Search tips
Search criteria

Results 1-25 (305549)

Clipboard (0)

Related Articles

1.  A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time 
Journal of Experimental Botany  2009;60(4):1299-1308.
FLOWERING LOCUS C (FLC), encoding a MADS-domain transcription factor in Arabidopsis, is a repressor of flowering involved in the vernalization pathway. This provides a good reference for Brassica species. Genomes of Brassica species contain several FLC homologues and several of these colocalize with flowering-time QTL. Here the analysis of sequence variation of BrFLC1 in Brassica rapa and its association with the flowering-time phenotype is reported. The analysis revealed that a G→A polymorphism at the 5’ splice site in intron 6 of BrFLC1 is associated with flowering phenotype. Three BrFLC1 alleles with alternative splicing patterns, including two with different parts of intron 6 retained and one with the entire exon 6 excluded from the transcript, were identified in addition to alleles with normal splicing. It was inferred that aberrant splicing of the pre-mRNA leads to loss-of-function of BrFLC1. A CAPS marker was developed for this locus to distinguish Pi6+1(G) and Pi6+1(A). The polymorphism detected with this marker was significantly associated with flowering time in a collection of 121 B. rapa accessions and in a segregating Chinese cabbage doubled-haploid population. These findings suggest that a naturally occurring splicing mutation in the BrFLC1 gene contributes greatly to flowering-time variation in B. rapa.
PMCID: PMC2657548  PMID: 19190098
BrFLC1; flowering time; splicing pattern; splicing site mutation
2.  BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa 
Journal of Experimental Botany  2010;61(6):1817-1825.
Flowering time is an important agronomic trait, and wide variation exists among Brassica rapa. In Arabidopsis, FLOWERING LOCUS C (FLC) plays an important role in modulating flowering time and the response to vernalization. Brassica rapa contains several paralogues of FLC at syntenic regions. BrFLC2 maps under a major flowering time and vernalization response quantitative trait locus (QTL) at the top of A02. Here the effects of vernalization on flowering time in a double haploid (DH) population and on BrFLC2 expression in selected lines of a DH population in B. rapa are descibed. The effect of the major flowering time QTL on the top of A02 where BrFLC2 maps clearly decreases upon vernalization, which points to a role for BrFLC2 underlying the QTL. In all developmental stages and tissues (seedlings, cotyledons, and leaves), BrFLC2 transcript levels are higher in late flowering pools of DH lines than in pools of early flowering DH lines. BrFLC2 expression diminished after different durations of seedling vernalization in both early and late DH lines. The reduction of BrFLC2 expression upon seedling vernalization of both early and late flowering DH lines was strongest at the seedling stage and diminished in subsequent growth stages, which suggests that the commitment to flowering is already set at very early developmental stages. Taken together, these data support the hypothesis that BrFLC2 is a candidate gene for the flowering time and vernalization response QTL in B. rapa.
PMCID: PMC2852669  PMID: 20231331
Brassica rapa; FLOWERING LOCUS C; flowering time; quantitative trait loci; vernalization
3.  A Brassica rapa Linkage Map of EST-based SNP Markers for Identification of Candidate Genes Controlling Flowering Time and Leaf Morphological Traits 
For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.
PMCID: PMC2780953  PMID: 19884167
DNA markers; synteny; bolting time; leaf lobe; leaf hairiness
4.  Comparative Analysis of FLC Homologues in Brassicaceae Provides Insight into Their Role in the Evolution of Oilseed Rape 
PLoS ONE  2012;7(9):e45751.
We identified nine FLOWERING LOCUS C homologues (BnFLC) in Brassica napus and found that the coding sequences of all BnFLCs were relatively conserved but the intronic and promoter regions were more divergent. The BnFLC homologues were mapped to six of 19 chromosomes. All of the BnFLC homologues were located in the collinear region of FLC in the Arabidopsis genome except BnFLC.A3b and BnFLC.C3b, which were mapped to noncollinear regions of chromosome A3 and C3, respectively. Four of the homologues were associated significantly with quantitative trait loci for flowering time in two mapping populations. The BnFLC homologues showed distinct expression patterns in vegetative and reproductive organs, and at different developmental stages. BnFLC.A3b was differentially expressed between the winter-type and semi-winter-type cultivars. Microsynteny analysis indicated that BnFLC.A3b might have been translocated to the present segment in a cluster with other flowering-time regulators, such as a homologue of FRIGIDA in Arabidopsis. This cluster of flowering-time genes might have conferred a selective advantage to Brassica species in terms of increased adaptability to diverse environments during their evolution and domestication process.
PMCID: PMC3459951  PMID: 23029223
5.  FLOWERING LOCUS C -dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways 
BMC Plant Biology  2006;6:10.
The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system.
Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity.
This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programing in other plant species.
PMCID: PMC1525167  PMID: 16737527
6.  Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome 
BMC Plant Biology  2012;12:21.
Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea.
We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana.
We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is not syntenic with A. thaliana FRI due to an ancient recombination event. This has complicated previous association analyses of FRI with variation in life history strategy in the Brassica genus.
PMCID: PMC3299615  PMID: 22333192
FRIGIDA; Flowering time; vernalization; synteny; Brassica oleracea; Arabidopsis thaliana
7.  Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a 
Journal of Experimental Botany  2011;62(15):5641-5658.
Oilseed rape (Brassica napus L.) is a major oil crop which is grown worldwide. Adaptation to different environments and regional climatic conditions involves variation in the regulation of flowering time. Winter types have a strong vernalization requirement whereas semi-winter and spring types have a low vernalization requirement or flower without exposure to cold, respectively. In Arabidopsis thaliana, FRIGIDA (FRI) is a key regulator which inhibits floral transition through activation of FLOWERING LOCUS C (FLC), a central repressor of flowering which controls vernalization requirement and response. Here, four FRI homologues in B. napus were identified by BAC library screening and PCR-based cloning. While all homologues are expressed, two genes were found to be differentially expressed in aerial plant organs. One of these, BnaA.FRI.a, was mapped to a region on chromosome A03 which co-localizes with a major flowering time quantitative trait locus in multiple environments in a doubled-haploid mapping population. Association analysis of BnaA.FRI.a revealed that six SNPs, including at least one at a putative functional site, and one haplotype block, respectively, are associated with flowering time variation in 248 accessions, with flowering times differing by 13–19 d between extreme haplotypes. The results from both linkage analysis and association mapping indicate that BnaA.FRI.a is a major determinant of flowering time in oilseed rape, and suggest further that this gene also contributes to the differentiation between growth types. The putative functional polymorphisms identified here may facilitate adaptation of this crop to specific environments through marker-assisted breeding.
PMCID: PMC3223056  PMID: 21862478
Association mapping; B. napus; flowering time; FRI; growth type; QTL; vernalization requirement
8.  ARABIDOPSIS TRITHORAX-RELATED3/SET DOMAIN GROUP2 is Required for the Winter-Annual Habit of Arabidopsis thaliana 
Plant and Cell Physiology  2012;53(5):834-846.
The winter-annual habit of Arabidopsis thaliana requires active alleles of FLOWERING LOCUS C (FLC), which encodes a potent flowering repressor, and FRIGIDA (FRI), an activator of FLC. FLC activation by FRI is accompanied by an increase in specific histone modifications, such as tri-methylation of histone H3 at lysine 4 (H3K4me3), and requires three H3K4 methyltransferases, the Drosophila Trithorax-class ARABIDOPSIS TRITHORAX1 (ATX1) and ATX2, and yeast Set1-class ATX-RELATED7/SET DOMAIN GROUP25 (ATXR7/SDG25). However, lesions in all of these genes failed to suppress the enhanced FLC expression caused by FRI completely, suggesting that another H3K4 methyltransferase may participate in the FLC activation. Here, we show that ATXR3/SDG2, which is a member of a novel class of H3K4 methyltransferases, also contributes to FLC activation. An ATXR3 lesion suppressed the enhanced FLC expression and delayed flowering caused by an active allele of FRI in non-vernalized plants. The decrease in FLC expression in atxr3 mutants was accompanied by reduced H3K4me3 levels at FLC chromatin. We also found that the rapid flowering of atxr3 was epistatic to that of atxr7, suggesting that ATXR3 functions in FLC activation in sequence with ATXR7. Our results indicate that the novel-class H3K4 methyltransferase, ATXR3, is a transcriptional activator that plays a role in the FLC activation and establishing the winter-annual habit. In addition, ATXR3 also contributes to the activation of other FLC clade members, such as FLOWERING LOCUS M/MADS AFFECTING FLOWERING1 (FLM/MAF1) and MAF5, at least partially explaining the ATXR3 function in delayed flowering caused by non-inductive photoperiods.
PMCID: PMC3345368  PMID: 22378382
ARABIDOPSIS TRITHORAX; Flowering; FLOWERING LOCUS C; Histone methylation; Winter-annual Arabidopsis
9.  FLC-mediated flowering repression is positively regulated by sumoylation 
Journal of Experimental Botany  2013;65(1):339-351.
Sumoylation is critical modification for protein function and stability. Floral transition activity of FLOWERING LOCUS C (FLC), a central flowering switch, is increased by sumoylation. E3 SUMO ligase SIZ1 stabilizes FLC, which results in positive regulation of FLC-mediated floral suppression
Flowering locus C (FLC), a floral repressor, is a critical factor for the transition from the vegetative to the reproductive phase. Here, the mechanisms regulating the activity and stability of the FLC protein were investigated. Bimolecular fluorescence complementation and in vitro pull-down analyses showed that FLC interacts with the E3 small ubiquitin-like modifier (SUMO) ligase AtSIZ1, suggesting that AtSIZ1 is an E3 SUMO ligase for FLC. In vitro sumoylation assays showed that FLC is modified by SUMO in the presence of SUMO-activating enzyme E1 and conjugating enzyme E2, but its sumoylation is inhibited by AtSIZ1. In transgenic plants, inducible AtSIZ1 overexpression led to an increase in the concentration of FLC and delayed the post-translational decay of FLC, indicating that AtSIZ1 stabilizes FLC through direct binding. Also, the flowering time in mutant FLC (K154R, a mutation of the sumoylation site)-overexpressing plants was comparable with that in the wild type, whereas flowering was considerably delayed in FLC-overexpressing plants, supporting the notion that sumoylation is an important mechanism for FLC function. The data indicate that the sumoylation of FLC is critical for its role in the control of flowering time and that AtSIZ1 positively regulates FLC-mediated floral suppression.
PMCID: PMC3883301  PMID: 24218331
AtSIZ1; FLC; flowering; post-translational modification; SUMO; sumoylation.
10.  Repression of Flowering by the miR172 Target SMZ 
PLoS Biology  2009;7(7):e1000148.
The flowering repressors SMZ and FLM, members of the AP-2 and MADS domain transcription factor families, unexpectedly work together to regulate flowering time via their effects on expression of the FT gene.
A small mobile protein, encoded by the FLOWERING LOCUS T (FT) locus, plays a central role in the control of flowering. FT is regulated positively by CONSTANS (CO), the output of the photoperiod pathway, and negatively by FLC, which integrates the effects of prolonged cold exposure. Here, we reveal the mechanisms of regulation by the microRNA miR172 target SCHLAFMÜTZE (SMZ), a potent repressor of flowering. Whole-genome mapping of SMZ binding sites demonstrates not only direct regulation of FT, but also of many other flowering time regulators acting both upstream and downstream of FT, indicating an important role of miR172 and its targets in fine tuning the flowering response. A role for the miR172/SMZ module as a rheostat in flowering time is further supported by SMZ binding to several other genes encoding miR172 targets. Finally, we show that the action of SMZ is completely dependent on another floral repressor, FLM, providing the first direct connection between two important classes of flowering time regulators, AP2- and MADS-domain proteins.
Author Summary
Flowering is a pivotal event in the life cycle of many plants and is therefore under tight control. The ability to detect the daily photoperiod is of particular importance in many plant species, as it enables them to enter the reproductive phase in response to seasonal changes in day length. When the photoperiod is permissive to flowering, a signal is produced in leaves that is transported to the shoot meristem, where it initiates the formation of flowers. It is now widely accepted that an important component of this long-distance signal is the flowering protein FT. Here, we show that the AP2-like transcription factor SMZ, which represses flowering and is a target of the regulatory miRNA172 microRNA, functions together with related proteins to directly regulate FT expression. Using chromatin immunoprecipitation coupled to genome tiling arrays, we find that SMZ binds directly to the FT genomic locus and to several other key flowering-related loci. Unexpectedly, the ability of SMZ to repress flowering strictly depends on the presence of the MADS-domain transcription factor FLM. In addition, SMZ binds to its own regulatory sequences and those of three closely related genes, providing evidence of strong negative feedback between SMZ and the other AP2-like miRNA172 targets.
PMCID: PMC2701598  PMID: 19582143
11.  Independent FLC Mutations as Causes of Flowering-Time Variation in Arabidopsis thaliana and Capsella rubella 
Genetics  2012;192(2):729-739.
Capsella rubella is an inbreeding annual forb closely related to Arabidopsis thaliana, a model species widely used for studying natural variation in adaptive traits such as flowering time. Although mutations in dozens of genes can affect flowering of A. thaliana in the laboratory, only a handful of such genes vary in natural populations. Chief among these are FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). Common and rare FRI mutations along with rare FLC mutations explain a large fraction of flowering-time variation in A. thaliana. Here we document flowering time under different conditions in 20 C. rubella accessions from across the species’ range. Similar to A. thaliana, vernalization, long photoperiods and elevated ambient temperature generally promote flowering. In this collection of C. rubella accessions, we did not find any obvious loss-of-function FRI alleles. Using mapping-by-sequencing with two strains that have contrasting flowering behaviors, we identified a splice-site mutation in FLC as the likely cause of early flowering in accession 1408. However, other similarly early C. rubella accessions did not share this mutation. We conclude that the genetic basis of flowering-time variation in C. rubella is complex, despite this very young species having undergone an extreme genetic bottleneck when it split from C. grandiflora a few tens of thousands of years ago.
PMCID: PMC3454893  PMID: 22865739
flowering time; mapping-by-sequencing; Arabidopsis thaliana; Capsella rubella; FLOWERING LOCUS C (FLC)
12.  Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis 
Nature communications  2013;4:2186.
Studies of natural genetic variation for the vernalization requirement in Arabidopsis have revealed two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), that are determinants of the vernalization-requiring, winter-annual habit. In this study, we show that FLC EXPRESSOR LIKE 4 (FLL4) is essential for up-regulation of FLC in winter-annual Arabidopsis accessions and establishment of a vernalization requirement. FLL4 is part of the FLC EXPRESSOR (FLX) gene family and both are non-redundantly involved in flowering-time control. Epistasis analysis among FRI, FLL4, FLX and autonomous-pathway genes reveals that FRI fve exhibits an extreme delay of flowering compared to fri fve, but mutants in other autonomous-pathway genes do not, indicating that FVE acts most antagonistically to FRI. FLL4 may represent a new member of a FRI-containing complex that activates FLC.
PMCID: PMC3753012  PMID: 23864009
13.  Dual roles for FY in the regulation of FLC 
Plant Signaling & Behavior  2011;6(5):703-705.
In Arabidopsis, the flowering decision is determined by multiple pathways that integrate information from both endogenous signals and environmental cues. The genes of the autonomous pathway promote flowering by suppressing the expression of the floral repressor FLOWERING LOCUS C (FLC). Thus, autonomous-pathway mutants have elevated levels of FLC and are late flowering. Previous work has shown that two autonomous pathway proteins, FCA and FY, physically interact and this interaction is important in the repression of FLC. Recent work from our laboratory has shown that a hypomorphic allele of FY (fy-5) can cause earlier or later flowering, depending on the genetic background. These results suggest that FY has the potential to act as both an activator and a repressor of FLC. The FLC-activating activity of FY appears to be FCA-independent, as fy-5 causes earlier flowering in an fca-null background. Here we present a speculative model that reconciles these opposing phenotypes by proposing a dual role for FY in the regulation of flowering time.
PMCID: PMC3172842  PMID: 21633188
FLC; FY; FCA; flowering time; polyadenylation
14.  Role of VIN3-LIKE 2 in facultative photoperiodic flowering response in Arabidopsis 
Plant Signaling & Behavior  2010;5(12):1672-1673.
In Arabidopsis, expression of FLC and FLC-related genes (collectively called FLC clade) contributes to flowering time in response to environmental changes, such as day length and temperature, by acting as floral repressors. VIN3 is required for vernalization-mediated FLC repression and a VIN3 related protein, VIN3-LIKE 1/VERNALIZATION 5 (VIL1/VRN5), acts to regulate FLC and FLM in response to vernalization.1–3 VIN3 also exists as a small family of PHD finger proteins in Arabidopsis, including VIL1/VRN5, VIL2/VEL1, VIL3/VEL2 and VIL4/VEL3. We showed that the PHD finger protein, VIL2, is required for proper repression of MAF5, an FLC clade member, to accelerate flowering under non-inductive photoperiods. VIL2 acts together with POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) to repress MAF5 in a photoperiod dependent manner.
PMCID: PMC3115132  PMID: 21150261
photoperiod; chromatin; flowering
15.  Stability of SaFLC repression in Sinapis alba 
Plant Signaling & Behavior  2008;3(11):1002-1004.
In Arabidopsis thaliana, vernalization promotes flowering by repressing the floral inhibitor FLOWERING LOCUS C (AtFLC). This repression is mediated through epigenetic modifications at the AtFLC locus, leading to gene silencing. Whether the well-known quantitative effect of vernalization is due to the degree of AtFLC repression and/or its stability after return to normal temperature conditions has not been clarified. Here, we examine this question in white mustard, Sinapis alba, taking advantage of our recent cloning of the AtFLC ortholog SaFLC.
PMCID: PMC2633757  PMID: 19704434
Brassicaceae; flowering; FLOWERING LOCUS C; Sinapis alba; vernalization
16.  Brahma Is Required for Proper Expression of the Floral Repressor FLC in Arabidopsis 
PLoS ONE  2011;6(3):e17997.
BRAHMA (BRM) is a member of a family of ATPases of the SWI/SNF chromatin remodeling complexes from Arabidopsis. BRM has been previously shown to be crucial for vegetative and reproductive development.
Methodology/Principal Findings
Here we carry out a detailed analysis of the flowering phenotype of brm mutant plants which reveals that, in addition to repressing the flowering promoting genes CONSTANS (CO), FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), BRM also represses expression of the general flowering repressor FLOWERING LOCUS C (FLC). Thus, in brm mutant plants FLC expression is elevated, and FLC chromatin exhibits increased levels of histone H3 lysine 4 tri-methylation and decreased levels of H3 lysine 27 tri-methylation, indicating that BRM imposes a repressive chromatin configuration at the FLC locus. However, brm mutants display a normal vernalization response, indicating that BRM is not involved in vernalization-mediated FLC repression. Analysis of double mutants suggests that BRM is partially redundant with the autonomous pathway. Analysis of genetic interactions between BRM and the histone H2A.Z deposition machinery demonstrates that brm mutations overcome a requirement of H2A.Z for FLC activation suggesting that in the absence of BRM, a constitutively open chromatin conformation renders H2A.Z dispensable.
BRM is critical for phase transition in Arabidopsis. Thus, BRM represses expression of the flowering promoting genes CO, FT and SOC1 and of the flowering repressor FLC. Our results indicate that BRM controls expression of FLC by creating a repressive chromatin configuration of the locus.
PMCID: PMC3061888  PMID: 21445315
17.  The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure 
The Plant Journal   2008;53(3):530-540.
Loss-of-function siz1 mutations caused early flowering under short days. siz1 plants have elevated salicylic acid (SA) levels, which are restored to wild-type levels by expressing nahG, bacterial salicylate hydroxylase. The early flowering of siz1 was suppressed by expressing nahG, indicating that SIZ1 represses the transition to flowering mainly through suppressing SA-dependent floral promotion signaling under short days. Previous results have shown that exogenous SA treatment does not suppress late flowering of autonomous pathway mutants. However, the siz1 mutation accelerated flowering time of an autonomous pathway mutant, luminidependens, by reducing the expression of FLOWERING LOCUS C (FLC), a floral repressor. This result suggests that SIZ1 promotes FLC expression, possibly through an SA-independent pathway. Evidence indicates that SIZ1 is required for the full activation of FLC expression in the late-flowering FRIGIDA background. Interestingly, increased FLC expression and late flowering of an autonomous pathway mutant, flowering locus d (fld), was not suppressed by siz1, suggesting that SIZ1 promotes FLC expression by repressing FLD. Consistent with this, SIZ1 facilitates sumoylation of FLD that can be suppressed by mutations in three predicted sumoylation motifs in FLD (i.e. FLDK3R). Furthermore, expression of FLDK3R in fld protoplasts strongly reduced FLC transcription compared with expression of FLD, and this affect was linked to reduced acetylation of histone 4 in FLC chromatin. Taken together, the results suggest that SIZ1 is a floral repressor that not only represses the SA-dependent pathway, but also promotes FLC expression by repressing FLD activity through sumoylation, which is required for full FLC expression in a FRIGIDA background.
PMCID: PMC2254019  PMID: 18069938
SIZ1; SA; flowering; SUMO; FLD; FLC
18.  Arabidopsis MSI1 functions in photoperiodic flowering time control 
Appropriate timing of flowering is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals such as photoperiod, vernalization or light quality, ambient temperature and biotic as well as abiotic stresses. The key florigenic signal FLOWERING LOCUS T (FT) is regulated by several flowering activators, such as CONSTANS (CO), and repressors, such as FLOWERING LOCUS C (FLC). Chromatin modifications are essential for regulated gene expression, which often involves the well conserved MULTICOPY SUPRESSOR OF IRA 1 (MSI1)-like protein family. MSI1-like proteins are ubiquitous partners of various complexes, such as POLYCOMB REPRESSIVE COMPLEX2 or CHROMATIN ASSEMBLY FACTOR 1. In Arabidopsis, one of the functions of MSI1 is to control the switch to flowering. Arabidopsis MSI1 is needed for the correct expression of the floral integrator gene SUPPRESSOR OF CO 1 (SOC1). Here, we show that the histone-binding protein MSI1 acts in the photoperiod pathway to regulate normal expression of CO in long day (LD) photoperiods. Reduced expression of CO in msi1-mutants leads to failure of FT and SOC1 activation and to delayed flowering. MSI1 is needed for normal sensitivity of Arabidopsis to photoperiod, because msi1-mutants responded less than wild type to an intermittent LD treatment of plants grown in short days. Finally, genetic analysis demonstrated that MSI1 acts upstream of the CO-FT pathway to enable an efficient photoperiodic response and to induce flowering.
PMCID: PMC3945484  PMID: 24639681
Arabidopsis; flowering time; chromatin; MSI1; photoperiod; FLOWERING LOCUS T (FT); CONSTANS (CO)
19.  Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time 
Biology Open  2013;2(4):424-431.
Transition to flowering in plants is tightly controlled by environmental cues, which regulate the photoperiod and vernalization pathways, and endogenous signals, which mediate the autonomous and gibberellin pathways. In this work, we investigated the role of two Zn2+-finger transcription factors, the paralogues AtVOZ1 and AtVOZ2, in Arabidopsis thaliana flowering. Single atvoz1-1 and atvoz2-1 mutants showed no significant phenotypes as compared to wild type. However, atvoz1-1 atvoz2-1 double mutant plants exhibited several phenotypes characteristic of flowering-time mutants. The double mutant displayed a severe delay in flowering, together with additional pleiotropic phenotypes. Late flowering correlated with elevated expression of FLOWERING LOCUS C (FLC), which encodes a potent floral repressor, and decreased expression of its target, the floral promoter FD. Vernalization rescued delayed flowering of atvoz1-1 atvoz2-1 and reversed elevated FLC levels. Accumulation of FLC transcripts in atvoz1-1 atvoz2-1 correlated with increased expression of several FLC activators, including components of the PAF1 and SWR1 chromatin-modifying complexes. Additionally, AtVOZs were shown to bind the promoter of MOS3/SAR3 and directly regulate expression of this nuclear pore protein, which is known to participate in the regulation of flowering time, suggesting that AtVOZs exert at least some of their flowering regulation by influencing the nuclear pore function. Complementation of atvoz1-1 atvoz2-1 with AtVOZ2 reversed all double mutant phenotypes, confirming that the observed morphological and molecular changes arise from the absence of functional AtVOZ proteins, and validating the functional redundancy between AtVOZ1 and AtVOZ2.
PMCID: PMC3625871  PMID: 23616927
VOZ; Flowering; Arabidopsis; FLC; MOS
20.  PORPHOBILINOGEN DEAMINASE Deficiency Alters Vegetative and Reproductive Development and Causes Lesions in Arabidopsis 
PLoS ONE  2013;8(1):e53378.
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.
PMCID: PMC3540089  PMID: 23308205
21.  Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions 
PLoS ONE  2011;6(5):e19949.
We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci.
PMCID: PMC3098857  PMID: 21625501
22.  Longitudinal trends in climate drive flowering time clines in North American Arabidopsis thaliana 
Ecology and Evolution  2012;2(6):1162-1180.
Introduced species frequently show geographic differentiation, and when differentiation mirrors the ancestral range, it is often taken as evidence of adaptive evolution. The mouse-ear cress (Arabidopsis thaliana) was introduced to North America from Eurasia 150–200 years ago, providing an opportunity to study parallel adaptation in a genetic model organism. Here, we test for clinal variation in flowering time using 199 North American (NA) accessions of A. thaliana, and evaluate the contributions of major flowering time genes FRI, FLC, and PHYC as well as potential ecological mechanisms underlying differentiation. We find evidence for substantial within population genetic variation in quantitative traits and flowering time, and putatively adaptive longitudinal differentiation, despite low levels of variation at FRI, FLC, and PHYC and genome-wide reductions in population structure relative to Eurasian (EA) samples. The observed longitudinal cline in flowering time in North America is parallel to an EA cline, robust to the effects of population structure, and associated with geographic variation in winter precipitation and temperature. We detected major effects of FRI on quantitative traits associated with reproductive fitness, although the haplotype associated with higher fitness remains rare in North America. Collectively, our results suggest the evolution of parallel flowering time clines through novel genetic mechanisms.
PMCID: PMC3402192  PMID: 22833792
Arabidopsis; clines; ecological genomics; FRI; FLC; invasive species; parallel adaptation; PHYC
23.  Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb Repressive Complex 2 Components 
PLoS ONE  2008;3(10):e3404.
Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis.
PMCID: PMC2561057  PMID: 18852898
24.  Progress in Understanding and Sequencing the Genome of Brassica rapa 
Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day “diploid” Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization.
PMCID: PMC2233773  PMID: 18288250
25.  Suppression of late-flowering and semi-dwarf phenotypes in the arabidopsis clock mutant lhy-12;cca1-101 by phyB under continuous light 
Plant Signaling & Behavior  2011;6(8):1162-1171.
Photoperiodic flowering in Arabidopsis is controlled not only by floral activators such as GI, CO and FT, but also by repressors such as SVP and FLC. Double mutations in LHY and CCA1 (lhy;cca1) accelerated flowering under short days, mainly by the GI-CO dependent pathway. In contrast, lhy;cca1 showed delayed flowering under continuous light (LL), probably due to the GI-CO independent pathway. This late-flowering phenotype was suppressed by svp, flc and elf3. However, how SVP, FLC and ELF3 mediate LHY/CCA1 and flowering time is not fully understood. We found that lhy;cca1 exhibited short hypocotyls and petioles under LL, but the molecular mechanism for these effects has not been elucidated.
To address these questions, we performed a screen for mutations that suppress either or both of the lhy;cca1 phenotypes under LL, using two different approaches. We identified two novel mutations, a dominant (del1) and a recessive (phyB-2511) allele of phyB. The flowering times of single mutants of three phyB alleles, hy3-1, del1 and phyB-2511, are almost the same and earlier than those of wild-type plants. A similar level of acceleration of flowering time was observed in all three phyB mutants tested when combined with the late-flowering mutations co-2 and SVPox. However, the effect of phyB-2511 on lhy;cca1 was different from those by hy3-1 or del1. svp-3 did not strongly enhance the early-flowering phenotypes of phyB-2511 or del1. These results suggest that light signaling via PhyB may affect factors downstream of the clock proteins, controlling flowering time and organ elongation. phyB mutations with different levels of effects on lhy;cca1-dependent late flowering would be useful to determine a specific role for PHYB in the flowering pathway controlled by lhy;cca1 under LL.
PMCID: PMC3260714  PMID: 21822060
Arabidopsis thaliana; CCA1; circadian clock; CO; FT; LHY; organ elongation; photoperiodic flowering; PHYB; SVP

Results 1-25 (305549)