatic β‐cells. Type 2 diabetes is characterized by combinations of decreased insulin secretion and decreased insulin sensitivity (insulin resistance). Glucose metabolism disorders in category (iii) are divided into two subgroups; subgroup A is diabetes in which a genetic abnormality has been identified, and subgroup B is diabetes associated with other pathologic disorders or clinical conditions. The staging of glucose metabolism includes normal, borderline and diabetic stages depending on the degree of hyperglycemia occurring as a result of the lack of insulin action or clinical condition. The diabetic stage is then subdivided into three substages: non‐insulin‐ requiring, insulin‐requiring for glycemic control, and insulin‐dependent for survival. The two former conditions are called non‐insulin‐dependent diabetes and the latter is known as insulin‐dependent diabetes. In each individual, these stages may vary according to the deterioration or the improvement of the metabolic state, either spontaneously or by treatment.
Diagnosis (Tables 3–7 and Figure 2):
 Criteria of fasting plasma glucose levels and 75 g oral glucose tolerance test 2‐h value
*Casual plasma glucose ≥200 mg/dL (≥11.1 mmol/L) and HbA1c≥6.5% are also regarded as to indicate diabetic type.
Even for normal type, if 1‐h value is 180 mg/dL (10.0 mmol/L), the risk of progression to diabetes mellitus is greater than for <180 mg/dL (10.0 mmol/L) and should be treated as with borderline type (follow‐up observation, etc.). Fasting plasma glucose level of 100–109 mg/dL (5.5–6.0 mmol/L) is called ‘high‐normal’: within the range of normal fasting plasma glucose.
Plasma glucose level after glucose load in oral glucose tolerance test (OGTT) is not included in casual plasma glucose levels. The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%).
 Procedures for diagnosing diabetes mellitus
*The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%). **Hyperglycemia must be confirmed in a non‐stressful condition. OGTT, oral glucose tolerance test.
 Disorders and conditions associated with low HbA1c values
 Situations where a 75‐g oral glucose tolerance test is recommended
*The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%).
 Definition and diagnostic criteria of gestational diabetes mellitus
(IADPSG Consensus Panel, Reference 42, partly modified with permission of Diabetes Care).
 Flow chart outlining steps in the clinical diagnosis of diabetes mellitus. *The value for HbA1c (%) is indicated with 0.4% added to HbA1c (JDS) (%).
Categories of the State of Glycemia:  Confirmation of chronic hyperglycemia is essential for the diagnosis of diabetes mellitus. When plasma glucose levels are used to determine the categories of glycemia, patients are classified as having a diabetic type if they meet one of the following criteria: (i) fasting plasma glucose level of ≥126 mg/dL (≥7.0 mmol/L); (ii) 2‐h value of ≥200 mg/dL (≥11.1 mmol/L) in 75 g oral glucose tolerance test (OGTT); or (iii) casual plasma glucose level of ≥200 mg/dL (≥11.1 mmol/L). Normal type is defined as fasting plasma glucose level of <110 mg/dL (<6.1 mmol/L) and 2‐h value of <140 mg/dL (<7.8 mmol/L) in OGTT. Borderline type (neither diabetic nor normal type) is defined as falling between the diabetic and normal values. According to the current revision, in addition to the earlier listed plasma glucose values, hemoglobin A1c (HbA1c) has been given a more prominent position as one of the diagnostic criteria. That is, (iv) HbA1c≥6.5% is now also considered to indicate diabetic type. The value of HbA1c, which is equivalent to the internationally used HbA1c (%) (HbA1c [NGSP]) defined by the NGSP (National Glycohemoglobin Standardization Program), is expressed by adding 0.4% to the HbA1c (JDS) (%) defined by the Japan Diabetes Society (JDS).
Subjects with borderline type have a high rate of developing diabetes mellitus, and correspond to the combination of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) noted by the American Diabetes Association (ADA) and WHO. Although borderline cases show few of the specific complications of diabetes mellitus, the risk of arteriosclerosis is higher than those of normal type. When HbA1c is 6.0–6.4%, suspected diabetes mellitus cannot be excluded, and when HbA1c of 5.6–5.9% is included, it forms a group with a high risk for developing diabetes mellitus in the future, even if they do not have it currently.
Clinical Diagnosis:  1 If any of the criteria for diabetic type (i) through to (iv) is observed at the initial examination, the patient is judged to be ‘diabetic type’. Re‐examination is conducted on another day, and if ‘diabetic type’ is reconfirmed, diabetes mellitus is diagnosed. However, a diagnosis cannot be made only by the re‐examination of HbA1c alone. Moreover, if the plasma glucose values (any of criteria [i], [ii], or [iii]) and the HbA1c (criterion [iv]) in the same blood sample both indicate diabetic type, diabetes mellitus is diagnosed based on the initial examination alone. If HbA1c is used, it is essential that the plasma glucose level (criteria [i], [ii] or [iii]) also indicates diabetic type for a diagnosis of diabetes mellitus. When diabetes mellitus is suspected, HbA1c should be measured at the same time as examination for plasma glucose.2 If the plasma glucose level indicates diabetic type (any of [i], [ii], or [iii]) and either of the following conditions exists, diabetes mellitus can be diagnosed immediately at the initial examination.• The presence of typical symptoms of diabetes mellitus (thirst, polydipsia, polyuria, weight loss)• The presence of definite diabetic retinopathy3 If it can be confirmed that the above conditions 1 or 2 existed in the past, diabetes mellitus can be diagnosed or suspected regardless of the current test results.4 If the diagnosis of diabetes cannot be established by these procedures, the patient is followed up and re‐examined after an appropriate interval.5 The physician should assess not only the presence or absence of diabetes, but also its etiology and glycemic stage, and the presence and absence of diabetic complications or associated conditions.
Epidemiological Study:  For the purpose of estimating the frequency of diabetes mellitus, ‘diabetes mellitus’ can be substituted for the determination of ‘diabetic type’ from a single examination. In this case, HbA1c≥6.5% alone can be defined as ‘diabetes mellitus’.
Health Screening:  It is important not to misdiagnose diabetes mellitus, and thus clinical information such as family history and obesity should be referred to at the time of screening in addition to an index for plasma glucose level.
Gestational Diabetes Mellitus:  There are two hyperglycemic disorders in pregnancy: (i) gestational diabetes mellitus (GDM); and (ii) diabetes mellitus. GDM is diagnosed if one or more of the following criteria is met in a 75 g OGTT during pregnancy:
1 Fasting plasma glucose level of ≥92 mg/dL (5.1 mmol/L)2 1‐h value of ≥180 mg/dL (10.0 mmol/L)3 2‐h value of ≥153 mg/dL (8.5 mmol/L)
However, diabetes mellitus that is diagnosed by the clinical diagnosis of diabetes mellitus defined earlier is excluded from GDM. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00074.x, 2010)
doi:10.1111/j.2040-1124.2010.00074.x
PMCID: PMC4020724  PMID: 24843435
Diabetes mellitus; Clinical diagnosis; HbA1c
19.  Risk of Cardiovascular Disease and Total Mortality in Adults with Type 1 Diabetes: Scottish Registry Linkage Study 
PLoS Medicine  2012;9(10):e1001321.
Helen Colhoun and colleagues report findings from a Scottish registry linkage study regarding contemporary risks for cardiovascular events and all-cause mortality among individuals diagnosed with type 1 diabetes.
Background
Randomized controlled trials have shown the importance of tight glucose control in type 1 diabetes (T1DM), but few recent studies have evaluated the risk of cardiovascular disease (CVD) and all-cause mortality among adults with T1DM. We evaluated these risks in adults with T1DM compared with the non-diabetic population in a nationwide study from Scotland and examined control of CVD risk factors in those with T1DM.
Methods and Findings
The Scottish Care Information-Diabetes Collaboration database was used to identify all people registered with T1DM and aged ≥20 years in 2005–2007 and to provide risk factor data. Major CVD events and deaths were obtained from the national hospital admissions database and death register. The age-adjusted incidence rate ratio (IRR) for CVD and mortality in T1DM (n = 21,789) versus the non-diabetic population (3.96 million) was estimated using Poisson regression. The age-adjusted IRR for first CVD event associated with T1DM versus the non-diabetic population was higher in women (3.0: 95% CI 2.4–3.8, p<0.001) than men (2.3: 2.0–2.7, p<0.001) while the IRR for all-cause mortality associated with T1DM was comparable at 2.6 (2.2–3.0, p<0.001) in men and 2.7 (2.2–3.4, p<0.001) in women. Between 2005–2007, among individuals with T1DM, 34 of 123 deaths among 10,173 who were <40 years and 37 of 907 deaths among 12,739 who were ≥40 years had an underlying cause of death of coma or diabetic ketoacidosis. Among individuals 60–69 years, approximately three extra deaths per 100 per year occurred among men with T1DM (28.51/1,000 person years at risk), and two per 100 per year for women (17.99/1,000 person years at risk). 28% of those with T1DM were current smokers, 13% achieved target HbA1c of <7% and 37% had very poor (≥9%) glycaemic control. Among those aged ≥40, 37% had blood pressures above even conservative targets (≥140/90 mmHg) and 39% of those ≥40 years were not on a statin. Although many of these risk factors were comparable to those previously reported in other developed countries, CVD and mortality rates may not be generalizable to other countries. Limitations included lack of information on the specific insulin therapy used.
Conclusions
Although the relative risks for CVD and total mortality associated with T1DM in this population have declined relative to earlier studies, T1DM continues to be associated with higher CVD and death rates than the non-diabetic population. Risk factor management should be improved to further reduce risk but better treatment approaches for achieving good glycaemic control are badly needed.
Please see later in the article for the Editors' Summary
Editors' Summary
Background. People with diabetes are more likely to have cardiovascular disease such as heart attacks and strokes. They also have a higher risk of dying prematurely from any cause. Controlling blood sugar (glucose), blood pressure, and cholesterol can help reduce these risks. Some people with type 1 diabetes can achieve tight blood glucose control through a strict regimen that includes a carefully calculated diet, frequent physical activity, regular blood glucose testing several times a day, and multiple daily doses of insulin. Other drugs can reduce blood pressure and cholesterol levels. Keeping one's weight in the normal range and not smoking are important ways in which all people, including those with type 1 diabetes can reduce their risks of heart disease and premature death.
Why Was This Study Done? Researchers and doctors have known for almost two decades what patients with type 1 diabetes can do to minimize the complications from the disease and thereby reduce their risks for cardiovascular disease and early death. So for some time now, patients should have been treated and counseled accordingly. This study was done to evaluate the current risks for have cardiovascular disease and premature death amongst people living with type 1 diabetes in a high-income country (Scotland).
What Did the Researchers Do and Find? From a national register of all people with type 1 diabetes in Scotland, the researchers selected those who were older than 20 years and alive at any time from January 2005 to May 2008. This included about 19,000 people who had been diagnosed with type 1 diabetes before 2005. Another 2,600 were diagnosed between 2005 and 2008. They also obtained data on heart attacks and strokes in these patients from hospital records and on deaths from the natural death register. To obtain a good picture of the current relative risks, they compared the patients with type 1 diabetes with the non-diabetic general Scottish population with regard to the risk of heart attacks/strokes and death from all causes. They also collected information on how well the people with diabetes controlled their blood glucose, on their weight, and whether they smoked.
They found that the current risks compared with the general Scottish population are quite a bit lower than those of people with type 1 diabetes in earlier decades. However, people with type 1 diabetes in Scotland still have much higher (more than twice) the risk of heart attacks, strokes, or premature death than the general population. Moreover, the researchers found a high number of deaths in younger people with diabetes from coma—caused by either too much blood sugar (hyperglycemia) or too little (hypoglycemia). Severe hyperglycemia and hypoglycemia happen when blood glucose control is poor. When the scientists looked at test results for HbA1c levels (a test that is done once or twice a year to see how well patients controlled their blood sugar over the previous 3 months) for all patients, they found that the majority of them did not come close to controlling their blood glucose within the recommended range.
When the researchers compared body mass index (a measure of weight that takes height into account) and smoking between the people with type 1 diabetes and the general population, they found similar proportions of smokers and overweight or obese people.
What Do these Findings Mean? The results represent a snapshot of the recent situation regarding complications from type 1 diabetes in the Scottish population. The results suggest that within this population, strategies over the past two decades to reduce complications from type 1 diabetes that cause cardiovascular disease and death are working, in principle. However, there is much need for further improvement. This includes the urgent need to understand why so few people with type 1 diabetes achieve good control of their blood sugar, and what can be done to improve this situation. It is also important to put more effort into keeping people with diabetes from taking up smoking or getting them to quit, as well as preventing them from getting overweight or promoting weight reduction, because this could further reduce the risks of cardiovascular disease and premature death.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001321
National Diabetes Information Clearinghouse, a service of the US National Institute of Diabetes and Digestive and Kidney Diseases, has information on heart disease and diabetes, on general complications of diabetes, and on the HbA1c test (on this site and some others called A1C test) that measures control of blood sugar over the past 3 months
Diabetes.co.uk provides general information on type 1 diabetes, its complications, and what people with the disease can do to reduce their risks
The Canadian Diabetes Association offers a cardiovascular risk self-assessment tool and other relevant information
The American Diabetes Association has information on the benefits and challenges of tight blood sugar control and how it is tested
The Juvenile Diabetes Research Foundation funds research to prevent, cure, and treat type 1 diabetes
Diabetes UK provides extensive information on diabetes for patients, carers, and clinicians
doi:10.1371/journal.pmed.1001321
PMCID: PMC3462745  PMID: 23055834
20.  Regional, Geographic, and Racial/Ethnic Variation in Glycemic Control in a National Sample of Veterans With Diabetes 
Diabetes Care  2011;34(4):938-943.
OBJECTIVE
We performed a retrospective analysis of a national cohort of veterans with diabetes to better understand regional, geographic, and racial/ethnic variation in diabetes control as measured by HbA1c.
RESEARCH DESIGN AND METHODS
A retrospective cohort study was conducted in a national cohort of 690,968 veterans with diabetes receiving prescriptions for insulin or oral hypoglycemic agents in 2002 that were followed over a 5-year period. The main outcome measures were HbA1c levels (as continuous and dichotomized at ≥8.0%).
RESULTS
Relative to non-Hispanic whites (NHWs), HbA1c levels remained 0.25% higher in non-Hispanic blacks (NHBs), 0.31% higher in Hispanics, and 0.14% higher in individuals with other/unknown/missing racial/ethnic group after controlling for demographics, type of medication used, medication adherence, and comorbidities. Small but statistically significant geographic differences were also noted with HbA1c being lowest in the South and highest in the Mid-Atlantic. Rural/urban location of residence was not associated with HbA1c levels. For the dichotomous outcome poor control, results were similar with race/ethnic group being strongly associated with poor control (i.e., odds ratios of 1.33 [95% CI 1.31–1.35] and 1.57 [1.54–1.61] for NHBs and Hispanics vs. NHWs, respectively), geographic region being weakly associated with poor control, and rural/urban residence being negligibly associated with poor control.
CONCLUSIONS
In a national longitudinal cohort of veterans with diabetes, we found racial/ethnic disparities in HbA1c levels and HbA1c control; however, these disparities were largely, but not completely, explained by adjustment for demographic characteristics, medication adherence, type of medication used to treat diabetes, and comorbidities.
doi:10.2337/dc10-1504
PMCID: PMC3064054  PMID: 21335370
21.  Behavioural Interventions for Type 2 Diabetes 
Executive Summary
In June 2008, the Medical Advisory Secretariat began work on the Diabetes Strategy Evidence Project, an evidence-based review of the literature surrounding strategies for successful management and treatment of diabetes. This project came about when the Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the Ministry’s newly released Diabetes Strategy.
After an initial review of the strategy and consultation with experts, the secretariat identified five key areas in which evidence was needed. Evidence-based analyses have been prepared for each of these five areas: insulin pumps, behavioural interventions, bariatric surgery, home telemonitoring, and community based care. For each area, an economic analysis was completed where appropriate and is described in a separate report.
To review these titles within the Diabetes Strategy Evidence series, please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html,
Diabetes Strategy Evidence Platform: Summary of Evidence-Based Analyses
Continuous Subcutaneous Insulin Infusion Pumps for Type 1 and Type 2 Adult Diabetics: An Evidence-Based Analysis
Behavioural Interventions for Type 2 Diabetes: An Evidence-Based Analysis
Bariatric Surgery for People with Diabetes and Morbid Obesity: An Evidence-Based Summary
Community-Based Care for the Management of Type 2 Diabetes: An Evidence-Based Analysis
Home Telemonitoring for Type 2 Diabetes: An Evidence-Based Analysis
Application of the Ontario Diabetes Economic Model (ODEM) to Determine the Cost-effectiveness and Budget Impact of Selected Type 2 Diabetes Interventions in Ontario
Objective
The objective of this report is to determine whether behavioural interventions1 are effective in improving glycemic control in adults with type 2 diabetes.
Background
Diabetes is a serious chronic condition affecting millions of people worldwide and is the sixth leading cause of death in Canada. In 2005, an estimated 8.8% of Ontario’s population had diabetes, representing more than 816,000 Ontarians. The direct health care cost of diabetes was $1.76 billion in the year 2000 and is projected to rise to a total cost of $3.14 billion by 2016. Much of this cost arises from the serious long-term complications associated with the disease including: coronary heart disease, stroke, adult blindness, limb amputations and kidney disease.
Type 2 diabetes accounts for 90–95% of diabetes and while type 2 diabetes is more prevalent in people aged 40 years and older, prevalence in younger populations is increasing due to a rise in obesity and physical inactivity in children.
Data from the United Kingdom Prospective Diabetes Study (UKPDS) has shown that tight glycemic control can significantly reduce the risk of developing serious complications in type 2 diabetics. Despite physicians’ and patients’ knowledge of the importance of glycemic control, Canadian data has shown that only 38% of patients with diabetes have HbA1C levels in the optimal range of 7% or less. This statistic highlights the complexities involved in the management of diabetes, which is characterized by extensive patient involvement in addition to the support provided by physicians. An enormous demand is, therefore, placed on patients to self-manage the physical, emotional and psychological aspects of living with a chronic illness.
Despite differences in individual needs to cope with diabetes, there is general agreement for the necessity of supportive programs for patient self-management. While traditional programs were didactic models with the goal of improving patients’ knowledge of their disease, current models focus on behavioural approaches aimed at providing patients with the skills and strategies required to promote and change their behaviour.
Several meta-analyses and systematic reviews have demonstrated improved health outcomes with self-management support programs in type 2 diabetics. They have all, however, either looked at a specific component of self-management support programs (i.e. self-management education) or have been conducted in specific populations. Most reviews are also qualitative and do not clearly define the interventions of interest, making findings difficult to interpret. Moreover, heterogeneity in the interventions has led to conflicting evidence on the components of effective programs. There is thus much uncertainty regarding the optimal design and delivery of these programs by policymakers.
Evidence-Based Analysis of Effectiveness
Research Questions
Are behavioural interventions effective in improving glycemic control in adults with type 2 diabetes?
Is the effectiveness of the intervention impacted by intervention characteristics (e.g. delivery of intervention, length of intervention, mode of instruction, interventionist etc.)?
Inclusion Criteria
English Language
Published between January 1996 to August 2008
Type 2 diabetic adult population (>18 years)
Randomized controlled trials (RCTs)
Systematic reviews, or meta-analyses
Describing a multi-faceted self-management support intervention as defined by the 2007 Self-Management Mapping Guide (1)
Reporting outcomes of glycemic control (HbA1c) with extractable data
Studies with a minimum of 6-month follow up
Exclusion Criteria
Studies with a control group other than usual care
Studies with a sample size <30
Studies without a clearly defined intervention
Outcomes of Interest
Primary outcome: glycemic control (HbA1c)
Secondary outcomes: systolic blood pressure (SBP) control, lipid control, change in smoking status, weight change, quality of life, knowledge, self-efficacy, managing psychosocial aspects of diabetes, assessing dissatisfaction and readiness to change, and setting and achieving diabetes goals.
Search Strategy
A search was performed in OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), The Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published between January 1996 and August 2008. Abstracts were reviewed by a single author and studies meeting the inclusion criteria outlined above were obtained. Data on population characteristics, glycemic control outcomes, and study design were extracted. Reference lists were also checked for relevant studies. The quality of the evidence was assessed as being either high, moderate, low, or very low according to the GRADE methodology.
Summary of Findings
The search identified 638 citations published between 1996 and August 2008, of which 12 met the inclusion criteria and one was a meta-analysis (Gary et al. 2003). The remaining 11 studies were RCTs (9 were used in the meta-analysis) and only one was defined as small (total sample size N=47).
Summary of Participant Demographics across studies
A total of 2,549 participants were included in the 11 identified studies. The mean age of participants reported was approximately 58 years and the mean duration of diabetes was approximately 6 years. Most studies reported gender with a mean percentage of females of approximately 67%. Of the eleven studies, two focused only on women and four included only Hispanic individuals. All studies evaluated type 2 diabetes patients exclusively.
Study Characteristics
The studies were conducted between 2002 and 2008. Approximately six of 11 studies were carried out within the USA, with the remaining studies conducted in the UK, Sweden, and Israel (sample size ranged from 47 to 824 participants). The quality of the studies ranged from moderate to low with four of the studies being of moderate quality and the remaining seven of low quality (based on the Consort Checklist). Differences in quality were mainly due to methodological issues such as inadequate description of randomization, sample size calculation allocation concealment, blinding and uncertainty of the use of intention-to-treat (ITT) analysis. Patients were recruited from several settings: six studies from primary or general medical practices, three studies from the community (e.g. via advertisements), and two from outpatient diabetes clinics. A usual care control group was reported in nine of 11 of the studies and two studies reported some type of minimal diabetes care in addition to usual care for the control group.
Intervention Characteristics
All of the interventions examined in the studies were mapped to the 2007 Self-management Mapping Guide. The interventions most often focused on problem solving, goal setting and encouraging participants to engage in activities that protect and promote health (e.g. modifying behaviour, change in diet, and increase physical activity). All of the studies examined comprehensive interventions targeted at least two self-care topics (e.g. diet, physical activity, blood glucose monitoring, foot care, etc.). Despite the homogeneity in the aims of the interventions, there was substantial clinical heterogeneity in other intervention characteristics such as duration, intensity, setting, mode of delivery (group vs. individual), interventionist, and outcomes of interest (discussed below).
Duration, Intensity and Mode of Delivery
Intervention durations ranged from 2 days to 1 year, with many falling into the range of 6 to 10 weeks. The rest of the interventions fell into categories of ≤ 2 weeks (2 studies), 6 months (2 studies), or 1 year (3 studies). Intensity of the interventions varied widely from 6 hours over 2 days, to 52 hours over 1 year; however, the majority consisted of interventions of 6 to 15 hours. Both individual and group sessions were used to deliver interventions. Group counselling was used in five studies as a mode of instruction, three studies used both individual and group sessions, and one study used individual sessions as its sole mode of instruction. Three studies also incorporated the use of telephone support as part of the intervention.
Interventionists and Setting
The following interventionists were reported (highest to lowest percentage, categories not mutually exclusive): nurse (36%), dietician (18%), physician (9%), pharmacist (9%), peer leader/community worker (18%), and other (36%). The ‘other’ category included interventionists such as consultants and facilitators with unspecified professional backgrounds. The setting of most interventions was community-based (seven studies), followed by primary care practices (three studies). One study described an intervention conducted in a pharmacy setting.
Outcomes
Duration of follow up of the studies ranged from 6 months to 8 years with a median follow-up duration of 12 months. Nine studies followed up patients at a minimum of two time points. Despite clear reporting of outcomes at follow up time points, there was poor reporting on whether the follow up was measured from participant entry into study or from end of intervention. All studies reported measures of glycemic control, specifically HbA1c levels. BMI was measured in five studies, while body weight was reported in two studies. Cholesterol was examined in three studies and blood pressure reduction in two. Smoking status was only examined in one of the studies. Additional outcomes examined in the trials included patient satisfaction, quality of life, diabetes knowledge, diabetes medication reduction, and behaviour modification (i.e. daily consumption of fruits/vegetables, exercise etc). Meta-analysis of the studies identified a moderate but significant reduction in HbA1c levels -0.44% 95%CI: -0.60, -0.29) for behavioural interventions in comparison to usual care for adults with type 2 diabetes. Subgroup analyses suggested the largest effects in interventions which were of at least duration and interventions in diabetics with higher baseline HbA1c (≥9.0). The quality of the evidence according to GRADE for the overall estimate was moderate and the quality of evidence for the subgroup analyses was identified as low.
Summary of Meta-Analysis of Studies Investigating the Effectiveness of Behavioural Interventions on HbA1c in Patients with Type 2 Diabetes.
Based on one study
Conclusions
Based on moderate quality evidence, behavioural interventions as defined by the 2007 Self-management mapping guide (Government of Victoria, Australia) produce a moderate reduction in HbA1c levels in patients with type 2 diabetes compared with usual care.
Based on low quality evidence, the interventions with the largest effects are those:
- in diabetics with higher baseline HbA1c (≥9.0)
- in which the interventions were of at least 1 year in duration
PMCID: PMC3377516  PMID: 23074526
22.  Ethnic Differences in Glycemic Markers in Patients With Type 2 Diabetes 
Diabetes Care  2013;36(10):2931-2936.
OBJECTIVE
Recent studies have reported hemoglobin A1c (HbA1c) differences across ethnic groups that could limit its use in clinical practice. The authors of the A1C-Derived Average Glucose study have advocated to report HbA1c in estimated average glucose (AG) equivalents. The aim of this study was to assess the relationships between HbA1c and the mean of three 7-point self-monitored blood glucose (BG) profiles, and to assess whether estimated AG is an accurate measure of glycemia in different ethnic groups.
RESEARCH DESIGN AND METHODS
We evaluated 1,879 participants with type 2 diabetes in the DURABLE trial who were 30 to 80 years of age, from 11 countries, and, according to self-reported ethnic origin, were Caucasian, of African descent (black), Asian, or Hispanic. We performed logistic regression of the relationship between the mean self-monitored BG and HbA1c, and estimated AG, according to ethnic background.
RESULTS
Baseline mean (SD) HbA1c was 9.0% (1.3) (75 [SD, 14] mmol/mol), and mean self-monitored BG was 12.1 mmol/L (3.1) (217 [SD, 55] mg/dL). In the clinically relevant HbA1c range of 7.0–9.0% (53–75 mmol/mol), non-Caucasian ethnic groups had 0.2–0.5% (2–6 mmol/mol) higher HbA1c compared with Caucasians for a given BG level. At the mean self-monitored BG levels ≤11.6 mmol/L, estimated AG overestimated the actual average BG; at levels >11.6 mmol/L, estimated AG underestimated the actual BG levels.
CONCLUSIONS
For a given degree of glycemia, HbA1c levels vary among different ethnic groups. Ethnicity needs to be taken into account when using HbA1c to assess glycemic control or to set glycemic targets. Estimated AG is not a reliable marker for mean glycemia and therefore is of limited clinical value.
doi:10.2337/dc12-2711
PMCID: PMC3781497  PMID: 23757434
23.  Glucose-Independent Ethnic Differences in HbA1c in People Without Known Diabetes 
Diabetes Care  2013;36(6):1534-1540.
OBJECTIVE
To determine whether glucose-independent differences in HbA1c exist between people of African, South Asian, and Chinese ethnicities.
RESEARCH DESIGN AND METHODS
Data from 6,701 people aged 19–78 years, without known diabetes, from Mauritius, and participating in the population-based Non-Communicable Disease Surveys of the main island and the island of Rodrigues were included. Participants were African (n = 1,219 from main island, n = 1,505 from Rodrigues), South Asian (n = 3,820), and Chinese (n = 157). Survey data included HbA1c, plasma glucose during oral glucose tolerance testing (OGTT), anthropometry, demographics, and medical and lifestyle history.
RESULTS
Mean HbA1c, after adjustment for fasting and 2-h plasma glucose and other factors known to influence HbA1c, was higher in Africans from Rodrigues (6.1%) than in South Asians (5.7%, P < 0.001), Chinese (5.7%, P < 0.001), or Africans from the main island of Mauritius (5.7%, P < 0.001). The age-standardized prevalence of diabetes among Africans from Rodrigues differed substantially depending on the diagnostic criteria used [OGTT 7.9% (95% CI 5.8–10.0); HbA1c 17.3% (15.3–19.2)]. Changing diagnostic criteria resulted in no significant change in the prevalence of diabetes within the other ethnic groups.
CONCLUSIONS
People of African ethnicity from Rodrigues have higher HbA1c than those of South Asian or African ethnicity from the main island of Mauritius for reasons not explained by plasma glucose during an OGTT or traditional factors known to affect glycemia. Further research should be directed at determining the mechanism behind this disparity and its relevance to clinical outcomes.
doi:10.2337/dc12-1210
PMCID: PMC3661823  PMID: 23275368
24.  Cardiovascular multimorbidity: the effect of ethnicity on prevalence and risk factor management 
The British Journal of General Practice  2011;61(586):e262-e270.
Background
Multimorbidity is common in primary care populations. Within cardiovascular disease, important differences in disease prevalence and risk factor management by ethnicity are recognised.
Aim
To examine the population burden of cardiovascular multimorbidity and the management of modifiable risk factors by ethnicity.
Design and setting
Cross-sectional study of general practices (148/151) in the east London primary care trusts of Tower Hamlets, City and Hackney, and Newham, with a total population size of 843 720.
Method
Using MIQUEST, patient data were extracted from five cardiovascular registers. Logistic regression analysis was used to examine the risk of being multimorbid by ethnic group, and the control of risk factors by ethnicity and burden of cardiovascular multimorbidity.
Results
The crude prevalence of cardiovascular multimorbidity among patients with at least one cardiovascular condition was 34%. People of non-white ethnicity are more likely to be multimorbid than groups of white ethnicity, with adjusted odds ratios of 2.04 (95% confidence interval [CI] = 1.94 to 2.15) for South Asians and 1.23 (95% CI = 1.18 to 1.29) for groups of black ethnicity. Achievement of targets for blood pressure, cholesterol, and glycated haemoglobin (HbA1c) was higher for patients who were multimorbid than unimorbid. For cholesterol and blood pressure, South Asian patients achieved better control than those of white and black ethnicity. For HbA1c levels, patients of white ethnicity had an advantage over other groups as the morbidity burden increased.
Conclusion
The burden of multiple disease varies by ethnicity. Risk factor management improves with increasing levels of cardiovascular multimorbidity, but clinically important differences by ethnicity remain and contribute to health inequalities.
doi:10.3399/bjgp11X572454
PMCID: PMC3080231  PMID: 21619750
cardiovascular diseases; comorbidity; ethnicity; primary care
25.  Socio-Economic Position and Type 2 Diabetes Risk Factors: Patterns in UK Children of South Asian, Black African-Caribbean and White European Origin 
PLoS ONE  2012;7(3):e32619.
Background
Socio-economic position (SEP) and ethnicity influence type 2 diabetes mellitus (T2DM) risk in adults. However, the influence of SEP on emerging T2DM risks in different ethnic groups and the contribution of SEP to ethnic differences in T2DM risk in young people have been little studied. We examined the relationships between SEP and T2DM risk factors in UK children of South Asian, black African-Caribbean and white European origin, using the official UK National Statistics Socio-economic Classification (NS-SEC) and assessed the extent to which NS-SEC explained ethnic differences in T2DM risk factors.
Methods and Findings
Cross-sectional school-based study of 4,804 UK children aged 9–10 years, including anthropometry and fasting blood analytes (response rates 70%, 68% and 58% for schools, individuals and blood measurements). Assessment of SEP was based on parental occupation defined using NS-SEC and ethnicity on parental self-report. Associations between NS-SEC and adiposity, insulin resistance (IR) and triglyceride differed between ethnic groups. In white Europeans, lower NS-SEC status was related to higher ponderal index (PI), fat mass index, IR and triglyceride (increases per NS-SEC decrement [95%CI] were 1.71% [0.75, 2.68], 4.32% [1.24, 7.48], 5.69% [2.01, 9.51] and 3.17% [0.96, 5.42], respectively). In black African-Caribbeans, lower NS-SEC was associated with lower PI (−1.12%; [−2.01, −0.21]), IR and triglyceride, while in South Asians there were no consistent associations between NS-SEC and T2DM risk factors. Adjustment for NS-SEC did not appear to explain ethnic differences in T2DM risk factors, which were particularly marked in high NS-SEC groups.
Conclusions
SEP is associated with T2DM risk factors in children but patterns of association differ by ethnic groups. Consequently, ethnic differences (which tend to be largest in affluent socio-economic groups) are not explained by NS-SEC. This suggests that strategies aimed at reducing social inequalities in T2DM risk are unlikely to reduce emerging ethnic differences in T2DM risk.
doi:10.1371/journal.pone.0032619
PMCID: PMC3296720  PMID: 22412897

Results 1-25 (1158155)