Search tips
Search criteria

Results 1-25 (530695)

Clipboard (0)

Related Articles

1.  Germ Tube Mediated Invasion of Batrachochytrium dendrobatidis in Amphibian Skin Is Host Dependent 
PLoS ONE  2012;7(7):e41481.
Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.
We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea.
Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus.
In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host epidermis.
PMCID: PMC3401113  PMID: 22911798
2.  Immune Defenses against Batrachochytrium dendrobatidis, a Fungus Linked to Global Amphibian Declines, in the South African Clawed Frog, Xenopus laevis▿  
Infection and Immunity  2010;78(9):3981-3992.
Batrachochytrium dendrobatidis is a chytrid fungus that causes the lethal skin disease chytridiomycosis in amphibians. It is regarded as an emerging infectious disease affecting diverse amphibian populations in many parts of the world. Because there are few model amphibian species for immunological studies, little is known about immune defenses against B. dendrobatidis. We show here that the South African clawed frog, Xenopus laevis, is a suitable model for investigating immunity to this pathogen. After an experimental exposure, a mild infection developed over 20 to 30 days and declined by 45 days postexposure. Either purified antimicrobial peptides or mixtures of peptides in the skin mucus inhibited B. dendrobatidis growth in vitro. Skin peptide secretion was maximally induced by injection of norepinephrine, and this treatment resulted in sustained skin peptide depletion and increased susceptibility to infection. Sublethal X-irradiation of frogs decreased leukocyte numbers in the spleen and resulted in greater susceptibility to infection. Immunization against B. dendrobatidis induced elevated pathogen-specific IgM and IgY serum antibodies. Mucus secretions from X. laevis previously exposed to B. dendrobatidis contained significant amounts of IgM, IgY, and IgX antibodies that bind to B. dendrobatidis. These data strongly suggest that both innate and adaptive immune defenses are involved in the resistance of X. laevis to lethal B. dendrobatidis infections.
PMCID: PMC2937463  PMID: 20584973
3.  The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus ▿  
Applied and Environmental Microbiology  2009;75(21):6635-6638.
The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.
PMCID: PMC2772424  PMID: 19717627
4.  Fungal Infection Intensity and Zoospore Output of Atelopus zeteki, a Potential Acute Chytrid Supershedder 
PLoS ONE  2014;9(3):e93356.
Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd). Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus zeteki, a highly susceptible species that has undergone substantial population declines throughout its range, rapidly and exponentially increases skin Bd infection intensity, achieving intensities that are several orders of magnitude greater than most other species reported. We experimentally infected individuals that were never exposed to Bd (n = 5) or previously exposed to an attenuated Bd strain (JEL427-P39; n = 3). Within seven days post-inoculation, the average Bd infection intensity was 18,213 zoospores (SE: 9,010; range: 0 to 66,928). Both average Bd infection intensity and zoospore output (i.e., the number of zoospores released per minute by an infected individual) increased exponentially until time of death (t50 = 7.018, p<0.001, t46 = 3.164, p = 0.001, respectively). Mean Bd infection intensity and zoospore output at death were 4,334,422 zoospores (SE: 1,236,431) and 23.55 zoospores per minute (SE: 22.78), respectively, with as many as 9,584,158 zoospores on a single individual. The daily percent increases in Bd infection intensity and zoospore output were 35.4% (SE: 0.05) and 13.1% (SE: 0.04), respectively. We also found that Bd infection intensity and zoospore output were positively correlated (t43 = 3.926, p<0.001). All animals died between 22 and 33 days post-inoculation (mean: 28.88; SE: 1.58). Prior Bd infection had no effect on survival, Bd infection intensity, or zoospore output. We conclude that A. zeteki, a highly susceptible amphibian species, may be an acute supershedder. Our results can inform epidemiological models to estimate Bd outbreak probability, especially as they relate to reintroduction programs.
PMCID: PMC3968150  PMID: 24675899
5.  Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus 
BMC Ecology  2013;13:27.
Batrachochytrium dendrobatidis (Bd), the causative agent of chytridiomycosis, is decimating amphibians worldwide. Unsurprisingly, the majority of studies have therefore concentrated on documenting morbidity and mortality of susceptible species and projecting population consequences as a consequence of this emerging infectious disease. Currently, there is a paucity of studies investigating the sub-lethal costs of Bd in apparently asymptomatic species, particularly in controlled experimental conditions. Here we report the consequences of a single dose of B. dendrobatidis zoospores on captive adult palmate newts (Lissotriton helveticus) for morphological and behavioural traits that associate with reproductive success.
A single exposure to ~2000 zoospores induced a subclinical Bd infection. One week after inoculation 84% of newts tested positive for Bd, and of those, 98% had apparently lost the infection by the day 30. However, exposed newts suffered significant mass loss compared with control newts, and those experimental newts removing higher levels of Bd lost most mass. We found no evidence to suggest that three secondary sexual characteristics (areas of dorsal crest and rear foot webbing, and length of tail filament) were reduced between experimental versus control newts; in fact, rear foot webbing was 26% more expansive at the end of the experiment in exposed newts. Finally, compared with unexposed controls, exposure to Bd was associated with a 50% earlier initiation of the non-reproductive terrestrial phase.
Our results suggest that Bd has measureable, but sub-lethal effects, on adult palmate newts, at least under the laboratory conditions presented. We conclude that the effects reported are most likely to be mediated through the initiation of costly immune responses and/or tissue repair mechanisms. Although we found no evidence of hastened secondary sexual trait regression, through reducing individual body condition and potentially, breeding season duration, we predict that Bd exposure might have negative impacts on populations of palmate newts through reducing individual reproductive success and adult recruitment.
PMCID: PMC3722082  PMID: 23866033
Body condition; Cost of immunity; Chytridiomycosis; Emerging infectious disease; Resistance; Secondary sexual traits
6.  Evaluation of Amphotericin B and Chloramphenicol as Alternative Drugs for Treatment of Chytridiomycosis and Their Impacts on Innate Skin Defenses 
Applied and Environmental Microbiology  2014;80(13):4034-4041.
Chytridiomycosis, an amphibian skin disease caused by the emerging fungal pathogen Batrachochytrium dendrobatidis, has been implicated in catastrophic global amphibian declines. The result is an alarming decrease in amphibian diversity that is a great concern for the scientific community. Clinical trials testing potential antifungal drugs are needed to identify alternative treatments for amphibians infected with this pathogen. In this study, we quantified the MICs of chloramphenicol (800 μg/ml), amphotericin B (0.8 to 1.6 μg/ml), and itraconazole (Sporanox) (20 ng/ml) against B. dendrobatidis. Both chloramphenicol and amphotericin B significantly reduced B. dendrobatidis infection in naturally infected southern leopard frogs (Rana [Lithobates] sphenocephala), although neither drug was capable of complete fungal clearance. Long-term exposure of R. sphenocephala to these drugs did not inhibit antimicrobial peptide (AMP) synthesis, indicating that neither drug is detrimental to this important innate skin defense. However, we observed that chloramphenicol, but not amphotericin B or itraconazole, inhibited the growth of multiple R. sphenocephala skin bacterial isolates in vitro at concentrations below the MIC against B. dendrobatidis. These results indicate that treatment with chloramphenicol might dramatically alter the protective natural skin microbiome when used as an antifungal agent. This study represents the first examination of the effects of alternative antifungal drug treatments on amphibian innate skin defenses, a crucial step to validating these treatments for practical applications.
PMCID: PMC4054225  PMID: 24771024
7.  Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians 
Ecology and Evolution  2014;4(18):3633-3641.
Virulence of infectious pathogens can be unstable and evolve rapidly depending on the evolutionary dynamics of the organism. Experimental evolution can be used to characterize pathogen evolution, often with the underlying objective of understanding evolution of virulence. We used experimental evolution techniques (serial transfer experiments) to investigate differential growth and virulence of Batrachochytrium dendrobatidis (Bd), a fungal pathogen that causes amphibian chytridiomycosis. We tested two lineages of Bd that were derived from a single cryo-archived isolate; one lineage (P10) was passaged 10 times, whereas the second lineage (P50) was passaged 50 times. We quantified time to zoospore release, maximum zoospore densities, and timing of zoospore activity and then modeled population growth rates. We also conducted exposure experiments with a susceptible amphibian species, the common green tree frog (Litoria caerulea) to test the differential pathogenicity. We found that the P50 lineage had shorter time to zoospore production (Tmin), faster rate of sporangia death (ds), and an overall greater intrinsic population growth rate (λ). These patterns of population growth in vitro corresponded with higher prevalence and intensities of infection in exposed Litoria caerulea, although the differences were not significant. Our results corroborate studies that suggest that Bd may be able to evolve relatively rapidly. Our findings also challenge the general assumption that pathogens will always attenuate in culture because shifts in Bd virulence may depend on laboratory culturing practices. These findings have practical implications for the laboratory maintenance of Bd isolates and underscore the importance of understanding the evolution of virulence in amphibian chytridiomycosis.
PMCID: PMC4224537  PMID: 25478154
Amphibian chytridiomycosis; amphibian declines; Batrachochytrium dendrobatidis; evolution of virulence; experimental evolution; host–pathogen interactions; serial passage experiments
8.  Swabbing Often Fails to Detect Amphibian Chytridiomycosis under Conditions of Low Infection Load 
PLoS ONE  2014;9(10):e111091.
The pathogenic chytrid fungus, Batrachochytrium dendrobatidis (denoted Bd), causes large-scale epizootics in naïve amphibian populations. Intervention strategies to rapidly respond to Bd incursions require sensitive and accurate diagnostic methods. Chytridiomycosis usually is assessed by quantitative polymerase chain reaction (qPCR) amplification of amphibian skin swabs. Results based on this method, however, sometimes yield inconsistent results on infection status and inaccurate scores of infection intensity. In Asia and other regions where amphibians typically bear low Bd loads, swab results are least reliable. We developed a Bd-sampling method that collects zoospores released by infected subjects into an aquatic medium. Bd DNA is extracted by filters and amplified by nested PCR. Using laboratory colonies and field populations of Bombina orientalis, we compare results with those obtained on the same subjects by qPCR of DNA extracted from swabs. Many subjects, despite being diagnosed as Bd-negative by conventional methods, released Bd zoospores into collection containers and thus must be considered infected. Infection loads determined from filtered water were at least 1000 times higher than those estimated from swabs. Subjects significantly varied in infection load, as they intermittently released zoospores, over a 5-day period. Thus, the method might be used to compare the infectivity of individuals and study the periodicity of zoospore release. Sampling methods based on water filtration can dramatically increase the capacity to accurately diagnose chytridiomycosis and contribute to a better understanding of the interactions between Bd and its hosts.
PMCID: PMC4205094  PMID: 25333363
9.  Resistance to Chytridiomycosis in European Plethodontid Salamanders of the Genus Speleomantes 
PLoS ONE  2013;8(5):e63639.
North America and the neotropics harbor nearly all species of plethodontid salamanders. In contrast, this family of caudate amphibians is represented in Europe and Asia by two genera, Speleomantes and Karsenia, which are confined to small geographic ranges. Compared to neotropical and North American plethodontids, mortality attributed to chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) has not been reported for European plethodontids, despite the established presence of Bd in their geographic distribution. We determined the extent to which Bd is present in populations of all eight species of European Speleomantes and show that Bd was undetectable in 921 skin swabs. We then compared the susceptibility of one of these species, Speleomantes strinatii, to experimental infection with a highly virulent isolate of Bd (BdGPL), and compared this to the susceptible species Alytes muletensis. Whereas the inoculated A. muletensis developed increasing Bd-loads over a 4-week period, none of five exposed S. strinatii were colonized by Bd beyond 2 weeks post inoculation. Finally, we determined the extent to which skin secretions of Speleomantes species are capable of killing Bd. Skin secretions of seven Speleomantes species showed pronounced killing activity against Bd over 24 hours. In conclusion, the absence of Bd in Speleomantes combined with resistance to experimental chytridiomycosis and highly efficient skin defenses indicate that the genus Speleomantes is a taxon unlikely to decline due to Bd.
PMCID: PMC3659026  PMID: 23703511
10.  A Fungal Pathogen of Amphibians, Batrachochytrium dendrobatidis, Attenuates in Pathogenicity with In Vitro Passages 
PLoS ONE  2013;8(10):e77630.
Laboratory investigations into the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), have accelerated recently, given the pathogen’s role in causing the global decline and extinction of amphibians. Studies in which host animals were exposed to Bd have largely assumed that lab-maintained pathogen cultures retained the infective and pathogenic properties of wild isolates. Attenuated pathogenicity is common in artificially maintained cultures of other pathogenic fungi, but to date, it is unknown whether, and to what degree, Bd might change in culture. We compared zoospore production over time in two samples of a single Bd isolate having different passage histories: one maintained in artificial media for more than six years (JEL427-P39), and one recently thawed from cryopreserved stock (JEL427-P9). In a common garden experiment, we then exposed two different amphibian species, Eleutherodactylus coqui and Atelopus zeteki, to both cultures to test whether Bd attenuates in pathogenicity with in vitro passages. The culture with the shorter passage history, JEL427-P9, had significantly greater zoospore densities over time compared to JEL427-P39. This difference in zoospore production was associated with a difference in pathogenicity for a susceptible amphibian species, indicating that fecundity may be an important virulence factor for Bd. In the 130-day experiment, Atelopus zeteki frogs exposed to the JEL427-P9 culture experienced higher average infection intensity and 100% mortality, compared with 60% mortality for frogs exposed to JEL427-P39. This effect was not observed with Eleutherodactylus coqui, which was able to clear infection. We hypothesize that the differences in phenotypic performance observed with Atelopus zeteki are rooted in changes of the Bd genome. Future investigations enabled by this study will focus on the underlying mechanisms of Bd pathogenicity.
PMCID: PMC3795048  PMID: 24130895
11.  Persistence of the emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host greatly increases the probability of host extinction 
Pathogens do not normally drive their hosts to extinction; however, Batrachochytrium dendrobatidis, which causes amphibian chytridiomycosis, has been able to do so. Theory predicts that extinction can be caused by long-lived or saprobic free-living stages. The hypothesis that such a stage occurs in B. dendrobatidis is supported by the recent discovery of an apparently encysted form of the pathogen. To investigate the effect of a free-living stage of B. dendrobatidis on host population dynamics, a mathematical model was developed to describe the introduction of chytridiomycosis into a breeding population of Bufo bufo, parametrized from laboratory infection and transmission experiments. The model predicted that the longer that B. dendrobatidis was able to persist in water, either due to an increased zoospore lifespan or saprobic reproduction, the more likely it was that it could cause local B. bufo extinction (defined as decrease below a threshold level). Establishment of endemic B. dendrobatidis infection in B. bufo, with severe host population depression, was also possible, in agreement with field observations. Although this model is able to predict clear trends, more precise predictions will only be possible when the life history of B. dendrobatidis, including free-living stages of the life cycle, is better understood.
PMCID: PMC2593721  PMID: 18048287
mathematical modelling; epidemiology; Batrachochytrium dendrobatidis; chytridiomycosis; Bufo bufo; amphibian declines
12.  Sodium Chloride Inhibits the Growth and Infective Capacity of the Amphibian Chytrid Fungus and Increases Host Survival Rates 
PLoS ONE  2012;7(5):e36942.
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0–5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1–4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.
PMCID: PMC3349647  PMID: 22590639
13.  Species-Specific Chitin-Binding Module 18 Expansion in the Amphibian Pathogen Batrachochytrium dendrobatidis 
mBio  2012;3(3):e00150-12.
Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity.
Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide spread and associated decline in amphibian populations, it is imperative to incorporate novel genomic and genetic techniques into the study of this species. In this study, we present the first reported potential pathogenicity factors in B. dendrobatidis. In silico studies such as this allow us to identify putative targets for more specific molecular analyses, furthering our hope for the control of this pathogen.
PMCID: PMC3569864  PMID: 22718849
14.  The invasive chytrid fungus of amphibians paralyzes lymphocyte responses 
Science (New York, N.Y.)  2013;342(6156):366-369.
The chytrid fungus, Batrachochytrium dendrobatidis, causes chytridiomycosis and is a major contributor to global amphibian declines. Although amphibians have robust immune defenses, clearance of this pathogen is impaired. Because inhibition of host immunity is a common survival strategy of pathogenic fungi, we hypothesized that B. dendrobatidis evades clearance by inhibiting immune functions. We found that B. dendrobatidis cells and supernantants impaired lymphocyte proliferation and induced apoptosis; however, fungal recognition and phagocytosis by macrophages and neutrophils was not impaired. Fungal inhibitory factors were resistant to heat, acid, and protease. Their production was absent in zoospores and reduced by nikkomycin Z, suggesting that they may be components of the cell wall. Evasion of host immunity may explain why this pathogen has devastated amphibian populations worldwide.
PMCID: PMC3956111  PMID: 24136969
15.  Riding the Wave: Reconciling the Roles of Disease and Climate Change in Amphibian Declines 
PLoS Biology  2008;6(3):e72.
We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.
Author Summary
Once introduced, diseases may spread quickly through new areas, infecting naive host populations, such as has been documented in Ebola virus in African primates or rabies in North American mammals. What drives the spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, is of particular concern because it has contributed to the global decline of amphibians. We modeled the spatiotemporal pattern of the loss of upland amphibian populations in Central and South America as a proxy for the arrival of Bd and found that amphibian declines in Central and South America are best explained by Bd spreading through upland populations; we identified four separate introductions of Bd into South America. Climate change seriously threatens biodiversity and influences endemic host–pathogen systems, but we found no evidence that climate change has been driving outbreaks of chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Our findings further strengthen the spreading-pathogen hypothesis proposed for Central America, and identify new evidence for similar patterns of decline in South American amphibians. Our results will inform management and research efforts related to Bd and other invasive species, as effective conservation actions depend on correctly identifying essential threats to biodiversity, and possible synergistic interactions.
The spread of chytrid fungus, rather than climate change, best explains amphibian declines in Central and South America, based on an analysis of observed epidemics with predictable spatiotemporal patterns in four of five mountain ranges.
PMCID: PMC2270328  PMID: 18366257
16.  Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's “10,000 Zoospore Rule” 
PLoS ONE  2011;6(3):e16708.
To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly—in nearly total isolation from conspecifics—and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding—when mortality occurs—before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later.
PMCID: PMC3053364  PMID: 21423745
17.  Survival of Batrachochytrium dendrobatidis in Water: Quarantine and Disease Control Implications 
Emerging Infectious Diseases  2003;9(8):922-925.
Amphibian chytridiomycosis is an emerging infectious disease of amphibians thought to be moved between countries by trade in infected amphibians. The causative fungus, Batrachochytrium dendrobatidis, produces aquatic, motile zoospores; infections have been achieved in experiments by exposing amphibians to water containing zoospores. However, the ability of this fungus to survive in the environment in the absence of an amphibian host is unknown. We show that B. dendrobatidis will survive in tap water and in deionized water for 3 and 4 weeks, respectively. In lake water, infectivity was observed for 7 weeks after introduction. The knowledge that water can remain infective for up to 7 weeks is important for the formulation of disease control and quarantine strategies for the management of water that has been in contact with amphibians.
PMCID: PMC3020615  PMID: 12967488
Batrachochytrium dendrobatidis; chytridiomycosis; amphibian disease; research
18.  Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis 
Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for each strategy in systems ranging from agriculture to human medicine, and the outlook for each strategy in terms of research needs and long-term potential.
We find that the effects of exposure to Batrachochytrium dendrobatidis occur on a spectrum from transient commensal to lethal pathogen. Management priorities are divided between (1) halting pathogen spread and developing survival assurance colonies, and (2) prophylactic or remedial disease treatment. Epidemiological models of chytridiomycosis suggest that mitigation strategies can control disease without eliminating the pathogen. Ecological ethics guide wildlife disease research, but several ethical questions remain for managing disease in the field.
Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations.
PMCID: PMC3098159  PMID: 21496358
19.  More than Skin Deep: Functional Genomic Basis for Resistance to Amphibian Chytridiomycosis 
Genome Biology and Evolution  2014;7(1):286-298.
The amphibian-killing chytrid fungus Batrachochytrium dendrobatidis (Bd) is one of the most generalist pathogens known, capable of infecting hundreds of species globally and causing widespread population declines and extinctions. However, some host species are seemingly unaffected by Bd, tolerating or clearing infections without clinical signs of disease. Variation in host immune responses is commonly evoked for these resistant or tolerant species, yet to date, we have no direct comparison of amphibian species responses to infection at the level of gene expression. In this study, we challenged four Central American frog species that vary in Bd susceptibility, with a sympatric virulent strain of the pathogen. We compared skin and spleen orthologous gene expression using differential expression tests and coexpression gene network analyses. We found that resistant species have reduced skin inflammatory responses and increased expression of genes involved in skin integrity. In contrast, only highly susceptible species exhibited suppression of splenic T-cell genes. We conclude that resistance to chytridiomycosis may be related to a species’ ability to escape the immunosuppressive activity of the fungus. Moreover, our results indicate that within-species differences in splenic proteolytic enzyme gene expression may contribute to intraspecific variation in survival. This first comparison of amphibian functional immunogenomic architecture in response to Bd provides insights into key genetic mechanisms underlying variation in disease outcomes among amphibian species.
PMCID: PMC4316636  PMID: 25539724
Batrachochytrium dendrobatidis; immunogenomics; comparative transcriptomics; immunosuppression; amphibian immunity
20.  A Non-Invasive Stress Assay Shows That Tadpole Populations Infected with Batrachochytrium dendrobatidis Have Elevated Corticosterone Levels 
PLoS ONE  2013;8(2):e56054.
Batrachochytrium dendrobatidis (Bd) is a fungus that causes the disease chytridiomycosis and is associated with widespread amphibian declines. Populations vary in their susceptibility to Bd infections, and the virulence of the infecting lineage can also vary. Both of these factors may manifest as a differential physiological stress response. In addition, variation in disease susceptibility across amphibian populations may be influenced by immunosuppression caused by chronic stress imposed by environmental factors. Here, we use a non-invasive water-borne hormone technique to assess stress levels (corticosterone) of free-living tadpole populations that are infected by Bd. We found that corticosterone release rates were higher in infected populations of two species of tadpoles (Alytes obstetricans and A. muletensis) than in an uninfected population for both species. The relationship between corticosterone and the intensity of infection differed between species, with only the infected A. obstetricans population showing a significant positive correlation. The higher corticosterone release rates found in A. obstetricans may be an outcome of infection by a highly virulent lineage of Bd (BdGPL), whereas A. muletensis is infected with a less virulent lineage (BdCAPE). These results suggest that different lineages of Bd impose different levels of stress on the infected animals, and that this may influence survival. The next step is to determine whether higher corticosterone levels make individuals more susceptible to Bd or if Bd infections drive the higher corticosterone levels.
PMCID: PMC3572145  PMID: 23418508
21.  Waterfowl: Potential Environmental Reservoirs of the Chytrid Fungus Batrachochytrium dendrobatidis 
PLoS ONE  2012;7(4):e35038.
Infections with Batrachochytrium dendrobatidis (B. dendrobatidis), the causal agent of chytridiomycosis, have been shown to play an important role in the decline of amphibians worldwide. Spread of the fungus is poorly understood. Bird movement might possibly contribute to the spread of B. dendrobatidis in the environment. Therefore, 397 wild geese in Belgium were screened for presence of B. dendrobatidis on their toes using real-time quantitative PCR (qPCR). In addition, chemotaxis towards, adhesion, survival after desiccation and proliferation of B. dendrobatidis on keratinous toe scales from waterfowl were examined in vitro. qPCR revealed that 76 geese (15%) were positive for B. dendrobatidis. Results of the in vitro tests showed that B. dendrobatidis is attracted to the keratinous toes of aquatic birds on which they can adhere and even proliferate. However, desiccation is poorly tolerated. This suggests waterfowl are potential environmental reservoirs for B. dendrobatidis.
PMCID: PMC3325947  PMID: 22514705
22.  Whether the Weather Drives Patterns of Endemic Amphibian Chytridiomycosis: A Pathogen Proliferation Approach 
PLoS ONE  2013;8(4):e61061.
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.
PMCID: PMC3629077  PMID: 23613783
23.  Duplex Real-Time PCR for Rapid Simultaneous Detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in Amphibian Samples 
Journal of Clinical Microbiology  2013;51(12):4173-4177.
Chytridiomycosis is a lethal fungal disease contributing to declines and extinctions of amphibian species worldwide. The currently used molecular screening tests for chytridiomycosis fail to detect the recently described species Batrachochytrium salamandrivorans. In this study, we present a duplex real-time PCR that allows the simultaneous detection of B. salamandrivorans and Batrachochytrium dendrobatidis. With B. dendrobatidis- and B. salamandrivorans-specific primers and probes, detection of the two pathogens in amphibian samples is possible, with a detection limit of 0.1 genomic equivalent of zoospores of both pathogens per PCR. The developed real-time PCR shows high degrees of specificity and sensitivity, high linear correlations (r2 > 0.995), and high amplification efficiencies (>94%) for B. dendrobatidis and B. salamandrivorans. In conclusion, the described duplex real-time PCR can be used to detect DNA of B. dendrobatidis and B. salamandrivorans with highly reproducible and reliable results.
PMCID: PMC3838082  PMID: 24108616
24.  Genome-Wide Transcriptional Response of Silurana (Xenopus) tropicalis to Infection with the Deadly Chytrid Fungus 
PLoS ONE  2009;4(8):e6494.
Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd) infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus) tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen) following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing efforts to understand differences in response to Bd between susceptible and resistant frog species and the effects of chytridiomycosis in natural populations.
PMCID: PMC2727658  PMID: 19701481
25.  Heterogeneous Occupancy and Density Estimates of the Pathogenic Fungus Batrachochytrium dendrobatidis in Waters of North America 
PLoS ONE  2014;9(9):e106790.
Biodiversity losses are occurring worldwide due to a combination of stressors. For example, by one estimate, 40% of amphibian species are vulnerable to extinction, and disease is one threat to amphibian populations. The emerging infectious disease chytridiomycosis, caused by the aquatic fungus Batrachochytrium dendrobatidis (Bd), is a contributor to amphibian declines worldwide. Bd research has focused on the dynamics of the pathogen in its amphibian hosts, with little emphasis on investigating the dynamics of free-living Bd. Therefore, we investigated patterns of Bd occupancy and density in amphibian habitats using occupancy models, powerful tools for estimating site occupancy and detection probability. Occupancy models have been used to investigate diseases where the focus was on pathogen occurrence in the host. We applied occupancy models to investigate free-living Bd in North American surface waters to determine Bd seasonality, relationships between Bd site occupancy and habitat attributes, and probability of detection from water samples as a function of the number of samples, sample volume, and water quality. We also report on the temporal patterns of Bd density from a 4-year case study of a Bd-positive wetland. We provide evidence that Bd occurs in the environment year-round. Bd exhibited temporal and spatial heterogeneity in density, but did not exhibit seasonality in occupancy. Bd was detected in all months, typically at less than 100 zoospores L−1. The highest density observed was ∼3 million zoospores L−1. We detected Bd in 47% of sites sampled, but estimated that Bd occupied 61% of sites, highlighting the importance of accounting for imperfect detection. When Bd was present, there was a 95% chance of detecting it with four samples of 600 ml of water or five samples of 60 mL. Our findings provide important baseline information to advance the study of Bd disease ecology, and advance our understanding of amphibian exposure to free-living Bd in aquatic habitats over time.
PMCID: PMC4164359  PMID: 25222122

Results 1-25 (530695)