PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1410986)

Clipboard (0)
None

Related Articles

1.  SPARC Is a Key Regulator of Proliferation, Apoptosis and Invasion in Human Ovarian Cancer 
PLoS ONE  2012;7(8):e42413.
Background
Secreted protein acidic and rich in cysteine (SPARC), a calcium-binding matricellular glycoprotein, is implicated in the progression of many cancers. In this study, we investigated the expression and function of SPARC in ovarian cancer.
Methods
cDNA microarray analysis was performed to compare gene expression profiles of the highly invasive and the low invasive subclones derived from the SKOV3 human ovarian cancer cell line. Immunohistochemistry (IHC) staining was performed to investigate SPARC expression in a total of 140 ovarian tissue specimens. In functional assays, effects of SPARC knockdown on the biological behavior of ovarian cancer cells were investigated. The mechanisms of SPARC in ovarian cancer proliferation, apoptosis and invasion were also researched.
Results
SPARC was overexpressed in the highly invasive subclone compared with the low invasive subclone. High SPARC expression was associated with high stage, low differentiation, lymph node metastasis and poor prognosis of ovarian cancer. Knockdown of SPARC expression significantly suppressed ovarian cancer cell proliferation, induced cell apoptosis and inhibited cell invasion and metastasis.
Conclusion
SPARC is overexpressed in highly invasive subclone and ovarian cancer tissues and plays an important role in ovarian cancer growth, apoptosis and metastasis.
doi:10.1371/journal.pone.0042413
PMCID: PMC3411787  PMID: 22879971
2.  Secreted Protein Acidic and Rich in Cysteine (SPARC) Suppresses Angiogenesis by Down-Regulating the Expression of VEGF and MMP-7 in Gastric Cancer 
PLoS ONE  2012;7(9):e44618.
Background
Secreted protein acidic and rich in cysteine (SPARC) is a glycoprotein that functions to inhibit angiogenesis, proliferation, and invasion in different types of cancer. The ability of SPARC to modulate neovascularisation is believed to be mediated in part by its ability to modulate the expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). In this study, we aimed to determine the effect of SPARC expression in gastric cancer cells on proliferation and angiogenesis in vitro and in vivo.
Method
We evaluated expression of SPARC in seven human gastric cancer cell lines. Then we established a stably transfected SPARC overexpressed cell line (BGC-SP) and a stably transfected SPARC knock-down cell line (HGC-sh). The effect of SPARC overexpression and SPARC silencing was studied by examining capillary formation of HUVECs in vitro and a dorsal skin-fold chamber model in vivo. Quantitative real-time PCR and western blotting were performed to detect if the expressions of VEGF and MMP-7 were modulated by SPARC expression. To further determine the effect of SPARC expression on angiogenesis in vivo, xenograft models were established and microvessel density (MVD) of different clones were detected by immunohistochemistry.
Results
Endogenous SPARC overexpression inhibited the expression of VEGF and MMP-7, as well as the angiogenesis induced by BGC-SP cells. Correspondingly, SPARC silencing increased the expression of VEGF and MMP-7, as well as the angiogenesis induced by HGC-sh cells. Elevated angiogenesis induced by SPARC silencing in HGC-sh cells was decreased when VEGF was neutralised by antibodies, and MMP-7 was knocked down in vitro.
Conclusion
SPARC suppresses angiogenesis of gastric cancer by down-regulating the expression of VEGF and MMP-7.
doi:10.1371/journal.pone.0044618
PMCID: PMC3434168  PMID: 22957090
3.  SPARC silencing inhibits the growth of acute myeloid leukemia transformed from myelodysplastic syndrome via induction of cell cycle arrest and apoptosis 
Secreted protein acidic and rich in cysteine (SPARC) plays key roles in erythropoiesis; haploinsufficiency of SPARC is implicated in the progression of the 5q- syndrome. However, the role of SPARC in other subtypes of myelodysplastic syndrome (MDS) is not fully understood, particularly in the del(5q) type with a complex karyotype, which has a high risk to transform into acute myeloid leukemia (AML). In the present study, we investigated the role of SPARC in the proliferation and apoptosis of SKM-1 cells, an acute myeloid leukemia cell line transformed from an MDS cell line. SKM-1 cells were infected with SPARC-RNAi-LV or NC-GFP-LV lentivirus. Apoptosis and cell cycle profiling were assessed by flow cytometry, and cell proliferation was evaluated by MTS assay. The mRNA and protein expression levels of SPARC, p53, caspase-3, caspase-9 and Fas were detected by RT-PCR, real-time PCR and western blot assay. The SPARC shRNA constructed by us led to a significant reduction in SPARC expression in SKM-1 cells. SPARC knockdown inhibited the proliferation of SKM-1 cells by inducing cell cycle arrest at the G1/G0 phase and apoptosis. SPARC knockdown elevated the expression of p53, caspase-9, caspase-3 and Fas at both the mRNA and protein levels. SPARC silencing inhibited the growth of AML transformed from MDS by activating p53-induced apoptosis and cell cycle arrest. These data indicate that SPARC acts as an oncogene in transformed MDS/AML and is a potential therapeutic target in MDS/AML.
doi:10.3892/ijmm.2014.1648
PMCID: PMC3976133  PMID: 24535175
SPARC gene; myelodysplastic syndrome; transfection; the 5q- syndrome
4.  SPARC expression in CML is associated to imatinib treatment and to inhibition of leukemia cell proliferation 
BMC Cancer  2013;13:60.
Background
SPARC is a matricellular glycoprotein with growth-inhibitory and antiangiogenic activity in some cell types. The study of this protein in hematopoietic malignancies led to conflicting reports about its role as a tumor suppressor or promoter, depending on its different functions in the tumor microenvironment. In this study we investigated the variations in SPARC production by peripheral blood cells from chronic myeloid leukemia (CML) patients at diagnosis and after treatment and we identified the subpopulation of cells that are the prevalent source of SPARC.
Methods
We evaluated SPARC expression using real-time PCR and western blotting. SPARC serum levels were detected by ELISA assay. Finally we analyzed the interaction between exogenous SPARC and imatinib (IM), in vitro, using ATP-lite and cell cycle analysis.
Results
Our study shows that the CML cells of patients at diagnosis have a low mRNA and protein expression of SPARC. Low serum levels of this protein are also recorded in CML patients at diagnosis. However, after IM treatment we observed an increase of SPARC mRNA, protein, and serum level in the peripheral blood of these patients that had already started at 3 months and was maintained for at least the 18 months of observation. This SPARC increase was predominantly due to monocyte production. In addition, exogenous SPARC protein reduced the growth of K562 cell line and synergized in vitro with IM by inhibiting cell cycle progression from G1 to S phase.
Conclusion
Our results suggest that low endogenous SPARC expression is a constant feature of BCR/ABL positive cells and that IM treatment induces SPARC overproduction by normal cells. This exogenous SPARC may inhibit CML cell proliferation and may synergize with IM activity against CML.
doi:10.1186/1471-2407-13-60
PMCID: PMC3570354  PMID: 23383963
CML; Imatinib; SPARC; Granulocytes; Monocytes
5.  Overexpression of SPARC correlates with poor prognosis in patients with cervical carcinoma and regulates cancer cell epithelial-mesenchymal transition 
Oncology Letters  2016;11(5):3251-3258.
Secreted protein acidic and rich in cysteine (SPARC) is associated with the progression of numerous types of cancer. However, the role of SPARC in the progression of cervical cancer has not yet been adequately elucidated. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry were employed to evaluate the mRNA and protein expression of SPARC in normal cervical tissue, cervical intraepithelial neoplasia (CIN) and cervical cancer. In addition, three epithelial-mesenchymal transition (EMT) markers (E-cadherin, N-cadherin and vimentin) were detected by immunohistochemistry in the same specimens, and an enzyme-linked immunosorbent assay was conducted to detect the serum levels of SPARC in patients with cervical neoplasia. In highly invasive subclones of human cervical carcinoma cells, HeLa-1 and SiHa-1, lentiviral transfections were performed and RT-qPCR and western blot were used to investigate the effects of downregulated EGF-containing fibulin-like extracellular matrix protein 1 on the expression of E-cadherin, N-cadherin and vimentin. The results revealed that, in cervical carcinoma tissue, SPARC expression was significantly upregulated in a manner that positively correlated with N-cadherin and vimentin expression, and negatively correlated with E-cadherin expression. SPARC overexpression and high serum levels were significantly associated with the progression of cervical cancer and adverse prognosis of cervical cancer patients. Downregulation of SPARC can markedly reduce the expression of N-cadherin and vimentin and increase the expression of E-cadherin. Thus, overexpression of SPARC is significantly associated with poor prognostic clinicopathological characteristics in cervical carcinoma, and may be important in EMT. The results of the current study suggest that SPARC may be a potential therapeutic option for individuals diagnosed with cervical carcinoma.
doi:10.3892/ol.2016.4399
PMCID: PMC4841103  PMID: 27123099
SPARC; cervical carcinoma; prognosis; E-cadherin; N-cadherin; vimentin
6.  SPARC Mediates Src-induced Disruption of Actin Cytoskeleton via Inactivation of Small GTPases Rho-Rac-Cdc42 
Cellular signalling  2011;23(12):1978-1987.
The matricellular glycoprotein Secreted Protein Acidic and Rich in Cysteine (SPARC) plays an important role in the regulation of cell adhesion and proliferation as well as in tumorigenesis and metastasis. Earlier, we reported that, in addition to its potent anti-angiogenic functions, SPARC also induces apoptosis in medulloblastoma cells, mediated by autophagy. We therefore sought to investigate the underlying molecular mechanism through which SPARC inhibits migration and invasion of Daoy medulloblastoma cells, both in vitro and in vivo. For this study, we used SPARC-overexpressing stable Daoy medulloblastoma cells. SPARC overexpression in Daoy medulloblastoma cells inhibited migration and invasion in vitro. Additionally, SPARC overexpression significantly suppressed the activity of Rho, Rac and Cdc42, which all regulate the actin cytoskeleton. This suppression was accompanied by an increase in the phosphorylation of Src at TYR-416, which led to a loss of actin stress fibers and focal contacts and a decrease in the phosphorylation level of cofilin. The reduced phosphorylation level of cofilin, which is indicative of receding Rho function, in turn led to inhibition of active Rho A. To confirm the role of SPARC in inhibition of migration and invasion of Daoy medulloblastoma cells, we transfected parental and SPARC-overexpressing Daoy cells with a plasmid vector carrying siRNA against SPARC. Transfection with SPARC siRNA reversed Src-mediated disruption of the cytoskeleton organization as well as dephosphorylation of cofilin and activation of Rho A. Taken together, these results establish SPARC as an effector of Src-induced cytoskeleton disruption in Daoy medulloblastoma cells, which subsequently led to decreased migration and invasion.
doi:10.1016/j.cellsig.2011.07.008
PMCID: PMC3184354  PMID: 21798346
SPARC; Src; Migration; Invasion; Rho; Rac; Cdc42
7.  Downregulation of SPARC expression decreases gastric cancer cellular invasion and survival 
Background
Secreted protein acidic and rich in cysteine (SPARC) plays a key role in the development of many tissues and organ types. Aberrant SPARC expression was found in a wide variety of human cancers, contributes to tumor development. Because SPARC was found to be overexpressed in human gastric cancer tissue, we therefore to explore the expression of SPARC in gastric cancer lines and the carcinogenic mechanisms.
Methods
SPARC expression was evaluated in a panel of human gastric cancer cell lines. MGC803 and HGC 27 gastric cancer cell lines expressing high level of SPARC were transiently transfected with SPARC-specific small interfering RNAs and subsequently evaluated for effects on invasion and proliferation.
Results
Small interfering RNA-mediated knockdown of SPARC in MGC803 and HGC 27 gastric cancer cells dramatically decreased their invasion. Knockdown of SPARC was also observed to significantly increase the apoptosis of MGC803 and HGC 27 gastric cancer cells compared with control transfected group.
Conclusions
Our data showed that downregulating of SPARC inhibits invasion and growth of human gastric cancer cells. Thus, targeting of SPARC could be an effective therapeutic approach against gastric cancer.
doi:10.1186/1756-9966-29-59
PMCID: PMC2892439  PMID: 20525171
8.  LOSS OF SPARC IN P53-NULL ASTROCYTES PROMOTES MACROPHAGE ACTIVATION AND PHAGOCYTOSIS RESULTING IN DECREASED TUMOR SIZE AND TUMOR CELL SURVIVAL 
Neuro-Oncology  2014;16(Suppl 3):iii44.
BACKGROUND: Both enhanced SPARC expression and the loss of p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival and inhibit apoptosis. This study determined whether the loss of Sparc in astrocytes that are null for p53 would result in reduced cell survival and tumor formation and increased tumor immunogenicity in an in vivo xenograft brain tumor model. METHODS: p53-null and Sparc-null mice were bred to obtain heterozygotes. These were crossed to obtain p53-null/Sparc-null neonates, which served as the source of p53-null/Sparc-null astrocytes for comparison to genetically-matched, control p53-null/Sparc-WT astrocytes. In vitro, Sparc loss was assessed using colony formation in soft agar, proliferation assay, flow cytometry, and Annexin V analysis. Orthotopic xenograft implantation was used to assess Sparc loss on tumor growth, proliferation, collagen deposition, and macrophage/microglia recruitment. RESULTS: In vitro, Sparc loss in p53-null astrocytes resulted in increased cell proliferation (2.7-fold; p < 0.01), but decreased cell survival (WT = 7.2% vs. null = 18.56% apoptotic cells) and a longer cell cycle recovery (2 days) after serum-withdrawal. Furthermore, Sparc loss suppressed growth in soft agar. Histomorphological analysis of CD68 and PAS ± diastase staining of tumor sections demonstrated that Sparc loss promoted macrophage/microglial activation (day 7 = 1.35-fold and day 50 = 1.93-fold; p < 0.001) and phagocytic morphology, respectively. At 7 days, Sparc-null tumors had decreased tumor cell survival, proliferation (MIB-1 for WT = 7.1% vs. null = 0.1%; p = 0.0345), and reduced tumor size (WT = 0.839 mm2 vs. null = 0.199 mm2; p = 0.0091). In addition, Sparc loss altered collagen deposition (WT = collagen bundles vs. null = long fiber structure). CONCLUSIONS: Our results indicate that Sparc loss significantly reduced the ability of p53-null astrocytes to recover from stress in vitro, and to survive and proliferate in vivo. This inability to grow in vivo was associated with an increase in macrophage/microglial activation and phagocytosis. Therefore, we conclude that the loss of p53 in the early stages of glioma formation may cooperate with the induction of SPARC to potentiate cancer cell survival and escape from immune surveillance. We propose that in the background of p53 loss/mutation, therapeutically suppressing SPARC alone, or in combination with other therapies, should promote the ability of patient's immune system to eradicate the tumor. SECONDARY CATEGORY: Immunobiology & Immunotherapy.
doi:10.1093/neuonc/nou209.8
PMCID: PMC4144658
9.  The role of MMP-9 in the anti-angiogenic effect of secreted protein acidic and rich in cysteine 
British Journal of Cancer  2010;102(3):530-540.
Background:
Secreted protein acidic and rich in cysteine (SPARC), a matricellular glycoprotein, modulates cellular interaction with the extracellular matrix and is capable of altering the growth of various cancers. We therefore sought to determine the effect of SPARC expression on medulloblastoma tumour growth and angiogenesis.
Methods:
To this extent, we selected three SPARC full-length cDNA overexpressed clones (Daoy-SP). Consequences of SPARC overexpression were studied in terms of cell growth, angiogenesis using co-culture assay in vitro, dorsal skin-fold chamber assay in vivo, PCR Array for human angiogenic genes, as well as western blotting for angiogenic molecules and tumour growth, in an orthotopic tumour model.
Results:
The SPARC protein and mRNA levels were increased by approximately three-fold in Daoy-SP cells compared with parental (Daoy-P) and vector (Daoy-EV) controls. Daoy-SP clones reduced tumour cell-induced angiogenesis in vitro and in vivo, and formed small tumours with fewer blood vessels when compared with controls. Matrix metalloprotease-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression were decreased in Daoy-SP clones. Further, inhibition of MMP-9 expression caused SPARC-mediated inhibition of angiogenesis and tumour growth as MMP-9 rescued SPARC-mediated anti-angiogenic effect in vitro and tumour growth inhibition in vivo.
Conclusion:
Overexpression of SPARC decreases angiogenesis, which leads to decreased tumour growth. Further, the role of MMP-9 could be attributed to the anti-angiogenic effect of SPARC.
doi:10.1038/sj.bjc.6605538
PMCID: PMC2822952  PMID: 20087345
angiogenesis; SPARC; VEGF; MMP-9; CD-31
10.  Notch signaling regulates tumor-induced angiogenesis in SPARC-overexpressed neuroblastoma 
Angiogenesis  2012;16(1):85-100.
Despite existing aggressive treatment modalities, the prognosis for advanced stage neuroblastoma remains poor with significant long-term illness in disease survivors. Advance stage disease features are associated with tumor vascularity, and as such, angiogenesis inhibitors may prove useful along with current therapies. The matricellular protein, secreted protein acidic and rich in cysteine (SPARC), is known to inhibit proliferation and migration of endothelial cells stimulated by growth factors. Here, we sought to determine the effect of SPARC on neuroblastoma tumor cell-induced angiogenesis and to decipher the molecular mechanisms involved in angiogenesis inhibition. Conditioned medium from SPARC-overexpressed neuroblastoma cells (pSPARC-CM) inhibited endothelial tube formation, cell proliferation, induced programmed cell death and suppressed expression of pro-angiogenic molecules such as VEGF, FGF, PDGF, and MMP-9 in endothelial cells. Further analyses revealed that pSPARC-CM-suppressed expression of growth factors was mediated by inhibition of the Notch signaling pathway, and cells cultured on conditioned medium from tumor cells that overexpress both Notch intracellular domain (NICD-CM) and SPARC resumed the pSPARC-CM-suppressed capillary tube formation and growth factor expression in vitro. Further, SPARC overexpression in neuroblastoma cells inhibited neo-vascularization in vivo in a mouse dorsal air sac model. Furthermore, SPARC overexpression-induced endothelial cell death was observed by co-localization studies with TUNEL assay and an endothelial marker, CD31, in xenograft tumor sections from SPARC-overexpressed mice. Our data collectively suggest that SPARC overexpression induces endothelial cell apoptosis and inhibits angiogenesis both in vitro and in vivo.
doi:10.1007/s10456-012-9301-1
PMCID: PMC3527677  PMID: 22956186
Neuroblastoma; SPARC; Angiogenesis; Apoptosis
11.  Downregulation of SPARC Expression Inhibits the Invasion of Human Trophoblast Cells In Vitro 
PLoS ONE  2013;8(7):e69079.
Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT) invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine) is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ), trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11), KISS1, insulin-like growth factor binding protein 4 (IGFBP4), collagen type I alpha 1 (COLIA1), matrix metallopeptidase 9 (MMP9), and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA), MMP1, gap junction protein alpha 1 (GJA1), et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.
doi:10.1371/journal.pone.0069079
PMCID: PMC3720866  PMID: 23935929
12.  Secreted protein acidic and rich in cysteine (SPARC) is associated with nasopharyngeal carcinoma metastasis and poor prognosis 
Background
The aim of the present study was to analyse the expression of Secreted protein acidic and rich in cysteine (SPARC) in nasopharyngeal carcinoma (NPC) specimens, and to evaluate its correlation with clinicopathologic features, including survival of patients with NPC
Methods
NPC tissue microarrays (TMAs) were constructed from Sun Yat-sen University Cancer Center (SYSUCC), another three centers on mainland China, Singapore and Hong Kong. Using quantitative RT-PCR and Western-blotting techniques, we detected mRNA and protein expression of SPARC in NPC cell lines and immortalized nasopharyngeal epithelial cells (NPECs) induced by Bmi-1 (NPEC2 Bmi-1). The difference of SPARC expression in the cell lines was tested using a t-test method. The relationship between the SPARC expression and clinicopathological data was assessed by chi-square. Survival analysis was estimated using the Kaplan-Meier approach with log-rank test. Univariate and multivariate analyses of clinical variables were performed using Cox proportional hazards regression models.
Results
The expression levels of SPARC mRNA and protein were markedly higher in NPC cell lines than in NPEC2 Bmi-1. Especially, the expression levels of SPARC mRNA and protein were much lower in the 6-10B than in the 5-8 F (P = 0.002, P = 0.001). SPARC immunostaining revealed cytoplasmic localization in NPC cells and no staining in the stroma and epithelium.
In addition, high level of SPARC positively correlated with the status of distant metastasis (P = 0.001) and WHO histological classification (P = 0.023). NPC patients with high SPARC expression also had a significantly poorer prognosis than patients with low SPARC expression (log-rank test, P < 0.001), especially patients with advanced stage disease (log-rank, P < 0.001). Multivariate analysis suggested that the level of SPARC expression was an independent prognostic indicator for the overall survival of patients with NPC (P < 0.001).
Conclusions
SPARC expression is common in NPC patients. Our data shows that elevated SPARC expression is a potential unfavorable prognostic factor for patients with NPC.
doi:10.1186/1479-5876-10-27
PMCID: PMC3296637  PMID: 22321704
SPARC; Nasopharyngeal carcinoma; Metastasis
13.  SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC 
PLoS ONE  2016;11(1):e0147362.
Background
This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice.
Methods
Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres.
Results
It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells.
Conclusions
Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
doi:10.1371/journal.pone.0147362
PMCID: PMC4718619  PMID: 26783756
14.  Losartan Slows Pancreatic Tumor Progression and Extends Survival of SPARC-Null Mice by Abrogating Aberrant TGFβ Activation 
PLoS ONE  2012;7(2):e31384.
Pancreatic adenocarcinoma, a desmoplastic disease, is the fourth leading cause of cancer-related death in the Western world due, in large part, to locally invasive primary tumor growth and ensuing metastasis. SPARC is a matricellular protein that governs extracellular matrix (ECM) deposition and maturation during tissue remodeling, particularly, during wound healing and tumorigenesis. In the present study, we sought to determine the mechanism by which lack of host SPARC alters the tumor microenvironment and enhances invasion and metastasis of an orthotopic model of pancreatic cancer. We identified that levels of active TGFβ1 were increased significantly in tumors grown in SPARC-null mice. TGFβ1 contributes to many aspects of tumor development including metastasis, endothelial cell permeability, inflammation and fibrosis, all of which are altered in the absence of stromal-derived SPARC. Given these results, we performed a survival study to assess the contribution of increased TGFβ1 activity to tumor progression in SPARC-null mice using losartan, an angiotensin II type 1 receptor antagonist that diminishes TGFβ1 expression and activation in vivo. Tumors grown in SPARC-null mice progressed more quickly than those grown in wild-type littermates leading to a significant reduction in median survival. However, median survival of SPARC-null animals treated with losartan was extended to that of losartan-treated wild-type controls. In addition, losartan abrogated TGFβ induced gene expression, reduced local invasion and metastasis, decreased vascular permeability and altered the immune profile of tumors grown in SPARC-null mice. These data support the concept that aberrant TGFβ1-activation in the absence of host SPARC contributes significantly to tumor progression and suggests that SPARC, by controlling ECM deposition and maturation, can regulate TGFβ availability and activation.
doi:10.1371/journal.pone.0031384
PMCID: PMC3279359  PMID: 22348081
15.  PTEN augments SPARC suppression of proliferation and inhibits SPARC-induced migration by suppressing SHC-RAF-ERK and AKT signaling 
Neuro-Oncology  2010;12(9):941-955.
SPARC (secreted protein acidic and rich in cysteine) is expressed in all grades of astrocytoma, including glioblastoma (GBM). SPARC suppresses glioma growth but promotes migration and invasion by mediating integrin and growth factor receptor-regulated kinases and their downstream effectors. PTEN (phosphatase and tensin homolog deleted on chromosome 10), which is commonly lost in primary GBMs, negatively regulates proliferation and migration by inhibiting some of the same SPARC-mediated signaling pathways. This study determined whether PTEN reconstitution in PTEN-mutant, SPARC-expressing U87MG cells could further suppress proliferation and tumor growth but inhibit migration and invasion in SPARC-expressing cells in vitro and in vivo, and thereby prolong survival in animals with xenograft tumors. In vitro, PTEN reduced proliferation and migration in both SPARC-expressing and control cells, with a greater suppression in SPARC-expressing cells. PTEN reconstitution suppressed AKT activation in SPARC-expressing and control cells but suppressed the SHC-RAF-ERK signaling pathway only in SPARC-expressing cells. Importantly, coexpression of SPARC and PTEN resulted in the smallest, least proliferative tumors with reduced invasive capacity and longer animal survival. Furthermore, direct inhibition of the AKT and SHC-RAF-ERK signaling pathways suppressed the proliferation and migration of SPARC-expressing cells in vitro. These findings demonstrate that PTEN reconstitution or inhibition of signaling pathways that are activated by the loss of PTEN provide potential therapeutic strategies to inhibit SPARC-induced invasion while enhancing the negative effect of SPARC on tumor growth.
doi:10.1093/neuonc/noq048
PMCID: PMC2940688  PMID: 20472716
glioma; migration and invasion; proliferation and growth; PTEN; SPARC
16.  RNA interference against SPARC promotes the growth of U-87MG human malignant glioma cells 
Oncology Letters  2011;2(5):985-990.
Malignant glioma is a highly invasive brain tumor resistant to conventional therapies. Secreted protein acidic and rich in cysteine (SPARC) has been shown to facilitate glioma invasion. However, the effects of SPARC on cell growth have yet to be adequately elucidated. In this study, we constructed a plasmid expressing shRNA against SPARC, evaluated the effect of SPARCshRNA on SPARC expression and then assessed its effect on cell growth in U-87MG cells. Using plasmid-delivered shRNA, we effectively suppressed SPARC expression in U-87MG cells. Cell growth curves and colony formation assay suggested that the introduction of SPARCshRNA resulted in an increase of cell growth and colony formation. We also showed that knockdown of SPARC expression was capable of promoting the cell cycle progression from the G1 to S phase. However, no difference was found in the level of apoptosis. A molecular analysis of signal mediators indicated that the inhibition of p-c-Raf (Ser259) and accumulation of p-GSK-3β (Ser9) and p-AKT (Ser473) may be connected with the growth promotion by SPARC shRNA. Our study may provide an insight into the biological function of SPARC in glioma.
doi:10.3892/ol.2011.360
PMCID: PMC3408051  PMID: 22866161
17.  SPARC-Induced Migration of Glioblastoma Cell Lines via uPA-uPAR Signaling and Activation of Small GTPase RhoA 
International journal of oncology  2006;29(6):1349-1357.
Secreted protein acidic and rich in cysteine (SPARC) is highly expressed in human gliomas where it promotes invasion and delays tumor growth, both in vitro and in vivo. SPARC, which interacts at the cell surface, has an impact on intracellular signaling and downstream gene expression changes, which might account for some of its effects on invasion and growth. Additional in vitro studies demonstrated that SPARC delays growth, increases attachment, and modulates migration of tumor cells in an extracellular matrix-specific and concentration-dependent manner. Because the signaling aspect of this migration is neither well understood nor characterized, we overexpressed SPARC in both the minimally-invasive U87 cell line and in the most aggressive invasive cell line, SNB19. We first performed RT-PCR analysis and observed an upregulation of uPA and its receptor, uPAR. We also observed increased expression levels of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9). Western blot analysis confirmed these results, and the enzymatic activity of the metalloproteinases and uPA was further supported by zymography.
Downstream of the uPA-uPAR interaction, upregulation of PI3-K occurred in cells overexpressing SPARC. Using GST-TRBD, we showed the upregulation of active GTP-bound RhoA, but neither Rac1 nor Cdc42 were activated. The inhibition of uPA and uPAR downregulated PI3-K activity and cell migration, as shown by matrigel invasion assay. A dorsal skin-fold chamber model revealed the high angiogenic activity of SPARC, though the proliferation of SPARC overexpressing cells was unaffected. Our results show that the small GTPase RhoA was a critical mediator of invasion or migration in the uPA-uPAR/PI3-K signaling pathway.
PMCID: PMC1661847  PMID: 17088972
Glioblastoma; SPARC; uPA-uPAR signaling; small GTPase RhoA; Migration; SPARC Secreted protein acidic and rich in cysteine, MMP-2 and MMP-9 matrix metalloproteinases-2 and -9, RNAi, RNA interference; siRNA, short interfering RNA; uPA, urokinase-type plasminogen activator (receptor); uPAR, urokinase-type plasminogen activator receptor; CMV, cytomegalovirus; PBS, phosphate-buffered saline; FITC, fluorescein 5-isothiocyanate; EV, empty vector; H&E, hematoxylin & eosin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PBS, phosphate-buffered saline; pU2, plasmid siRNA vector for uPA and uPAR; pGFP, plasmid siRNA for GFP; puPAR,plasmid siRNA vector for uPAR; puPA,plasmid siRNA vector for uPA; PI3-K/Akt, Phosphoinositide 3-kinase/Serine and threonine kinase; FAK, focal adhesion kinase; RT-PCR, reverse transcriptase polymerase chain reaction; ECM, extra-cellular matrix; VEGF, vascular endothelial growth factor; SDS-PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; BSA, bovine serum albumin; GPCR, G-protein coupled receptors; BFGF, Basic fibroblast growth factor; TNF-α, tumor necrosis factor; ANG-1 Angiopoietin-1; HBEGF, heparin-binding EGF-like growth factor; IGF-1 insulin-like growth factor 1
18.  SPARC is expressed in scars of the Tenon’s capsule and mediates scarring properties of human Tenon’s fibroblasts in vitro 
Molecular Vision  2011;17:177-185.
Purpose
To investigate the expression of the matricellular protein SPARC (secreted acidic cysteine-rich glycoprotein) in scarred human Tenon’s capsule and in cultured human Tenon’s fibroblasts (HTF), and to analyze the influence of SPARC on cell proliferation and collagen matrix contraction in vitro.
Methods
Human Tenon's capsule scars obtained from surgical revisions after filtration surgery were analyzed for SPARC expression by immunohistochemistry. In cultured HTF cells, SPARC expression was assessed by northern and western blot analyses after incubation with transforming growth factor (TGF)-β1 and TGF-β2. Cell proliferation was determined by bromodeoxyuridine (BrdU)–labeling and HTF cells-mediated collagen matrix contraction by morphometric measurements of three-dimensional collagen lattices after treatment with SPARC and/or TGF-β1.
Results
In scarred human Tenon’s capsule specimens, an increased expression of SPARC was mainly localized to the extracellular matrix and to blood vessel walls as compared to healthy control Tenon’s capsule. In cultured HTF cells, treatment with TGF-β1 more than TGF-β2 induced the expression of SPARC both on the mRNA and protein level. Incubation of HTF cells with SPARC resulted in an increase in collagen matrix contraction and cell proliferation. Moreover, a combined incubation of SPARC and TGF-β1 stimulated HTF cell proliferation significantly over the levels that were observed after single treatment.
Conclusions
Our data provide evidence that SPARC contributes to excessive wound healing and scar formation in human Tenon’s capsules after filtration surgery and may thus represent a novel target for anti-fibrotic strategies.
PMCID: PMC3025095  PMID: 21264231
19.  PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma 
Neuro-Oncology  2013;15(4):451-461.
Background
Secreted protein acidic and rich in cysteine (SPARC) is overexpressed in astrocytomas (World Health Organization grades II–IV). We previously demonstrated that SPARC promotes glioma migration and invasion—in part, by activating the P38 mitogen-activated protein kinase (MAPK)–heat shock protein (HSP)27 signaling pathway. The commonly lost tumor suppressor phosphatase and tensin homolog (PTEN) suppresses SPARC-induced migration, which is accompanied by suppression of Shc-Ras-Raf-MEK-ERK1/2 and Akt signaling. As PTEN completely suppresses SPARC-induced migration, we proposed that PTEN must also interfere with SPARC-induced HSP27 signaling. Therefore, this study determined the effects of PTEN expression on SPARC-induced expression and phosphorylation of HSP27.
Methods
Control and SPARC-expressing clones transfected with control- or PTEN-expression plasmids were plated on fibronectin-coated tissue culture plates for 3, 6, 24, and 48 h and then lysed. Equal amounts of protein were subjected to Western blot and densitometric analyses.
Results
The results show that SPARC enhances phosphorylated (p)P38 MAPK, phosphorylated MAPK-activated protein kinase 2 (pMAPKAPK2), and serine (Ser)78 HSP27 phosphorylation relative to total HSP27. PTEN suppresses pAkt and pMAPKAPK2, suggesting that PTEN effects are downstream of pP38 MAPK. PTEN suppressed SPARC-induced sustained phosphorylation at Ser78 HSP27. As the level of total HSP27 differed based on the presence of SPARC or PTEN, the ratios of phosphorylation-specific to total HSP27 were examined. The data demonstrate that SPARC-induced phosphorylation at Ser78 remains elevated despite increasing levels of total HSP27. In contrast, PTEN inhibits SPARC-induced increases in Ser78 HSP27 phosphorylation relative to total HSP27.
Conclusion
These data describe a novel mechanism whereby PTEN inhibits SPARC-induced migration through suppression and differential regulation of pAkt and the P38 MAPK-MAPKAPK2-HSP27 signaling pathway.
doi:10.1093/neuonc/nos326
PMCID: PMC3607267  PMID: 23382286
gliomas; SPARC; PTEN; HSP27; signaling
20.  Aberrant Promoter Methylation of Sparc in Ovarian Cancer1,2 
Neoplasia (New York, N.Y.)  2009;11(2):126-135.
Epigenetic silencing of tumor suppressor genes is a new focus of investigation in the generation and proliferation of carcinomas. Secreted protein acidic and rich in cysteine (SPARC) is reportedly detrimental to the growth of ovarian cancer cells and has been shown to be epigenetically silenced in several cancers. We hypothesized that SPARC is downregulated in ovarian cancer through aberrant promoter hypermethylation. To that end, we analyzed SPARC expression in ovarian cancer cell lines and investigated the methylation status of the Sparc promoter using methylation-specific polymerase chain reaction. Our results show that SPARC mRNA expression is decreased in three (33%) and absent in four (44%) of the nine ovarian cancer cell lines studied, which correlated with hypermethylation of the Sparc promoter. Treatment with the demethylating agent 5-aza-2′-deoxycytidine rescued SPARC mRNA and protein expression. Addition of exogenous SPARC, as well as ectopic expression by an adenoviral vector, resulted in decreased proliferation of ovarian cancer cell lines. Investigation of primary tumors revealed that the Sparc promoter is methylated in 68% of primary ovarian tumors and that the levels of SPARC protein decrease as the disease progresses from low to high grade. Lastly, de novo methylation of Sparc promoter was shown to be mediated by DNA methyltransferase 3a. These results implicate Sparc promoter methylation as an important factor in the genesis and survival of ovarian carcinomas and provide new insights into the potential use of SPARC as a novel biomarker and/or treatment modality for this disease.
PMCID: PMC2631137  PMID: 19177197
21.  Deletion of the SPARC acidic domain or EGF-like module reduces SPARC-induced migration and signaling through p38 MAPK/HSP27 in glioma 
Carcinogenesis  2011;33(2):275-284.
We previously demonstrated that secreted protein acidic and rich in cysteine (SPARC) increases heat shock protein 27 (HSP27) expression and phosphorylation and promotes glioma cell migration through the p38 mitogen-activated protein kinase (MAPK)/HSP27 signaling pathway. As different regions of the SPARC protein mediate different SPARC functions, elucidating which SPARC domains regulate HSP27 expression, signaling and migration might provide potential therapeutic strategies to target these functions. To investigate the roles of specific domains, we used an SPARC–green fluorescent protein (GFP) fusion protein and constructs of SPARC–GFP with deletions of either the acidic domain (ΔAcidic) or the epidermal growth factor (EGF)-like module (ΔEGF). GFP, SPARC–GFP and the two deletion mutants were expressed in U87MG glioma cells. Characterization of the derived stable clones by confocal imaging and western blotting suggests proper folding, processing and secretion of the deletion constructs. Uptake of the constructs by naive cells suggests enhanced internalization of ΔAcidic and reduced internalization of ΔEGF. Wound and transwell migration assays and western blot analysis confirm our previous results and indicate that ΔAcidic reduces SPARC-induced migration and p38 MAPK/HSP27 signaling and ΔEGF decreases SPARC-induced migration and dramatically decreases the expression and phosphorylation of HSP27 but is poorly internalized. Loss of the EGF-like module suppresses the enhanced HSP27 protein stability conferred by SPARC. In conclusion, deletions of the acidic domain and EGF-like module have differential effects on cell surface binding and HSP27 protein stability; however, both regions regulate SPARC-induced migration and signaling through HSP27. Our data link the domains of SPARC with different functions and suggest one or both of the constructs as potential therapeutic agents to inhibit SPARC-induced migration.
doi:10.1093/carcin/bgr276
PMCID: PMC3271264  PMID: 22114076
22.  Lack of the Matricellular Protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) Attenuates Liver Fibrogenesis in Mice 
PLoS ONE  2013;8(2):e54962.
Introduction
Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC.
Methods
Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC+/+) and knock-out (SPARC−/−) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC−/− and SPARC+/+ mice using Affymetrix Mouse Gene ST 1.0 array.
Results
SPARC expression was found induced in fibrotic livers of mouse and human. SPARC−/− mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC−/− mice when compared to SPARC+/+ mice; in addition, MMP-2 expression was increased in SPARC−/− mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli.
Conclusions
Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.
doi:10.1371/journal.pone.0054962
PMCID: PMC3569438  PMID: 23408952
23.  SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane 
PLoS Genetics  2016;12(2):e1005905.
Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.
Author Summary
SPARC is an extracellular matrix protein that is present at high levels in many metastatic cancers where it promotes tumor invasion into neighboring tissues. The mechanism linking a surplus of SPARC to cell invasion, however, is not clear due to the challenge of examining SPARCs function in complex tumor environments. We have used anchor cell invasion in C. elegans development to understand how an excess of SPARC promotes invasion in a native tissue setting. Anchor cell invasion allows experimental examination and visualization of the interactions between an invasive cell, neighboring tissues, and the basement membrane, a sheet-like extracellular matrix that surrounds tissues. We find that increased SPARC expression potently enhances the ability of weakly invasive anchor cells to breach the basement membrane. Our data indicate that SPARC functions normally to transport the basement membrane component type IV collagen between tissues to precisely regulate its deposition into basement membranes. Collagen molecules are covalently cross-linked and provide basement membranes their barrier properties. Our results indicate that overexpression of SPARC interferes with collagen trafficking and significantly decreases collagen incorporation into basement membranes, potentially weakening this barrier and allowing it to be more easily breached by invasive cells.
doi:10.1371/journal.pgen.1005905
PMCID: PMC4771172  PMID: 26926673
24.  Attenuation of fibrosis in vitro and in vivo with SPARC siRNA 
Introduction
SPARC is a matricellular protein, which, along with other extracellular matrix components including collagens, is commonly over-expressed in fibrotic diseases. The purpose of this study was to examine whether inhibition of SPARC can regulate collagen expression in vitro and in vivo, and subsequently attenuate fibrotic stimulation by bleomycin in mouse skin and lungs.
Methods
In in vitro studies, skin fibroblasts obtained from a Tgfbr1 knock-in mouse (TBR1CA; Cre-ER) were transfected with SPARC siRNA. Gene and protein expressions of the Col1a2 and the Ctgf were examined by real-time RT-PCR and Western blotting, respectively. In in vivo studies, C57BL/6 mice were induced for skin and lung fibrosis by bleomycin and followed by SPARC siRNA treatment through subcutaneous injection and intratracheal instillation, respectively. The pathological changes of skin and lungs were assessed by hematoxylin and eosin and Masson's trichrome stains. The expression changes of collagen in the tissues were assessed by real-time RT-PCR and non-crosslinked fibrillar collagen content assays.
Results
SPARC siRNA significantly reduced gene and protein expression of collagen type 1 in fibroblasts obtained from the TBR1CA; Cre-ER mouse that was induced for constitutively active TGF-β receptor I. Skin and lung fibrosis induced by bleomycin was markedly reduced by treatment with SPARC siRNA. The anti-fibrotic effect of SPARC siRNA in vivo was accompanied by an inhibition of Ctgf expression in these same tissues.
Conclusions
Specific inhibition of SPARC effectively reduced fibrotic changes in vitro and in vivo. SPARC inhibition may represent a potential therapeutic approach to fibrotic diseases.
doi:10.1186/ar2973
PMCID: PMC2888211  PMID: 20359365
25.  Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC 
Pancreatic adenocarcinoma is characterized by desmoplasia, local invasion, and metastasis. These features are regulated in part by MMP9 and SPARC. To explore the interaction of SPARC and MMP9 in cancer, we first established orthotopic pancreatic tumors in SPARC-null and wild-type mice with the murine pancreatic adenocarcinoma cell line, PAN02. MMP9 expression was higher in tumors from wild-type compared to SPARC-null mice. Coincident with lower MMP9 expression, tumors grown in SPARC-null mice were significantly larger, had decreased ECM deposition and reduced microvessel density compared to wild-type controls. In addition, metastasis was enhanced in the absence of host SPARC. Therefore, we next analyzed the orthotopic tumor growth of PAN02 cells transduced with MMP9 or a control empty vector. Forced expression of MMP9 by the PAN02 cells resulted in larger tumors in both wild-type and SPARC-null animals compared to empty vector controls and further diminished ECM deposition. Importantly, forced expression of MMP9 within the tumor reversed the decrease in angiogenesis and abrogated the metastatic potential displayed by control tumors grown in SPARC-null mice. Finally, contrary to the in vivo results, MMP9 increased cell migration in vitro, which was blocked by the addition of SPARC. These results suggest that SPARC and MMP9 interact to regulate many stages of tumor progression including ECM deposition, angiogenesis and metastasis.
doi:10.3181/0801-RM-12
PMCID: PMC2459223  PMID: 18445772
SPARC; MMP9; tumor microenvironment; ECM; pancreatic; metastasis

Results 1-25 (1410986)