Search tips
Search criteria

Results 1-25 (1250121)

Clipboard (0)

Related Articles

1.  Effect of valproic acid on mitochondrial epigenetics 
European journal of pharmacology  2012;690(1-3):51-59.
Valproic acid (valproate), an anticonvulsant and a mood stabilizer, is a potent histone deacetylase inhibitor and a widely utilized pharmacological tool for neuroepigenetic research including DNA methylation. However, only nuclear but not mitochondrial DNA (mtDNA) has been investigated for the effects of valproate on the formation of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Using mouse 3T3-L1 cells, we investigated the effects of short (1 day) and prolonged (3 days) valproate treatment on global mtDNA 5mC content, global and mtDNA sequence-specific 5hmC content, mRNA levels for ten-eleven-translocation (TET) enzymes involved in 5hmC formation, and the mitochondrial content of TET proteins. Only 5hmC but not 5mC content in mtDNA was affected (decreased) by valproate, and only after the prolonged treatment. This action of valproate was mimicked by MS-275, a class I histone deacetylase inhibitor. The prolonged but not the short valproate treatment decreased the expression of Tet1 mRNA and reduced the mitochondrial content of the TET1 protein. Hence, a likely scenario for a valproate-induced 5hmC decrease in mtDNA may involve nuclear histone deacetylase inhibition (mitochondria do not contain histones) causing the initial increase of Tet1 transcription, which is followed by a delayed compensatory decrease of Tet1 expression and a reduced presence of TET1 protein in mitochondria. Further research is needed to elucidate the functional implications of epigenetic modifications of mtDNA. The observed effects of valproate on mitochondrial epigenetics may have implications for a better understanding of both therapeutic and unwanted effects of this drug and possibly other histone deacetylase inhibitors.
PMCID: PMC3419440  PMID: 22728245
5-Methylcytosine (5mC); 5-Hydroxymethylcytosine (5hmC); Mitochondrial DNA (mtDNA); Valproic acid (valproate); Ten-eleven-translocation (TET); DNA methyltransferase 1 (DNMT1); Epigenetics
2.  Histone acetylation and histone deacetylase activity of magnesium valproate in tumor and peripheral blood of patients with cervical cancer. A phase I study 
Molecular Cancer  2005;4:22.
The development of cancer has been associated with epigenetic alterations such as aberrant histone deacetylase (HDAC) activity. It was recently reported that valproic acid is an effective inhibitor of histone deacetylases and as such induces tumor cell differentiation, apoptosis, or growth arrest.
Twelve newly diagnosed patients with cervical cancer were treated with magnesium valproate after a baseline tumor biopsy and blood sampling at the following dose levels (four patients each): 20 mg/kg; 30 mg/kg, or 40 mg/kg for 5 days via oral route. At day 6, tumor and blood sampling were repeated and the study protocol ended. Tumor acetylation of H3 and H4 histones and HDAC activity were evaluated by Western blot and colorimetric HDAC assay respectively. Blood levels of valproic acid were determined at day 6 once the steady-state was reached. Toxicity of treatment was evaluated at the end of study period.
All patients completed the study medication. Mean daily dose for all patients was 1,890 mg. Corresponding means for the doses 20-, 30-, and 40-mg/kg were 1245, 2000, and 2425 mg, respectively. Depressed level of consciousness grade 2 was registered in nine patients. Ten patients were evaluated for H3 and H4 acetylation and HDAC activity. After treatment, we observed hyperacetylation of H3 and H4 in the tumors of nine and seven patients, respectively, whereas six patients demonstrated hyperacetylation of both histones. Serum levels of valproic acid ranged from 73.6–170.49 μg/mL. Tumor deacetylase activity decreased in eight patients (80%), whereas two had either no change or a mild increase. There was a statistically significant difference between pre and post-treatment values of HDAC activity (mean, 0.36 vs. 0.21, two-tailed t test p < 0.0264). There was no correlation between H3 and H4 tumor hyperacetylation with serum levels of valproic acid.
Magnesium valproate at a dose between 20 and 40 mg/kg inhibits deacetylase activity and hyperacetylates histones in tumor tissues.
PMCID: PMC1198251  PMID: 16001982
3.  Sodium Valproate Inhibits the Growth of Human Cholangiocarcinoma In Vitro and In Vivo 
Background. None of treatment options for Cholangiocarcinoma (CCA), including surgery, adjuvant radiotherapy and chemotherapy, and ultimately liver transplantation, have been shown to substantially improve the survival rate in patients with CCA. Valproic acid (VPA), a histone deacetylase inhibitor, has been shown to display potent antitumor effects. In this study, sodium valproate, the clinically available form of VPA, was tested for its ability to inhibit the growth of cholangiocarcinoma cells, both in vitro and in vivo. Materials and Methods. Cholangiocarcinoma cells (TFK-1, QBC939, and CCLP1) of different origins were treated with sodium valproate to determine their effects on cell proliferation and differentiation, cell cycle regulation, apoptosis, and autophagy. The in vivo effects of sodium valproate on cholangiocarcinoma growth were assessed using a xenograft mouse model injected with TFK-1 cells. Results. Sodium valproate inhibited cholangiocarcinoma cell growth by inducing cell cycle arrest, cell differentiation, and apoptosis; sodium valproate effects were independent of autophagy. Tumor growth inhibition was also observed in vivo using TFK-1 xenografts. Conclusion. The in vitro and in vivo outcomes provide preclinical rationale for clinical evaluation of sodium valproate, alone or in combination with other drugs, to improve patient outcome in cholangiocarcinoma.
PMCID: PMC3845332  PMID: 24324485
4.  Modulation of angiogenesis by dithiolethione-modified NSAIDs and valproic acid 
British Journal of Pharmacology  2007;151(1):142-151.
Background and purpose:
Angiogenesis involves multiple signaling pathways that must be considered when developing agents to modulate pathological angiogenesis. Because both cyclooxygenase inhibitors and dithioles have demonstrated anti-angiogenic properties, we investigated the activities of a new class of anti-inflammatory drugs containing dithiolethione moieties (S-NSAIDs) and S-valproate.
Experimental approach:
Anti-angiogenic activities of S-NSAIDS, S-valproate, and the respective parent compounds were assessed using umbilical vein endothelial cells, muscle and tumor tissue explant angiogenesis assays, and developmental angiogenesis in Fli:EGFP transgenic zebrafish embryos.
Key results:
Dithiolethione derivatives of diclofenac, valproate, and sulindac inhibited endothelial cell proliferation and induced Ser78 phosphorylation of hsp27, a known molecular target of anti-angiogenic signaling. The parent drugs lacked this activity, but dithiolethiones were active at comparable concentrations. Although dithiolethiones can potentially release hydrogen sulphide, NaSH did not reproduce some activities of the S-NSAIDs, indicating that the dithioles regulate angiogenesis through mechanisms other than release of H2S. In contrast to the parent drugs, S-NSAIDs, S-valproate, NaSH, and dithiolethiones were potent inhibitors of angiogenic responses in muscle and HT29 tumor explants assessed by 3-dimensional collagen matrix assays. Dithiolethiones and valproic acid were also potent inhibitors of developmental angiogenesis in zebrafish embryos, but the S-NSAIDs, remarkably, lacked this activity.
Conclusions and implication:
S-NSAIDs and S-valproate have potent anti-angiogenic activities mediated by their dithiole moieties. The novel properties of S-NSAIDs and S-valproate to inhibit pathological versus developmental angiogenesis suggest that these agents may have a role in cancer treatment.
PMCID: PMC2012972
angiogenesis inhibitors; hsp27 phosphorylation; dithioles; nonsteroidal anti-inflammatory drugs
5.  The Mechanism of Action of the Histone Deacetylase Inhibitor Vorinostat Involves Interaction with the Insulin-Like Growth Factor Signaling Pathway 
PLoS ONE  2011;6(9):e24468.
A correlation between components of the insulin-like growth factor (IGF) system and endometrial cancer risk has been shown in recent studies. The antitumor action of vorinostat, a histone deacetylase inhibitor, involves changes in the expression of specific genes via acetylation of histones and transcription factors. The aim of this study was to establish whether vorinostat can modify the expression of specific genes related to the IGF-I receptor (IGF-IR) signaling pathway and revert the transformed phenotype. Human endometrioid (Type I, Ishikawa) and uterine serous papillary (Type II, USPC-2) endometrial cancer cell lines were treated with vorinostat in the presence or absence of IGF-I. Vorinostat increased IGF-IR phosphorylation, produced acetylation of histone H3, up-regulated pTEN and p21 expression, and reduced p53 and cyclin D1 levels in Ishikawa cells. Vorinostat up-regulated IGF-IR and p21 expression, produced acetylation of histone H3, and down-regulated the expression of total AKT, pTEN and cyclin D1 in USPC-2 cells. Of interest, IGF-IR activation was associated with a major elevation in IGF-IR promoter activity. In addition, vorinostat treatment induced apoptosis in both cell lines and abolished the anti-apoptotic activity of IGF-I both in the absence or presence of a humanized monoclonal IGF-IR antibody, MK-0646. Finally, vorinostat treatment led to a significant decrease in proliferation and colony forming capability in both cell lines. In summary, our studies demonstrate that vorinostat exhibits a potent apoptotic and anti-proliferative effect in both Type I and II endometrial cancer cells, thus suggesting that endometrial cancer may be therapeutically targeted by vorinostat.
PMCID: PMC3169604  PMID: 21931726
6.  Pharmacologically relevant doses of valproate upregulate CD20 expression in three diffuse large B-cell lymphoma patients in vivo 
Epigenetic code modifications by histone deacetylase inhibitors (HDACi) have been proposed as potential new therapies for lymphoid malignancies. Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive lymphoma for which standard first line treatment is the chemotherapy regimen CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) combined with the monoclonal anti-CD20 antibody rituximab (R-CHOP). The HDACi valproate, which has for long been utilized in anti-convulsive therapy, has been shown to sensitize to chemotherapy in vitro. Valproate upregulates expression of CD20 in lymphoma cell lines; therefore, 48 hour pre-treatment with valproate before first line R-CHOP in DLBCL stages II-IV is evaluated in the phase I clinical trial VALFRID; Valproate as First line therapy in combination with Rituximab and CHOP in Diffuse large B-cell lymphoma.
Pretreatment with valproate at oral doses comparable to anti-convulsive therapy, resulted in upregulation of CD20 mRNA and CD20 protein on the cell surface as measured by qPCR and FACS analysis in lymphoma biopsies from three evaluated patients from the VALFRID study. Valproate-treatment corresponded to increased acetylation of Histone3Lysine9 (H3K9ac) in peripheral blood mononuclear cells (PBMCs), which were employed as surrogate tissue for valproate-related epigenetic modifications.
Valproate treatment at pharmacologically relevant doses resulted in upregulation of CD20 in vivo, and also in expected epigenetic modifications. This suggests that pre-treatment with valproate or other HDACis before anti-CD20 therapy could be advantageous in CD20-low B-cell lymphomas. Further studies are warranted to evaluate this conclusion.
PMCID: PMC4429466  PMID: 25973343
Valproate; Valproic acid; CD20; DLBCL; Rituximab; HDACi
7.  Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1 
BMC Urology  2008;8:7.
Steroid hormones influence mitogenic signaling pathways, apoptosis, and cell cycle checkpoints, and it has long been known that incidence of bladder cancer (BC) in men is several times greater than in women, a difference that cannot be attributed to environmental or lifestyle factors alone. Castration reduces incidence of chemically-induced BC in rodents. It is unclear if this effect is due to hormonal influences on activation/deactivation of carcinogens or a direct effect on urothelial cell proliferation or other malignant processes. We examined the effect of castration on BC growth in UPII-SV40T transgenic mice, which express SV40 T antigen specifically in urothelium and reliably develop BC. Furthermore, because BC growth in UPII-SV40T mice is exophytic, we speculated BC growth was dependent on angiogenesis and angiogenesis was, in turn, androgen responsive.
Flat panel detector-based cone beam computed tomography (FPDCT) was used to longitudinally measure exophytic BC growth in UPII-SV40T male mice sham-operated, castrated, or castrated and supplemented with dihydrotestosterone (DHT). Human normal bladder and BC biopsies and mouse bladder were examined quantitatively for thrombospondin-1 (TSP1) protein expression.
Mice castrated at 24 weeks of age had decreased BC volumes at 32 weeks compared to intact mice (p = 0.0071) and castrated mice administered DHT (p = 0.0233; one-way ANOVA, JMP 6.0.3, SAS Institute, Inc.). Bladder cancer cell lines responded to DHT treatment with increased proliferation, regardless of androgen receptor expression levels. TSP1, an anti-angiogenic factor whose expression is inhibited by androgens, had decreased expression in bladders of UPII-SV40T mice compared to wild-type. Castration increased TSP1 levels in UPII-SV40T mice compared to intact mice. TSP1 protein expression was higher in 8 of 10 human bladder biopsies of normal versus malignant tissue from the same patients.
FPDCT allows longitudinal monitoring of exophytic tumor growth in the UPII-SV40T model of BC that bypasses need for chemical carcinogens, which confound analysis of androgen effects. Androgens increase tumor cell growth in vitro and in vivo and decrease TSP1 expression, possibly explaining the therapeutic effect of castration. This effect may, in part, explain gender differences in BC incidence and implies anti-androgenic therapies may be effective in preventing and treating BC.
PMCID: PMC2374790  PMID: 18433501
8.  Inhibitory effect of valproic acid on bladder cancer in combination with chemotherapeutic agents in vitro and in vivo 
Oncology Letters  2013;6(5):1492-1498.
Histone deacetylase inhibitors (HDACIs) are a promising class of drugs that act as antiproliferative agents by promoting differentiation and inducing apoptosis. Valproic acid (VPA) is an HDACI that has been widely used as an anti-convulsant and shows promise as a chemotherapeutic drug for a number of tumor cells. The present study aimed to investigate the inhibitory effect of VPA on the viability of bladder cancer cells and its synergistic effect with chemotherapeutic agents in vitro and in vivo. The cell viability of human bladder cancer cell lines following treatment with VPA and/or VPA in combination with mitomycin C, cisplatin (DDP) and adriamycin were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Hoechst staining was used to observe the morphology of the apoptotic cells. Survivin protein and acetylated histone H3 levels were quantified using western blot analysis. The in vivo tumor growth inhibition of VPA was determined in rats with N-methyl-N-nitrosourea-induced bladder cancer. VPA significantly inhibited the growth of the bladder cancer cells in a concentration- and time-dependent manner. Furthermore, improved results were achieved for tumor inhibition when VPA was combined with chemotherapeutic agents in vitro and in vivo. Survivin expression decreased and acetylated histone H3 expression increased in the bladder cancer cells following the treatment with VPA. Intravesical injections of VPA were able to inhibit tumor progression when combined with DDP. In conclusion, VPA acts as an HDACI that has a direct anticancer effect and markedly enhances the action of several chemotherapy agents. VPA may sensitize bladder cancer to anticancer drugs by downregulating survivin expression.
PMCID: PMC3813788  PMID: 24179547
valproic acid; apoptosis; combination; bladder cancer; therapy
9.  The histone deacetylase inhibitor belinostat (PXD101) suppresses bladder cancer cell growth in vitro and in vivo 
Treatment options for patients with recurrent superficial bladder cancer are limited, necessitating aggressive exploration of new treatment strategies that effectively prevent recurrence and progression to invasive disease. We assessed the effects of belinostat (previously PXD101), a novel histone deacetylase inhibitor, on a panel of human bladder cancer cell lines representing superficial and invasive disease, and on a transgenic mouse model of superficial bladder cancer.
Growth inhibition and cell cycle distribution effect of belinostat on 5637, T24, J82, and RT4 urothelial lines were assessed. Ha-ras transgenic mice with established superficial bladder cancer were randomized to receive either belinostat or vehicle alone, and assessed for bladder weight, hematuria, gene expression profiling, and immunohistochemistry (IHC).
Belinostat had a significant linear dose-dependent growth inhibition on all cell lines (IC50 range of 1.0–10.0 μM). The 5637 cell line, which was derived from a superficial papillary tumor, was the most sensitive to treatment. Belinostat (100 mg/kg, intraperitoneal, 5 days each week for 3 weeks) treated mice had less bladder weight (p < 0.05), and no hematuria compared with 6/10 control mice that developed at least one episode. IHC of bladder tumors showed less cell proliferation and a higher expression of p21WAF1 in the belinostat-treated mice. Gene expression profile analysis revealed 56 genes significantly different in the treated group; these included the upregulation of p21WAF1, induction of core histone deacetylase (HDAC), and cell communication genes.
Our data demonstrate that belinostat inhibits bladder cancer and supports the clinical evaluation of belinostat for the treatment of patients with superficial bladder cancer.
PMCID: PMC2100044  PMID: 17935615
10.  Expression and function of SIRT6 in muscle invasive urothelial carcinoma of the bladder 
SIRT6, a member of the class III histone deacetylase, has been shown to inhibit glycolysis and promote DNA double strand break repairs. Despite of its proposed tumor suppressor role, no significant differences in SIRT6 mRNA levels among normal bladder urothelium, non-muscle invasive, and muscle invasive urothelial carcinoma were noted in the two largest bladder cancer gene expression datasets available in OncomineTM. We therefore studied the expression and function of SIRT6 in muscle invasive urothelial carcinoma of the bladder. Immunohistochemistry studies of SIRT6 on radical cystectomy samples showed a dramatic decline of SIRT6 expression when bladder cancer progressed from T2 to T4. Functional study with bladder cancer cell lines confirmed its role in inhibiting glycolysis and cell proliferation. Reducing SIRT6 with siRNA, however, did not sensitize bladder cancer cells to drug induced DNA damage. The differential expression patterns of SIRT6 amongst different T stages of muscle invasive bladder cancers indicate less reliance on glycolysis when urothelial carcinoma invades deeper through the bladder and into the adjacent tissues.
PMCID: PMC4230126  PMID: 25400728
SIRT6; bladder cancer; glycolysis; metabolism
11.  The Effect of Epigenetic Therapy on Congenital Neurogenic Bladders—A Pilot Study 
Urology  2010;75(4):868-872.
To demonstrate that human smooth muscle cells derived from neurogenic bladders produce more collagen in vitro than smooth muscle cells derived from normal bladders, and that epigenetic therapy may normalize this increased collagen production.
Human smooth muscle cells from normal (n = 3) and neurogenic bladders (n = 3) were cultured in normal culture media and at different concentrations of the histone deacetylase inhibitors trichostatin A, valproic acid, and the DNA methylation inhibitor 5-azacytidine (5-aza). Collagen type I and III gene expression was measured using real-time quantitative reverse transcription-polymerase chain reaction after varying doses of drug exposure. Cell viability was measured using trypan blue.
The smooth muscle cells from neurogenic bladders released significantly more collagen than the normal bladder cells (mean 4.1 vs 1.8 μg/mL in control media) when grown in normal conditions. Treatment with trichostatin A at 50 ng/mL decreased the collagen level in cells from neurogenic bladders to almost normal levels (2.1 μg/mL). In addition, valproic acid treatment decreased collagen types I and III gene expression relative to controls, with maximal effect at 300 mg/mL. These treatments had little effect on cell viability.
Histone deacetylase inhibitors decreased collagen production of smooth muscle cells from neurogenic bladders in vitro. These agents may be a means of effectively preventing bladder fibrosis in patients with this condition.
PMCID: PMC2860424  PMID: 20138341
12.  Diffuse-Type Gastric Carcinoma: Progression, Angiogenesis, and Transforming Growth Factor β Signaling 
Diffuse-type gastric carcinoma is a cancer with poor prognosis that has high levels of transforming growth factor β (TGF-β) expression and thick stromal fibrosis. However, the association of TGF-β signaling with diffuse-type gastric carcinoma has not been investigated in detail.
We used a lentiviral infection system to express a dominant-negative TGF-β type II receptor (dnTβRII) or green fluorescent protein (GFP) as a control in the diffuse-type gastric carcinoma cell lines, OCUM-2MLN and OCUM-12. These infected cells and the corresponding parental control cells were subcutaneously or orthotopically injected into nude mice. Angiogenesis was inhibited by infecting cells with a lentivirus carrying the gene for angiogenic inhibitor thrombospondin-1 or by injecting mice intraperitoneally with the small-molecule angiogenic inhibitor sorafenib or with anti-vascular endothelial growth factor (VEGF) neutralizing antibody (six or eight mice per group). Expression of phospho-Smad2 and thrombospondin-1 was investigated immunologically in human gastric carcinoma tissues from 102 patients. All statistical tests were two-sided.
Expression of dnTβRII into OCUM-2MLN cells did not affect their proliferation in vitro, but it accelerated the growth of subcutaneously or orthotopically transplanted tumors in vivo (eg, for mean volume of subcutaneous tumors on day 10 relative to that on day 0: dnTβRII tumors = 3.49 and GFP tumors = 2.46, difference = 1.02, 95% confidence interval [CI] = 0.21 to 1.84; P = .003). The tumors expressing dnTβRII had higher levels of angiogenesis than those expressing GFP because of decreased thrombospondin-1 production. Similar results were obtained with OCUM-12 cells. Expression of thrombospondin-1 in the dnTβRII tumor or treatment with sorafenib or anti-VEGF antibody reduced tumor growth, whereas knockdown of thrombospondin-1 expression resulted in more accelerated growth of OCUM-2MLN tumors than of GFP tumors (eg, mean tumor volumes on day 14 relative to those on day 0: thrombospondin-1–knockdown tumors = 4.91 and GFP tumors = 3.79, difference = 1.12, 95% CI = 0.80 to 1.44; P < .001). Positive association between phosphorylated Smad2 and thrombospondin-1 immunostaining was observed in human gastric carcinoma tissues.
Disruption of TGF-β signaling in diffuse-type gastric carcinoma models appeared to accelerate tumor growth, apparently through increased tumor angiogenesis that was induced by decreased expression of thrombospondin-1.
PMCID: PMC2669102  PMID: 19351925
13.  Dithiolethione modified valproate and diclofenac increase E-cadherin expression and decrease proliferation of non-small cell lung cancer cells 
Lung cancer (Amsterdam, Netherlands)  2009;68(2):10.1016/j.lungcan.2009.06.012.
The effects of dithiolethione-modified valproate, diclofenac and sulindac on non-small cell lung cancer (NSCLC) cells were investigated. Sulfur(S)-valproate and S-diclofenac at 1 μg/ml concentrations significantly reduced prostaglandin (PG)E2 levels in NSCLC cell lines A549 and NCI-H1299 as did the COX-2 inhibitor DuP-697. In vitro, S-valproate, S-diclofenac and S-sulindac half-maximally inhibited the clonal growth of NCI-H1299 cells at 6, 6 and 15 μg/ml, respectively. Using the MTT assay, 10 μg/ml S-valproate, NO-aspirin and Cay10404, a selective COX-2 inhibitor, but not SC-560, a selective COX-1 inhibitor, inhibited the growth of A549 cells. In vivo, 18 mg/kg i.p. of S-valproate and S-diclofenac, but not S-sulindac, significantly inhibited A549 or NCI-H1299 xenograft proliferation in nude mice, but had no effect on the nude mouse body weight. The mechanism by which S-valproate and S-diclofenac inhibited the growth of NSCLC cells was investigated. Nitric oxide-aspirin but not S-valproate caused apoptosis of NSCLC cells. By Western blot, S-valproate and S-diclofenac increased E-cadherin but reduced vimentin and ZEB1 (a transcriptional suppressor of E-cadherin) protein expression in NSCLC cells. Because S-valproate and S-diclofenac inhibit the growth of NSCLC cells and reduce PGE2 levels, they may prove beneficial in the chemoprevention and/or therapy of NSCLC,
PMCID: PMC3835159  PMID: 19628293
S-valproate; S-diclofenac; lung cancer; PGE2; E-cadherin
14.  The Histone Deacetylase Inhibitor, Vorinostat, Reduces Tumor Growth at the Metastatic Bone Site and Associated Osteolysis, but Promotes Normal Bone Loss 
Molecular cancer therapeutics  2010;9(12):3210-3220.
Vorinostat, an oral histone deacetylase inhibitor with anti-tumor activity, is in clinical trials for hematological and solid tumors that metastasize and compromise bone structure. Consequently, there is a requirement to establish the effects of vorinostat on tumor growth within bone. Breast (MDA-231) and prostate (PC3) cancer cells were injected into tibias of SCID/NCr mice and the effects of vorinostat on tumor growth and osteolytic disease were assessed by radiography, μCT, histological and molecular analyses. Vorinostat-treated and control mice without tumors were also examined. Tumor growth in bone was reduced ~33% by vorinostat with inhibited osteolysis in the first few weeks of the experiment; however, osteolysis became more severe in both the vehicle and vorinostat-treated groups. Vorinostat increased the expression of tumor-derived factors promoting bone resorption, including PTHrP, IL-8 and osteopontin. After four weeks of vorinostat therapy the non-tumor bearing contra-lateral femurs as well as limbs from vorinostat-treated tumor-free SCID mice, showed significant bone loss (50% volume density of controls). Thus, our studies indicate that vorinostat effectively inhibits tumor growth in bone, but has a negative systemic effect reducing normal trabecular bone mass. Vorinostat treatment reduces tumor growth in bone and accompanying osteolytic disease as a result of decreased tumor burden in bone. However, vorinostat can promote osteopenia throughout the skeleton independent of tumor cell activity.
PMCID: PMC3059237  PMID: 21159607
Vorinostat; SAHA; tumor-induced osteolysis; breast cancer; prostate cancer; metastatic cells in bone
15.  Combining the ABL1 Kinase Inhibitor Ponatinib and the Histone Deacetylase Inhibitor Vorinostat: A Potential Treatment for BCR-ABL-Positive Leukemia 
PLoS ONE  2014;9(2):e89080.
Resistance to imatinib (Gleevec®) in cancer cells is frequently because of acquired point mutations in the kinase domain of BCR-ABL. Ponatinib, also known as AP24534, is an oral multi-targeted tyrosine kinase inhibitor (TKI), and it has been investigated in a pivotal phase 2 clinical trial. The histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid) has been evaluated for its significant clinical activity in hematological malignancies. Thus, treatments combining ABL TKIs with additional drugs may be a promising strategy in the treatment of leukemia. In the current study, we analyzed the efficacy of ponatinib and vorinostat treatment by using BCR-ABL-positive cell lines. Treatment with ponatinib for 72 h inhibited cell growth and induced apoptosis in K562 cells in a dose-dependent manner. We found that ponatinib potently inhibited the growth of Ba/F3 cells ectopically expressing BCR-ABL T315I mutation. Upon BCR-ABL phosphorylation, Crk-L was decreased, and poly (ADP-ribose) polymerase (PARP) was activated in a dose-dependent manner. Combined treatment of Ba/F3 T315I mutant cells with vorinostat and ponatinib resulted in significantly increased cytotoxicity. Additionally, the intracellular signaling of ponatinib and vorinostat was examined. Caspase 3 and PARP activation increased after combination treatment with ponatinib and vorinostat. Moreover, an increase in the phosphorylation levels of γH2A.X was observed. Previously established ponatinib-resistant Ba/F3 cells were also resistant to imatinib, nilotinib, and dasatinib. We investigated the difference in the efficacy of ponatinib and vorinostat by using ponatinib-resistant Ba/F3 cells. Combined treatment of ponatinib-resistant cells with ponatinib and vorinostat caused a significant increase in cytotoxicity. Thus, combined administration of ponatinib and vorinostat may be a powerful strategy against BCR-ABL mutant cells and could enhance the cytotoxic effects of ponatinib in those BCR-ABL mutant cells.
PMCID: PMC3938434  PMID: 24586514
16.  A phase I–II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma 
British Journal of Cancer  2009;100(1):28-36.
We explored in a phase I/II clinical trial the combination of valproic acid (VPA), a clinically available histone deacetylase inhibitor, with standard chemoimmunotherapy in patients with advanced melanoma, to evaluate its clinical activity, to correlate the clinical response with the biological activity of VPA and to assess toxicity. Patients were treated initially with VPA alone for 6 weeks. The inhibition of the target in non-tumour peripheral blood cells (taken as a potential surrogate marker) was measured periodically, and valproate dosing adjusted with the attempt to reach a measurable inhibition. After the treatment with valproate alone, dacarbazine plus interferon-α was started in combination with valproate. Twenty-nine eligible patients started taking valproate and 18 received chemoimmunotherapy and are assessable for response. We observed one complete response, two partial remissions and three disease stabilisations lasting longer than 24 weeks. With the higher valproate dosages needed to reach a measurable inhibition of the target, we observed an increase of side effects in those patients who received chemoimmunotherapy. The combination of VPA and chemoimmunotherapy did not produce results overtly superior to standard therapy in patients with advanced melanoma and toxicity was not negligible, casting some doubts on the clinical use of VPA in this setting (at least in the administration schedule adopted).
PMCID: PMC2634690  PMID: 19127265
histone deacetylase inhibitor; epigenetic therapy; valproic acid; chemoimmunotherapy; melanoma
17.  Genistein cooperates with the histone deacetylase inhibitor vorinostat to induce cell death in prostate cancer cells 
BMC Cancer  2012;12:145.
Among American men, prostate cancer is the most common, non-cutaneous malignancy that accounted for an estimated 241,000 new cases and 34,000 deaths in 2011. Previous studies have suggested that Wnt pathway inhibitory genes are silenced by CpG hypermethylation, and other studies have suggested that genistein can demethylate hypermethylated DNA. Genistein is a soy isoflavone with diverse effects on cellular proliferation, survival, and gene expression that suggest it could be a potential therapeutic agent for prostate cancer. We undertook the present study to investigate the effects of genistein on the epigenome of prostate cancer cells and to discover novel combination approaches of other compounds with genistein that might be of translational utility. Here, we have investigated the effects of genistein on several prostate cancer cell lines, including the ARCaP-E/ARCaP-M model of the epithelial to mesenchymal transition (EMT), to analyze effects on their epigenetic state. In addition, we investigated the effects of combined treatment of genistein with the histone deacetylase inhibitor vorinostat on survival in prostate cancer cells.
Using whole genome expression profiling and whole genome methylation profiling, we have determined the genome-wide differences in genetic and epigenetic responses to genistein in prostate cancer cells before and after undergoing the EMT. Also, cells were treated with genistein, vorinostat, and combination treatment, where cell death and cell proliferation was determined.
Contrary to earlier reports, genistein did not have an effect on CpG methylation at 20 μM, but it did affect histone H3K9 acetylation and induced increased expression of histone acetyltransferase 1 (HAT1). In addition, genistein also had differential effects on survival and cooperated with the histone deacteylase inhibitor vorinostat to induce cell death and inhibit proliferation.
Our results suggest that there are a number of pathways that are affected with genistein and vorinostat treatment such as Wnt, TNF, G2/M DNA damage checkpoint, and androgen signaling pathways. In addition, genistein cooperates with vorinostat to induce cell death in prostate cancer cell lines with a greater effect on early stage prostate cancer.
PMCID: PMC3472186  PMID: 22494660
Prostate cancer; Soy; Natural compounds; Epigenetics; Apoptosis
18.  Histone deacetylase 8 is deregulated in urothelial cancer but not a target for efficient treatment 
Previous studies have shown that class-I histone deacetylase (HDAC) 8 mRNA is upregulated in urothelial cancer tissues and urothelial cancer cell lines compared to benign controls. Using urothelial cancer cell lines we evaluated whether specific targeting of HDAC8 might be a therapeutic option in bladder cancer treatment.
We conducted siRNA-mediated knockdown and specific pharmacological inhibition of HDAC8 with the three different inhibitors compound 2, compound 5, and compound 6 in several urothelial carcinoma cell lines with distinct HDAC8 expression profiles. Levels of HDAC and marker proteins were determined by western blot analysis and mRNA levels were measured by quantitative real-time PCR. Cellular effects of HDAC8 suppression were analyzed by ATP assay, flow cytometry, colony forming assay and migration assay.
Efficient siRNA-mediated knockdown of HDAC8 reduced proliferation up to 45%. The HDAC8 specific inhibitors compound 5 and compound 6 significantly reduced viability of all urothelial cancer cell lines (IC50 9 – 21 μM). Flow cytometry revealed only a slight increase in the sub-G1 fraction indicating a limited induction of apoptosis. Expression of thymidylate synthase was partly reduced; PARP-cleavage was not detected. The influence of the pharmacological inhibition on clonogenic growth and migration show a cell line- and inhibitor-dependent reduction with the strongest effects after treatment with compound 5 and compound 6.
Deregulation of HDAC8 is frequent in urothelial cancer, but neither specific pharmacological inhibition nor siRNA-mediated knockdown of HDAC8 impaired viability of urothelial cancer cell lines in a therapeutic useful manner. Accordingly, HDAC8 on its own is not a promising drug target in bladder cancer.
PMCID: PMC4230422  PMID: 25011684
Histone deacetylase 8; Histone deacetylase inhibitor; Urothelial bladder cancer; Cell cycle arrest
19.  Valproate Administered after Traumatic Brain Injury Provides Neuroprotection and Improves Cognitive Function in Rats 
PLoS ONE  2010;5(6):e11383.
Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.
Methodology/Principal Findings
Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.
Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.
PMCID: PMC2894851  PMID: 20614021
20.  Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models 
Molecular cancer therapeutics  2009;8(2):342-349.
Despite the availability of several Food and Drug Administration-approved drugs, advanced inoperable colorectal cancer remains incurable. In this study, we focused on the development of combined molecular targeted therapies against colon cancer by testing the efficacy of the combination of the histone deacetylase inhibitor vorinostat with the proteasome inhibitor bortezomib to determine if this resulted in synergistic antitumor effects against colorectal cancer. The effects of the histone deacetylase inhibitor vorinostat in combination with the proteasome inhibitor bortezomib on the growth of two colorectal cancer cell lines were assessed with regard to proliferation, cell cycle arrest, and apoptosis. Treatment with the combination of vorinostat and bortezomib resulted in a synergistic decrease in proliferation of both colorectal cancer cell lines compared with treatment with single agents alone. This inhibition was associated with a synergistic increase in apoptosis as measured by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase. In addition, we observed an increase in the proapoptotic protein BIM and in the number of cells arrested in the G2-M phase of the cell cycle. Although p21 levels were significantly increased, short hairpin RNA knockdown of p21 did not lead to changes in proliferation in response to the combination of drugs, indicating that although p21 is a target of these drugs, it is not required to mediate their antiproliferative effects. These data indicate that combination treatment with vorinostat and bortezomib result in synergistic antiproliferative and proapoptotic effects against colon cancer cell lines, providing a rational basis for the clinical use of this combination for the treatment of colorectal cancer.
PMCID: PMC2813767  PMID: 19174560
21.  An atlas of histone deacetylase expression in breast cancer: fluorescence methodology for comparative semi-quantitative analysis 
The histone deacetylase inhibitors, suberoylanilide hydroxamic acid (Vorinostat, Zolinza™) and depsipeptide (Romidepsin, Istodax™) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Numerous histone deacetylase inhibitors are currently undergoing clinical trials, predominantly in combination with other cancer modalities, for the treatment of various haematological and solid malignancies. Most of the traditional compounds are known as broad-spectrum or pan-histone deacetylase inhibitors, possessing activity against a number of the 11 metal-dependent enzymes. One of the main questions in the field is whether class- or isoform-specific compounds would offer a therapeutic benefit compared to broad-spectrum inhibitors. Therefore, analysis of the relative expression of the different histone deacetylase enzymes in cancer cells and tissues is important to determine whether there are specific targets. We used a panel of antibodies directed against the 11 known mammalian histone deacetylases to determine expression levels in MCF7 breast cancer cells and in tissue representative of invasive ductal cell carcinoma and ductal carcinoma in situ. Firstly, we utilized a semi-quantitative method based on immunofluorescence staining to examine expression of the different histone deacetylases in MCF7 cells. Our findings indicate high expression levels of HDAC1, 3 and 6 in accordance with findings from others using RT-PCR and immunoblotting. Following validation of our approach we examined the expression of the different isoforms in representative control and breast cancer tissue. In general, our findings indicate higher expression of class I histone deacetylases compared to class II enzymes in breast cancer tissue. Analysis of individual cancer cells in the same tissue indicated marked heterogeneity in the expression of most class I enzymes indicating potential complications with the use of class- or isoform-specific compounds. Overall, our approach can be utilized to rapidly compare, in an unbiased semi-quantitative manner, the differential levels of expression of histone deacetylase enzymes in cells and tissues using widely available imaging software. It is anticipated that such analysis will become increasingly important as class- or isoform-specific histone deacetylase inhibitors become more readily available.
PMCID: PMC3276375  PMID: 22347520
Chromatin; histone acetylation; histone deacetylase inhibitor; breast cancer; immunofluorescence
22.  Potential non-oncological applications of histone deacetylase inhibitors 
Histone deacetylase inhibitors have emerged as a new class of anticancer therapeutic drugs. Their clinical utility in oncology stems from their intrinsic cytotoxic properties and combinatorial effects with other conventional cancer therapies. To date, the histone deacetylase inhibitors suberoylanilide hydroxamic acid (Vorinostat, Zolinza®) and depsipeptide (Romidepsin, Istodax®) have been approved by the US Food and Drug Administration for the treatment of refractory cutaneous T-cell lymphoma. Further, there are currently over 100 clinical trials involving the use of histone deacetylase inhibitors in a wide range of solid and hematological malignancies. The therapeutic potential of histone deacetylase inhibitors has also been investigated for numerous other diseases. For example, the cytotoxic properties of histone deacetylase inhibitors are currently being harnessed as a potential treatment for malaria, whereas the efficacy of these compounds for HIV relies on de-silencing latent virus. The anti-inflammatory properties of histone deacetylase inhibitors are the predominant mechanisms for other diseases, such as hepatitis, systemic lupus erythematosus and a wide range of neurodegenerative conditions. Additionally, histone deacetylase inhibitors have been shown to be efficacious in animal models of cardiac hypertrophy and asthma. Broad-spectrum histone deacetylase inhibitors are clinically available and have been used almost exclusively in preclinical systems to date. However, it is emerging that class- or isoform-specific compounds, which are becoming more readily available, may be more efficacious particularly for non-oncological applications. The aim of this review is to provide an overview of the effects and clinical potential of histone deacetylase inhibitors in various diseases. Apart from applications in oncology, the discussion is focused on the potential efficacy of histone deacetylase inhibitors for the treatment of neurodegenerative diseases, cardiac hypertrophy and asthma.
PMCID: PMC3204892  PMID: 22046487
Chromatin modifications; histone acetylation; histone deacetylase inhibitor; Trichostatin A; neurodegeneration; cardiac hypertrophy; asthma
23.  Valproic acid and butyrate induce apoptosis in human cancer cells through inhibition of gene expression of Akt/protein kinase B 
Molecular Cancer  2006;5:71.
In eukaryotic cells, the genomic DNA is packed with histones to form the nucleosome and chromatin structure. Reversible acetylation of the histone tails plays an important role in the control of specific gene expression. Mounting evidence has established that histone deacetylase inhibitors selectively induce cellular differentiation, growth arrest and apoptosis in variety of cancer cells, making them a promising class of anticancer drugs. However, the molecular mechanisms of the anti-cancer effects of these inhibitors have yet to be understood.
Here, we report that a key determinant for the susceptibility of cancer cells to histone deacetylase inhibitors is their ability to maintain cellular Akt activity in response to the treatment. Also known as protein kinase B, Akt is an essential pro-survival factor in cell proliferation and is often deregulated during tumorigenesis. We show that histone deacetylase inhibitors, such as valproic acid and butyrate, impede Akt1 and Akt2 expression, which leads to Akt deactivation and apoptotic cell death. In addition, valproic acid and butyrate induce apoptosis through the caspase-dependent pathway. The activity of caspase-9 is robustly activated upon valproic acid or butyrate treatment. Constitutively active Akt is able to block the caspase activation and rescues cells from butyrate-induced apoptotic cell death.
Our study demonstrates that although the primary target of histone deacetylase inhibitors is transcription, it is the capacity of cells to maintain cellular survival networks that determines their fate of survival.
PMCID: PMC1762018  PMID: 17156483
24.  Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer 
Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors.
PMCID: PMC3108377  PMID: 21507255
25.  HDAC inhibitor valproic acid upregulates CAR in vitro and in vivo 
The presence of CAR in diverse tumor types is heterogeneous with implications in tumor transduction efficiency in the context of adenoviral mediated cancer gene therapy. Preliminary studies suggest that CAR transcriptional regulation is modulated through histone acetylation and not through promoter methylation. Furthermore, it has been documented that the pharmacological induction of CAR using histone deacetylase inhibitor (iHDAC) compounds is a viable strategy to enhance adenoviral mediated gene delivery to cancer cells in vitro. The incorporation of HDAC drugs into the overall scheme in adenoviral based cancer gene therapy clinical trials seems rational. However, reports using compounds with iHDAC properties utilized routinely in the clinic are pending. Valproic acid, a short chained fatty acid extensively used in the clinic for the treatment of epilepsy and bipolar disorder has been recently described as an effective HDAC inhibitor at therapeutic concentrations.
We studied the effect of valproic acid on histone H3 and H4 acetylation, CAR mRNA upregulation was studied using semiquantitative PCR and adenoviral transduction on HeLa cervical cancer cells, on MCF-7 breast cancer cells, on T24 transitional cell carcinoma of the bladder cells. CAR mRNA was studied using semiquantitative PCR on tumor tissue extracted from patients diagnosed with cervical cancer treated with valproic acid.
CAR upregulation through HDAC inhibition was observed in the three cancer cell lines with enhancement of adenoviral transduction. CAR upregulation was also observed in tumor samples obtained from patients with cervical cancer treated with therapeutic doses of valproic acid. These results support the addition of the HDAC inhibitor valproic acid to adenoviral mediated cancer gene therapy clinical trials to enhance adenoviral mediated gene delivery to the tumor cells.
PMCID: PMC2174455  PMID: 17892546

Results 1-25 (1250121)