PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (740080)

Clipboard (0)
None

Related Articles

1.  Differential CARM1 expression in prostate and colorectal cancers 
BMC Cancer  2010;10:197.
Background
Coactivator-associated arginine methyltransferase 1 (CARM1) functions as a transcriptional coactivator of androgen receptor (AR)-mediated signaling. Correspondingly, overexpression of CARM1 has been associated with the development of prostate cancer (PCa) and its progression to androgen-independent PCa. In our preliminary study, however, the promoting effects of CARM1, with regard to androgen-stimulated AR target gene expression were minimal. These results suggested that the AR target gene expression associated with CARM1 may result primarily from non-hormone dependent activity. The goal of this study was to confirm the pattern of expression of CARM1 in human tumors and determine the mechanism of action in CARM1 overexpressed tumors.
Methods
Tissue microarray was used to determine the pattern of expression of CARM1 in human cancers by immunohistochemistry. CARM1 expression was also evaluated in prostate and colorectal surgical specimens and the clinical records of all cases were reviewed. In addition, a reporter transcription assay using the prostate-specific antigen (PSA) promoter was used to identify the signaling pathways involved in non-hormone-mediated signal activation associated with CARM1.
Results
The tissue microarray showed that CARM1 was particularly overexpressed in the colorectal cancers while CARM1 expression was not prevalent in the prostate and breast cancers. Further studies using surgical specimens demonstrated that CARM1 was highly overexpressed in 75% of colorectal cancers (49 out of 65) but not in the androgen-independent PCa. In addition, CARM1's coactivating effect on the entire PSA promoter was very limited in both androgen-dependent and androgen-independent PCa cells. These results suggest that there are other factors associated with CARM1 expression in PSA regulation. Indeed, CARM1 significantly regulated both p53 and NF-κB target gene transcription.
Conclusions
The results of this study suggest that, in addition to its role in activation of steroid receptors, CARM1 functions as a transcriptional modulator by altering the activity of many transcriptional factors, especially with regard to androgen independent PCa and colorectal cancers.
doi:10.1186/1471-2407-10-197
PMCID: PMC2881889  PMID: 20462455
2.  The protein arginine methyltransferases CARM1 and PRMT1 cooperate in gene regulation 
Nucleic Acids Research  2008;36(10):3202-3213.
Protein arginine methyltransferases (PRMT) have been implicated in the regulation of transcription. They are recruited to promoters via interaction with transcription factors and exert their coactivator function by methylating arginine residues in histones and other chromatin proteins. Here, we employ an unbiased approach to identify novel target genes, which are under the control of two members of the enzyme family, PRMT1 and CARM1/PRMT4 (coactivator associated arginine methyltransferase 1). By using cDNA microarray analysis, we find that the siRNA-mediated single knockdown of neither CARM1 nor PRMT1 causes significant changes in gene expression. In contrast, double knockdown of both enzymes results in the deregulated expression of a large group of genes, among them the CITED2 gene. Cytokine-stimulated expression analysis indicates that transcriptional activation of CITED2 depends on STAT5 and the coactivation of both PRMTs. ChIP analysis identifies the CITED2 gene as a direct target gene of STAT5, CARM1 and PRMT1. In reporter gene assays, we show that STAT5-mediated transcription is cooperatively enhanced by CARM1 and PRMT1. Interaction assays reveal a cytokine-induced association of STAT5 and the two PRMTs. Our data demonstrate a widespread cooperation of CARM1 and PRMT1 in gene activation as well as repression and that STAT5-dependent transcription of the CITED2 gene is a novel pathway coactivated by the two methyltransferases.
doi:10.1093/nar/gkn166
PMCID: PMC2425501  PMID: 18413343
3.  Xenoestrogens Regulate the Activity of Arginine Methyltransferases 
Chembiochem  2010;12(2):323-329.
Arginine methylation is a common posttranslational modification that has been strongly implicated in transcriptional regulation. The arginine methyltransferases (PRMTs) were first reported as transcriptional coactivators for the estrogen and androgen receptors. Compounds that inhibit these enzymes will provide us with valuable tools for dissecting the roles of these enzymes in cells, and will possibly also have therapeutic applications. In order to identify such inhibitors of the PRMTs, we performed a high throughput screen using a small molecule library a number of years ago. We termed these compounds AMIs (arginine methyltransferase inhibitors). The majority of these inhibitors were polyphenols, and one in particular (AMI-18) shared additional features with a group of known xenoestrogens. We thus tested a panel of xenoestrogens and found that a number of them possess the ability to inhibit PRMT activity in vitro. These inhibitors primarily target CARM1, and include licochalcone A, kepone, benzyl 4-hydroxybenzoate, and tamoxifen. We developed a cell-based reporter system for CARM1 activity, and showed that tamoxifen (IC50=30 µM) inhibits this PRMT. The ability of these compounds to regulate the activity of transcriptional coactivators may be an unappreciated mechanism of action for xenoestrogens and may also explain the efficacy of high-dose tamoxifen treatment on estrogen receptor negative cancers.
doi:10.1002/cbic.201000522
PMCID: PMC3142315  PMID: 21243720
PRMT1; CARM1; Arginine methylation; Xenoestrogens
4.  Developmentally Essential Protein Flightless I Is a Nuclear Receptor Coactivator with Actin Binding Activity 
Molecular and Cellular Biology  2004;24(5):2103-2117.
Hormone-activated nuclear receptors (NR) activate transcription by recruiting multiple coactivator complexes to the promoters of target genes. One important coactivator complex includes a p160 coactivator (e.g., GRIP1, SRC-1, or ACTR) that binds directly to activated NR, the histone acetyltransferase p300 or CBP, and the arginine-specific histone methyltransferase CARM1. We previously demonstrated that the coactivator function of CARM1 depends both on the methyltransferase activity and on additional unknown proteins that bind to CARM1. In this study a yeast two-hybrid screen for proteins that bind CARM1 identified the protein Flightless I (Fli-I), which has essential roles in Drosophila and mouse development. Fli-I bound to CARM1, GRIP1, and NRs and cooperated synergistically with CARM1 and GRIP1 to enhance NR function. Fli-I bound poorly to and did not cooperate with PRMT1, a CARM1-related protein arginine methyltransferase that also functions as an NR coactivator. The synergy between GRIP1, CARM1, and Fli-I required the methyltransferase activity of CARM1. The C-terminal AD1 (binding site for p300/CBP) and AD2 (binding site for CARM1) activation domains of GRIP1 contributed to the synergy but were less stringently required than the N-terminal region of GRIP1, which is the binding site for Fli-I. Endogenous Fli-I was recruited to the estrogen-regulated pS2 gene promoter of MCF-7 cells in response to the hormone, and reduction of endogenous Fli-I levels by small interfering RNA reduced hormone-stimulated gene expression by the endogenous estrogen receptor. A fragment of Fli-I that is related to the actin binding protein gelsolin enhanced estrogen receptor activity, and mutations that reduced actin binding also reduced the coactivator function of this Fli-I fragment. These data suggest that Fli-I may facilitate interaction of the p160 coactivator complex with other coactivators or coactivator complexes containing actin or actin-like proteins.
doi:10.1128/MCB.24.5.2103-2117.2004
PMCID: PMC350567  PMID: 14966289
5.  Coactivator-Associated Arginine Methyltransferase 1 Enhances Transcriptional Activity of the Human T-Cell Lymphotropic Virus Type 1 Long Terminal Repeat through Direct Interaction with Tax 
Journal of Virology  2006;80(20):10036-10044.
In this study, we demonstrate that the coactivator-associated arginine methyltransferase 1 (CARM1), which methylates histone H3 and other proteins such as p300/CBP, is positively involved in the regulation of Tax transactivation. First, transfection studies demonstrated that overexpression of CARM1 wild-type protein resulted in increased Tax transactivation of the human T-cell lymphotropic virus type 1 (HTLV-1) long terminal repeat (LTR). In contrast, transfection of a catalytically inactive CARM1 methyltransferase mutant did not enhance Tax transactivation. CARM1 facilitated Tax transactivation of the CREB-dependent cellular GEM promoter. A direct physical interaction between HTLV-1 Tax and CARM1 was demonstrated using in vitro glutathione S-transferase-Tax binding assays, in vivo coimmunoprecipitation, and confocal microscopy experiments. Finally, chromatin immunoprecipitation analysis of the activated HTLV-1 LTR promoter showed the association of CARM1 and methylated histone H3 with the template DNA. In vitro, Tax facilitates the binding of CARM1 to the transcription complex. Together, our data provide evidence that CARM1 enhances Tax transactivation of the HTLV-1 LTR through a direct interaction between CARM1 and Tax and this binding promotes methylation of histone H3 (R2, R17, and R26).
doi:10.1128/JVI.00186-06
PMCID: PMC1617284  PMID: 17005681
6.  Expression and purification of full-length mouse CARM1 from transiently transfected HEK293T cells using HaloTag technology 
Coactivator-associated arginine methyl transferase 1 (CARM1) is a protein arginine methyltransferase (PRMT) family member that functions as a coactivator in androgen and estrogen signaling pathways and plays a role in the progression of prostate and breast cancer. CARM1 catalyzes methylation of diverse protein substrates. Prior attempts to purify the full-length mouse CARM1 protein have proven unsatisfactory. The full-length protein expressed in E. coli forms insoluble inclusion bodies that are difficult to denature and to refold. The presented results demonstrate the use of a novel HaloTag™ technology to purify full-length CARM1 from both E. coli and mammalian HEK293T cells. A small amount of CARM1 was purified from E. coli; however, the protein was truncated on the N-terminus by 10–50 amino acids, most likely due to endogenous proteolytic activity. In contrast, substantial quantities of soluble full-length CARM1 were purified from transiently transfected HEK293T cells. The CARM1 from HEK293T cells was isolated alongside a number of co-purifying interacting proteins. The covalent bond formed between the HaloTag and the HaloLink resin allowed the use of stringent wash conditions without risk of eluting the CARM1 protein. The results also illustrate a highly effective approach for purifying and enriching both CARM1-associated proteins as well as substrates for CARM1’s methyltransferase activity.
doi:10.1016/j.pep.2010.11.010
PMCID: PMC3248244  PMID: 21126607
CARM1; PRMT family; methyl transferase; HaloTag; HaloLink resin; affinity purification
7.  Identification of Small-Molecule Enhancers of Arginine Methylation Catalyzed by Coactivator-Associated Arginine Methyltransferase 1 
Journal of medicinal chemistry  2012;55(22):9875-9890.
Arginine methylation is a common post-translational modification that is crucial in modulating gene expression at multiple critical levels. The arginine methyltransferases (PRMTs) are envisaged as promising druggable targets but their role in physiological and pathological pathways is far from being clear, due to the limited number of modulators reported to date. In this effort, enzyme activators can be invaluable tools useful as gain-of-function reagents to interrogate the biological roles in cells and in vivo of PRMTs. Yet the identification of such molecules is rarely pursued. Herein we describe a series of aryl ureido acetamido indole carboxylates (dubbed “uracandolates”), able to increase the methylation of histone- (H3) or non-histone (polyadenylate-binding protein 1, PABP1) substrates induced by coactivator-associated arginine methyltransferase 1 (CARM1), both in in vitro and cellular settings. To the best of our knowledge, this is the first report of compounds acting as CARM1 activators.
doi:10.1021/jm301097p
PMCID: PMC3508294  PMID: 23095008
CARM1 activator; PRMT inhibitors; arginine methyltransferase; histone modifying enzyme; epigenetics
8.  Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1 
Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering.
Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM128–507 and two structural states of CARM1140–480 were expressed, purified and crystallized. Crystals of CARM128–507 belong to space group P6222, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM128–507 was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1140–480 belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1140–480 in complex with S-­adenosyl-l-homocysteine belong to space P21212, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1140–480 were solved by molecular-replacement techniques from the structure of CARM128–507.
doi:10.1107/S1744309107011785
PMCID: PMC2330207  PMID: 17401209
CARM1; gene expression
9.  HISTONE H3 LYSINE 9 METHYLTRANSFERASE G9a IS A TRANSCRIPTIONAL COACTIVATOR FOR NUCLEAR RECEPTORS* 
The Journal of biological chemistry  2006;281(13):8476-8485.
Methylation of Lys-9 of histone H3 has been associated with repression of transcription. G9a is a histone H3 Lys-9 methyltransferase localized in euchromatin and acts as a corepressor for specific transcription factors. Here we demonstrate that G9a also functions as a coactivator for nuclear receptors, cooperating synergistically with nuclear receptor coactivators GRIP1, CARM1, and p300 in transient transfection assays. This synergy depends strongly on the arginine-specific protein methyltransferase activity of CARM1 but does not absolutely require the enzymatic activity of G9a and is specific to CARM1 and G9a among various protein methyltransferases. Reduction of endogenous G9a diminished hormonal activation of an endogenous target gene by the androgen receptor, and G9a associates with regulatory regions of this same gene. G9a fused to Gal4 DNA binding domain can repress transcription in a lysine methyltransferase-dependent manner; however, the histone modifications associated with transcriptional activation can inhibit the methyltransferase activity of G9a. These findings suggest a link between histone arginine and lysine methylation and a mechanism for controlling whether G9a functions as a corepressor or coactivator.
doi:10.1074/jbc.M511093200
PMCID: PMC1770944  PMID: 16461774
10.  Automethylation of CARM1 allows coupling of transcription and mRNA splicing 
Nucleic Acids Research  2010;39(7):2717-2726.
Coactivator-associated arginine methyltransferase 1 (CARM1), the histone arginine methyltransferase and coactivator for many transcription factors, is subject to multiple post-translational modifications (PTMs). To unbiasedly investigate novel CARM1 PTMs we employed high-resolution top-down mass spectrometry. Surprisingly, mouse CARM1 expressed in insect and mammalian expression systems was completely dimethylated at a single site in the C-terminal domain (CTD). We demonstrate that dimethylation of CARM1 occurs both in vivo and in vitro and proceeds via an automethylation mechanism. To probe function of automethylation, we mutated arginine 551 to lysine to create an automethylation-deficient CARM1. Although mutation of CARM1's automethylation site did not affect its enzymatic activity, it did impair both CARM1-activated transcription and pre-mRNA splicing. These results strongly imply that automethylation of CARM1 provides a direct link to couple transcription and pre-mRNA splicing in a manner differing from the other steroid receptor coactivators. Furthermore, our study identifies a self-regulatory signaling mechanism from CARM1's catalytic domain to its CTD.
doi:10.1093/nar/gkq1246
PMCID: PMC3074151  PMID: 21138967
11.  The Methyltransferases PRMT4/CARM1 and PRMT5 Control Differentially Myogenesis in Zebrafish 
PLoS ONE  2011;6(10):e25427.
In vertebrates, skeletal myogenesis involves the sequential activation of myogenic factors to lead ultimately to the differentiation into slow and fast muscle fibers. How transcriptional co-regulators such as arginine methyltransferases PRMT4/CARM1 and PRMT5 control myogenesis in vivo remains poorly understood. Loss-of-function experiments using morpholinos against PRMT4/CARM1 and PRMT5 combined with in situ hybridization, quantitative polymerase chain reaction, as well as immunohistochemistry indicate a positive, but differential, role of these enzymes during myogenesis in vivo. While PRMT5 regulates myod, myf5 and myogenin expression and thereby slow and fast fiber formation, PRMT4/CARM1 regulates myogenin expression, fast fiber formation and does not affect slow fiber formation. However, our results show that PRMT4/CARM1 is required for proper slow myosin heavy chain localization. Altogether, our results reveal a combinatorial role of PRMT4/CARM1 and PRMT5 for proper myogenesis in zebrafish.
doi:10.1371/journal.pone.0025427
PMCID: PMC3189919  PMID: 22016767
12.  Synergy among Nuclear Receptor Coactivators: Selective Requirement for Protein Methyltransferase and Acetyltransferase Activities 
Molecular and Cellular Biology  2002;22(11):3621-3632.
Hormone-activated nuclear receptors (NR) bind to specific regulatory DNA elements associated with their target genes and recruit coactivator proteins to remodel chromatin structure, recruit RNA polymerase, and activate transcription. The p160 coactivators (e.g., SRC-1, GRIP1, and ACTR) bind directly to activated NR and can recruit a variety of secondary coactivators. We have established a transient-transfection assay system under which the activity of various NR is highly or completely dependent on synergistic cooperation among three classes of coactivators: a p160 coactivator, the protein methyltransferase CARM1, and any of the three protein acetyltransferases, p300, CBP, or p/CAF. The three-coactivator functional synergy was only observed when low levels of NR were expressed and was highly or completely dependent on the methyltransferase activity of CARM1 and the acetyltransferase activity of p/CAF, but not the acetyltransferase activity of p300. Other members of the protein arginine methyltransferase family, which methylate different protein substrates than CARM1, could not substitute for CARM1 to act synergistically with p300 or p/CAF. A ternary complex of GRIP1, CARM1, and p300 or CBP was demonstrated in cultured mammalian cells, supporting a physiological role for the observed synergy. The transfection assay described here is a valuable new tool for investigating the mechanism of coactivator function and demonstrates the importance of multiple coactivators, including CARM1 and its specific protein methyltransferase activity, in transcriptional activation.
doi:10.1128/MCB.22.11.3621-3632.2002
PMCID: PMC133819  PMID: 11997499
13.  The C-Terminal Domain of RNA Polymerase II Is Modified by Site-Specific Methylation 
Science (New York, N.Y.)  2011;332(6025):99-103.
The carboxy-terminal domain (CTD) of RNA polymerase II (RNAPII) in mammals undergoes extensive posttranslational modification, which is essential for transcriptional initiation and elongation. Here, we show that the CTD of RNAPII is methylated at a single arginine (R1810) by the coactivator-associated arginine methyltransferase 1 (CARM1). Although methylation at R1810 is present on the hyperphosphorylated form of RNAPII in vivo, Ser2 or Ser5 phosphorylation inhibits CARM1 activity toward this site in vitro, suggesting that methylation occurs before transcription initiation. Mutation of R1810 results in the misexpression of a variety of small nuclear RNAs and small nucleolar RNAs, an effect that is also observed in Carm1−/− mouse embryo fibroblasts. These results demonstrate that CTD methylation facilitates the expression of select RNAs, perhaps serving to discriminate the RNAPII-associated machinery recruited to distinct gene types.
doi:10.1126/science.1202663
PMCID: PMC3773223  PMID: 21454787
14.  Coactivator Function Defines the Active Estrogen Receptor Alpha Cistrome▿ †  
Molecular and Cellular Biology  2009;29(12):3413-3423.
Proper activation of transcriptional networks in complex organisms is central to the response to stimuli. We demonstrate that the selective activation of a subset of the estrogen receptor alpha (ERα) cistrome in MCF7 breast cancer cells provides specificity to the estradiol (E2) response. ERα-specific enhancers that are subject to E2-induced coactivator-associated arginine methyltransferase 1 (CARM1) action are critical to E2-stimulated gene expression. This is true for both FoxA1-dependent and independent enhancers. In contrast, a subset of E2-suppressed genes are controlled by FoxA1-independent ERα binding sites. Nonetheless, these are sites of E2-induced CARM1 activity. In addition, the MCF7 RNA polymerase II cistrome reveals preferential occupancy of E2-regulated promoters prior to stimulation. Interestingly, E2-suppressed genes tend to lie in otherwise silent genomic regions. Together, our results suggest that the transcriptional response to E2 in breast cancer cells is dependent on the interplay between polymerase II pre-occupied promoters and the subset of the ERα cistrome associated with coactivation.
doi:10.1128/MCB.00020-09
PMCID: PMC2698732  PMID: 19364822
15.  Arginine methyltransferase CARM1/PRMT4 regulates endochondral ossification 
Background
Chondrogenesis and subsequent endochondral ossification are processes tightly regulated by the transcription factor Sox9 (SRY-related high mobility group-Box gene 9), but molecular mechanisms underlying this activity remain unclear. Here we report that coactivator-associated arginine methyltransferase 1 (CARM1) regulates chondrocyte proliferation via arginine methylation of Sox9.
Results
CARM1-null mice display delayed endochondral ossification and decreased chondrocyte proliferation. Conversely, cartilage development of CARM1 transgenic mice was accelerated. CARM1 specifically methylates Sox9 at its HMG domain in vivo and in vitro. Arg-methylation of Sox9 by CARM1 disrupts interaction of Sox9 with beta-catenin, regulating Cyclin D1 expression and cell cycle progression of chondrocytes.
Conclusion
These results establish a role for CARM1 as an important regulator of chondrocyte proliferation during embryogenesis.
doi:10.1186/1471-213X-9-47
PMCID: PMC2754437  PMID: 19725955
16.  Distinct Protein Arginine Methyltransferases Promote ATP-Dependent Chromatin Remodeling Function at Different Stages of Skeletal Muscle Differentiation▿  
Molecular and Cellular Biology  2009;29(7):1909-1921.
Temporal regulation of gene expression is a hallmark of cellular differentiation pathways, yet the mechanisms controlling the timing of expression for different classes of differentiation-specific genes are not well understood. We previously demonstrated that the class II arginine methyltransferase Prmt5 was required for skeletal muscle differentiation at the early stages of myogenesis (C. S. Dacwag, Y. Ohkawa, S. Pal, S. Sif, and A. N. Imbalzano, Mol. Cell. Biol. 27:384-394, 2007). Specifically, when Prmt5 levels were reduced, the ATP-dependent SWI/SNF chromatin-remodeling enzymes could not interact with or remodel the promoter of myogenin, an essential early gene. Here we investigated the requirement for Prmt5 and the class I arginine methyltransferase Carm1/Prmt4 in the temporal control of myogenesis. Both arginine methyltransferases could bind to and modify histones at late-gene regulatory sequences. However, the two enzymes showed sequential requirements for gene expression. Prmt5 was required for early-gene expression but dispensable for late-gene expression. Carm1/Prmt4 was required for late- but not for early-gene expression. The reason for the requirement for Carm1/Prmt4 at late genes was to facilitate SWI/SNF chromatin-remodeling enzyme interaction and remodeling at late-gene loci. Thus, distinct arginine methyltransferases are employed at different times of skeletal muscle differentiation for the purpose of facilitating ATP-dependent chromatin-remodeling enzyme interaction and function at myogenic genes.
doi:10.1128/MCB.00742-08
PMCID: PMC2655603  PMID: 19188441
17.  CARM1 regulates fetal hematopoiesis and thymocyte development 
CARM13 (coactivator-associated arginine methyltransferase 1) is a protein arginine methyltransferase that methylates histones and transcriptional regulators. We previously reported that the absence of CARM1 partially blocks thymocyte differentiation at embryonic day 18.5 (E18.5). Here we find that reduced thymopoiesis in Carm1−/− mice is due to a defect in the fetal hematopoietic compartment rather than in the thymic stroma. To determine the cellular basis for impaired thymopoiesis, we examined the number and function of fetal liver and bone marrow cells. Despite markedly reduced cellularity of hematopoietic progenitors in E18.5 bone marrow, the number of long-term hematopoietic stem cells and downstream subsets was not reduced in Carm1−/− E14.5 or E18.5 fetal liver. Nevertheless, competitive reconstitution assays revealed a deficit in the ability of Carm1−/− fetal liver cells to contribute to hematopoiesis. Furthermore, impaired differentiation of Carm1−/− fetal liver cells in a CARM1 sufficient host showed that CARM1 is required cell-autonomously in hematopoietic cells. Co-culture of Carm1−/− fetal liver cells on OP9-DL1 monolayers showed that CARM1 is required for survival of hematopoietic progenitors under conditions that promote differentiation. Taken together, this report demonstrates that CARM1 is a key epigenetic regulator of hematopoiesis that affects multiple lineages at various stages of differentiation.
doi:10.4049/jimmunol.1102513
PMCID: PMC3538901  PMID: 23248263
18.  MicroRNA-181 Regulates CARM1 and Histone Aginine Methylation to Promote Differentiation of Human Embryonic Stem Cells 
PLoS ONE  2013;8(1):e53146.
As a novel epigenetic mechanism, histone H3 methylation at R17 and R26, which is mainly catalyzed by coactivator-associated protein arginine methyltransferase 1 (CARM1), has been reported to modulate the transcription of key pluripotency factors and to regulate pluripotency in mouse embryos and mouse embryonic stem cells (mESCs) in previous studies. However, the role of CARM1 in human embryonic stem cells (hESCs) and the regulatory mechanism that controls CARM1 expression during ESCs differentiation are presently unknown. Here, we demonstrate that CARM1 plays an active role in the resistance to differentiation in hESCs by regulating pluripotency genes in response to BMP4. In a functional screen, we identified the miR-181 family as a regulator of CARM1 that is induced during ESC differentiation and show that endogenous miR-181c represses the expression of CARM1. Depletion of CARM1 or enforced expression of miR-181c inhibits the expression of pluripotency genes and induces differentiation independent of BMP4, whereas overexpression of CARM1 or miR-181c inhibitor elevates Nanog and impedes differentiation. Furthermore, expression of CARM1 rescue constructs inhibits the effect of miR-181c overexpression in promoting differentiation. Taken together, our findings demonstrate the importance of a miR-181c-CARM1 pathway in regulating the differentiation of hESCs.
doi:10.1371/journal.pone.0053146
PMCID: PMC3536801  PMID: 23301034
19.  PRMT5 is required for cell-cycle progression and p53 tumor suppressor function 
Nucleic Acids Research  2009;37(15):4965-4976.
Protein arginine methyltransferases (PRMTs) mediate the transfer of methyl groups to arginines in proteins involved in signal transduction, transcriptional regulation and RNA processing. Tumor suppressor p53 coordinates crucial cellular processes, including cell-cycle arrest and DNA repair, in response to stress signals. Post-translational modifications and interactions with co-factors are important to regulate p53 transcriptional activity. To explore whether PRMTs modulate p53 function, we generated multiple cell lines in which PRMT1, CARM1 and PRMT5 are inducibly knocked down. Here, we showed that PRMT5, but not PRMT1 or CARM1, is essential for cell proliferation and PRMT5 deficiency triggers cell-cycle arrest in G1. In addition, PRMT5 is required for p53 expression and induction of p53 targets MDM2 and p21 upon DNA damage. Importantly, we established that PRMT5 knockdown prevents p53 protein synthesis. Furthermore, we found that PRMT5 regulates the expression of translation initiation factor eIF4E and growth suppression mediated upon PRMT5 knockdown is independent of p53 but is dependent on eIF4E. Taken together, we uncovered that arginine methyltransferase PRMT5 is a major pro-survival factor regulating eIF4E expression and p53 translation.
doi:10.1093/nar/gkp516
PMCID: PMC2731901  PMID: 19528079
20.  Overexpression of CARM1 in breast cancer is correlated with poorly characterized clinicopathologic parameters and molecular subtypes 
Diagnostic Pathology  2013;8:129.
Background
Coactivator-associated arginine methyltransferase 1 (CARM1) belongs to the protein arginine methyltransferase family. CARM1 has been reported to be associated with high grade tumors in breast cancer. It still remains unknown the expression pattern of CARM1 in breast cancer and its relationships with clinicopathological characteristics and molecular subtypes.
Methods
Two hundred forty-seven invasive breast cancer cases were collected and prepared for tissue array. There were thirty-seven tumors with benign glandular epithelium adjacent to the tumors among these cases. Molecular subtype and CARM1 expression were investigated using immunohistochemistry.
Results
Cell staining was observed in the cytoplasm and/or nucleus. Staining for CARM1 was significantly stronger in adenocarcinoma compared with adjacent benign epithelium. There is a significant correlation between CARM1 overexpression with young age, high grade, estrogen receptor (ER) and progesterone receptor (PR) negative, increased p53 expression, and high Ki-67 index. Our study demonstrated CARM1 overexpression was associated with an increase in the protein expression of HER2. Furthermore, our data indicated CARM1-overexpression rate were remarkably higher in HER2 subtype (69.6%), luminal B subtype (59.6%) and TN subtype (57.1%) compared with luminal A subtype (41.3%).
Conclusions
CARM1 expression was increased in invasive breast cancer. CARM1 overexpression was associated with poorly characterized clinicopathologic parameters and HER2 overexpression. There were significant differences between different molecular subtypes in their relationship to CARM1 overexpression. Our results support the value of using CARM1 in prognostic stratification of breast cancer patients and its potential therapeutic implications in targeting treatment.
Virtual slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4116338491022965
doi:10.1186/1746-1596-8-129
PMCID: PMC3766166  PMID: 23915145
CARM1; Breast cancer; Clinicopathologic parameters; HER2; Molecular subtype
21.  TIF1α mediates physical interaction and functional synergy between the CARM1 and GRIP1 nuclear receptor coactivators 
In previous studies Transcriptional Intermediary Factor 1α (TIF1α) was identified as a direct binding partner and potential transcriptional coactivator for nuclear receptors (NR), but its over-expression inhibited rather than enhanced transcriptional activation by NRs. Here we show that TIF1α bound to and enhanced the function of the C-terminal activation domain of Coactivator Associated Arginine Methyltransferase 1 (CARM1) and the N-terminal activation domain of Glucocorticoid Receptor Interacting Protein 1 (GRIP1). Furthermore, although TIF1α had little or no NR coactivator activity by itself, it cooperated synergistically with GRIP1 and CARM1 to enhance NR-mediated transcription. Inhibition of endogenous TIF1α expression reduced transcriptional activation by the GRIP1 N-terminal domain but not by the CARM1 C-terminal domain, suggesting that TIF1α may be more important for mediating the activity of the former than the latter. Reduction of endogenous TIF1α levels also compromised the androgen-dependent induction of an endogenous target gene of the androgen receptor. Finally, TIF1α formed a ternary complex with the GRIP1 N-terminal and CARM1 C-terminal domains. Thus, we conclude that TIF1α cooperates with NR coactivators GRIP1 and CARM1 by forming a stable ternary complex with them and enhancing the activation domain function of one or both of them.
doi:10.1210/me.2005-0393
PMCID: PMC1626528  PMID: 16322096
22.  CARM1 automethylation is controlled at the level of alternative splicing 
Nucleic Acids Research  2013;41(14):6870-6880.
Co-activator-associated arginine methyltransferase 1 (CARM1) is subjected to multiple post-translational modifications. Our previous finding that automethylation of CARM1 is essential for regulation of transcription and pre-mRNA splicing prompted us to investigate how automethylation is regulated. Here, we report that automethylation is regulated by alternative splicing of CARM1 mRNA to remove exon 15, containing the automethylation site. Specifically, we find that two major alternative transcripts encoding full-length CARM1 (CARM1FL) and CARM1 with exon 15 deleted (CARM1ΔE15) exist in cells, and each transcript produces the expected protein. Further biochemical characterizations of the automethylation-defective mutant and CARM1ΔE15 reveal overlapping yet different properties. Interestingly, other arginine methylation substrates also have missing exons encompassing the site(s) of methylation, suggesting that protein arginine methylation level may, in general, be controlled by the alternative splicing mechanism. Finally, we observed differential distribution of CARM1FL and CARM1ΔE15 in epithelial and stromal cells in normal mouse mammary gland. Thus, alternative splicing not only serves as the determinant for CARM1 automethylation but also generates cell type-specific isoforms that might regulate normal ERα biology in the mammary gland.
doi:10.1093/nar/gkt415
PMCID: PMC3737532  PMID: 23723242
23.  Signaling within a Coactivator Complex: Methylation of SRC-3/AIB1 Is a Molecular Switch for Complex Disassembly▿  
Molecular and Cellular Biology  2006;26(21):7846-7857.
Recent studies indicate that steroid receptor-mediated transcriptional initiation is a cyclical process involving multiple rounds of coactivator assembly and disassembly. Steroid receptor coactivator 3 (SRC-3) coactivator phosphorylation has been shown to regulate coactivator complex assembly, but the mechanisms by which coactivator disassembly is triggered are not well understood. In this study, we provide in vitro and in vivo evidence that members of the SRC coactivator family serve as substrates for the enzymatic coactivator coactivator-associated arginine methyltransferase 1 (CARM1). Methylation of SRC-3 was localized to an arginine in its CARM1 binding region and correlated with decreased estrogen receptor alpha-mediated transcription, as seen with both cell-based and in vitro transcription assays. Consistent with this finding, we demonstrated that methylation promotes dissociation of the SRC-3/CARM1 coactivator complex. Methylation of SRC-3 is regulated by estrogen signaling in MCF7 cells and serves as a molecular switch for disassembly of the SRC-3 transcriptional coactivator complex. We propose that CARM1 is a dual-function coactivator, as it not only activates transcription by modifying core histone tails but also terminates hormone signaling by disassembly of the coactivator complex.
doi:10.1128/MCB.00568-06
PMCID: PMC1636757  PMID: 16923966
24.  The Activity and Stability of the Transcriptional Coactivator p/CIP/SRC-3 Are Regulated by CARM1-Dependent Methylation▿  
Molecular and Cellular Biology  2006;27(1):120-134.
The transcriptional coactivator p/CIP(SRC-3/AIB1/ACTR/RAC3) binds liganded nuclear hormone receptors and facilitates transcription by directly recruiting accessory factors such as acetyltransferase CBP/p300 and the coactivator arginine methyltransferase CARM1. In the present study, we have established that recombinant p/CIP (p300/CBP interacting protein) is robustly methylated by CARM1 in vitro but not by other protein arginine methyltransferase family members. Metabolic labeling of MCF-7 breast cancer cells with S-adenosyl-L-[methyl-3H]methionine and immunoblotting using dimethyl arginine-specific antibodies demonstrated that p/CIP is specifically methylated in intact cells. In addition, methylation of full-length p/CIP is not supported by extracts derived from CARM1−/− mouse embryo fibroblasts, indicating that CARM1 is required for p/CIP methylation. Using mass spectrometry, we have identified three CARM1-dependent methylation sites located in a glutamine-rich region within the carboxy terminus of p/CIP which are conserved among all steroid receptor coactivator proteins. These results were confirmed by in vitro methylation of p/CIP using carboxy-terminal truncation mutants and synthetic peptides as substrates for CARM1. Analysis of methylation site mutants revealed that arginine methylation causes an increase in full-length p/CIP turnover as a result of enhanced degradation. Additionally, methylation negatively impacts transcription via a second mechanism by impairing the ability of p/CIP to associate with CBP. Collectively, our data highlight coactivator methylation as an important regulatory mechanism in hormonal signaling.
doi:10.1128/MCB.00815-06
PMCID: PMC1800659  PMID: 17043108
25.  Methyltransferase PRMT1 Is a Binding Partner of HBx and a Negative Regulator of Hepatitis B Virus Transcription 
Journal of Virology  2013;87(8):4360-4371.
The hepatitis B virus X protein (HBx) is essential for virus replication and has been implicated in the development of liver cancer. HBx is recruited to viral and cellular promoters and activates transcription by interacting with transcription factors and coactivators. Here, we purified HBx-associated factors in nuclear extracts from HepG2 hepatoma cells and identified protein arginine methyltransferase 1 (PRMT1) as a novel HBx-interacting protein. We showed that PRMT1 overexpression reduced the transcription of hepatitis B virus (HBV), and this inhibition was dependent on the methyltransferase function of PRMT1. Conversely, depletion of PRMT1 correlated with increased HBV transcription. Using a quantitative chromatin immunoprecipitation assay, we found that PRMT1 is recruited to HBV DNA, suggesting a direct effect of PRMT1 on the regulation of HBV transcription. Finally, we showed that HBx expression inhibited PRMT1-mediated protein methylation. Downregulation of PRMT1 activity was further observed in HBV-replicating cells in an in vivo animal model. Altogether, our results support the notion that the binding of HBx to PRMT1 might benefit viral replication by relieving the inhibitory activity of PRMT1 on HBV transcription.
doi:10.1128/JVI.02574-12
PMCID: PMC3624337  PMID: 23388725

Results 1-25 (740080)