PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (918136)

Clipboard (0)
None

Related Articles

1.  Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds 
A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1)−(L5) were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H2O)4]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)2(H2O)2] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22), displayed potent cytotoxic activity as LD50 = 8.974 × 10−4, 7.022 × 10−4, 8.839 × 10−4, 7.133 × 10−4, and 9.725 × 10−4 M/mL, respectively, against Artemia salina.
doi:10.1155/BCA/2006/83131
PMCID: PMC1800917  PMID: 17497020
2.  Synthesis, Characterization, and Biological Activity of N1-Methyl-2-(1H-1,2,3-Benzotriazol-1-y1)-3-Oxobutan- ethioamide Complexes with Some Divalent Metal (II) Ions 
A new series of Zn2+, Cu2+, Ni2+, and Co2+ complexes of N1-methyl-2-(1H-1,2,3-benzotriazol-1-yl)-3-oxobutanethioamide (MBOBT), HL, has been synthesized and characterized by different spectral and magnetic measurements and elemental analysis. IR spectral data indicates that (MBOBT) exists only in the thione form in the solid state while 13C NMR spectrum indicates its existence in thione and thiole tautomeric forms. The IR spectra of all complexes indicate that (MBOBT) acts as a monobasic bidentate ligand coordinating to the metal(II) ions via the keto-oxygen and thiolato-sulphur atoms. The electronic spectral studies showed that (MBOBT) bonded to all metal ions through sulphur and nitrogen atoms based on the positions and intensity of their charge transfer bands. Furthermore, the spectra reflect four coordinate tetrahedral zinc(II), tetragonally distorted copper(II), square planar nickel(II), and cobalt(II) complexes. Thermal decomposition study of the complexes was monitored by TG and DTG analyses under N2 atmosphere. The decomposition course and steps were analyzed and the activation parameters of the nonisothermal decomposition are determined. The isolated metal chelates have been screened for their antimicrobial activities and the findings have been reported and discussed in relation to their structures.
doi:10.1155/2008/479897
PMCID: PMC2268950  PMID: 18364993
3.  Spectroscopic, Thermal, and Antimicrobial Studies of Co(II), Ni(II), Cu(II), and Zn(II) Complexes Derived from Bidentate Ligands Containing N and S Donor Atoms 
Two new heterocyclic Schiff bases of 4-amino-5-mercapto-3-H/propyl-1,2,4-triazole and 5-nitrofurfuraldehyde [HL1-2] and their cobalt, nickel, copper, and zinc complexes have been synthesized and characterized by elemental analyses, spectral (UV-Vis, IR, 1H NMR, Fluorescence, and ESR) studies, thermal techniques, and magnetic moment measurements. The heterocyclic Schiff bases act as bidentate ligands and coordinate with metal ions through nitrogen and sulphur of the thiol group. The low molar conductance values in DMF indicate that the metal complexes are nonelectrolytes. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II), and Zn(II) complexes and square planar for Cu(II) complexes. Two Gram-positive bacteria (Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121), two Gram-negative bacteria (Escherichia coli MTCC 1652 and Pseudomonas aeruginosa MTCC 741), and one yeast, Candida albicans, were used for the evaluation of antimicrobial activity of the newly synthesized compounds.
doi:10.1155/2012/729708
PMCID: PMC3512225  PMID: 23226991
4.  Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity 
The Scientific World Journal  2013;2013:754868.
New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands.
doi:10.1155/2013/754868
PMCID: PMC3763258  PMID: 24027449
5.  Metal-Based Biologically Active Compounds: Synthesis, Spectral, and Antimicrobial Studies of Cobalt, Nickel, Copper, and Zinc Complexes of Triazole-Derived Schiff Bases 
A series of cobalt, nickel, copper, and zinc complexes of bidentate Schiff bases derived from the condensation reaction of 4-amino-5-mercapto-3-methyl/ethyl-1,2,4-triazole with 2,4-dichlorobenzaldehyde were synthesized and tested as antimicrobial agents. The synthesized Schiff bases and their metal complexes were characterized with the aid of elemental analyses, magnetic moment measurements, spectroscopic and thermogravimetric techniques. The presence of coordinated water in metal complexes was supported by infrared and thermal gravimetric studies. A square planar geometry was suggested for Cu(II) and octahedral geometry proposed for Co(II), Ni(II), and Zn(II) complexes. The Schiff bases and their metal complexes have been screened for antibacterial (Pseudomonas aeruginosa, Bacillus subtilis) and antifungal activities (Aspergillus niger, A. flavus). The metal complexes exhibited significantly enhanced antibacterial and antifungal activity as compared to their simple Schiff bases.
doi:10.1155/2011/901716
PMCID: PMC3246298  PMID: 22216017
6.  Synthesis Characterization and Antimicrobial Activity Studies of Some Transition Metal Complexes Derived from 3-Chloro-N′-[(1E)-(2-hydroxy phenyl)methylene]-6-methoxy-1-benzothiophene-2-carbohydrazide 
The Scientific World Journal  2013;2013:451629.
A series of new coordination complexes of Cu(II), Co(II), Ni(II), Zn(II), Hg(II), Mn(II), and Fe(III) with the Schiff base 3-chloro-N′-[(1E)-(2-hydroxy phenyl)methylene]-6-methoxy-1-benzothiophene-2-carbohydrazide (HL) have been synthesized and characterized by elemental analysis, electrical conductivity measurements, IR spectra, 1H NMR, mass spectral data, electronic spectra, magnetic susceptibility, ESR spectra, TGA, and Powder XRD data. The Schiff base behaves as tridentate ONO donor ligand and forms the complexes of the type ML2 (metal-ligand) stoichiometry for Cu(II), Co(II), Ni(II), and Mn(II) complexes and ML stoichiometry for Zn(II), Hg(II), and Fe(III) complexes. All the complexes are colored and nonelectrolytes. It is found that Cu(II), Co(II), Ni(II), Mn(II) and Fe(III) complexes have exhibited octahedral geometry whereas Zn(II) and Hg(II) complexes exhibited tetrahedral geometry. The ligand and its metal complexes have been screened for their antibacterial activity against E. coli and S. aureus and antifungal activity against A. niger and A. flavus.
doi:10.1155/2013/451629
PMCID: PMC3888765  PMID: 24453851
7.  Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands 
Graphical abstract
Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands
Highlights
•Thio Schiff base complexes derived from mono- and diacetyl ferrocene were synthesized.•The complexes are characterized by different spectroscopic techniques.•The complexes have different varieties of geometrical structures.•Biochemical studies were studied.
Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet–visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.
doi:10.1016/j.saa.2013.06.078
PMCID: PMC3826106  PMID: 24070648
Monoacetylferrocene; 1,1′-Diacetylferrocene; Thio-Schiff base; Metal complexes; Spectroscopy; Biological activity
8.  Synthesis, Structure, Electrochemistry, and Spectral Characterization of Bis-Isatin Thiocarbohydrazone Metal Complexes and Their Antitumor Activity Against Ehrlich Ascites Carcinoma in Swiss Albino Mice 
Metal-Based Drugs  2007;2008:362105.
The synthesis, structure, electrochemistry, and biological studies of Co(II), Ni(II), Cu(II), and Zn(II) complexes of thiocarbohydrazone ligand are described. The ligand is synthesized starting from thiocarbohydrazide and isatin. It is evident from the IR data that in all the complexes, only one part of the ligand is coordinated to the metal ion resulting mononuclear complexes. The ligand coordinates essentially through the carbonyl oxygen of the isatin fragment, the nitrogen atom of the azomethine group, and sulfur atom after deprotonation to give five membered rings. H1 NMR spectrum of the ligand shows only one set of signals for the aromatic protons, while the NH of isatin and NH of hydrazone give rise to two different singlets in the 11–14 ppm range. The formulations, [Cu(L)Cl]·2H2O, [Cu(L)(CH3COO)]·2H2O, [Ni(L)Cl], [Ni(L)(CH3COO)], [Co(L2)], and [Zn(L2)]·2H2O are in accordance with elemental analyses, physical, and spectroscopic measurements. The complexes are soluble in organic solvents. Molar conductance values in DMF indicate the nonelectrolytic nature of the complexes. Copper complex displays quasireversible cyclic voltametric responses with Ep near −0.659 v and 0.504 v Vs Ag/AgCl at the scan rate of 0.1 V/s. Copper(II) complexes show a single line EPR signals. For the observed magnetic moment and electronic spectral data possible explanation has been discussed. From all the available data, the probable structures for the complexes have been proposed. The compounds synthesized in present study have shown promising cytotoxic activity when screened using the in vitro method and at the same time were shown to have good activity when tested using the Ehrlich ascites carcinoma (EAC) model. The antimicrobial screening showed that the cobalt complex possesses enhanced antimicrobial activity towards fungi.
doi:10.1155/2008/362105
PMCID: PMC2259242  PMID: 18320020
9.  Palladium- and Copper-Catalyzed Arylation of Carbon-Hydrogen Bonds 
Accounts of chemical research  2009;42(8):1074-1086.
The transition-metal-catalyzed functionalization of C-H bonds is a powerful method for generating carbon-carbon bonds. Although significant advances to this field have been reported during the last decade, many challenges remain. First, most of the methods are substrate-specific and thus cannot be generalized. Second, conversions of unactivated (i.e. not benzylic or alpha to heteroatom) sp3 C–H bonds to C–C bonds are rare, with most examples limited to t-butyl groups—a conversion that is inherently simple because there are no β-hydrogens that can be eliminated. Finally, the palladium, rhodium, and ruthenium catalysts routinely used for the conversion of C–H bonds to C–C bonds are expensive. Catalytically active metals that are cheaper and less exotic (e.g. copper, iron, and manganese) are rarely used.
This Account describes our attempts to provide solutions to these three problems. We have developed a general method for directing-group-containing arene arylation by aryl iodides. Using palladium acetate as the catalyst, we arylated anilides, benzamides, benzoic acids, benzylamines, and 2-substituted pyridine derivatives under nearly identical conditions. We have also developed a method for the palladium-catalyzed auxiliary-assisted arylation of unactivated sp3 C–H bonds. This procedure allows for the β-arylation of carboxylic acid derivatives and the γ-arylation of amine derivatives. Furthermore, copper catalysis can be used to mediate the arylation of acidic arene C–H bonds (i.e. those with pKa values <35 in DMSO). Using a copper iodide catalyst in combination with a base and a phenanthroline ligand, we successfully arylated electron-rich and electron-deficient heterocycles and electron-poor arenes possessing at least two electron-withdrawing groups. The reaction exhibits unusual regioselectivity: arylation occurs at the most hindered position. This copper-catalyzed method supplements the well-known C–H activation/borylation methodology, in which functionalization usually occurs at the least hindered position.
We also describe preliminary investigations to determine the mechanisms of these transformations. We anticipate that other transition metals, including iron, nickel, cobalt, and silver, will also be able to facilitate deprotonation/arylation reaction sequences.
doi:10.1021/ar9000058
PMCID: PMC2846291  PMID: 19552413
10.  Cytosolic Ni(II) Sensor in Cyanobacterium 
The Journal of Biological Chemistry  2012;287(15):12142-12151.
Background: The function of CsoR/RcnR-like protein InrS was unknown.
Results: InrS and CsoR metal complexes have similar spectra, but InrS senses nickel not copper.
Conclusion: InrS detects cytosolic nickel with tighter KD than the other metal sensors of the cell.
Significance: InrS might be exploited to optimize hydrogenase Ni(II) supply, and this study shows how metal specificity can be a shared function of a set of metal sensors.
Efflux of surplus Ni(II) across the outer and inner membranes of Synechocystis PCC 6803 is mediated by the Nrs system under the control of a sensor of periplasmic Ni(II), NrsS. Here, we show that the product of ORF sll0176, which encodes a CsoR/RcnR-like protein now designated InrS (for internal nickel-responsive sensor), represses nrsD (NrsD is deduced to efflux Ni(II) across the inner membrane) from a cryptic promoter between the final two ORFs in the nrs operon. Transcripts initiated from the newly identified nrsD promoter accumulate in response to nickel or cobalt but not copper, and recombinant InrS forms specific, Ni(II)-inhibited complexes with the nrsD promoter region. Metal-dependent difference spectra of Ni(II)- and Cu(I)-InrS are similar to Cu(I)-sensing CsoR and dissimilar to Ni(II)/Co(II)-sensing RcnR, consistent with factors beyond the primary coordination sphere switching metal selectivity. Competition with chelators mag-fura-2, nitrilotriacetic acid, EDTA, and EGTA estimate KD Ni(II) for the tightest site of InrS as 2.05 (±1.5) × 10−14 m, and weaker KD Ni(II) for the cells' metal sensors of other types: Zn(II) co-repressor Zur, Co(II) activator CoaR, and Zn(II) derepressor ZiaR. Ni(II) transfer to InrS occurs upon addition to Ni(II) forms of each other sensor. InrS binds Ni(II) sufficiently tightly to derepress Ni(II) export at concentrations below KD Ni(II) of the other sensors.
doi:10.1074/jbc.M111.338301
PMCID: PMC3320959  PMID: 22356910
Hydrogenase; Metal Homeostasis; Metalloproteins; Metals; Nickel; ArsR/SmtB Family; CsoR/RcnR Family; Fur Family; MerR Family; Metal Specificity
11.  Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio 
Background
Research interest in phosphonates metal organic frameworks (MOF) has increased extremely in the last two decades, because of theirs fascinating and complex topology and structural flexibility. In this paper we present a mathematical model for ligand/metal ion ratio of an octahedral (Oh) network of cobalt vinylphosphonate (Co(vP)·H2O).
Results
A recurrent relationship of the ratio between the number of ligands and the number of metal ions in a lamellar octahedral (Oh) network Co(vP)·H2O, has been deducted by building the 3D network step by step using HyperChem 7.52 package. The mathematical relationship has been validated using X ray analysis, experimental thermogravimetric and elemental analysis data.
Conclusions
Based on deducted recurrence relationship, we can conclude prior to perform X ray analysis, that in the case of a thermogravimetric analysis pointing a ratio between the number of metal ions and ligands number around 1, the 3D network will have a central metal ion that corresponds to a single ligand. This relation is valid for every type of supramolecular network with divalent metal central ion Oh coordinated and bring valuable information with low effort and cost.
doi:10.1186/1752-153X-6-91
PMCID: PMC3464713  PMID: 22932493
Metal ions/ligands ratio; Metal organic frameworks; Lamellar structures; Supramolecular Oh complexes
12.  Synthesis of New VO(II), Co(II), Ni(II) and Cu(II) Complexes with Isatin-3-Chloro-4-Floroaniline and 2-Pyridinecarboxylidene-4-Aminoantipyrine and their Antimicrobial Studies 
Mycobiology  2012;40(1):20-26.
The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi drug resistance. The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from isatin with 3-chloro-4-floroaniline and 2-pyridinecarboxaldehyde with 4-aminoantipyrine have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, molar conductance, electronic spectra, FT-IR, FAB mass and magnetic susceptibility measurements. FAB mass data show degradation of complexes. Both the ligands behave as bidentate and tridentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or 6. The Schiff base and metal complexes show a good activity against the bacteria; Staphylococcus aureus, Escherichia coli and Streptococcus fecalis and fungi Aspergillus niger, Trichoderma polysporum, Candida albicans and Aspergillus flavus. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases. The minimum inhibitory concentrations of the metal complexes were found in the range 10~40 µg/mL.
doi:10.5941/MYCO.2012.40.1.020
PMCID: PMC3385143  PMID: 22783130
Isatin; MIC; Spectral studies; 2-Pyridinecarboxylidene; 4-Aminoantipyrine
13.  Chemistry of Marine Ligands and Siderophores 
Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world’s oceans are presented.
PMCID: PMC3065440  PMID: 21141029
iron; cobalt; nickel; copper; zinc; cadmium
14.  Synthesis, Biological, Spectral, and Thermal Investigations of Cobalt(II) and Nickel(II) Complexes of N-Isonicotinamido -2′,4′-Dichlorobenzalaldimine 
A new series of 12 complexes of cobalt(II) and nickel(II) with N-isonicotinamido-2′,4′-dichlorobenzalaldimine (INH-DCB) with the general composition MX2 · n(INH-DCB) [M = Co(II) or Ni(II), X = Cl− ,Br−, NO3−, NCS−, or CH3COO−, n = 2; X = ClO4−, n = 3] have been synthesized. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, infrared, electronic spectra, magnetic susceptibility, and conductivity measurements. An octahedral geometry has been suggested for all the complexes. The metal complexes were screened for their antifungal and antibacterial activities on different species of pathogenic fungi and bacteria and their biopotency has been discussed.
doi:10.1155/BCA/2006/29234
PMCID: PMC1686298  PMID: 17497006
15.  Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation 
A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method.
doi:10.1155/2014/942162
PMCID: PMC3926296  PMID: 24592203
16.  Synthesis, structure and luminescence studies of Eu(III), Tb(III), Sm(III), Dy(III) cationic complexes with acetylacetone and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane☆ 
Inorganica Chimica Acta  2013;406(100):279-284.
Graphical abstract
New cationic heteroleptic Ln(III) complexes with acetylacetonate and bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane basis are synthesized. The complexes are characterized by various means, including single crystal X-ray diffraction analysis. Electronic absorption and emission spectra of the compounds both in solid and solutions are studied.
Highlights
•Synthesis and structure of Ln(III) heteroleptic complexes using bistriazole ligands.•Lifetime and quantum yield of luminescence are measured and discussed.•Various factors determining the efficiency of luminescence were examined.
Studies concerning synthesis, structure and luminescence of eight-coordinate Eu, Tb, Sm and Dy complexes of the type [Ln(acac)2(L)]Cl (Hacac = pentanedione-2,4 and L = bis(5-(pyridine-2-yl)-1,2,4-triazol-3-yl)propane) are reported in detail. The obtained complexes were investigated by various means including elemental- and thermogravimetric analysis, IR- and electron transition spectroscopy. The structure of the Tb complex was determined by single-crystal X-ray crystallography: Tb is eight-coordinate, and L acting only as a tetradentate chelate together with two bidentate acac ligands. Photophysical studies of the complexes were carried out. The Tb(III) and Eu(III) complexes show strong emissions both in solid state and solution. The intensity of the luminescence of Dy(III) and Sm(III) are relatively weak. The factors determining the intensity of the photoluminescence are discussed.
doi:10.1016/j.ica.2013.04.006
PMCID: PMC3778742  PMID: 24068839
Ln complex; 1,2,4-Triazole derivatives; X-ray study; Luminescence
17.  Structural and photophysical studies on ternary Sm(III), Nd(III), Yb(III), Er(III) complexes containing pyridyltriazole ligands 
Polyhedron  2012;47(1):37-45.
Graphical abstract
The structure of two new ancillary triazole’s type ligands and properties of Sm(III), Nd(III), Yb(III), Er(III) complexes based on them are characterized. The factors affecting the intensity and character of the luminescence of the Ln(III) are discussed.
Two bidentate pyridine-triazole ligands (3-(pyridine-2-yl)-5-phenyl-1,2,4-triazole (L1) and 5-phenyl-2-(2′-pyridyl)-7,8-benzo-6,5-dihydro-1,3,6-triazaindolizine (L2)), have been synthesized and used for Ln(Dbm)3 (Ln = Sm(III), Nd(III), Yb(III) and Er(III)) coordination. The structures of the ligands and resulting Sm(III) complex were determined in the solid state by X-ray diffraction. The title complexes were characterized by UV, fluorescent, IR-spectroscopy and thermogravimetric and elemental analyses. Photophysical studies on the Ln(III) complexes were carried out showing luminescence in the region typical for Ln(III). The effect of various factors on the enhancement luminescence of complexes is discussed.
doi:10.1016/j.poly.2012.08.034
PMCID: PMC3587411  PMID: 23470984
Ln(III) complex; 1,2,4-Triazole derivatives; X-ray study; Luminescence
18.  Spectroscopic Characterization and Biological Activity of Mixed Ligand Complexes of Ni(II) with 1,10-Phenanthroline and Heterocyclic Schiff Bases 
Mixed ligand complexes of Ni(II) with 1,10-phenanthroline (1,10-Phen) and Schiff bases L1(MIIMP); L2(CMIIMP); L3(EMIIMP); L4(MIIMNP); L5(MEMIIMP); L6(BMIIMP); L7(MMIIMP); L8(MIIBD) have been synthesized. These metal chelates have been characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, Mass, UV-Vis, magnetic moments, and thermogravimetric (TG&DTA) analysis. Spectral data showed that the 1,10-phenanthroline act as neutral bidentate ligand coordinating to the metal ion through two nitrogen donor atoms and Schiff bases acts as monobasic bidentate coordinating through NO donor atoms. All Ni(II) complexes appear to have an octahedral geometry. The antimicrobial activity of mixed ligand complexes has been studied by screening against various microorganisms, it is observed that the activity enhances upon coordination. The DNA binding studies have been investigated by UV-Vis spectroscopy, and the experimental results indicate that these complexes bind to CT DNA with the intrinsic binding constant Kb = 2.5 ± 0.2 × 105 M−1. MTT is used to test the anticancer effect of the complexes with HL60 tumor cell. The inhibition ratio was accelerated by increasing the dosage, and it had significant positive correlation with the medication dosage.
doi:10.1155/2012/948534
PMCID: PMC3467759  PMID: 23082074
19.  Synthesis, Spectroscopic and Physicochemical Characterization and Biological Activity of Co(II) and Ni(II) Coordination Compounds with 4-Aminoantipyrine Thiosemicarbazone 
We describe the synthesis and characterization of cobalt(II) and nickel(II) coordination compounds of 4[N-(furan-2’-aldimine)amino]antipyrine thiosemicarbazone (FFAAPTS) and 4[N-(4'-nitrobenzalidene) amino]antipyrine thiosemicarbazone (4'-NO2BAAPTS). All the isolated compounds have the general composition MX2(L)(H2O) (M = Co2+ or Ni2+; X = Cl, Br, NO3, NCS or CH3COO; L = FFAAPTS or 4'-NO2BAAPTS) and M(ClO4)2(L)2 (M = Co2+ or Ni2+; L = FFAAPTS or 4'-NO2BAAPTS). Infrared spectral studies indicate that both the thiosemicarbazones coordinate in their neutral form and they act as {N,N,S} tridentate chelating ligands. Room temperature magnetic measurements and electronic spectral studies suggest the distorted octahedral geometries of the prepared complexes. Thermogravimetric studies are also reported and the possible structures of the complexes are proposed. Antibacterial and antifungal properties of these metal-coordination compounds have also been studied.
doi:10.1155/BCA.2005.271
PMCID: PMC2267101  PMID: 18365104
Cobalt(II); Nickel(II); Complexes; Thiosemicarbazone; Biological Activity
20.  Toxicity, Spectroscopic Characterization and Electrochemical Behaviour of New Macrocclic Complexes of Lead(II) and Palladium(II) Metals 
Metal-Based Drugs  2000;7(4):211-218.
Tetraazamacrocyclie complexes of lead and palladium have been synthesized by the template process using the bis(benzil)ethylenediamine precursor. The tetradentate macrocycle (maL) reacts with PbCl2, PdCl2 and different diamines in a 1:1:1 molar ratio in methanol to give several solid complexes of the types [Pb(maL)(R)Cl2] and [Pd(maL)(R)]Cl2 (where R = 2,6-diaminopyridine or 1,2-phenylenediamine). The macrocycle and its metal complexes have been characterized by elemental analysis, molecular weight determinations, molar conductivity, IR, 1H NMR, 13C NMR, electronic, mass and electrochemical studies. The macrocyclic ligand coordinates through the four azomethine nitrogen atoms which are bridged by benzil moieties. IR spectra suggest that the pyridine nitrogen is not coordinating. The palladium complexes exhibit tetracoordinated square-planar geometry, whereas a hexacoordinated octahedral geometry is suggested for lead complexes. The macrocycle along with its complexes have been screened in vitro against a number of pathogenic fungi and bacteria to assess their growth inhibiting potential.
doi:10.1155/MBD.2000.211
PMCID: PMC2365218  PMID: 18475947
21.  Electronic Structure and Reactivity of Three-Coordinate Iron Complexes 
Accounts of chemical research  2008;41(8):905-914.
Conspectus
The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (β-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states.
Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for π interactions with ligands. Trends in σ-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic σ-bonding and the availability of π-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong π-backbonding to transfer charge from iron into coordinated alkynes and N2, whereas iron(III) accepts charge from a π-donating imido ligand. Though the imidoiron(III) complex is stabilized by π-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the π-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate iron compounds may lead to new catalysts for oxidation and reduction reactions, and may be used by nature in transient intermediates of nitrogenase enzymes.
doi:10.1021/ar700267b
PMCID: PMC2587011  PMID: 18646779
iron; three-coordinate; nitrogenase; pi-bonding
22.  Transition metal complexes of an isatinic quinolyl hydrazone 
Background
The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione) and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-yl)hydrazono] indolin-2-one.
Results
Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III), Co(II), Ni(II), Cu(II), VO(II) and Pd(II) ions. The ligand showed a variety of modes of bonding viz. (NNO)2-, (NO)- and (NO) per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II)- complexes have the preferable square planar geometry (D4h- symmetry) and depend mainly on the mole ratio (M:L).
Conclusion
The effect of the type of the metal ion for the same anion (Cl-) is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h) or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl-) except complex 5 (SO42-) in which it uses its lactam form. The obtained Pd(II)- complexes (dimeric, mono- and binuclear) are affected by the mole ratio (M:L) and have the square planar (D4h) geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II) > Vanadyl(II) > Cobalt(II) > Copper(II) ≈ Palladium(II) >> Iron(III).
doi:10.1186/1752-153X-5-35
PMCID: PMC3161929  PMID: 21708023
23.  Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives 
Organometallics  2012;31(6):2275-2285.
The electronic structures of the four- and five-coordinate aryl-substituted bis(imino)pyridine iron dinitrogen complexes, (iPrPDI)FeN2 and (iPrPDI)Fe(N2)2 (iPrPDI = 2,6-(2,6-iPr2-C6H3-N=CMe)2C5H3N), have been investigated by a combination of spectroscopic techniques (NMR, Mössbauer, X-ray Absorption and X-ray Emission) and DFT calculations. Homologation of the imine methyl backbone to ethyl or isopropyl groups resulted in the preparation of the new bis(imino)pyridine iron dinitrogen complexes, (iPrRPDI)FeN2 (iPrRPDI = 2,6-(2,6-iPr2-C6H3-N=CR)2C5H3N; R = Et, iPr), that are exclusively four coordinate both in the solid state and in solution. The spectroscopic and computational data establish that the (iPrRPDI)FeN2 compounds are intermediate spin ferrous derivatives (SFe = 1) antiferromagnetically coupled to bis(imino)pyridine triplet diradical dianions (SPDI = 1). While this ground state description is identical to that previously reported for (iPrPDI)Fe(DMAP) (DMAP = 4-N,N-dimethylaminopyridine) and other four-coordinate iron compounds with principally σ-donating ligands, the d-orbital energetics determine the degree of coupling of the metal-chelate magnetic orbitals resulting in different NMR spectroscopic behavior. For (iPrRPDI)Fe(DMAP) and related compounds, this coupling is strong and results in temperature independent paramagnetism where a triplet excited state mixes with the singlet ground state via spin orbit coupling. In the (iPrRPDI)FeN2 family, one of the iron SOMOs is essentially dz2 in character resulting in poor overlap with the magnetic orbitals of the chelate, leading to thermal population of the triplet state and hence temperature dependent NMR behavior. The electronic structures of (iPrRPDI)FeN2 and (iPrPDI)Fe(DMAP) differ from (iPrPDI)Fe(N2)2, a highly covalent molecule with a redox non-innocent chelate that is best described as a resonance hybrid between iron(0) and iron(II) canonical forms as originally proposed in 2004.
doi:10.1021/om201212m
PMCID: PMC3366276  PMID: 22675236
24.  Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates 
A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal-chelate-lisinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1.
doi:10.1021/ja208791f
PMCID: PMC3401419  PMID: 22200082
metallodrug; lisinopril; angiotensin converting enzyme; multiple-turnover
25.  Preparation and Characterization of Di-, Tri-, and Tetranuclear Schiff Base Complexes Derived from Diamines and 3,4-Dihydroxybenzaldehyde 
A series of new di-, tri-, and tetranuclear Co(II) and Cu(II) complexes of three new diSchiff base ligands were synthesized by two different methods. The first method involved the synthesis of the three ligands from condensation reaction of 3,4-dihydroxybenzaldehyde (L′H2) with ethylenediamine (en), o-phenylenediamine (o-PD), or 4,5-dimethyl-1,2-phenylendiamine (DMPD) in a mole ratio of 2 : 1 followed by the reaction of the resulting Schiff bases ligands with Cu(II) or Co(II) ions in the presence of 2,2′-bipyridyl (L) to form the di- and trinuclear metal complexes. The second method involved the condensation of the copper complex LCu(II)L′ (L = 2,2′-bipyridyl, L′ = 4-formylbenzene-1,2-bis(olate)) with en, o-PD, or DMPD in a mole ratio of 2 : 1, respectively, followed by reaction with CuCl2 or Cu(ClO4)2 to form di-, tri-, and tetranuclear copper (II) complexes, respectively. The structures of the ligands and metal complexes were characterized by elemental analyses, NMR, and FTIR spectra. The geometries of metal complexes were suggested according to elemental analysis, electronic spectra, thermal analyses, atomic absorption, and magnetic moments and conductivity measurements.
doi:10.1155/2013/219356
PMCID: PMC3886601  PMID: 24453995

Results 1-25 (918136)