Search tips
Search criteria

Results 1-25 (1416092)

Clipboard (0)

Related Articles

1.  Phase II clinical study of valproic acid plus cisplatin and cetuximab in recurrent and/or metastatic squamous cell carcinoma of Head and Neck-V-CHANCE trial 
BMC Cancer  2016;16:918.
Recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN) has a poor prognosis and the combination of cisplatin and cetuximab, with or without 5-fluorouracil, is the gold standard treatment in this stage. Thus, the concomitant use of novel compounds represents a critical strategy to improve treatment results. Histone deacetylase inhibitors (HDACi) enhance the activity of several anticancer drugs including cisplatin and anti-Epidermal Growth Factor Receptor (anti-EGFR) compounds. Preclinical studies in models have shown that vorinostat is able to down regulate Epidermal Growth Factor Receptor (EGFR) expression and to revert epithelial to mesenchimal transition (EMT). Due to its histone deacetylase (HDAC) inhibiting activity and its safe use as a chronic therapy for epileptic disorders, valproic acid (VPA) has been considered a good candidate for anticancer therapy. A reasonable option may be to employ the combination of cisplatin, cetuximab and VPA in recurrent/metastatic SCCHN taking advantage of the possible positive interaction between histone deacetylase inhibitors, cisplatin and/or anti-EGFR.
V-CHANCE is a phase 2 clinical trial evaluating, in patients with recurrent/metastatic squamous cell carcinoma of the head and neck never treated with first-line chemotherapy, the concomitant standard administration of cisplatin (on day 1, every 3 weeks) and cetuximab (on day 1, weekly), in combination with oral VPA given daily from day −14 with a titration strategy in each patient (target serum level of 50–100 μg/ml). Primary end point is the objective response rate measured according to Response Evaluation Criteria in Solid Tumors (RECIST). Sample size, calculated according to Simon 2 stage minimax design will include 21 patients in the first stage with upper limit for rejection being 8 responses, and 39 patients in the second stage, with upper limit for rejection being 18 responses. Secondary endpoints are time to progression, duration of response, overall survival, safety.
Objectives of the translational study are the evaluation on tumor samples of markers of treatment efficacy/resistance (i.e. γH2AX, p21/WAF, RAD51, XRCC1, EGFR, p-EGFR, Ki-67) and specific markers of VPA HDAC inhibitory activity (histones and proteins acetylation, Histone deacetylase isoforms) as well as valproate test, histones and proteins acetylation of peripheral blood mononuclear cell, tested on blood samples at baseline and at different time points during treatment.
Overall, this study could provide a less toxic and more effective first-line chemotherapy regimen in patients with recurrent/metastatic squamous cell carcinoma of the head and neck by demonstrating the feasibility and efficacy of cisplatin/cetuximab plus valproic acid. Moreover, correlative studies could help to identify responder patients, and will add insights in the mechanism of the synergistic interaction between these agents.
EudraCT Number
Trial registration number, NCT02624128
PMCID: PMC5123351  PMID: 27884140
Cetuximab; Cisplatin; Head and Neck cancer; Histone deacetylase inhibitor; Valproic acid
2.  Effect of valproic acid on mitochondrial epigenetics 
European journal of pharmacology  2012;690(1-3):51-59.
Valproic acid (valproate), an anticonvulsant and a mood stabilizer, is a potent histone deacetylase inhibitor and a widely utilized pharmacological tool for neuroepigenetic research including DNA methylation. However, only nuclear but not mitochondrial DNA (mtDNA) has been investigated for the effects of valproate on the formation of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Using mouse 3T3-L1 cells, we investigated the effects of short (1 day) and prolonged (3 days) valproate treatment on global mtDNA 5mC content, global and mtDNA sequence-specific 5hmC content, mRNA levels for ten-eleven-translocation (TET) enzymes involved in 5hmC formation, and the mitochondrial content of TET proteins. Only 5hmC but not 5mC content in mtDNA was affected (decreased) by valproate, and only after the prolonged treatment. This action of valproate was mimicked by MS-275, a class I histone deacetylase inhibitor. The prolonged but not the short valproate treatment decreased the expression of Tet1 mRNA and reduced the mitochondrial content of the TET1 protein. Hence, a likely scenario for a valproate-induced 5hmC decrease in mtDNA may involve nuclear histone deacetylase inhibition (mitochondria do not contain histones) causing the initial increase of Tet1 transcription, which is followed by a delayed compensatory decrease of Tet1 expression and a reduced presence of TET1 protein in mitochondria. Further research is needed to elucidate the functional implications of epigenetic modifications of mtDNA. The observed effects of valproate on mitochondrial epigenetics may have implications for a better understanding of both therapeutic and unwanted effects of this drug and possibly other histone deacetylase inhibitors.
PMCID: PMC3419440  PMID: 22728245
5-Methylcytosine (5mC); 5-Hydroxymethylcytosine (5hmC); Mitochondrial DNA (mtDNA); Valproic acid (valproate); Ten-eleven-translocation (TET); DNA methyltransferase 1 (DNMT1); Epigenetics
3.  Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1 
BMC Urology  2008;8:7.
Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.
Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.
Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.
FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth in vitro and in vivo and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.
PMCID: PMC2374790  PMID: 18433501
4.  Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study 
Molecular Cancer  2005;4:22.
The development of cancer has been associated with epigenetic alterations such as aberrant histone deacetylase (HDAC) activity. It was recently reported that valproic acid is an effective inhibitor of histone deacetylases and as such induces tumor cell differentiation, apoptosis, or growth arrest.
Twelve newly diagnosed patients with cervical cancer were treated with magnesium valproate after a baseline tumor biopsy and blood sampling at the following dose levels (four patients each): 20 mg/kg; 30 mg/kg, or 40 mg/kg for 5 days via oral route. At day 6, tumor and blood sampling were repeated and the study protocol ended. Tumor acetylation of H3 and H4 histones and HDAC activity were evaluated by Western blot and colorimetric HDAC assay respectively. Blood levels of valproic acid were determined at day 6 once the steady-state was reached. Toxicity of treatment was evaluated at the end of study period.
All patients completed the study medication. Mean daily dose for all patients was 1,890 mg. Corresponding means for the doses 20-, 30-, and 40-mg/kg were 1245, 2000, and 2425 mg, respectively. Depressed level of consciousness grade 2 was registered in nine patients. Ten patients were evaluated for H3 and H4 acetylation and HDAC activity. After treatment, we observed hyperacetylation of H3 and H4 in the tumors of nine and seven patients, respectively, whereas six patients demonstrated hyperacetylation of both histones. Serum levels of valproic acid ranged from 73.6–170.49 μg/mL. Tumor deacetylase activity decreased in eight patients (80%), whereas two had either no change or a mild increase. There was a statistically significant difference between pre and post-treatment values of HDAC activity (mean, 0.36 vs. 0.21, two-tailed t test p < 0.0264). There was no correlation between H3 and H4 tumor hyperacetylation with serum levels of valproic acid.
Magnesium valproate at a dose between 20 and 40 mg/kg inhibits deacetylase activity and hyperacetylates histones in tumor tissues.
PMCID: PMC1198251  PMID: 16001982
5.  Sodium Valproate Inhibits the Growth of Human Cholangiocarcinoma In Vitro and In Vivo 
Background. None of treatment options for Cholangiocarcinoma (CCA), including surgery, adjuvant radiotherapy and chemotherapy, and ultimately liver transplantation, have been shown to substantially improve the survival rate in patients with CCA. Valproic acid (VPA), a histone deacetylase inhibitor, has been shown to display potent antitumor effects. In this study, sodium valproate, the clinically available form of VPA, was tested for its ability to inhibit the growth of cholangiocarcinoma cells, both in vitro and in vivo. Materials and Methods. Cholangiocarcinoma cells (TFK-1, QBC939, and CCLP1) of different origins were treated with sodium valproate to determine their effects on cell proliferation and differentiation, cell cycle regulation, apoptosis, and autophagy. The in vivo effects of sodium valproate on cholangiocarcinoma growth were assessed using a xenograft mouse model injected with TFK-1 cells. Results. Sodium valproate inhibited cholangiocarcinoma cell growth by inducing cell cycle arrest, cell differentiation, and apoptosis; sodium valproate effects were independent of autophagy. Tumor growth inhibition was also observed in vivo using TFK-1 xenografts. Conclusion. The in vitro and in vivo outcomes provide preclinical rationale for clinical evaluation of sodium valproate, alone or in combination with other drugs, to improve patient outcome in cholangiocarcinoma.
PMCID: PMC3845332  PMID: 24324485
6.  Modulation of angiogenesis by dithiolethione-modified NSAIDs and valproic acid 
British Journal of Pharmacology  2007;151(1):142-151.
Background and purpose:
Angiogenesis involves multiple signaling pathways that must be considered when developing agents to modulate pathological angiogenesis. Because both cyclooxygenase inhibitors and dithioles have demonstrated anti-angiogenic properties, we investigated the activities of a new class of anti-inflammatory drugs containing dithiolethione moieties (S-NSAIDs) and S-valproate.
Experimental approach:
Anti-angiogenic activities of S-NSAIDS, S-valproate, and the respective parent compounds were assessed using umbilical vein endothelial cells, muscle and tumor tissue explant angiogenesis assays, and developmental angiogenesis in Fli:EGFP transgenic zebrafish embryos.
Key results:
Dithiolethione derivatives of diclofenac, valproate, and sulindac inhibited endothelial cell proliferation and induced Ser78 phosphorylation of hsp27, a known molecular target of anti-angiogenic signaling. The parent drugs lacked this activity, but dithiolethiones were active at comparable concentrations. Although dithiolethiones can potentially release hydrogen sulphide, NaSH did not reproduce some activities of the S-NSAIDs, indicating that the dithioles regulate angiogenesis through mechanisms other than release of H2S. In contrast to the parent drugs, S-NSAIDs, S-valproate, NaSH, and dithiolethiones were potent inhibitors of angiogenic responses in muscle and HT29 tumor explants assessed by 3-dimensional collagen matrix assays. Dithiolethiones and valproic acid were also potent inhibitors of developmental angiogenesis in zebrafish embryos, but the S-NSAIDs, remarkably, lacked this activity.
Conclusions and implication:
S-NSAIDs and S-valproate have potent anti-angiogenic activities mediated by their dithiole moieties. The novel properties of S-NSAIDs and S-valproate to inhibit pathological versus developmental angiogenesis suggest that these agents may have a role in cancer treatment.
PMCID: PMC2012972
angiogenesis inhibitors; hsp27 phosphorylation; dithioles; nonsteroidal anti-inflammatory drugs
7.  Histone deacetylase inhibitor-induced cell death in bladder cancer is associated with chromatin modification and modifying protein expression: A proteomic approach 
International Journal of Oncology  2016;48(6):2591-2607.
The Cancer Genome Atlas (TCGA) project recently identified the importance of mutations in chromatin remodeling genes in human carcinomas. These findings imply that epigenetic modulators might have a therapeutic role in urothelial cancers. To exploit histone deacetylases (HDACs) as targets for cancer therapy, we investigated the HDAC inhibitors (HDACIs) romidepsin, trichostatin A, and vorinostat as potential chemotherapeutic agents for bladder cancer. We demonstrate that the three HDACIs suppressed cell growth and induced cell death in the bladder cancer cell line 5637. To identify potential mechanisms associated with the anti-proliferative and cytotoxic effects of the HDACIs, we used quantitative proteomics to determine the proteins potentially involved in these processes. Our proteome studies identified a total of 6003 unique proteins. Of these, 2472 proteins were upregulated and 2049 proteins were downregulated in response to HDACI exposure compared to the untreated controls (P<0.05). Bioinformatic analysis further revealed that those differentially expressed proteins were involved in multiple biological functions and enzyme-regulated pathways, including cell cycle progression, apoptosis, autophagy, free radical generation and DNA damage repair. HDACIs also altered the acetylation status of histones and non-histone proteins, as well as the levels of chromatin modification proteins, suggesting that HDACIs exert multiple cytotoxic actions in bladder cancer cells by inhibiting HDAC activity or altering the structure of chromatin. We conclude that HDACIs are effective in the inhibition of cell proliferation and the induction of apoptosis in the 5637 bladder cancer cells through multiple cell death-associated pathways. These observations support the notion that HDACIs provide new therapeutic options for bladder cancer treatment and thus warrant further preclinical exploration.
PMCID: PMC4864178  PMID: 27082124
apoptosis; bladder cancer; HDAC inhibitor; proteomics; pathway analysis; cell cycle; DNA damage repair
8.  The Mechanism of Action of the Histone Deacetylase Inhibitor Vorinostat Involves Interaction with the Insulin-Like Growth Factor Signaling Pathway 
PLoS ONE  2011;6(9):e24468.
A correlation between components of the insulin-like growth factor (IGF) system and endometrial cancer risk has been shown in recent studies. The antitumor action of vorinostat, a histone deacetylase inhibitor, involves changes in the expression of specific genes via acetylation of histones and transcription factors. The aim of this study was to establish whether vorinostat can modify the expression of specific genes related to the IGF-I receptor (IGF-IR) signaling pathway and revert the transformed phenotype. Human endometrioid (Type I, Ishikawa) and uterine serous papillary (Type II, USPC-2) endometrial cancer cell lines were treated with vorinostat in the presence or absence of IGF-I. Vorinostat increased IGF-IR phosphorylation, produced acetylation of histone H3, up-regulated pTEN and p21 expression, and reduced p53 and cyclin D1 levels in Ishikawa cells. Vorinostat up-regulated IGF-IR and p21 expression, produced acetylation of histone H3, and down-regulated the expression of total AKT, pTEN and cyclin D1 in USPC-2 cells. Of interest, IGF-IR activation was associated with a major elevation in IGF-IR promoter activity. In addition, vorinostat treatment induced apoptosis in both cell lines and abolished the anti-apoptotic activity of IGF-I both in the absence or presence of a humanized monoclonal IGF-IR antibody, MK-0646. Finally, vorinostat treatment led to a significant decrease in proliferation and colony forming capability in both cell lines. In summary, our studies demonstrate that vorinostat exhibits a potent apoptotic and anti-proliferative effect in both Type I and II endometrial cancer cells, thus suggesting that endometrial cancer may be therapeutically targeted by vorinostat.
PMCID: PMC3169604  PMID: 21931726
9.  Pharmacologically relevant doses of valproate upregulate CD20 expression in three diffuse large B-cell lymphoma patients in vivo 
Epigenetic code modifications by histone deacetylase inhibitors (HDACi) have been proposed as potential new therapies for lymphoid malignancies. Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoma for which standard first line treatment is the chemotherapy regimen CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) combined with the monoclonal anti-CD20 antibody rituximab (R-CHOP). The HDACi valproate, which has for long been utilized in anti-convulsive therapy, has been shown to sensitize to chemotherapy in vitro. Valproate upregulates expression of CD20 in lymphoma cell lines; therefore, 48 hour pre-treatment with valproate before first line R-CHOP in DLBCL stages II-IV is evaluated in the phase I clinical trial VALFRID; Valproate as First line therapy in combination with Rituximab and CHOP in Diffuse large B-cell lymphoma.
Pretreatment with valproate at oral doses comparable to anti-convulsive therapy, resulted in upregulation of CD20 mRNA and CD20 protein on the cell surface as measured by qPCR and FACS analysis in lymphoma biopsies from three evaluated patients from the VALFRID study. Valproate-treatment corresponded to increased acetylation of Histone3Lysine9 (H3K9ac) in peripheral blood mononuclear cells (PBMCs), which were employed as surrogate tissue for valproate-related epigenetic modifications.
Valproate treatment at pharmacologically relevant doses resulted in upregulation of CD20 in vivo, and also in expected epigenetic modifications. This suggests that pre-treatment with valproate or other HDACis before anti-CD20 therapy could be advantageous in CD20-low B-cell lymphomas. Further studies are warranted to evaluate this conclusion.
PMCID: PMC4429466  PMID: 25973343
Valproate; Valproic acid; CD20; DLBCL; Rituximab; HDACi
10.  Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo 
Oncology Letters  2013;6(5):1492-1498.
Histone deacetylase inhibitors (HDACIs) are a promising class of drugs that act as antiproliferative agents by promoting differentiation and inducing apoptosis. Valproic acid (VPA) is an HDACI that has been widely used as an anti-convulsant and shows promise as a chemotherapeutic drug for a number of tumor cells. The present study aimed to investigate the inhibitory effect of VPA on the viability of bladder cancer cells and its synergistic effect with chemotherapeutic agents in vitro and in vivo. The cell viability of human bladder cancer cell lines following treatment with VPA and/or VPA in combination with mitomycin C, cisplatin (DDP) and adriamycin were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hoechst staining was used to observe the morphology of the apoptotic cells. Survivin protein and acetylated histone H3 levels were quantified using western blot analysis. The in vivo tumor growth inhibition of VPA was determined in rats with N-methyl-N-nitrosourea-induced bladder cancer. VPA significantly inhibited the growth of the bladder cancer cells in a concentration- and time-dependent manner. Furthermore, improved results were achieved for tumor inhibition when VPA was combined with chemotherapeutic agents in vitro and in vivo. Survivin expression decreased and acetylated histone H3 expression increased in the bladder cancer cells following the treatment with VPA. Intravesical injections of VPA were able to inhibit tumor progression when combined with DDP. In conclusion, VPA acts as an HDACI that has a direct anticancer effect and markedly enhances the action of several chemotherapy agents. VPA may sensitize bladder cancer to anticancer drugs by downregulating survivin expression.
PMCID: PMC3813788  PMID: 24179547
valproic acid; apoptosis; combination; bladder cancer; therapy
11.  The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo 
Treatment options for patients with recurrent superficial bladder cancer are limited, necessitating aggressive exploration of new treatment strategies that effectively prevent recurrence and progression to invasive disease. We assessed the effects of belinostat (previously PXD101), a novel histone deacetylase inhibitor, on a panel of human bladder cancer cell lines representing superficial and invasive disease, and on a transgenic mouse model of superficial bladder cancer.
Growth inhibition and cell cycle distribution effect of belinostat on 5637, T24, J82, and RT4 urothelial lines were assessed. Ha-ras transgenic mice with established superficial bladder cancer were randomized to receive either belinostat or vehicle alone, and assessed for bladder weight, hematuria, gene expression profiling, and immunohistochemistry (IHC).
Belinostat had a significant linear dose-dependent growth inhibition on all cell lines (IC50 range of 1.0–10.0 μM). The 5637 cell line, which was derived from a superficial papillary tumor, was the most sensitive to treatment. Belinostat (100 mg/kg, intraperitoneal, 5 days each week for 3 weeks) treated mice had less bladder weight (p < 0.05), and no hematuria compared with 6/10 control mice that developed at least one episode. IHC of bladder tumors showed less cell proliferation and a higher expression of p21WAF1 in the belinostat-treated mice. Gene expression profile analysis revealed 56 genes significantly different in the treated group; these included the upregulation of p21WAF1, induction of core histone deacetylase (HDAC), and cell communication genes.
Our data demonstrate that belinostat inhibits bladder cancer and supports the clinical evaluation of belinostat for the treatment of patients with superficial bladder cancer.
PMCID: PMC2100044  PMID: 17935615
12.  Is Vascular Endothelial Growth Factor Modulation a Predictor of the Therapeutic Efficacy of Gefitinib for Bladder Cancer? 
The Journal of urology  2008;180(3):1146-1153.
The epidermal growth factor receptor inhibitor gefitinib (Iressa®) is currently being studied in patients with bladder cancer and it has significant anti-angiogenic activity. We investigated the relationship between the modulation of vascular endothelial growth factor (Santa Cruz Biotechnology, Santa Cruz, California) expression and the biological efficacy of gefitinib for bladder cancer.
Materials and Methods
In vitro the 4 bladder cancer cell lines 253JB-V, UMUC-3, KU-7 and UMUC-13 were treated with gefitinib and vascular endothelial growth factor secretion was measured. The effects of gefitinib on vascular endothelial growth factor promoter, proliferation, cell cycle and downstream signals were evaluated. In vivo 253JB-V and UMUC-13 were injected into nude mice and tumors were treated with 2 mg gefitinib per day. Tumor kinetics were determined and the levels of phospho-epidermal growth factor receptor (Biosource™), vascular endothelial growth factor, phospho-vascular endothelial growth factor (Cell Signaling Technology®), angiogenesis and apoptosis were measured.
Epidermal growth factor receptor (Neomarkers, Fremont, California) phosphorylation was blocked efficiently in all cell lines at concentrations of 0.5 µM or greater. Gefitinib (1 µM) induced an accumulation of cells in G0/G1 without apoptosis in 253J B-V cells, whereas it had no effect in other cell lines. Gefitinib inhibited vascular endothelial growth factor secretion in 253JB-V and UMUC-13 (concentration inhibiting a 50% response 0.5 and 0.1 µM, respectively) but not in UMUC-3 or KU-7. Gefitinib decreased vascular endothelial growth factor promoter activity in 253JB-V and UMUC-13 by 40% to 60%. In vivo the growth of 253JB-V tumors was significantly inhibited by gefitinib, whereas no effect was demonstrated in UMUC-13 tumors. Vascular endothelial growth factor expression and vascular endothelial growth factor receptor activation were significantly decreased in 253JB-V tumors and to a greater extent in resistant UMUC-13 tumors. Gefitinib inhibited angiogenesis and induced apoptosis in sensitive 253JB-V tumors only.
Epidermal growth factor receptor blockade exerts an anti-angiogenic effect on bladder cancer cells, in part by modulating vascular endothelial growth factor expression. However, down-regulation of vascular endothelial growth factor expression is not sufficient to inhibit bladder cancer growth and it should not be used as a predictor of the therapeutic efficacy of gefitinib.
PMCID: PMC5190512  PMID: 18639280
urinary bladder; carcinoma; transitional cell; gefitinib; vascular endothelial growth factor; angiogenesis inhibitors
13.  Expression and function of SIRT6 in muscle invasive urothelial carcinoma of the bladder 
SIRT6, a member of the class III histone deacetylase, has been shown to inhibit glycolysis and promote DNA double strand break repairs. Despite of its proposed tumor suppressor role, no significant differences in SIRT6 mRNA levels among normal bladder urothelium, non-muscle invasive, and muscle invasive urothelial carcinoma were noted in the two largest bladder cancer gene expression datasets available in OncomineTM. We therefore studied the expression and function of SIRT6 in muscle invasive urothelial carcinoma of the bladder. Immunohistochemistry studies of SIRT6 on radical cystectomy samples showed a dramatic decline of SIRT6 expression when bladder cancer progressed from T2 to T4. Functional study with bladder cancer cell lines confirmed its role in inhibiting glycolysis and cell proliferation. Reducing SIRT6 with siRNA, however, did not sensitize bladder cancer cells to drug induced DNA damage. The differential expression patterns of SIRT6 amongst different T stages of muscle invasive bladder cancers indicate less reliance on glycolysis when urothelial carcinoma invades deeper through the bladder and into the adjacent tissues.
PMCID: PMC4230126  PMID: 25400728
SIRT6; bladder cancer; glycolysis; metabolism
14.  Valproate Administered after Traumatic Brain Injury Provides Neuroprotection and Improves Cognitive Function in Rats 
PLoS ONE  2010;5(6):e11383.
Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.
Methodology/Principal Findings
Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.
Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.
PMCID: PMC2894851  PMID: 20614021
15.  The Effect of Epigenetic Therapy on Congenital Neurogenic Bladders—A Pilot Study 
Urology  2010;75(4):868-872.
To demonstrate that human smooth muscle cells derived from neurogenic bladders produce more collagen in vitro than smooth muscle cells derived from normal bladders, and that epigenetic therapy may normalize this increased collagen production.
Human smooth muscle cells from normal (n = 3) and neurogenic bladders (n = 3) were cultured in normal culture media and at different concentrations of the histone deacetylase inhibitors trichostatin A, valproic acid, and the DNA methylation inhibitor 5-azacytidine (5-aza). Collagen type I and III gene expression was measured using real-time quantitative reverse transcription-polymerase chain reaction after varying doses of drug exposure. Cell viability was measured using trypan blue.
The smooth muscle cells from neurogenic bladders released significantly more collagen than the normal bladder cells (mean 4.1 vs 1.8 μg/mL in control media) when grown in normal conditions. Treatment with trichostatin A at 50 ng/mL decreased the collagen level in cells from neurogenic bladders to almost normal levels (2.1 μg/mL). In addition, valproic acid treatment decreased collagen types I and III gene expression relative to controls, with maximal effect at 300 mg/mL. These treatments had little effect on cell viability.
Histone deacetylase inhibitors decreased collagen production of smooth muscle cells from neurogenic bladders in vitro. These agents may be a means of effectively preventing bladder fibrosis in patients with this condition.
PMCID: PMC2860424  PMID: 20138341
16.  Isobolographic analysis demonstrates additive effect of cisplatin and HDIs combined treatment augmenting their anti-cancer activity in lung cancer cell lines 
American Journal of Cancer Research  2016;6(12):2831-2845.
Histone deacetylase inhibitors (HDIs) are a new class of drugs which affect the activity of HDACs resulting in changed of acetylation in many proteins. HDIs can induce differentiation, cell growth arrest, apoptosis, inhibit proliferation and angiogenesis in cancer, whereas normal cells are comparatively resistant to the action of HDIs. The aim of this study was to investigate the combined effect of a well-known cytostatic agent-cisplatin (CDDP) and a histone deacetylase inhibitors-either suberoylanilide hydroxamic acid (SAHA, vorinostat) or valproic acid (VPA), on the proliferation of lung cancer cells, as well as induction of apoptosis and inhibition of the cell cycle progression. The anti-proliferative activity of VPA or SAHA used alone, or in combination with CDDP were determined by means of MTT test. The type of pharmacologic interactions between HDAC inhibitors and CDDP was assessed using isobolographic analysis. We observed additive interactions for the CCDP with SAHA, as well as for the CDDP with VPA combinations with respect to their anti-proliferative effects on three different lung cancer cell lines (A549, NCI-H1563 and NCI-H2170). Such additive effects were observed regardless of the histologic type (adenocarcinoma or squamous cell carcinoma) and sensitivity for the drugs applied. Combination treatment also augmented the induction of apoptosis and cell cycle perturbation mediated by CDDP alone, thereby enhancing anti-cancer effect of tested drugs. In conclusion, the combined therapy of HDIs and CDDP may be a promising therapeutic tool in the treatment of lung cancer.
PMCID: PMC5199757  PMID: 28042503
Isobolographic analysis; histone deacetylase inhibitors (HDIs); valproic acid (VPA); suberoylanilide hydroxamid acid (SAHA); cisplatin (CDDP); lung cancer
17.  Valproic Acid and Other HDAC Inhibitors Upregulate FGF21 Gene Expression and Promote Process Elongation in Glia by Inhibiting HDAC2 and 3 
Fibroblast growth factor 21, a novel regulator of glucose and lipid metabolism, has robust protective properties in neurons. However, its expression and function in glia are unknown. Valproic acid, a mood stabilizer and anticonvulsant, is a histone deacetylase inhibitor and a dynamic gene regulator. We investigated whether histone deacetylase inhibition by valproic acid and other inhibitors upregulates fibroblast growth factor 21 expression and, if so, sought to identify the histone deacetylase isoform(s) involved and their role in altering glial cell morphology.
C6 glioma or primary cortical glial cultures were treated with histone deacetylase inhibitors, and fibroblast growth factor 21 levels and length of cell processes were subsequently measured. Histone deacetylase 1, 2, or 3 was also knocked down to detect which isoform was involved in regulating fibroblast growth factor 21 mRNA levels. Finally, knockdown and overexpression of fibroblast growth factor 21 were performed to determine whether it played a role in regulating cell process length.
Treatment of C6 cells or primary glial cultures with valproic acid elevated fibroblast growth factor 21 mRNA levels, extended cell process length, and markedly increased acetylated histone-H3 levels. Other histone deacetylase inhibitors including pan- and class I-specific inhibitors, or selective knockdown of histone deacetylase 2 or 3 isoform produced similar effects. Knockdown or overexpression of fibroblast growth factor 21 significantly decreased or increased C6 cell process length, respectively.
In glial cell line and primary glia, using pharmacological inhibition and selective gene silencing of histone deacetylases to boost fibroblast growth factor 21 mRNA levels results in elongation of cell processes. Our study provides a new mechanism via which histone deacetylase 2 and 3 participate in upregulating fibroblast growth factor 21 transcription and extending process outgrowth in glia.
PMCID: PMC5006201  PMID: 27207921
FGF21; HDAC inhibitors; valproic acid; glial cells; cell processes
18.  Diffuse-Type Gastric Carcinoma: Progression, Angiogenesis, and Transforming Growth Factor β Signaling 
Diffuse-type gastric carcinoma is a cancer with poor prognosis that has high levels of transforming growth factor β (TGF-β) expression and thick stromal fibrosis. However, the association of TGF-β signaling with diffuse-type gastric carcinoma has not been investigated in detail.
We used a lentiviral infection system to express a dominant-negative TGF-β type II receptor (dnTβRII) or green fluorescent protein (GFP) as a control in the diffuse-type gastric carcinoma cell lines, OCUM-2MLN and OCUM-12. These infected cells and the corresponding parental control cells were subcutaneously or orthotopically injected into nude mice. Angiogenesis was inhibited by infecting cells with a lentivirus carrying the gene for angiogenic inhibitor thrombospondin-1 or by injecting mice intraperitoneally with the small-molecule angiogenic inhibitor sorafenib or with anti-vascular endothelial growth factor (VEGF) neutralizing antibody (six or eight mice per group). Expression of phospho-Smad2 and thrombospondin-1 was investigated immunologically in human gastric carcinoma tissues from 102 patients. All statistical tests were two-sided.
Expression of dnTβRII into OCUM-2MLN cells did not affect their proliferation in vitro, but it accelerated the growth of subcutaneously or orthotopically transplanted tumors in vivo (eg, for mean volume of subcutaneous tumors on day 10 relative to that on day 0: dnTβRII tumors = 3.49 and GFP tumors = 2.46, difference = 1.02, 95% confidence interval [CI] = 0.21 to 1.84; P = .003). The tumors expressing dnTβRII had higher levels of angiogenesis than those expressing GFP because of decreased thrombospondin-1 production. Similar results were obtained with OCUM-12 cells. Expression of thrombospondin-1 in the dnTβRII tumor or treatment with sorafenib or anti-VEGF antibody reduced tumor growth, whereas knockdown of thrombospondin-1 expression resulted in more accelerated growth of OCUM-2MLN tumors than of GFP tumors (eg, mean tumor volumes on day 14 relative to those on day 0: thrombospondin-1–knockdown tumors = 4.91 and GFP tumors = 3.79, difference = 1.12, 95% CI = 0.80 to 1.44; P < .001). Positive association between phosphorylated Smad2 and thrombospondin-1 immunostaining was observed in human gastric carcinoma tissues.
Disruption of TGF-β signaling in diffuse-type gastric carcinoma models appeared to accelerate tumor growth, apparently through increased tumor angiogenesis that was induced by decreased expression of thrombospondin-1.
PMCID: PMC2669102  PMID: 19351925
19.  Inhibitors of Class 1 Histone Deacetylases Reverse Contextual Memory Deficits in a Mouse Model of Alzheimer's Disease 
Neuropsychopharmacology  2009;35(4):870-880.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized clinically by cognitive impairments that progress to dementia and death. The earliest symptoms of AD present as a relatively pure deficit in memory retrieval. Therefore, drug treatments that intervene in the early stages of AD by rescuing memory deficits could be promising therapies to slow, or even reverse progression of the disease. In this study, we tested the potential of systemic histone deacetylase inhibitor (HDACi) treatment to rescue cognitive deficits in a mouse model of AD. APPswe/PS1dE9 mice showed pronounced contextual memory impairments beginning at 6 months of age. Chronic HDACi injections (2–3 weeks) did not alter contextual memory formation in normal mice, but had profound effects in transgenic animals. Injections of sodium valproate, sodium butyrate, or vorinostat (suberoylanilide hydroxamic acid; Zolinza®) completely restored contextual memory in these mutant mice. Further behavioral testing of the HDACi-treated transgenic mice showed that the newly consolidated memories were stably maintained over a 2-week period. Measurement of the HDAC isoform selectivity profile of sodium valproate, sodium butyrate, and vorinostat revealed the common inhibition of class I HDACs (HDAC1, 2, 3, 8) with little effect on the class IIa HDAC family members (HDAC4, 5, 7, 9) and inhibition of HDAC6 only by vorinostat. These preclinical results indicate that targeted inhibition of class I HDAC isoforms is a promising avenue for treating the cognitive deficits associated with early stage AD.
PMCID: PMC3055373  PMID: 20010553
Alzheimer's disease; cognition; drug discovery; epigenetics; histone deacetylase inhibitor; fear memory; Alzheimer's Disease; Animal models; Cognition; Drug Discovery/Development; epigenetics; histone deacetylase inhibitor; acetylation; chromatin; fear memory
20.  Valproate prevents dysregulation of spinal glutamate and reduces the development of hypersensitivity in rats after peripheral nerve injury 
The present study examined whether the histone deacetylase inhibitor valproate prevents down-regulation of glutamate transporters in the primary cultured astrocytes and in the spinal cord after L5-L6 spinal nerve ligation (SNL), and whether this action of valproate on spinal glutamate transporters prevents spinal glutamate dysregulation and development of hypersensitivity after SNL. In cultured astrocytes, valproate prevented down-regulation of glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST) in a concentration dependent manner. Repeated oral administration of valproate reduced the development of hypersensitivity and prevented the down-regulation of spinal GLT-1 and GLAST expression in rats after SNL, but did not affect mechanical nociception and expression of those transporters in normal rats. Valproate's effects on hypersensitivity and spinal GLT-1 expression in SNL rats were blocked by intrathecal administration of the selective GLT-1 blocker dihydrokainic acid or the GLT-1 selective small interfering RNA (siRNA). Extracellular glutamate concentration in the spinal cord, measured by microdialysis, was increased in animals with SNL or after GLT-1 selective siRNA treatment, and valproate prevented the SNL-induced glutamate increase. These results suggest that valproate reduces the development of chronic pain after nerve injury in part via preventing down-regulation of glutamate transporters, especially GLT-1, to maintain normal extracellular glutamate concentrations in the spinal cord.
PMCID: PMC3818435  PMID: 24021575
Valproate; Glutamate transporter; chronic pain; Astrocyte; Spinal cord
21.  Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells 
Lung cancer (Amsterdam, Netherlands)  2009;68(2):10.1016/j.lungcan.2009.06.012.
The effects of dithiolethione-modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 μg/ml concentrations significantly reduced prostaglandin (PG)E2 levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 μg/ml, respectively. Using the MTT assay, 10 μg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18 mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE2 levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC,
PMCID: PMC3835159  PMID: 19628293
S-valproate; S-diclofenac; lung cancer; PGE2; E-cadherin
22.  The Histone Deacetylase Inhibitor, Vorinostat, Reduces Tumor Growth at the Metastatic Bone Site and Associated Osteolysis, but Promotes Normal Bone Loss 
Molecular cancer therapeutics  2010;9(12):3210-3220.
Vorinostat, an oral histone deacetylase inhibitor with anti-tumor activity, is in clinical trials for hematological and solid tumors that metastasize and compromise bone structure. Consequently, there is a requirement to establish the effects of vorinostat on tumor growth within bone. Breast (MDA-231) and prostate (PC3) cancer cells were injected into tibias of SCID/NCr mice and the effects of vorinostat on tumor growth and osteolytic disease were assessed by radiography, μCT, histological and molecular analyses. Vorinostat-treated and control mice without tumors were also examined. Tumor growth in bone was reduced ~33% by vorinostat with inhibited osteolysis in the first few weeks of the experiment; however, osteolysis became more severe in both the vehicle and vorinostat-treated groups. Vorinostat increased the expression of tumor-derived factors promoting bone resorption, including PTHrP, IL-8 and osteopontin. After four weeks of vorinostat therapy the non-tumor bearing contra-lateral femurs as well as limbs from vorinostat-treated tumor-free SCID mice, showed significant bone loss (50% volume density of controls). Thus, our studies indicate that vorinostat effectively inhibits tumor growth in bone, but has a negative systemic effect reducing normal trabecular bone mass. Vorinostat treatment reduces tumor growth in bone and accompanying osteolytic disease as a result of decreased tumor burden in bone. However, vorinostat can promote osteopenia throughout the skeleton independent of tumor cell activity.
PMCID: PMC3059237  PMID: 21159607
Vorinostat; SAHA; tumor-induced osteolysis; breast cancer; prostate cancer; metastatic cells in bone
23.  Combining the ABL1 Kinase Inhibitor Ponatinib and the Histone Deacetylase Inhibitor Vorinostat: A Potential Treatment for BCR-ABL-Positive Leukemia 
PLoS ONE  2014;9(2):e89080.
Resistance to imatinib (Gleevec®) in cancer cells is frequently because of acquired point mutations in the kinase domain of BCR-ABL. Ponatinib, also known as AP24534, is an oral multi-targeted tyrosine kinase inhibitor (TKI), and it has been investigated in a pivotal phase 2 clinical trial. The histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) has been evaluated for its significant clinical activity in hematological malignancies. Thus, treatments combining ABL TKIs with additional drugs may be a promising strategy in the treatment of leukemia. In the current study, we analyzed the efficacy of ponatinib and vorinostat treatment by using BCR-ABL-positive cell lines. Treatment with ponatinib for 72 h inhibited cell growth and induced apoptosis in K562 cells in a dose-dependent manner. We found that ponatinib potently inhibited the growth of Ba/F3 cells ectopically expressing BCR-ABL T315I mutation. Upon BCR-ABL phosphorylation, Crk-L was decreased, and poly (ADP-ribose) polymerase (PARP) was activated in a dose-dependent manner. Combined treatment of Ba/F3 T315I mutant cells with vorinostat and ponatinib resulted in significantly increased cytotoxicity. Additionally, the intracellular signaling of ponatinib and vorinostat was examined. Caspase 3 and PARP activation increased after combination treatment with ponatinib and vorinostat. Moreover, an increase in the phosphorylation levels of γH2A.X was observed. Previously established ponatinib-resistant Ba/F3 cells were also resistant to imatinib, nilotinib, and dasatinib. We investigated the difference in the efficacy of ponatinib and vorinostat by using ponatinib-resistant Ba/F3 cells. Combined treatment of ponatinib-resistant cells with ponatinib and vorinostat caused a significant increase in cytotoxicity. Thus, combined administration of ponatinib and vorinostat may be a powerful strategy against BCR-ABL mutant cells and could enhance the cytotoxic effects of ponatinib in those BCR-ABL mutant cells.
PMCID: PMC3938434  PMID: 24586514
24.  A phase I–II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma 
British Journal of Cancer  2009;100(1):28-36.
We explored in a phase I/II clinical trial the combination of valproic acid (VPA), a clinically available histone deacetylase inhibitor, with standard chemoimmunotherapy in patients with advanced melanoma, to evaluate its clinical activity, to correlate the clinical response with the biological activity of VPA and to assess toxicity. Patients were treated initially with VPA alone for 6 weeks. The inhibition of the target in non-tumour peripheral blood cells (taken as a potential surrogate marker) was measured periodically, and valproate dosing adjusted with the attempt to reach a measurable inhibition. After the treatment with valproate alone, dacarbazine plus interferon-α was started in combination with valproate. Twenty-nine eligible patients started taking valproate and 18 received chemoimmunotherapy and are assessable for response. We observed one complete response, two partial remissions and three disease stabilisations lasting longer than 24 weeks. With the higher valproate dosages needed to reach a measurable inhibition of the target, we observed an increase of side effects in those patients who received chemoimmunotherapy. The combination of VPA and chemoimmunotherapy did not produce results overtly superior to standard therapy in patients with advanced melanoma and toxicity was not negligible, casting some doubts on the clinical use of VPA in this setting (at least in the administration schedule adopted).
PMCID: PMC2634690  PMID: 19127265
histone deacetylase inhibitor; epigenetic therapy; valproic acid; chemoimmunotherapy; melanoma
25.  Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells 
BMC Cancer  2016;16:857.
Vorinostat, a histone deacetylase (HDAC) inhibitor, is a promising agent for cancer therapy. Combining vorinostat with cisplatin may relax the chromatin structure and facilitate the accessibility of cisplatin, thus enhancing its cytotoxicity. Studies have not yet investigated the effects of the combination of vorinostat and cisplatin on small cell lung cancer (SCLC).
We first assessed the efficacy of vorinostat with etoposide/cisplatin (EP; triple combination) and then investigated the effects of cotreatment with vorinostat and cisplatin on H209 and H146 SCLC cell lines. The anticancer effects of various combinations were determined in terms of cell viability, apoptosis, cell cycle distribution, and vorinostat-regulated proteins. We also evaluated the efficacy of vorinostat/cisplatin combination in H209 xenograft nude mice.
Our data revealed that the triple combination engendered a significant reduction of cell viability and high apoptotic cell death. In addition, vorinostat combined with cisplatin enhanced cell growth inhibition, induced apoptosis, and promoted cell cycle arrest. We observed that the acetylation levels of histone H3 and α-tubulin were higher in combination treatments than in vorinostat treatment alone. Moreover, vorinostat reduced the expression of thymidylate synthase (TS), and TS remained inhibited after cotreament with cisplatin. Furthermore, an in vivo study revealed that the combination of vorinostat and cisplatin significantly inhibited tumor growth in xenograft nude mice (tumor growth inhibition T/C% = 20.5 %).
Combined treatments with vorinostat promote the cytotoxicity of cisplatin and induce the expression of vorinostat-regulated acetyl proteins, eventually enhancing antitumor effects in SCLC cell lines. Triple combinations with a low dosage of cisplatin demonstrate similar therapeutic effects. Such triple combinations, if applied clinically, may reduce the undesired adverse effects of cisplatin. The effects of the combination of vorinostat and cisplatin should be evaluated further before conducting clinical trials for SCLC treatment.
PMCID: PMC5100277  PMID: 27821078
Vorinostat; Cisplatin; SCLC; HDAC inhibitor; Combination therapy

Results 1-25 (1416092)