PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1384387)

Clipboard (0)
None

Related Articles

1.  Methylation patterns of cell-free plasma DNA in relapsing-remitting multiple sclerosis 
Background
There is growing interest for identification of new targets for biomarker development in multiple sclerosis (MS). The goal of this study was to compare the concentration and the methylation patterns of cell-free plasma DNA (cfpDNA) in patients with relapsing-remitting multiple sclerosis (RRMS) and healthy individuals.
Methods
Three 30-patient cohorts were examined: patients with RRMS, in either remission or exacerbation, and healthy individuals as controls. Concentration of cfpDNA was determined using a standard fluorometric assay. Patterns of methylation in 56 gene promoters were determined by a microarray-based assay (MethDet-56). The data were analyzed to identify statistically relevant differences among the study groups.
Results
The concentration of cfpDNA in patients with RRMS was four to eight-fold higher compared to healthy controls. Significant differences in cfpDNA methylation patterns were detected in all three comparisons: RRMS patients in remission versus healthy controls were recognized with 79.2% sensitivity and 92.9% specificity; RRMS patients in exacerbation versus healthy controls were recognized with 75.9% sensitivity and 91.5% specificity; and RRMS patients in exacerbation versus those in remission were recognized with 70.8% sensitivity and 71.2% specificity.
Conclusion
Based on our findings, we conclude that patients with RRMS display unique disease- and state-specific changes of cfpDNA. Our findings are of clinical significance as they could be used in development of potentially new biomarkers for MS. This is the first report in our knowledge describing such changes of cfpDNA in patients with MS.
doi:10.1016/j.jns.2009.12.018
PMCID: PMC2815078  PMID: 20064646
multiple sclerosis; cell-free plasma DNA; DNA methylation; gene promoter; biomarker; microarray
2.  Memory B cells from a subset of treatment naïve relapsing remitting multiple sclerosis patients elicit CD4+ T cell proliferation and IFN-γ production in response to MBP and MOG 
European journal of immunology  2010;40(10):2942-2956.
Recent evidence suggests that B and T cell interactions may be paramount in relapsing remitting multiple sclerosis (RRMS) disease pathogenesis. We hypothesized that memory B cell pools from RRMS patients may specifically harbor a subset of potent neuro-antigen presenting cells that support neuro-antigen reactive T cell proliferation and cytokine secretion. To test this hypothesis, we compared CD80 and HLA-DR expression, IL-10 and LTα secretion, neuro-antigen binding capacity, and neuro-antigen presentation by memory B cells from RRMS patients to naïve B cells from RRMS patients and to memory and naïve B cells from healthy donors (HD). We identified memory B cells from some RRMS patients that elicited CD4+ T cell proliferation and IFN-γ secretion in response to myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG). Notwithstanding the fact that the phenotypic parameters that promote efficient antigen presentation were observed to be similar between RRMS and HD memory B cells, a corresponding capability to elicit CD4+ T cell proliferation in response to MBP and MOG was not observed in HD memory B cells. Our results demonstrate for the first time that the memory B cell pool in RRMS harbors neuro-antigen specific B cells that can activate T cells.
doi:10.1002/eji.201040516
PMCID: PMC3072802  PMID: 20812237
multiple sclerosis; B cells; autoimmunity; antigen presentation
3.  Characteristic Cerebrospinal Fluid Cytokine/Chemokine Profiles in Neuromyelitis Optica, Relapsing Remitting or Primary Progressive Multiple Sclerosis 
PLoS ONE  2013;8(4):e61835.
Background
Differences in cytokine/chemokine profiles among patients with neuromyelitis optica (NMO), relapsing remitting multiple sclerosis (RRMS), and primary progressive MS (PPMS), and the relationships of these profiles with clinical and neuroimaging features are unclear. A greater understanding of these profiles may help in differential diagnosis.
Methods/Principal Findings
We measured 27 cytokines/chemokines and growth factors in CSF collected from 20 patients with NMO, 26 with RRMS, nine with PPMS, and 18 with other non-inflammatory neurological diseases (OND) by multiplexed fluorescent bead-based immunoassay. Interleukin (IL)-17A, IL-6, CXCL8 and CXCL10 levels were significantly higher in NMO patients than in OND and RRMS patients at relapse, while granulocyte-colony stimulating factor (G-CSF) and CCL4 levels were significantly higher in NMO patients than in OND patients. In NMO patients, IL-6 and CXCL8 levels were positively correlated with disability and CSF protein concentration while IL-6, CXCL8, G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF) and IFN-γ were positively correlated with CSF neutrophil counts at the time of sample collection. In RRMS patients, IL-6 levels were significantly higher than in OND patients at the relapse phase while CSF cell counts were negatively correlated with the levels of CCL2. Correlation coefficients of cytokines/chemokines in the relapse phase were significantly different in three combinations, IL-6 and GM-CSF, G-CSF and GM-CSF, and GM-CSF and IFN-γ, between RRMS and NMO/NMOSD patients. In PPMS patients, CCL4 and CXCL10 levels were significantly higher than in OND patients.
Conclusions
Our findings suggest distinct cytokine/chemokine alterations in CSF exist among NMO, RRMS and PPMS. In NMO, over-expression of a cluster of Th17- and Th1-related proinflammatory cytokines/chemokines is characteristic, while in PPMS, increased CCL4 and CXCL10 levels may reflect on-going low grade T cell and macrophage/microglia inflammation in the central nervous system. In RRMS, only a mild elevation of proinflammatory cytokines/chemokines was detectable at relapse.
doi:10.1371/journal.pone.0061835
PMCID: PMC3630114  PMID: 23637915
4.  Deferiprone modulates in vitro responses by peripheral blood T cells from control and relapsing remitting multiple sclerosis subjects 
International immunopharmacology  2011;11(11):1796-1801.
T cells are important mediators of autoimmune inflammation in relapsing remitting multiple sclerosis (RRMS). Previous studies found that deferiprone, an iron chelator, suppressed disease activity in a mouse model of multiple sclerosis, and inhibition of T cell proliferation was implicated as a putative mechanism. The objective of the present study was to examine the effects of deferiprone on suppressing in vitro responses of T cells from control and RRMS subjects. Peripheral blood T cells were co-stimulated with anti-CD3 + anti-CD28 and cultured with or without interleukin 2 (IL-2). Proliferating CD4+ T cells from control and RRMS subjects, cultured with or without IL-2, decreased in response to 75 μM deferiprone, although the extent of decreased proliferation of CD4+ T cells from RRMS subjects was less than for control subjects. Proliferating CD8+ T cells from control subjects, cultured with or without IL-2, also decreased in response to 75 μM deferiprone, and this decrease was seen in proliferating CD8+ T cells from RRMS cultured with IL-2. CD4+CD25+ and CD8+CD25+ cells from control subjects, cultured with or without IL-2, declined in 75 M deferiprone, but the decrease was smaller than for the CD4+ and CD8+ proliferative responses. CD4+CD25+ and CD8+CD25+ cells from RRMS subjects showed more variability than for control subjects, but CD4+CD25+ cultured with IL-2 and CD8+CD25+ cells cultured without IL-2 significantly declined in 75 μM deferiprone. CD4+FoxP3+ and CD4+CD25+FoxP3+ cells tended to remain constant or increase. In summary, deferiprone induced declines in proliferative responses at a dosage that is within peak serum pharmacological concentrations.
doi:10.1016/j.intimp.2011.07.007
PMCID: PMC3204173  PMID: 21807124
CD4 T cells; CD8 T cells; Regulatory T cells; T cell proliferation; Multiple sclerosis; Deferiprone
5.  Vitamin D Status Is Positively Correlated with Regulatory T Cell Function in Patients with Multiple Sclerosis 
PLoS ONE  2009;4(8):e6635.
Background
In several autoimmune diseases, including multiple sclerosis (MS), a compromised regulatory T cell (Treg) function is believed to be critically involved in the disease process. In vitro, the biologically active metabolite of vitamin D has been shown to promote Treg development. A poor vitamin D status has been linked with MS incidence and MS disease activity. In the present study, we assess a potential in vivo correlation between vitamin D status and Treg function in relapsing remitting MS (RRMS) patients.
Methodology/Principal Findings
Serum levels of 25-hydroxyvitamin D (25(OH)D) were measured in 29 RRMS patients. The number of circulating Tregs was assessed by flow-cytometry, and their functionality was tested in vitro in a CFSE-based proliferation suppression assay. Additionally, the intracellular cytokine profile of T helper cells was determined directly ex-vivo by flow-cytometry. Serum levels of 25(OH)D correlated positively with the ability of Tregs to suppress T cell proliferation (R = 0.590, P = 0.002). No correlation between 25(OH)D levels and the number of Tregs was found. The IFN-γ/IL-4 ratio (Th1/Th2-balance) was more directed towards IL-4 in patients with favourable 25(OH)D levels (R = −0.435, P = 0.023).
Conclusions/Significance
These results show an association of high 25(OH)D levels with an improved Treg function, and with skewing of the Th1/Th2 balance towards Th2. These findings suggest that vitamin D is an important promoter of T cell regulation in vivo in MS patients. It is tempting to speculate that our results may not only hold for MS, but also for other autoimmune diseases. Future intervention studies will show whether modulation of vitamin D status results in modulation of the T cell response and subsequent amelioration of disease activity.
doi:10.1371/journal.pone.0006635
PMCID: PMC2721656  PMID: 19675671
6.  Expression of Urokinase Plasminogen Activator Receptor on Monocytes from Patients with Relapsing-Remitting Multiple Sclerosis: Effect of Glatiramer Acetate (Copolymer 1) 
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system in which peripheral blood monocytes play an important role. We have previously reported that patients with chronic progressive MS (CPMS) have significantly increased numbers of circulating monocytes which express the urokinase plasminogen activator receptor (uPAR). In the present study, we examined the expression of uPAR on monocytes in patients with relapsing-remitting multiple sclerosis (RRMS) not currently participating in a clinical trial and in patients with RRMS who were enrolled in a double-blind multicenter clinical trial designed to examine the effect of glatiramer acetate (copolymer 1; Copaxone) on relapsing disease. Patients with CPMS have sustained high levels of circulating uPAR-positive (uPAR+) monocytes. In comparison, patients with RRMS displayed variable levels of circulating uPAR+ monocytes. Mean values for uPAR in patients with RRMS were above those seen for controls but were not as high as those observed for patients with secondary progressive MS. Patients with RRMS in the clinical trial also had variable levels of monocyte uPAR. However, patients in the treatment group displayed lower levels following 2 years of treatment. In both placebo-treated and glatiramer acetate-treated patients, the percentage of circulating uPAR+ monocytes, as well as the density of uPAR expressed per cell (mean linear fluorescence intensity), increased just prior to the onset of a clinically documented exacerbation. Values fell dramatically with the development of clinical symptoms. uPAR levels in all groups correlated with both clinical activity and severity. Results indicate that monocyte activation is impatient in MS and that glatiramer acetate may have a significant effect on monocyte activation in patients with RRMS.
doi:10.1128/CDLI.8.6.1196-1203.2001
PMCID: PMC96249  PMID: 11687463
7.  The relationship between regional microstructural abnormalities of the corpus callosum and physical and cognitive disability in relapsing–remitting multiple sclerosis 
NeuroImage : Clinical  2014;7:28-33.
Significant corpus callosum (CC) involvement has been found in relapsing–remitting multiple sclerosis (RRMS), even if conventional magnetic resonance imaging measures have shown poor correlation with clinical disability measures. In this work, we tested the potential of multimodal imaging of the entire CC to explain physical and cognitive disability in 47 patients with RRMS. Values of thickness, fractional anisotropy (FA) and mean diffusivity (MD) were extracted from 50 regions of interest (ROIs) sampled along the bundle. The relationships between clinical, neuropsychological and imaging variables were assessed by using Spearman's correlation. Multiple linear regression analysis was employed in order to identify the relative importance of imaging metrics in modeling different clinical variables. Regional fiber composition of the CC differentially explained the response variables (Expanded Disability Status Scale [EDSS], cognitive impairment). Increases in EDSS were explained by reductions in CC thickness and MD. Cognitive impairment was mainly explained by FA reductions in the genu and splenium. Regional CC imaging properties differentially explained disability within RRMS patients revealing strong, distinct patterns of correlation with clinical and cognitive status of patients affected by this specific clinical phenotype.
Highlights
•We assess corpus callosum damage in relapsing–remitting multiple sclerosis.•We used no a priori subdivisions to model the bundle in a continuous fashion.•Imaging–clinical relationship was explored by correlation and regression analyses.•Damage of large, heavily myelinated axons was mainly linked to physical disability.•Damage of small-diameter axons was mainly linked to cognitive impairment.
doi:10.1016/j.nicl.2014.11.008
PMCID: PMC4299954  PMID: 25610764
Multiple sclerosis; Multimodal MRI; Corpus callosum; Disability; Cognitive impairment
8.  Improving the Characterization of Radiologically Isolated Syndrome Suggestive of Multiple Sclerosis 
PLoS ONE  2011;6(4):e19452.
Objective
To improve the characterization of asymptomatic subjects with brain magnetic resonance imaging (MRI) abnormalities highly suggestive of multiple sclerosis (MS), a condition named as “radiologically isolated syndrome” (RIS).
Methods
Quantitative MRI metrics such as brain volumes and magnetization transfer (MT) were assessed in 19 subjects previously classified as RIS, 20 demographically-matched relapsing-remitting MS (RRMS) patients and 20 healthy controls (HC). Specific measures were: white matter (WM) lesion volumes (LV), total and regional brain volumes, and MT ratio (MTr) in lesions, normal-appearing WM (NAWM) and cortex.
Results
LV was similar in RIS and RRMS, without differences in distribution and frequency at lesion mapping. Brain volumes were similarly lower in RRMS and RIS than in HC (p<0.001). Lesional-MTr was lower in RRMS than in RIS (p = 0.048); NAWM-MTr and cortical-MTr were similar in RIS and HC and lower (p<0.01) in RRMS. These values were particularly lower in RRMS than in RIS in the sensorimotor and memory networks. A multivariate logistic regression analysis showed that 13/19 RIS had ≥70% probability of being classified as RRMS on the basis of their brain volume and lesional-MTr values.
Conclusions
Macroscopic brain damage was similar in RIS and RRMS. However, the subtle tissue damage detected by MTr was milder in RIS than in RRMS in clinically relevant brain regions, suggesting an explanation for the lack of clinical manifestations of subjects with RIS. This new approach could be useful for narrowing down the RIS individuals with a high risk of progression to MS.
doi:10.1371/journal.pone.0019452
PMCID: PMC3084867  PMID: 21559385
9.  Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis 
Background
Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce.
Methods
We studied gene expression of a broad panel of cytokines in WB from relapsing-remitting multiple sclerosis (RRMS) patients in remission and healthy controls (HCs). Subsequently we determined the gene expression of the dysregulated cytokines in isolated PBMC subsets (CD4+, CD8+T-cells, NK-cells, B-cells, monocytes and dendritic cells) from RRMS patients and HCs and in CSF-cells from RRMS patients in clinical relapse and non-inflammatory neurological controls (NIND).
Results
RRMS patients had increased expression of IFN-gamma (IFNG), interleukin (IL) 1-beta (IL1B), IL7, IL10, IL12A, IL15, IL23, IL27, lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) in WB. In PBMC subsets the main sources of pro-inflammatory cytokines were T- and B-cells, whereas monocytes were the most prominent source of immunoregulatory cytokines. In CSF-cells, RRMS patients had increased expression of IFNG and CD19 and decreased expression of IL10 and CD14 compared to NINDs. CD19 expression correlated with expression of IFNG, IL7, IL12A, IL15 and LTA whereas CD14 expression correlated with IL10 expression.
Conclusions
Using a systematic approach, we show that expression of pro-inflammatory cytokines in peripheral blood primarily originates from T- and B-cells, with an important exception of IFNG which is most strongly expressed by NK-cells. In CSF-cell studies, B-cells appear to be enriched in RRMS and associated with expression of pro-inflammatory cytokines; contrarily, monocytes are relatively scarce in CSF from RRMS patients and are associated with IL10 expression. Thus, our findings suggest a pathogenetic role of B-cells and an immunoregulatory role of monocytes in RRMS.
doi:10.1186/1742-2094-9-215
PMCID: PMC3503813  PMID: 22978757
Relapsing-remitting multiple sclerosis; Immunology; Cytokines; Blood; Cerebrospinal fluid cells; Real-time PCR
10.  Inhibition of Interferon-beta Responses in Multiple Sclerosis Immune Cells Associated With High-Dose Statins 
Archives of neurology  2012;69(10):1303-1309.
Objective
To determine whether statins affect type 1 interferon responses in relapsing-remitting multiple sclerosis (RRMS).
Design
Study effects of atorvastatin on type 1 interferon responses in Jurkat cells, mononuclear cells (MNCs) from therapy-naive patients with RRMS in vitro, and MNCs from interferon-treated RRMS patients in vivo in 4 conditions: no drug, statin only, interferon-beta only, and statin added on to interferon-beta therapy.
Patients
The study examined clinically stable patients with RRMS: 21 therapy-naive patients and 14 patients receiving interferon-beta with a statin.
Interventions
Statin effects on in vitro and in vivo interferon-beta–induced STAT1 transcription factor activation, expression of interferon-stimulated proteins in MNCs, and serum type 1 interferon activity.
Results
In vitro, atorvastatin dose dependently inhibited expression of interferon-stimulated P-Y-STAT1 by 44% (P< .001), interferon regulatory factor 1 protein by 30% (P= .006), and myxovirus resistance 1 protein by 32% (P=.004) compared with no-statin control in MNCs from therapy-naive RRMS patients. In vivo, 9 of 10 patients who received high-dose statins (80 mg) had a significant reduction in interferon-beta therapy–induced serum interferon-α/β activity, whereas only 2 of 4 patients who received medium-dose statins (40 mg) had reductions. High-dose add-on statin therapy significantly blocked interferon-beta function, with less P-Y-STAT1 transcription factor activation, and reduced myxovirus resistance 1 protein and viperin protein production. Medium doses of statins did not change STAT1 activation.
Conclusions
High-dose add-on statin therapy significantly reduces interferon-beta function and type 1 interferon responses in RRMS patients. These data provide a putative mechanism for how statins could counteract the beneficial effects of interferon-beta and worsen disease.
doi:10.1001/archneurol.2012.465
PMCID: PMC3910505  PMID: 22801747
11.  Epstein-Barr virus-specific intrathecal oligoclonal IgG production in relapsing-remitting multiple sclerosis is limited to a subset of patients and is composed of low-affinity antibodies 
Background
The purpose of this study was to investigate intrathecal production and affinity distributions of Epstein-Barr virus (EBV)-specific antibodies in multiple sclerosis (MS) and controls.
Methods
Cerebrospinal fluid (CSF) and serum concentrations, quantitative intrathecal synthesis, oligoclonal bands (OCB) patterns and affinity distributions of anti-Epstein Barr virus (EBV) antibodies were evaluated in 100 relapsing-remitting MS (RRMS) patients and 200 age- and sex-matched controls with other inflammatory neurological disorders (OIND) and other noninflammatory neurological disorders (NIND).
Results
Levels of anti-EBNA-1 and anti-viral capsid antigen (VCA) IgG were different in both the CSF (P <0.0001 and P <0.01, respectively) and serum (P <0.001 and P <0.05, respectively) among the RRMS, OIND and NIND. An intrathecal synthesis of anti-EBNA-1 IgG and anti-VCA IgG, as indicated by the antibody index, was underrepresented in the RRMS, OIND and NIND (range 1 to 7%). EBV-specific OCB were detected in 24% of the RRMS patients and absent in the controls. High-affinity antibodies were more elevated in the RRMS and in the OIND than in the NIND for CSF anti-EBNA-1 IgG (P <0.0001) and anti-VCA IgG (P <0.0001). After treatment with increasing concentrations of sodium thiocyanate, the EBV-specific IgG OCB had low affinity in all 24 RRMS patients analyzed.
Conclusions
Our findings do not support the potential role of an EBV persistent brain chronic infection in MS and suggest that an EBV-specific intrathecal oligoclonal IgG production can occur in a subset of MS patients as part of humoral polyreactivity driven by chronic brain inflammation.
doi:10.1186/s12974-014-0188-1
PMCID: PMC4232674  PMID: 25391491
12.  Cerebrospinal fluid detection of interleukin-1β in phase of remission predicts disease progression in multiple sclerosis 
Background
Absence of clinical and radiological activity in relapsing–remitting multiple sclerosis (RRMS) is perceived as disease remission. We explored the role of persisting inflammation during remission in disease evolution.
Methods
Cerebrospinal fluid (CSF) levels of interleukin 1β (IL-1β), a major proinflammatory cytokine, were measured in 170 RRMS patients at the time of clinical and radiological remission. These patients were then followed up for at least 4 years, and clinical, magnetic resonance imaging (MRI) and optical coherence tomography (OCT) measures of disease progression were recorded.
Results
Median follow-up of RRMS patients was 5 years. Detection of CSF IL-1β levels at the time of remission did not predict earlier relapse or new MRI lesion formation. Detection of IL-1β in the CSF was instead associated with higher progression index (PI) and Multiple Sclerosis Severity Scale (MSSS) scores at follow-up, and the number of patients with sustained Expanded Disability Status Scale (EDSS) or Multiple Sclerosis Functional Composite worsening at follow-up was higher in individuals with detectable levels of IL-1β. Patients with undetectable IL-1β in the CSF had significantly lower PI and MSSS scores and a higher probability of having a benign MS phenotype. Furthermore, patients with undetectable CSF levels of IL-1β had less retinal nerve fiber layer thickness and macular volume alterations visualized by OCT compared to patients with detectable IL-1β.
Conclusions
Our results suggest that persistence of a proinflammatory environment in RRMS patients during clinical and radiological remission influences midterm disease progression. Detection of IL-1β in the CSF at the time of remission appears to be a potential negative prognostic factor in RRMS patients.
doi:10.1186/1742-2094-11-32
PMCID: PMC3975953  PMID: 24548694
Cerebrospinal fluid; Cytokines; Inflammation; Disability; Neurodegeneration; Remission
13.  Benign Multiple Sclerosis is Associated with Reduced Thinning of the Retinal Nerve Fiber and Ganglion Cell Layers in Non-Optic-Neuritis Eyes 
Background and Purpose
It is exceedingly difficult to differentiate benign multiple sclerosis (BMS) from relapsing-remitting multiple sclerosis (RRMS) based on clinical characteristics, neuroimaging, and cerebrospinal fluid tests. Optical coherence tomography (OCT) allows quantification of retinal structures, such as the retinal nerve fiber layer (RNFL) thickness, at the optic disc and the ganglion cell layer (GCL) at the macula, on a micrometer scale. It can also be used to trace minor alterations and the progression of neurodegeneration, help predict BMS, and influence the choice of therapy. To utilize OCT to detect the extent of changes of the optic disk and macular microstructure in patients with BMS and RRMS compared to healthy controls (HCs), with special focus on changes related to the presence/absence of optic neuritis (ON).
Methods
Spectral-domain OCT was applied to examine eyes from 36 patients with multiple sclerosis (MS), comprising 11 with BMS and 25 with RRMS, and 34 HCs.
Results
The RNFL and GCL were significantly thinner in eyes previously affected by ON, irrespective of the type of MS (i.e., BMS or RRMS), than in HCs. Significant thinning of the GCL was also observed in non-ON RRMS (and not non-ON BMS) compared to HCs. Correspondingly, a significant association between disease duration and thinning rates of the RNFL and GCL was observed only in non-ON RRMS (-0.54±0.24 and -0.43±0.21 µm/year, mean±SE; p<0.05 for both), and not in non-ON BMS (-0.11±0.27 and -0.24±0.24 µm/year).
Conclusions
The RNFL and GCL were thinner in both ON- and non-ON MS, but the change was more pronounced in ON MS, irrespective of the MS subtype studied herein. GCL thinning and the thinning rate of both the GCL and RNFL were less pronounced in non-ON BMS than in non-ON RRMS. These findings may help to predict the course of BMS.
doi:10.3988/jcn.2015.11.3.241
PMCID: PMC4507378  PMID: 26022460
benign multiple sclerosis; optic neuritis; optical coherence tomography; retinal nerve fiber layer; macular ganglion cell layer
14.  Ischemia modified albumin is an indicator of oxidative stress in multiple sclerosis 
Biochemia Medica  2014;24(3):383-389.
Introduction:
Oligodendrocytes need iron in processes of energy generation and myelination. However, excessive levels of iron may exert iron induced oxidative stress and thus lead to tissue degeneration. Monitoring oxidative stress will be of paramount importance in follow-up of patients with many diseases including multiple sclerosis (MS). The aim of this study was to measure total anti-oxidative status (TAS), total oxidative status (TOS) and ischemia modified albumin (IMA) in stable relapse remitting MS (RRMS) patients.
Materials and methods:
Thirty-five RRMS patients (15 males and 20 females; median age 42 (20–55) years) and thirty-five age-sex matched healthy controls (13 males and 22 females; median age 37 (21–60) years) were included in this study. All patients were diagnosed with MS according to the criteria of McDonald.
Results:
IMA levels were significantly higher in RRMS patients (P < 0.001), while TAS and TOS did not show any significant difference between groups (P = 0.870 and P = 0.460, respectively).
Conclusions:
Our results suggest IMA as a more efficient serum marker than TAS and TOS in detecting the oxidative stress in MS patients. Serum oxidative stress markers should be included in future study protocols besides clinical and radiological parameters.
doi:10.11613/BM.2014.041
PMCID: PMC4210259  PMID: 25351357
ischemia-modified albumin; multiple sclerosis; oxidative stress
15.  Effects of Adjunct Low-Dose Vitamin D on Relapsing-Remitting Multiple Sclerosis Progression: Preliminary Findings of a Randomized Placebo-Controlled Trial 
The aim of this preliminary study was to evaluate the effect of low-dose oral vitamin D in combination with current disease-modifying therapy on the prevention of progression of relapsing-remitting multiple sclerosis (RRMS). A phase II double-blind placebo-controlled randomized clinical trial conducted between October 2007 and October 2008 included 50 patients with confirmed RRMS aged 25 to 57 years and normal serum 25-hydroxyvitamin D. They were randomly allocated to receive 12 months of treatment with either escalating calcitriol doses up to 0.5 μg/day or placebo combined with disease-modifying therapy. Response to treatment was assessed at eight-week intervals. In both groups, the mean relapse rate decreased significantly (P < 0.001). In the 25 patients treated with placebo, the mean (SD) Expanded Disability Status Scale (EDSS) increased from 1.70 (1.21) at baseline to 1.94 (1.41) at the end of study period (P < 0.01). Average EDSS and relapse rate at the end of trial did not differ between groups. Adding low-dose vitamin D to routine disease-modifying therapy had no significant effect on the EDSS score or relapse rate. A larger phase III multicenter study of vitamin D in RRMS is warranted to more assess the efficacy of this intervention.
doi:10.1155/2012/452541
PMCID: PMC3337486  PMID: 22567287
16.  Intrathecal effects of daclizumab treatment of multiple sclerosis 
Neurology  2011;77(21):1877-1886.
Objectives:
We previously reported that daclizumab, a humanized monoclonal antibody against CD25, reduced contrast-enhancing lesions (CEL) in patients with multiple sclerosis (MS) who were suboptimal responders to interferon-β and that this response correlated with expansion of CD56bright NK cells. These data have been reproduced in a placebo-controlled multicenter trial (CHOICE study). The current study investigates whether daclizumab monotherapy reduces CEL in untreated patients with relapsing-remitting MS (RRMS) and the effects of daclizumab on the intrathecal immune system.
Methods:
Sixteen patients with RRMS with high inflammatory activity were enrolled in an open-label, baseline-vs-treatment, phase II trial of daclizumab monotherapy for 54 weeks and followed by serial clinical and MRI examinations and immunologic biomarkers measured in the whole blood and CSF.
Results:
The trial achieved predefined outcomes. There was an 87.7% reduction in brain CEL (primary) and improvements in Multiple Sclerosis Functional Composite (secondary), Scripps Neurologic Rating Scale, and Expanded Disability Status Scale (tertiary) outcomes. There was significant expansion of CD56bright NK cells in peripheral blood and CSF, with resultant decrease in T cells/NK cells and B cells/NK cells ratios and IL-12p40 in the CSF. Surprisingly, CD25 Tac epitope was equally blocked on the immune cells in the CSF and in peripheral blood.
Conclusions:
Daclizumab monotherapy inhibits formation of MS plaques in patients with RRMS and immunoregulatory NK cells may suppress activation of pathogenic immune responses directly in the CNS compartment.
Classification of evidence:
The study provides Class III evidence that daclizumab reduces the number of contrast-enhancing lesions in treatment-naive patients with RRMS over a 54-week period.
doi:10.1212/WNL.0b013e318239f7ef
PMCID: PMC3246406  PMID: 22076546
17.  Quantitative differences in the immunomodulatory effects of Rebif and Avonex in IFN-β 1a treated multiple sclerosis patients 
Interferon-β (IFN-β) is a current effective treatment for multiple sclerosis (MS) and exerts its therapeutic effects by down-modulating the systemic immune response and cytokine signaling. In clinical practice there are several formulations of interferon including a low dose of IFN-β 1a formulation of 30μg IM once weekly (Avonex) and a high dose formulation of 44 μg SC three times weekly (Rebif). Recent studies suggest that Rebif is more efficacious compared to Avonex in preventing relapses and decreasing MRI activity in relapsing remitting MS (RRMS) patients. This study examines whether there are quantitative gene expression changes in interferon-treated RRMS patients that can explain the difference in efficacy and side effects between Rebif and Avonex. Herein, RRMS patients were treated for three months with IFN-β 1a and the levels of plasma cytokines and gene expression in peripheral blood mononuclear cells were examined. Thirty-two normal subjects were compared to thirty-two RRMS patients, of which ten were treated with Rebif and ten with Avonex. Rebif and Avonex both significantly and equally suppressed plasma TNF-α and IL-6 levels. Rebif suppressed IL-13 significantly more than Avonex. Rebif also significantly suppressed the levels of the chemokines CCL17 and RANTES, the protease ADAM8, and COX-2 at a higher degree compared to Avonex. The STAT1-inducible genes IP-10 and caspase 1 were significantly increased with Rebif compared to Avonex. In conclusion, the higher dosed, more frequently administered IFN-β 1a Rebif when compared to IFN β-1a Avonex has more potent immunomodulatory effects. These quantitative results might relate to efficacy and side-effect profile of the two IFN-β 1a formulations and provide prospective practical clinical tools to monitor treatment and adjust dosage.
doi:10.1016/j.jns.2011.05.024
PMCID: PMC3395433  PMID: 21658727
Multiple sclerosis; CNS Demyelination; Autoimmunity interferon; dosage; efficacy; cytokines; inflammatory gene expression; Signaling; Signal Transducers and Activators of Transcription STAT; nuclear factor kappa-B (NF-κB); peripheral immune cells; EAE/TMEV
18.  Spatial variability and changes of metabolite concentrations in the cortico-spinal tract in multiple sclerosis using coronal CSI 
Human Brain Mapping  2012;35(3):993-1003.
We characterized metabolic changes along the cortico-spinal tract (CST) in multiple sclerosis (MS) patients using a novel application of chemical shift imaging (CSI) and considering the spatial variation of metabolite levels. Thirteen relapsing-remitting (RR) and 13 primary-progressive (PP) MS patients and 16 controls underwent 1H-MR CSI, which was applied to coronal-oblique scans to sample the entire CST. The concentrations of the main metabolites, i.e., N-acetyl-aspartate, myo-Inositol (Ins), choline containing compounds (Cho) and creatine and phosphocreatine (Cr), were calculated within voxels placed in regions where the CST is located, from cerebral peduncle to corona radiata. Differences in metabolite concentrations between groups and associations between metabolite concentrations and disability were investigated, allowing for the spatial variability of metabolite concentrations in the statistical model. RRMS patients showed higher CST Cho concentration than controls, and higher CST Ins concentration than PPMS, suggesting greater inflammation and glial proliferation in the RR than in the PP course. In RRMS, a significant, albeit modest, association between greater Ins concentration and greater disability suggested that gliosis may be relevant to disability. In PPMS, lower CST Cho and Cr concentrations correlated with greater disability, suggesting that in the progressive stage of the disease, inflammation declines and energy metabolism reduces. Attention to the spatial variation of metabolite concentrations made it possible to detect in patients a greater increase in Cr concentration towards the superior voxels as compared to controls and a stronger association between Cho and disability, suggesting that this step improves our ability to identify clinically relevant metabolic changes.
doi:10.1002/hbm.22229
PMCID: PMC4238834  PMID: 23281189
multiple sclerosis; MRI; MRS
19.  Association of Expanded Disability Status Scale and Cytokines after Intervention with Co-supplemented Hemp Seed, Evening Primrose Oils and Hot-natured Diet in Multiple Sclerosis Patients♦ 
BioImpacts : BI  2012;3(1):43-47.
Introduction
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Because of limited efficacy and adverse side effects, identifying novel therapeutic and protective agents is important. The aim of this study is to examine the correlations between expanded disability status scale (EDSS) and cytokines after intervention with co-supplemented hemp seed and evening primrose oils and hot-natured diet in patients with relapsing-remitting multiple sclerosis (RRMS).
Methods
We studied a group of 23 patients with clinically definite RRMS, with EDSS<6 who received co-supplemented hemp seed and evening primrose oils with advising hot-natured diet. Clinically EDSS and immunological factors (plasma cytokines of IL-4, IFN-γ and IL-17) were assessed at baseline and after 6 months.
Results
Mean follow-up was 180±2.9 days (N=23, 7 Male and 16 Females aged 25.0±7.5 years with disease duration 6.26±3.9 years). After 6 months, significant improvements in extended disability status score were found in the patients in agreement with decrease cytokines of IFN-γ and IL-17 and increase cytokines of IL-4. Clinical and immunological parameters showed improvement in the patients after the intervention.
Conclusion
Our study shows that co-supplemented hemp seed and evening primrose oils with hot-natured diet can have beneficial effects in improving clinical symptoms in relapsing remitting MS patients and significant correlation was found between EDSS and immunological findings.
doi:10.5681/bi.2013.001
PMCID: PMC3648912  PMID: 23678469
Multiple Sclerosis; Hot-natured Diet; Evening Primrose; Oenothera biennis L.; Hemp seed; Cannabis sativa L.; Inflammation; Therapy
20.  Regional White Matter Atrophy–Based Classification of Multiple Sclerosis in Cross-Sectional and Longitudinal Data 
Background and Purpose
The different clinical subtypes of multiple sclerosis (MS) may reflect underlying differences in affected neuroanatomic regions. Our aim was to analyze the effectiveness of jointly using the inferior subolivary medulla oblongata volume (MOV) and the cross-sectional area of the corpus callosum in distinguishing patients with relapsing-remitting multiple sclerosis (RRMS), secondary-progressive multiple sclerosis (SPMS), and primary-progressive multiple sclerosis (PPMS).
Materials and Methods
We analyzed a cross-sectional dataset of 64 patients (30 RRMS, 14 SPMS, 20 PPMS) and a separate longitudinal dataset of 25 patients (114 MR imaging examinations). Twelve patients in the longitudinal dataset had converted from RRMS to SPMS. For all images, the MOV and corpus callosum were delineated manually and the corpus callosum was parcellated into 5 segments. Patients from the cross-sectional dataset were classified as RRMS, SPMS, or PPMS by using a decision tree algorithm with the following input features: brain parenchymal fraction, age, disease duration, MOV, total corpus callosum area and areas of 5 segments of the corpus callosum. To test the robustness of the classification technique, we applied the results derived from the cross-sectional analysis to the longitudinal dataset.
Results
MOV and central corpus callosum segment area were the 2 features retained by the decision tree. Patients with MOV >0.94 cm3 were classified as having RRMS. Patients with progressive MS were further subclassified as having SPMS if the central corpus callosum segment area was <55.12 mm2, and as having PPMS otherwise. In the cross-sectional dataset, 51/64 (80%) patients were correctly classified. For the longitudinal dataset, 88/114 (77%) patient time points were correctly classified as RRMS or SPMS.
Conclusions
Classification techniques revealed differences in affected neuroanatomic regions in subtypes of multiple sclerosis. The combination of central corpus callosum segment area and MOV provides good discrimination among patients with RRMS, SPMS, and PPMS.
doi:10.3174/ajnr.A1659
PMCID: PMC2821733  PMID: 19696139
21.  Sera from Remitting and Secondary Progressive Multiple Sclerosis Patients Disrupt the Blood-Brain Barrier 
PLoS ONE  2014;9(3):e92872.
Background
Pathological destruction of blood-brain barrier (BBB) has been thought to be the initial key event in the process of developing multiple sclerosis (MS). The purpose of the present study was to clarify the possible molecular mechanisms responsible for the malfunction of BBB by sera from relapse-remitting MS (RRMS) and secondary progressive MS (SPMS) patients.
Methods
We evaluated the effects of sera from the patients in the relapse phase of RRMS (RRMS-R), stable phase of RRMS (RRMS-S) and SPMS on the expression of tight junction proteins and vascular cell adhesion protein-1 (VCAM-1), and on the transendothelial electrical resistance (TEER) in human brain microvascular endothelial cells (BMECs).
Results
Sera from the RRMS-R or SPMS patients decreased the claudin-5 protein expression and the TEER in BMECs. In RRMS-R, this effect was restored after adding an MMP inhibitor, and the MMP-2/9 secretion by BMECs was significantly increased after the application of patients' sera. In SPMS, the immunoglobulin G (IgG) purified from patients' sera also decreased the claudin-5 protein expression and the TEER in BMECs. The sera and purified IgG from all MS patients increased the VCAM-1 protein expression in BMECs.
Conclusions
The up-regulation of autocrine MMP-2/9 by BMECs after exposure to sera from RRMS-R patients or the autoantibodies against BMECs from SPMS patients can compromise the BBB. Both RRMS-S and SPMS sera increased the VCAM-1 expression in the BBB, thus indicating that targeting the VCAM-1 in the BBB could represent a possible therapeutic strategy for even the stable phase of MS and SPMS.
doi:10.1371/journal.pone.0092872
PMCID: PMC3970956  PMID: 24686948
22.  Magnetic Resonance Spectroscopic Findings of Chronic Lesions in Two Subtypes of Multiple Sclerosis: Primary Progressive Versus Relapsing Remitting 
Iranian Journal of Radiology  2013;10(3):128-132.
Background
Multiple sclerosis (MS) is a highly prevalent cause of neurological disability and has different clinical subtypes with potentially different underlying pathologies. Differentiation of primary progressive multiple sclerosis (PPMS) from relapsing remitting multiple sclerosis (RRMS) could be difficult especially in its early phases.
Objectives
We compared brain metabolite concentrations and ratios in patients with PPMS and RRMS by magnetic resonance spectroscopic imaging (MRSI).
Patients and Methods
Thirty patients with definite MS (15 with RRMS and 15 with PPMS) underwent MRSI and their non-enhancing lesion metabolites were measured. N-acetyl aspartate (NAA), Creatine (Cr), Choline (Cho), NAA/Cr and NAA/Cho were measured and compared between the two MS subtypes.
Results
When the two MS groups were compared together, we found that Cr was significantly increased (P value=0.008) and NAA/Cr was significantly decreased (P value=0.03) in non-enhancing lesions in PPMS compared with RRMS. There was no significant difference in NAA, Cho or NAA/Cho between the two MS subtypes.
Conclusion
MRS is a potential way to differentiate PPMS and RRMS.
doi:10.5812/iranjradiol.11336
PMCID: PMC3857974  PMID: 24348597
Multiple Sclerosis, Chronic Progressive; Multiple Sclerosis, Relapsing-Remitting; Magnetic Resonance Spectroscopy
23.  Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis 
PLoS ONE  2008;3(7):e2559.
Background
There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS).
Methodology/Principal Findings
In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138−) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP)-9 and the B cell chemokine CxCL-13.
Conclusions
Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS.
doi:10.1371/journal.pone.0002559
PMCID: PMC2438478  PMID: 18596942
24.  Mesenchymal stem cells in multiple sclerosis - translation to clinical trials 
Journal of Medicine and Life  2015;8(1):24-27.
Multiple sclerosis is a chronic inflammatory disease of the central nervous system, characterized by an aberrant activation of the immune system and combining demyelination with neurodegeneration. Studies on experimental models of multiple sclerosis revealed immunomodulatory and immunosuppressive properties of mesenchymal stem cells. Clinical trials using mesenchymal stem cells therapy in multiple sclerosis patients showed tolerability, safety on short term, some immunomodulatory properties reducing the Th1 proinflammatory response and the inflammatory MRI parameters. The author reviews the data about experimental studies and clinical trials using mesenchymal stem cells for the treatment of multiple sclerosis.
Abbreviations: MS = multiple sclerosis, RRMS = relapsing-remitting multiple sclerosis, PPMS = primary progressive multiple sclerosis, EAE = experimental autoimmune encephalomyelitis, MOG = myelin oligodendrocyte glycoprotein, PLP = proteolipid protein, MSCs = mesenchymal stem cells, CNS = central nervous system, IT = intrathecal, ALS = amyotrophic lateral sclerosis, MSC-NPs = mesenchymal stem cell-neural progenitors, EDSS = expanded disability status score.
PMCID: PMC4397514  PMID: 25914733
mesenchymal stem cells; multiple sclerosis; immunomodulation; immunosuppression; clinical trial
25.  Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis 
In an important article published in Nature Medicine, Liu and colleagues described a novel CD4+ FoxA1+ regulatory T (Treg) cell population as distinct regulators of relapsing-remitting multiple sclerosis (RRMS) and experimental autoimmune encephalomyelitis (EAE). CD4+ FoxA1+ Treg cells appear as key regulators of responsiveness to therapy with interferon beta (IFN-β) in RRMS patients. Data indicate that CD4+FoxA1+ FOXP3− Treg cells develop within the central nervous system (CNS), and a potential of cerebellar granule neurons (CGN) in generation of CD4+FoxA1+PD-L1hiFOXP3− Treg cells from encephalitogenic CD4+ T cells.
A CD4 co-receptor specific ligand, IL-16, governs trafficking and biological properties of CD4+ T cells irrespective of their activation state. Functions of IL-16, relevant to Treg cells, include expansion of CD4+CD25+ T cells in long-term cultures with IL-2, de novo induction of FOXP-3 and migration of FOXP-3+ T cells. IL-16 is highly conserved across species including human and mouse. CGN and neurons in hippocampus contain neuronal-IL-16 (NIL-16), splice variant of immune IL-16, and express CD4 molecule. In a CD4-dependent manner, IL-16 supports cultured CGN survival.
Concomitant studies of RRMS lesions and corresponding MOG35–55-induced relapsing EAE in (B6 × SJL)F1 (H-2b/s) mice discovered similar roles of IL-16 in regulation of relapsing disease. In RRMS and EAE relapse, peak levels of IL-16 and active caspase-3 correlated with CD4+ T cell infiltration and levels of T-bet, Stat-1(Tyr701), and phosphorylated neurofilaments of axonal cytoskeleton [NF (M + H) P], suggesting a role of locally produced IL-16 in regulation of CD4+ Th1 inflammation and axonal damage, respectively. IL-16 was abundantly present in CD4+ T cells, followed by CD20+ B, CD8+ T, CD83+ dendritic cells, and Mac-1+ microglia. Apart from lesions, bioactive IL-16 was located in normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in RRMS brain and spinal cord.
A cytokine IL-16 emerges as an important regulator of relapsing MS and EAE. Better understanding of immune cell-neuron interactions mediated by IL-16 will foster development of more specific CD4+ T cell subset-targeted therapies to prevent or ameliorate progression of neuroinflammation and axonal and neuronal damage. Translational studies necessitate corresponding EAE models.
doi:10.1186/s12974-015-0292-x
PMCID: PMC4426180  PMID: 25896927
IL-16; Multiple sclerosis; Cerebellum; CD4+ T cells; IFN-β; FoxA1; MOG; EAE; Translational; Therapy

Results 1-25 (1384387)