PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (729907)

Clipboard (0)
None

Related Articles

1.  Degradation of 1,3-Dichloropropene by Pseudomonas cichorii 170 
The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1,3-dichloropropene, could utilize low concentrations of 1,3-dichloropropene as a sole carbon and energy source. Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chloroacrylic acid, and several 1-halo-n-alkanes. This organism produced at least three different dehalogenases: a hydrolytic haloalkane dehalogenase specific for haloalkanes and two 3-chloroacrylic acid dehalogenases, one specific for cis-3-chloroacrylic acid and the other specific for trans-3-chloroacrylic acid. The haloalkane dehalogenase and the trans-3-chloroacrylic acid dehalogenase were expressed constitutively, whereas the cis-3-chloroacrylic acid dehalogenase was inducible. The presence of these enzymes indicates that 1,3-dichloropropene is hydrolyzed to 3-chloroallyl alcohol, which is oxidized in two steps to 3-chloroacrylic acid. The latter compound is then dehalogenated, probably forming malonic acid semialdehyde. The haloalkane dehalogenase gene, which is involved in the conversion of 1,3-dichloropropene to 3-chloroallyl alcohol, was cloned and sequenced, and this gene turned out to be identical to the previously studied dhaA gene of the gram-positive bacterium Rhodococcus rhodochrous NCIMB13064. Mutants resistant to the suicide substrate 1,2-dibromoethane lacked haloalkane dehalogenase activity and therefore could not utilize haloalkanes for growth. PCR analysis showed that these mutants had lost at least part of the dhaA gene.
PMCID: PMC106795  PMID: 9687453
2.  Crystals of DhaA mutants from Rhodococcus rhodochrous NCIMB 13064 diffracted to ultrahigh resolution: crystallization and preliminary diffraction analysis 
Three mutants of the haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 were crystallized and diffracted to ultrahigh resolution.
The enzyme DhaA from Rhodococcus rhodochrous NCIMB 13064 belongs to the haloalkane dehalogenases, which catalyze the hydrolysis of haloalkanes to the corresponding alcohols. The haloalkane dehalogenase DhaA and its variants can be used to detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Three mutants named DhaA04, DhaA14 and DhaA15 were constructed in order to study the importance of tunnels connecting the buried active site with the surrounding solvent to the enzymatic activity. All protein mutants were crystallized using the sitting-drop vapour-diffusion method. The crystals of DhaA04 belonged to the orthorhombic space group P212121, while the crystals of the other two mutants DhaA14 and DhaA15 belonged to the triclinic space group P1. Native data sets were collected for the DhaA04, DhaA14 and DhaA15 mutants at beamline X11 of EMBL, DESY, Hamburg to the high resolutions of 1.30, 0.95 and 1.15 Å, respectively.
doi:10.1107/S1744309108002066
PMCID: PMC2374176  PMID: 18259069
ultrahigh resolution; haloalkane dehalogenase DhaA mutants; Rhodococcus rhodochrous
3.  Degradation of 1,2-Dibromoethane by Mycobacterium sp. Strain GP1 
Journal of Bacteriology  1999;181(7):2050-2058.
The newly isolated bacterial strain GP1 can utilize 1,2-dibromoethane as the sole carbon and energy source. On the basis of 16S rRNA gene sequence analysis, the organism was identified as a member of the subgroup which contains the fast-growing mycobacteria. The first step in 1,2-dibromoethane metabolism is catalyzed by a hydrolytic haloalkane dehalogenase. The resulting 2-bromoethanol is rapidly converted to ethylene oxide by a haloalcohol dehalogenase, in this way preventing the accumulation of 2-bromoethanol and 2-bromoacetaldehyde as toxic intermediates. Ethylene oxide can serve as a growth substrate for strain GP1, but the pathway(s) by which it is further metabolized is still unclear. Strain GP1 can also utilize 1-chloropropane, 1-bromopropane, 2-bromoethanol, and 2-chloroethanol as growth substrates. 2-Chloroethanol and 2-bromoethanol are metabolized via ethylene oxide, which for both haloalcohols is a novel way to remove the halide without going through the corresponding acetaldehyde intermediate. The haloalkane dehalogenase gene was cloned and sequenced. The dehalogenase (DhaAf) encoded by this gene is identical to the haloalkane dehalogenase (DhaA) of Rhodococcus rhodochrous NCIMB 13064, except for three amino acid substitutions and a 14-amino-acid extension at the C terminus. Alignments of the complete dehalogenase gene region of strain GP1 with DNA sequences in different databases showed that a large part of a dhaA gene region, which is also present in R. rhodochrous NCIMB 13064, was fused to a fragment of a haloalcohol dehalogenase gene that was identical to the last 42 nucleotides of the hheB gene found in Corynebacterium sp. strain N-1074.
PMCID: PMC93616  PMID: 10094681
4.  Roles of Horizontal Gene Transfer and Gene Integration in Evolution of 1,3-Dichloropropene- and 1,2-Dibromoethane-Degradative Pathways 
Journal of Bacteriology  2000;182(8):2191-2199.
The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct bacteria and an analysis of their flanking sequences. The dhaA gene of the 1-chlorobutane-degrading strain NCIMB13064 was found to reside within a 1-chlorobutane catabolic gene cluster, which also encodes a putative invertase (invA), a regulatory protein (dhaR), an alcohol dehydrogenase (adhA), and an aldehyde dehydrogenase (aldA). The latter two enzymes may catalyze the oxidative conversion of n-butanol, the hydrolytic product of 1-chlorobutane, to n-butyric acid, a growth substrate for many bacteria. The activity of the dhaR gene product was analyzed in Pseudomonas sp. strain GJ1, in which it appeared to function as a repressor of dhaA expression. The 1,2-dibromoethane-degrading strain GP1 contained a conserved DNA segment of 2.7 kb, which included dhaR, dhaA, and part of invA. A 12-nucleotide deletion in dhaR led to constitutive expression of dhaA in strain GP1, in contrast to the inducible expression of dhaA in strain NCIMB13064. The 1,3-dichloropropene-degrading strain 170 possessed a conserved DNA segment of 1.3 kb harboring little more than the coding region of the dhaA gene. In strains 170 and GP1, a putative integrase gene was found next to the conserved dhaA segment, which suggests that integration events were responsible for the acquisition of these DNA segments. The data indicate that horizontal gene transfer and integrase-dependent gene acquisition were the key mechanisms for the evolution of catabolic pathways for the man-made chemicals 1,3-dichloropropene and 1,2-dibromoethane.
PMCID: PMC111268  PMID: 10735862
5.  Cloning and Expression of the Haloalkane Dehalogenase Gene dhmA from Mycobacterium avium N85 and Preliminary Characterization of DhmA 
Haloalkane dehalogenases are microbial enzymes that catalyze cleavage of the carbon-halogen bond by a hydrolytic mechanism. Until recently, these enzymes have been isolated only from bacteria living in contaminated environments. In this report we describe cloning of the dehalogenase gene dhmA from Mycobacterium avium subsp. avium N85 isolated from swine mesenteric lymph nodes. The dhmA gene has a G+C content of 68.21% and codes for a polypeptide that is 301 amino acids long and has a calculated molecular mass of 34.7 kDa. The molecular masses of DhmA determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel permeation chromatography are 34.0 and 35.4 kDa, respectively. Many residues essential for the dehalogenation reaction are conserved in DhmA; the putative catalytic triad consists of Asp123, His279, and Asp250, and the putative oxyanion hole consists of Glu55 and Trp124. Trp124 should be involved in substrate binding and product (halide) stabilization, while the second halide-stabilizing residue cannot be identified from a comparison of the DhmA sequence with the sequences of three dehalogenases with known tertiary structures. The haloalkane dehalogenase DhmA shows broad substrate specificity and good activity with the priority pollutant 1,2-dichloroethane. DhmA is significantly less stable than other currently known haloalkane dehalogenases. This study confirms that a hydrolytic dehalogenase is present in the facultative pathogen M. avium. The presence of dehalogenase-like genes in the genomes of other mycobacteria, including the obligate pathogens Mycobacterium tuberculosis and Mycobacterium bovis, as well as in other bacterial species, including Mesorhizobium loti, Xylella fastidiosa, Photobacterium profundum, and Caulobacter crescentus, led us to speculate that haloalkane dehalogenases have some other function besides catalysis of hydrolytic dehalogenation of halogenated substances.
doi:10.1128/AEM.68.8.3724-3730.2002
PMCID: PMC123999  PMID: 12147465
6.  Crystallization and preliminary X-ray analysis of the haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58 
The haloalkane dehalogenase DatA from A. tumefaciens C58 was expressed, purified and crystallized by the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 1.70 Å resolution.
Haloalkane dehalogenases are enzymes that catalyze the hydrolytic reaction of a wide variety of haloalkyl substrates to form the corresponding alcohol and hydrogen halide products. DatA from Agrobacterium tumefaciens C58 is a haloalkane dehalogenase that has a unique pair of halide-binding residues, asparagine (Asn43) and tyrosine (Tyr109), instead of the asparagine and tryptophan that are conserved in other members of the subfamily. DatA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method with a reservoir solution consisting of 0.1 M CHES pH 8.6, 1.0 M potassium sodium tartrate, 0.2 M lithium sulfate, 0.01 M barium chloride. X-ray diffraction data were collected to 1.70 Å resolution. The space group of the crystal was determined as the primitive tetragonal space group P422, with unit-cell parameters a = b = 123.7, c = 88.1 Å. The crystal contained two molecules in the asymmetric unit.
doi:10.1107/S1744309112013942
PMCID: PMC3370902  PMID: 22684062
haloalkane dehalogenases; bioremediation
7.  Crystallization and preliminary X-ray diffraction analysis of the wild-type haloalkane dehalogenase DhaA and its variant DhaA13 complexed with different ligands 
Crystals of the wild-type haloalkane dehalogenase DhaA derived from R. rhodochrous NCIMB 13064 and of its catalytically inactive variant DhaA13 were grown in the presence of various ligands and diffraction data were collected to high and atomic resolution.
Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon–halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P212121 as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.
doi:10.1107/S1744309110051286
PMCID: PMC3034621  PMID: 21301099
haloalkane dehalogenases; DhaA; Rhodococcus rhodochrous; microseeding; atomic resolution
8.  Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications. 
Microbiological Reviews  1994;58(4):641-685.
This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.
PMCID: PMC372986  PMID: 7854251
9.  Utilization of Trihalogenated Propanes by Agrobacterium radiobacter AD1 through Heterologous Expression of the Haloalkane Dehalogenase from Rhodococcus sp. Strain m15-3 
Applied and Environmental Microbiology  1999;65(10):4575-4581.
Trihalogenated propanes are toxic and recalcitrant organic compounds. Attempts to obtain pure bacterial cultures able to use these compounds as sole carbon and energy sources were unsuccessful. Both the haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 (DhlA) and that from Rhodococcus sp. strain m15-3 (DhaA) were found to dehalogenate trihalopropanes to 2,3-dihalogenated propanols, but the kinetic properties of the latter enzyme are much better. Broad-host-range dehalogenase expression plasmids, based on RSF1010 derivatives, were constructed with the haloalkane dehalogenase from Rhodococcus sp. strain m15-3 under the control of the heterologous promoters Plac, PdhlA, and Ptrc. The resulting plasmids yielded functional expression in several gram-negative bacteria. A catabolic pathway for trihalopropanes was designed by introducing these broad-host-range dehalogenase expression plasmids into Agrobacterium radiobacter AD1, which has the ability to utilize dihalogenated propanols for growth. The recombinant strain AD1(pTB3), expressing the haloalkane dehalogenase gene under the control of the dhlA promoter, was able to utilize both 1,2,3-tribromopropane and 1,2-dibromo-3-chloropropane as sole carbon sources. Moreover, increased expression of the haloalkane dehalogenase resulted in elevated resistance to trihalopropanes.
PMCID: PMC91609  PMID: 10508091
10.  Biodegradation of 1,2,3-Trichloropropane through Directed Evolution and Heterologous Expression of a Haloalkane Dehalogenase Gene 
Using a combined strategy of random mutagenesis of haloalkane dehalogenase and genetic engineering of a chloropropanol-utilizing bacterium, we constructed an organism that is capable of growth on 1,2,3-trichloropropane (TCP). This highly toxic and recalcitrant compound is a waste product generated from the manufacture of the industrial chemical epichlorohydrin. Attempts to select and enrich bacterial cultures that can degrade TCP from environmental samples have repeatedly been unsuccessful, prohibiting the development of a biological process for groundwater treatment. The critical step in the aerobic degradation of TCP is the initial dehalogenation to 2,3-dichloro-1-propanol. We used random mutagenesis and screening on eosin-methylene blue agar plates to improve the activity on TCP of the haloalkane dehalogenase from Rhodococcus sp. m15-3 (DhaA). A second-generation mutant containing two amino acid substitutions, Cys176Tyr and Tyr273Phe, was nearly eight times more efficient in dehalogenating TCP than wild-type dehalogenase. Molecular modeling of the mutant dehalogenase indicated that the Cys176Tyr mutation has a global effect on the active-site structure, allowing a more productive binding of TCP within the active site, which was further fine tuned by Tyr273Phe. The evolved haloalkane dehalogenase was expressed under control of a constitutive promoter in the 2,3-dichloro-1-propanol-utilizing bacterium Agrobacterium radiobacter AD1, and the resulting strain was able to utilize TCP as the sole carbon and energy source. These results demonstrated that directed evolution of a key catabolic enzyme and its subsequent recruitment by a suitable host organism can be used for the construction of bacteria for the degradation of a toxic and environmentally recalcitrant chemical.
doi:10.1128/AEM.68.7.3582-3587.2002
PMCID: PMC126774  PMID: 12089046
11.  Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria 
Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment.
PMCID: PMC91809  PMID: 10618227
12.  Haloalkane-Utilizing Rhodococcus Strains Isolated from Geographically Distinct Locations Possess a Highly Conserved Gene Cluster Encoding Haloalkane Catabolism 
Journal of Bacteriology  2000;182(10):2725-2731.
The sequences of the 16S rRNA and haloalkane dehalogenase (dhaA) genes of five gram-positive haloalkane-utilizing bacteria isolated from contaminated sites in Europe, Japan, and the United States and of the archetypal haloalkane-degrading bacterium Rhodococcus sp. strain NCIMB13064 were compared. The 16S rRNA gene sequences showed less than 1% sequence divergence, and all haloalkane degraders clearly belonged to the genus Rhodococcus. All strains shared a completely conserved dhaA gene, suggesting that the dhaA genes were recently derived from a common ancestor. The genetic organization of the dhaA gene region in each of the haloalkane degraders was examined by hybridization analysis and DNA sequencing. Three different groups could be defined on the basis of the extent of the conserved dhaA segment. The minimal structure present in all strains consisted of a conserved region of 12.5 kb, which included the haloalkane-degradative gene cluster that was previously found in strain NCIMB13064. Plasmids of different sizes were found in all strains. Southern hybridization analysis with a dhaA gene probe suggested that all haloalkane degraders carry the dhaA gene region both on the chromosome and on a plasmid (70 to 100 kb). This suggests that an ancestral plasmid was transferred between these Rhodococcus strains and subsequently has undergone insertions or deletions. In addition, transposition events and/or plasmid integration may be responsible for positioning the dhaA gene region on the chromosome. The data suggest that the haloalkane dehalogenase gene regions of these gram-positive haloalkane-utilizing bacteria are composed of a single catabolic gene cluster that was recently distributed worldwide.
PMCID: PMC101978  PMID: 10781539
13.  Crystallization and crystallographic analysis of the Rhodococcus rhodochrous NCIMB 13064 DhaA mutant DhaA31 and its complex with 1,2,3-trichloropropane 
A mutant of the haloalkane dehalogenase DhaA (DhaA31) from R. rhodochrous NCIMB 13064 and its complex with 1,2,3-trichloropropane were crystallized and the crystals diffracted to high resolution.
Haloalkane dehalogenases hydrolyze carbon–halogen bonds in a wide range of halogenated aliphatic compounds. The potential use of haloalkane dehalogenases in bioremediation applications has stimulated intensive investigation of these enzymes and their engineering. The mutant DhaA31 was constructed to degrade the anthropogenic compound 1,2,3-trichloropropane (TCP) using a new strategy. This strategy enhances activity towards TCP by decreasing the accessibility of the active site to water molecules, thereby promoting formation of the activated complex. The structure of DhaA31 will help in understanding the structure–function relationships involved in the improved dehalogenation of TCP. The mutant protein DhaA31 was crystallized by the sitting-drop vapour-diffusion technique and crystals of DhaA31 in complex with TCP were obtained using soaking experiments. Both crystals belonged to the triclinic space group P1. Diffraction data were collected to high resolution: to 1.31 Å for DhaA31 and to 1.26 Å for DhaA31 complexed with TCP.
doi:10.1107/S1744309111001254
PMCID: PMC3053171  PMID: 21393851
haloalkane dehalogenases; DhaA; Rhodococcus rhodochrous
14.  Cloning, Biochemical Properties, and Distribution of Mycobacterial Haloalkane Dehalogenases 
Applied and Environmental Microbiology  2005;71(11):6736-6745.
Haloalkane dehalogenases are enzymes that catalyze the cleavage of the carbon-halogen bond by a hydrolytic mechanism. Genomes of Mycobacterium tuberculosis and M. bovis contain at least two open reading frames coding for the polypeptides showing a high sequence similarity with biochemically characterized haloalkane dehalogenases. We describe here the cloning of the haloalkane dehalogenase genes dmbA and dmbB from M. bovis 5033/66 and demonstrate the dehalogenase activity of their translation products. Both of these genes are widely distributed among species of the M. tuberculosis complex, including M. bovis, M. bovis BCG, M. africanum, M. caprae, M. microti, and M. pinnipedii, as shown by the PCR screening of 48 isolates from various hosts. DmbA and DmbB proteins were heterologously expressed in Escherichia coli and purified to homogeneity. The DmbB protein had to be expressed in a fusion with thioredoxin to obtain a soluble protein sample. The temperature optimum of DmbA and DmbB proteins determined with 1,2-dibromoethane is 45°C. The melting temperature assessed by circular dichroism spectroscopy of DmbA is 47°C and DmbB is 57°C. The pH optimum of DmbA depends on composition of a buffer with maximal activity at 9.0. DmbB had a single pH optimum at pH 6.5. Mycobacteria are currently the only genus known to carry more than one haloalkane dehalogenase gene, although putative haloalkane dehalogenases can be inferred in more then 20 different bacterial species by comparative genomics. The evolution and distribution of haloalkane dehalogenases among mycobacteria is discussed.
doi:10.1128/AEM.71.11.6736-6745.2005
PMCID: PMC1287712  PMID: 16269704
15.  Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. 
Cultures of the newly isolated bacterial strains AD20, AD25, and AD27, identified as strains of Ancylobacter aquaticus, were capable of growth on 1,2-dichloroethane (DCE) as the sole carbon and energy source. These strains, as well as two other new DCE utilizers, were facultative methylotrophs and were also able to grow on 2-chloroethanol, chloroacetate, and 2-chloropropionate. In all strains tested, DCE was degraded by initial hydrolytic dehalogenation to 2-chloroethanol, followed by oxidation by a phenazine methosulfate-dependent alcohol dehydrogenase and an NAD-dependent aldehyde dehydrogenase. The resulting chloroacetic acid was converted to glycolate by chloroacetate dehalogenase. The alcohol dehydrogenase was induced during growth on methanol or DCE in strain AD20, but no activity was found during growth on glucose. However, in strain AD25 the enzyme was synthesized to a higher level during growth on glucose than on methanol, and it reached levels of around 2 U/mg of protein in late-exponential-phase cultures growing on glucose. The haloalkane dehalogenase was constitutively produced in all strains tested, but strain AD25 synthesized the enzyme at a level of 30 to 40% of the total cellular protein, which is much higher than that found in other DCE degraders. The nucleotide sequences of the haloalkane dehalogenase (dhlA) genes of strains AD20 and AD25 were the same as the sequence of dhlA from Xanthobacter autotrophicus GJ10 and GJ11. Hybridization experiments showed that the dhlA genes of six different DCE utilizers were all located on an 8.3-kb EcoRI restriction fragment, indicating that the organisms may have obtained the dhlA gene by horizontal gene transmission.
Images
PMCID: PMC195365  PMID: 1575500
16.  Degradation of n-haloalkanes and alpha, omega-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70. 
A 1,6-dichlorohexane-degrading strain of Acinetobacter sp. was isolated from activated sludge. The organism could grow with and quantitatively release halide from 1,6-dichlorohexane, 1,9-dichlorononane, 1-chloropentane, 1-chlorobutane, 1-bromopentane, ethylbromide, and 1-iodopropane. Crude extracts contained an inducible novel dehalogenase that liberated halide from the above compounds and also from 1,3-dichloropropane, 1,2-dibromoethane, and 2-bromoethanol. The latter two compounds were toxic suicide substrates for the organism at concentrations of 10 and 5 microM, respectively. Mutants resistant to 1,2-dibromoethane (3 mM) lacked dehalogenase activity and did not utilize haloalkanes for growth. Mutants resistant to both 1,2-dibromoethane (3 mM) and 2-bromoethanol (30 mM) could no longer oxidize or utilize alcohols and were capable of hydrolytic dehalogenation of 1,2-dibromoethane to ethylene glycol.
PMCID: PMC203706  PMID: 3579270
17.  Genetic adaptation of bacteria to halogenated aliphatic compounds. 
Environmental Health Perspectives  1995;103(Suppl 5):29-32.
The bacterial degradation and detoxification of chlorinated xenobiotic compounds requires the production of enzymes that are capable of recognizing and converting compounds which do not occur at significant concentrations in nature. We have studied the catabolic route of 1,2-dichloroethane as an example of a pathway for the conversion of such a synthetic compound. In strains of Xanthobacter and Ancylobacter that have been isolated on 1,2-dichloroethane, the first catabolic step is catalyzed by a hydrolytic haloalkane dehalogenase. The enzyme converts 1,2-dichloroethane to 2-chloroethanol but is also active with many other environmentally important haloalkanes such as methylchloride, methylbromide, 1,2-dibromoethane, epichlorohydrin, and 1,3-dichloropropene. Further degradation of 2-chloroethanol proceeds by oxidation to the carboxylic acid and dehalogenation to glycolate. The aldehyde dehydrogenase prevents toxicity of the reactive chloroacetaldehyde that is formed as an intermediate and is necessary for establishing a functional 2-chloroethanol degradative pathway in a strain that is not capable of growth on this compound.
PMCID: PMC1519299  PMID: 8565904
18.  Two Rhizobial Strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, Encode Haloalkane Dehalogenases with Novel Structures and Substrate Specificities 
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showed the ability to dehalogenate 18 halogenated compounds, indicating that these ORFs indeed encode haloalkane dehalogenases. Therefore, these ORFs were referred to as dmlA (dehalogenase from Mesorhizobium loti) and dbjA (dehalogenase from Bradyrhizobium japonicum), respectively. The principal component analysis of the substrate specificities of various haloalkane dehalogenases clearly showed that DbjA and DmlA constitute a novel substrate specificity class with extraordinarily high activity towards β-methylated compounds. Comparison of the circular dichroism spectra of DbjA and other dehalogenases strongly suggested that DbjA contains more α-helices than the other dehalogenases. The dehalogenase activity of resting cells and Northern blot analyses both revealed that the dmlA and dbjA genes were expressed under normal culture conditions in MAFF303099 and USDA110 strain cells, respectively.
doi:10.1128/AEM.71.8.4372-4379.2005
PMCID: PMC1183339  PMID: 16085827
19.  Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. 
A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms.
Images
PMCID: PMC373569  PMID: 3994371
20.  Weak Activity of Haloalkane Dehalogenase LinB with 1,2,3-Trichloropropane Revealed by X-Ray Crystallography and Microcalorimetry▿  
1,2,3-Trichloropropane (TCP) is a highly toxic and recalcitrant compound. Haloalkane dehalogenases are bacterial enzymes that catalyze the cleavage of a carbon-halogen bond in a wide range of organic halogenated compounds. Haloalkane dehalogenase LinB from Sphingobium japonicum UT26 has, for a long time, been considered inactive with TCP, since the reaction cannot be easily detected by conventional analytical methods. Here we demonstrate detection of the weak activity (kcat = 0.005 s−1) of LinB with TCP using X-ray crystallography and microcalorimetry. This observation makes LinB a useful starting material for the development of a new biocatalyst toward TCP by protein engineering. Microcalorimetry is proposed to be a universal method for the detection of weak enzymatic activities. Detection of these activities is becoming increasingly important for engineering novel biocatalysts using the scaffolds of proteins with promiscuous activities.
doi:10.1128/AEM.02416-06
PMCID: PMC1828796  PMID: 17259360
21.  Halohydrin Dehalogenases Are Structurally and Mechanistically Related to Short-Chain Dehydrogenases/Reductases 
Journal of Bacteriology  2001;183(17):5058-5066.
Halohydrin dehalogenases, also known as haloalcohol dehalogenases or halohydrin hydrogen-halide lyases, catalyze the nucleophilic displacement of a halogen by a vicinal hydroxyl function in halohydrins to yield epoxides. Three novel bacterial genes encoding halohydrin dehalogenases were cloned and expressed in Escherichia coli, and the enzymes were shown to display remarkable differences in substrate specificity. The halohydrin dehalogenase of Agrobacterium radiobacter strain AD1, designated HheC, was purified to homogeneity. The kcat and Km values of this 28-kDa protein with 1,3-dichloro-2-propanol were 37 s−1 and 0.010 mM, respectively. A sequence homology search as well as secondary and tertiary structure predictions indicated that the halohydrin dehalogenases are structurally similar to proteins belonging to the family of short-chain dehydrogenases/reductases (SDRs). Moreover, catalytically important serine and tyrosine residues that are highly conserved in the SDR family are also present in HheC and other halohydrin dehalogenases. The third essential catalytic residue in the SDR family, a lysine, is replaced by an arginine in halohydrin dehalogenases. A site-directed mutagenesis study, with HheC as a model enzyme, supports a mechanism for halohydrin dehalogenases in which the conserved Tyr145 acts as a catalytic base and Ser132 is involved in substrate binding. The primary role of Arg149 may be lowering of the pKa of Tyr145, which abstracts a proton from the substrate hydroxyl group to increase its nucleophilicity for displacement of the neighboring halide. The proposed mechanism is fundamentally different from that of the well-studied hydrolytic dehalogenases, since it does not involve a covalent enzyme-substrate intermediate.
doi:10.1128/JB.183.17.5058-5066.2001
PMCID: PMC95381  PMID: 11489858
22.  Crystallization and preliminary X-ray diffraction studies of the putative haloalkane dehalogenase DppA from Plesiocystis pacifica SIR-I 
The crystallization and preliminary X-ray diffraction studies of DppA from P. pacifica SIR-I are reported.
DppA from Plesiocystis pacifica SIR-I is a putative haloalkane dehalogenase (EC 3.8.1.5) and probably catalyzes the conversion of halogenated alkanes to the corresponding alcohols. The enzyme was expressed in Escherichia coli BL21 and purified to homogeneity by ammonium sulfate precipitation and reversed-phase and ion-exchange chromatography. The DppA protein was crystallized by the vapour-diffusion method and protein crystals suitable for data collection were obtained in the orthorhombic space group P21212. The DppA crystal diffracted X-rays to 1.9 Å resolution using an in-house X-ray generator.
doi:10.1107/S1744309110018932
PMCID: PMC2898472  PMID: 20606284
haloalkane dehalogenases; Plesiocystis pacifica SIR-I
23.  Biochemical Characterization of a Haloalkane Dehalogenase DadB from Alcanivorax dieselolei B-5 
PLoS ONE  2014;9(2):e89144.
Recently, we found that Alcanivorax bacteria from various marine environments were capable of degrading halogenated alkanes. Genome sequencing of A. dieselolei B-5 revealed two putative haloalkane dehalogenase (HLD) genes, which were supposed to be involved in degradation of halogenated compounds. In this report, we confirm for the first time that the Alcanivorax bacterium encodes a truly functional HLD named DadB. An activity assay with 46 halogenated substrates indicated that DadB possesses broad substrate range and has the highest overall activity among the identified HLDs. DadB prefers brominated substrates; chlorinated alkenes; and the C2-C3 substrates, including the persistent pollutants of 1,2-dichloroethane, 1,2-dichloropropane and 1,2,3-trichloropropane. As DadB displays no detectable activity toward long-chain haloalkanes such as 1-chlorohexadecane and 1-chlorooctadecane, the degradation of them in A. dieselolei B-5 might be attributed to other enzymes. Kinetic constants were determined with 6 substrates. DadB has highest affinity and largest kcat/Km value toward 1,3-dibromopropane (Km = 0.82 mM, kcat/Km = 16.43 mM−1·s−1). DadB aggregates fast in the buffers with pH≤7.0, while keeps stable in monomer form when pH≥7.5. According to homology modeling, DadB has an open active cavity with a large access tunnel, which is supposed important for larger molecules as opposed to C2-C3 substrates. Combined with the results for other HLDs, we deduce that residue I247 plays an important role in substrate selection. These results suggest that DadB and its host, A. dieselolei B-5, are of potential use for biocatalysis and bioremediation applications.
doi:10.1371/journal.pone.0089144
PMCID: PMC3938430  PMID: 24586552
24.  Crystallization and preliminary crystallographic analysis of a haloalkane dehalogenase, DbjA, from Bradyrhizobium japonicum USDA110 
A haloalkane dehalogenase, DbjA, was crystallized by the hanging-drop vapour-diffusion method using PEG 4000 as a precipitant. The crystal belongs to the orthorhombic system, space group P21212 and diffracts to 1.75 Å resolution.
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. The haloalkane dehalogenase DbjA constitutes a novel substrate-specificity class with high catalytic activity for β-methylated haloalkanes. In order to reveal the mechanism of its substrate specificity, DbjA has been crystallized using the hanging-drop vapour-diffusion method. The best crystals were obtained using the microseeding technique with a reservoir solution consisting of 17–19.5%(w/v) PEG 4000, 0.2 M calcium acetate and 0.1 M Tris–HCl pH 7.7–8.0. The space group of the DbjA crystal is P21212, with unit-cell parameters a = 212.9, b = 117.8, c = 55.8 Å. The crystal diffracts to 1.75 Å resolution.
doi:10.1107/S1744309107008652
PMCID: PMC2330215  PMID: 17401198
haloalkane dehalogenases; biodegradation; α/β hydrolases; rhizobia
25.  Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis. 
Journal of Bacteriology  1993;175(20):6403-6410.
In Pseudomonas paucimobilis UT26, gamma-hexachlorocyclohexane (gamma-HCH) is converted by two steps of dehydrochlorination to a chemically unstable intermediate, 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN), which is then metabolized to 2,5-dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL) by two steps of hydrolytic dehalogenation via the chemically unstable intermediate 2,4,5-trichloro-2,5-cyclohexadiene-1-ol (2,4,5-DNOL). To clone a gene encoding the enzyme responsible for the conversion of the chemically unstable intermediates 1,4-TCDN and 2,4,5-DNOL, a genomic library of P. paucimobilis UT26 was constructed in Pseudomonas putida PpY101LA into which the linA gene had been introduced by Tn5. An 8-kb BglII fragment from one of the cosmid clones, which could convert gamma-HCH to 2,5-DDOL, was subcloned, and subsequent deletion analyses revealed that a ca. 1.1-kb region was responsible for the activity. Nucleotide sequence analysis revealed an open reading frame (designated the linB gene) of 885 bp within the region. The deduced amino acid sequence of LinB showed significant similarity to hydrolytic dehalogenase, DhlA (D. B. Janssen, F. Pries, J. van der Ploeg, B. Kazemier, P. Terpstra, and B. Witholt, J. Bacteriol. 171:6791-6799, 1989). The protein product of the linB gene was 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Not only 1-chlorobutane but also 1-chlorodecane (C10) and 2-chlorobutane, which are poor substrates for other dehalogenases, were good substrates for LinB, suggesting that LinB may be a member of haloalkane dehalogenases with broad-range specificity for substrates.
Images
PMCID: PMC206747  PMID: 7691794

Results 1-25 (729907)