Search tips
Search criteria

Results 1-25 (706872)

Clipboard (0)

Related Articles

1.  Analysis of in situ and ex vivo αVβ3 integrin expression during experimental carotid atherogenesis 
Mural inflammation has been shown to contribute to the development of plaque, with the αVβ3 integrin highly expressed in atherosclerotic plaques. We herein examined αVβ3 integrin expression as a function of carotid atherosclerosis formation in the apolipoprotein E-deficient (apoE−/−) mouse.
Methods and results
Constrictive collars were placed around the left common carotid arteries of apo E−/− mice maintained on a high-fat diet (n = 14). Before and 21 days following collar placement, in vivo serial magnetic resonance imaging (MRI) measurements of the carotid aortic diameter were performed using a 7T magnetic resonance (MR) scanner. Near- infrared fluorescence (NIRF) imaging was performed (n = 6) using an in vivo imaging system 0–24 hours following administration of 1.0 nmol c(RGDyK)-Cy5.5 via the tail vein. A competition experiment was performed by the co-injection of a saturating dose of bicyclic RGD peptide H-Glu[cyclo(Arg-Gly-Asp-D-Tyr-Lys)]2 (n = 3). Following image acquisition and sacrifice at 24 hours after injection, carotid arteries were harvested for histological analyses. Neointima formation and arterial remodeling in the carotid arteries of apoE−/− mice were induced by the placement of a constrictive collar. Significantly greater fluorescent signals were obtained from constrictive collar left common carotid arteries as compared to uninvolved aortic segments in constrictive collar mice. Binding to stenotic lesions was efficiently blocked in competition experiments. Immunostaining confirmed the presence of mural αVβ3 integrin expression in macrophages in the neointima. Signal intensity increased in a macrophage density-dependent fashion in the stenotic segments.
Mural αVβ3 integrin expression, as determined using RGD-Cy5.5 near-infrared optical imaging, was increased in carotid arteries with constrictive collars in experimental mice. This expression can estimate the macrophage-bound inflammatory activity of atherosclerotic lesions.
PMCID: PMC3278228  PMID: 22334786
near-infrared fluorescence (NIRF); macrophage; αVβ3 integrin; carotid atherogenesis
2.  Developing a Rabbit Model of Neointimal Stenosis and Atherosclerotic Fibrous Plaque Rupture 
A precise understanding of the mechanism of human neointimal stenoses and atherosclerotic fibrous plaques, which give rise to thromboses in vital arteries, requires a suitable animal model that would mimic the same characteristics well. We developed a rabbit model of neointimal stenosis and fibrotic plaque rupture in the carotid artery to visualize the lesion progress and to characterize the lesion types according to the American Heart Association classification.
Twenty-eight healthy male New Zealand white rabbits were randomly divided into two groups: The rabbits in group A (n = 14) consumed a standard chow diet, and those in group B (n = 14) were injured via perivascular cold injury using liquid nitrogen at the right common carotid artery before being fed a high cholesterol diet (1.5%) for eight weeks. Plasma lipid evaluation was performed before the sacrificing of the rabbits. At the end of every week, at least 1 rabbit from group B was sacrificed for an analysis of lesion histopathology and calculation of the area ratios of the intima to media.
The plasma lipid level in group B was significantly higher than that in group A (p value < 0.05). The histopathological results revealed atherosclerosis characteristics such as endothelial layer destruction, fatty streaks and lipid-containing macrophages (foam cells) formation in the intima and media layers, extracellular lipid collections, smooth muscle cells proliferation and migration, neointima formation, intima thickening and deformation, fibrotic plaque formation, and finally plaque rupture. Statistical analysis revealed a significant increase in the intima-to-media ratio at the end of the eighth week (6.41 ± 0.27, p value < 0.05).
We successfully developed a rabbit model of neointimal stenosis and atherosclerotic fibrous connective tissue plaque rupture, which is not only quickly and easily reproducible and inexpensive but also without mortality. The merits of our model render the evaluation of neointimal stenoses and fibrotic plaques and their treatment strategies more feasible in humans.
PMCID: PMC3466895  PMID: 23074617
Atherosclerosis; Carotid arteries; Plaque; atherosclerotic; Rabbits; Animals
3.  AnxA5 reduces plaque inflammation of advanced atherosclerotic lesions in apoE−/− mice 
Annexin A5 (AnxA5) exerts anti-inflammatory, anticoagulant and anti-apoptotic effects through binding cell surface expressed phosphatidylserine. The actions of AnxA5 on atherosclerosis are incompletely understood. We investigated effects of exogenous AnxA5 on plaque morphology and phenotype of advanced atherosclerotic lesions in apoE−/− mice. Advanced atherosclerotic lesions were induced in 12 weeks old Western type diet fed apoE−/− mice using a collar placement around the carotid artery. After 5 weeks mice were injected either with AnxA5 (n = 8) or vehicle for another 4 weeks. AnxA5 reduced plaque macrophage content both in the intima (59% reduction, P < 0.05) and media (73% reduction, P < 0.01) of advanced atherosclerotic lesions of the carotid artery. These findings corroborated with advanced lesions of the aortic arch, where a 67% reduction in plaque macrophage content was observed with AnxA5 compared to controls (P < 0.01). AnxA5 did not change lesion extension, plaque apoptosis, collagen content, smooth muscle cell content or acellular plaque composition after 4 weeks of treatment as determined by immunohistochemistry in advanced carotid lesions. In vitro, AnxA5 exhibited anti-inflammatory effects in macrophages and a flow chamber based assay demonstrated that AnxA5 significantly inhibited capture, rolling, adhesion as well as transmigration of peripheral blood mononuclear cells on a TNF-α-activated endothelial cell layer. In conclusion, short-term treatment with AnxA5 reduces plaque inflammation of advanced lesions in apoE−/− mice likely through interfering with recruitment and activation of monocytes to the inflamed lesion site. Suppressing chronic inflammation by targeting exposed phosphatidylserine may become a viable strategy to treat patients suffering from advanced atherosclerosis.
PMCID: PMC4244025  PMID: 25214012
atherosclerosis; annexin A5; plaque inflammation; phosphatidylserine; apoptosis
4.  Wall shear stress and local plaque development in stenosed carotid arteries of hypercholesterolemic minipigs 
Wall shear stress is thought to play a critical role in the local development of atherosclerotic plaque and to affect plaque vulnerability. However, current models and hypotheses do not fully explain the link between wall shear stress and local plaque development. We aimed to investigate the relation between wall shear stress and local plaque development in surgically induced common carotid artery stenoses of hypercholesterolemic minipigs.
Materials, Methods and Results:
We created a surgically induced stenosis of the common carotid artery in 10 minipigs using a perivascular collar. We documented the flow and shear stress changes by ultrasound, magnetic resonance imaging, and computational fluid dynamics. Carotid plaques were documented by microscopy. Atherosclerotic lesions, in both pre-stenotic and post-stenotic segments, were associated with thrombus in the stenosed segment. In patent carotid arteries, atherosclerotic lesions were found in the post-stenotic segments only. Atherosclerotic lesions developed where low and oscillatory shear stress were present simultaneously, whereas low or oscillatory shear stress alone did not lead to lesion formation.
Low and oscillatory shear stress in combination promoted plaque development, including plaques with necrotic cores that are the key and dangerous characteristic of vulnerable plaques.
PMCID: PMC3354474  PMID: 22629022
Atherosclerosis; carotid artery; magnetic resonance imaging; vulnerable plaque; wall shear stress
5.  Associations of occupation, job control and job demands with intima-media thickness: The Multi-Ethnic Study of Atherosclerosis (MESA) 
Occupation has been linked to cardiovascular disease (CVD) incidence and mortality, but few studies have investigated occupation in relation to early atherosclerotic disease. This study examined associations between various occupational characteristics and carotid artery intima-media thickness (IMT) in a multi-ethnic sample.
The Multi-Ethnic Study of Atherosclerosis (MESA) recruited 6814 adults aged 45e84 years and free of clinical CVD (response rate 60%, 51% female). Questionnaire data were used to determine occupational group (managerial/professional, sales/office, service, blue-collar), psychosocial job characteristics (ie, job demands, job control) and other sociodemographic information.
Common carotid artery (CCA)-IMT was greater for blue-collar jobs than for management/professional jobs (mean difference=0.012 mm, p=0.049) after adjustment for age, sex, race, place of birth (US or foreign born) and CVD risk factors. Compared to management/professional jobs, internal carotid artery (ICA)-IMT was greater for sales/office, service and blue-collar jobs (mean difference=0.071 mm, p<0.001; 0.057 mm, p=0.009; and 0.110 mm, p<0.001, respectively) after adjustment for age, sex, race and place of birth. The difference between blue-collar jobs and management/professional jobs remained significant after additional adjustment for CVD risk factors, income and education (mean difference=0.048 mm, p=0.045). Higher levels of control at work were associated with thinner CCA-IMT (mean difference=‒0.009 mm, p=0.016, adjusted for age, sex, race and place of birth) but not with ICA-IMT. Job demands had no significant association with IMT.
Blue-collar jobs and low levels of job control were associated with the development of subclinical atherosclerosis.
PMCID: PMC3073024  PMID: 20935285
6.  Antiretrovirals Induce Endothelial Dysfunction via an Oxidant-Dependent Pathway and Promote Neointimal Hyperplasia 
Toxicological Sciences  2010;117(2):524-536.
Human immunodeficiency virus-1 antiretroviral treatment is associated with an increased incidence of atherosclerosis. We hypothesized that antiretrovirals directly impair endothelial function after short-term exposure and that with chronic exposure, this dysfunction promotes a proliferative response, inducing neointimal hyperplasia, thus contributing to vascular lesion formation. To test this hypothesis, we treated mice with the nucleoside reverse transcriptase inhibitor azidothymidine (AZT), the protease inhibitor indinavir, or AZT + indinavir. Treatment with AZT or AZT + indinavir for 5 days impaired endothelium-dependent vessel relaxation. Though indinavir treatment alone did not alter vessel relaxation, it potentiated the impairment of endothelium-dependent relaxation induced by AZT. Coadministration of the antioxidant Mn (III) tetrakis (1-methyl-4-pyridyl) porphyrin attenuated antiretroviral-induced endothelial dysfunction, suggesting that oxidant production may have a causal role in the observed endothelial dysfunction. To test whether the antiretrovirals promote a proliferative response following endothelial dysfunction, we treated mice with antiretrovirals for 14 days and then induced a carotid endothelial injury. Two weeks later, we observed a dramatic increase in neointimal formation in all antiretroviral-treated animals, and the newly formed neointima was comprised mainly of proliferated smooth muscle cells. Although a functional endothelium surrounding the lesioned area and re-endothelialization across the area of injury is important in reducing proliferation in this model, we tested whether the neointimal hyperplasia was associated with endothelial dysfunction. Plasma levels of asymmetric dimethylarginine, a biomarker of endothelial dysfunction, increased after treatment with indinavir or AZT + indinavir. On the other hand, treatment with AZT or AZT + indinavir increased endothelial vascular cell adhesion molecule staining. We conclude that short-term treatment with antiretrovirals elicited a direct impairment in endothelial function, in part via an oxidant-dependent pathway. These antiretrovirals also exacerbated injury-induced vascular smooth muscle cell proliferation and neointimal hyperplasia, likely because of their inhibition of endothelial function.
PMCID: PMC2940409  PMID: 20621964
antiretrovirals; neointimal hyperplasia; endothelial dysfunction; oxidative stress; atherosclerosis
7.  Low-efficiency of percutaneous adenovirus-mediated arterial gene transfer in the atherosclerotic rabbit. 
Journal of Clinical Investigation  1995;95(6):2662-2671.
Recombinant adenoviruses are the most efficient vectors with which to perform arterial gene transfer. Previous in vivo studies of adenovirus-mediated arterial transfection, however, have been performed using normal or endothelium-denuded arteries. It is unclear whether these results can be extended to atherosclerotic arteries. Accordingly, this study was designed to (a) assess the feasibility of adenovirus-mediated gene transfer to atherosclerotic lesions, and (b) compare the transfection efficiency, anatomic distribution of transfected cells, and duration of transgene expression achieved in normal versus atherosclerotic arteries. A recombinant adenovirus including a nuclear-targeted beta-galactosidase gene was percutaneously delivered to the iliac artery of normal (n = 25) and atherosclerotic (n = 25) rabbits. Transgene expression, assessed by morphometric as well as chemiluminescent analyses, was documented in all normal and atherosclerotic arteries between 3 and 14 d after gene transfer, but was undetectable at later time points. Transfected cells were identified as smooth muscle cells located in the media of normal arteries, and in the neointima and the vasa-vasora of atherosclerotic arteries. Two percent of medial cells, but only 0.2% of medial and neointimal cells expressed the transgene in normal and atherosclerotic arteries, respectively (P = 0.0001). Similarly, nuclear beta-galactosidase activity was higher in normal than in atherosclerotic arteries (3.2 vs. 0.8 mU/mg protein, P = 0.02). These findings indicate that atherosclerosis reduces the transfection efficiency which can be achieved with adenoviral vectors, and thus constitutes a potential limitation to adenovirus-based, arterial gene therapy.
PMCID: PMC295949  PMID: 7769106
8.  Unique remodeling processes after vascular injury in intracranial arteries: analysis using a novel mouse model 
The effectiveness of angioplasty and stenting in intracranial atherosclerotic diseases is controversial due to high rates of delayed restenosis and hemorrhage compared with extracranial arteries. However, the mechanisms underlying these differences are still unclear, because their pathophysiology is yet to be examined. To address this issue, we established a novel vascular injury model in the intracranial internal carotid arteries (IICAs) in mice, and analyzed the remodeling process in comparison to that of the femoral arteries (FAs). In IICAs, neointimal hyperplasia was observed from day 14 and grew until day 56. Although smooth muscle cells (SMCs) emerged in the neointima from day 28, SMCs in the injured media were continuously lost with eventual extinction of the media. Re-endothelialization was started from day 7 and completed on day 28. Accumulation of macrophages was continued in the adventitia until day 56. Compared with FAs, the following points are unique in IICAs: (1) delayed continuous formation of neointima; (2) accumulation of macrophages in the media on day 14; (3) continuous loss of SMCs in the media followed by extinction of the media itself; and (4) continuously growing adventitia. These pathophysiologic differences might be associated with unfavorable outcomes in percutaneous transluminal angioplasty and stenting in intracranial arteries.
PMCID: PMC3734766  PMID: 23571280
atherosclerosis; endothelium; inflammation; smooth muscle; vascular biology
9.  Modulation of neointimal lesion formation by endogenous androgens is independent of vascular androgen receptor 
Cardiovascular Research  2014;103(2):281-290.
Low androgen levels have been linked with an increased risk of cardiovascular disease in men. Previous studies have suggested that androgens directly inhibit atherosclerotic lesion formation although the underlying mechanisms for this remain unclear. This study addressed the hypothesis that endogenous androgens inhibit arterial remodelling by a direct action on the androgen receptor (AR) in the vascular wall.
Methods and results
We studied a series of novel mouse lines with cell-specific deletion of the AR in either the endothelium or in smooth muscle cells or both cell types. Findings were compared with a model of global androgen deficiency in wild-type mice (castrated). We characterized the cardiovascular phenotype, vascular pharmacology and histology, and assessed neointimal lesion formation following vascular injury to the femoral artery. Cell-specific AR deletion did not alter body weight, circulating testosterone levels or seminal vesicle weight, but caused limited alterations in arterial contractility and blood pressure. Neointimal lesion formation was unaltered by selective deletion of AR from the vascular endothelium, smooth muscle, or both cell types. Castration in wild-type mice increased neointimal lesion volume (Sham vs. Castration: 2.4 × 107 ± 4.5 × 106 vs. 3.9 × 107 ± 4.9 × 106 µm3, P = 0.04, n = 9–10).
Vascular cell-specific AR deletion had no effect on neointimal lesion formation, while low systemic androgen levels adversely affect neointimal lesion size. These findings suggest that the cardio-protective effects of androgens are mediated either by AR outside the vasculature or by AR-independent mechanisms.
PMCID: PMC4094672  PMID: 24903497
Androgen receptor; Testosterone; Arterial injury; Neointima
10.  PSGL-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice 
Circulation  2008;117(25):3227-3237.
Ly-6Chi monocytes are key contributors to atherosclerosis in mice. However, how Ly-6Chi monocytes selectively accumulate in atherosclerotic lesions is largely unknown. Monocyte homing to sites of atherosclerosis is primarily initiated by rolling on P- and E-selectin expressed on endothelium. We hypothesize that P-selectin glycoprotein ligand-1 (PSGL-1), the common ligand of P- and E-selectin on leukocytes, contributes to the preferential homing of Ly-6Chi monocytes to atherosclerotic lesions.
Methods and Results
To test this hypothesis, we examined the expression and function of PSGL-1 on Ly-6Chi and Ly-6Clo monocytes from wild-type mice, ApoE-/- mice, and mice lacking both ApoE and PSGL-1 genes (ApoE-/-/PSGL-1-/-). We found that Ly-6Chi monocytes expressed a higher level of PSGL-1, and had enhanced binding to fluid-phase P- and E-selectin, compared to Ly-6Clo monocytes. Under in vitro flow conditions, more Ly-6Chi monocytes rolled on P-, E-, and L-selectin at slower velocities than Ly-6Clo cells. In an ex vivo perfused carotid artery model, Ly-6Chi monocytes interacted preferentially with atherosclerotic endothelium compared with Ly-6Clo monocytes in a PSGL-1-dependent manner. In vivo, ApoE-/- mice lacking PSGL-1 had impaired Ly-6Chi monocyte recruitment to atherosclerotic lesions. Moreover, ApoE-/-/PSGL-1-/- mice exhibited significantly reduced monocyte infiltration in wire injury-induced neointima and in atherosclerotic lesions. ApoE-/-/PSGL-1-/- mice also developed smaller neointima and atherosclerotic plaques.
These data indicate that PSGL-1 is a new marker for Ly-6Chi monocytes and a major determinant for Ly-6Chi cell recruitment to sites of atherosclerosis in mice.
PMCID: PMC2596619  PMID: 18519846
atherosclerosis; leukocytes; endothelium; cell adhesion molecules
11.  An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human Atherosclerotic Carotid Arteries in Circumferential and Axial Directions 
Journal of biomechanics  2009;42(15):2535-2539.
Atherosclerotic plaque may rupture without warning causing heart attack or stroke. Knowledge of the ultimate strength of human atherosclerotic tissues is essential for understanding the rupture mechanism and predicting cardiovascular events. Despite its great importance, experimental data on ultimate strength of human atherosclerotic carotid artery remains very sparse. This study determined the uniaxial tensile strength of human carotid artery sections containing type II and III lesions (AHA classifications). Axial and circumferential oriented adventitia, media and intact specimens (total=73) were prepared from 6 arteries. The ultimate strength in uniaxial tension was taken as the peak stress recorded when the specimen showed the first evidence of failure and the extensibility was taken as the stretch ratio at failure. The mean adventitia strength values calculated using the 1st Piola-Kirchoff stress were 1996±867kPa and 1802±703kPa in the axial and circumferential directions respectively, while the corresponding values for the media sections were 519±270kPa and 1230±533kPa. The intact specimens showed ultimate strengths similar to media in circumferential direction but were twice as strong as the media in the axial direction. Results also indicated that adventitia, media and intact specimens exhibited similar extensibility at failure, in both the axial and circumferential directions (stretch ratio 1.50 +/−0.22). These measurements of the material strength limits for human atherosclerotic carotid arteries could be useful in improving computational models that assess plaque vulnerability.
PMCID: PMC2783388  PMID: 19665126
atherosclerosis; carotid artery; plaque; ultimate strength; rupture
12.  Mobilization of Regulatory T Cells in Response to Carotid Injury Does Not Influence Subsequent Neointima Formation 
PLoS ONE  2012;7(12):e51556.
T cells have been attributed an important role in modulating repair responses following vascular injury. The aim of this study was to investigate the role of different T cell subsets in this context.
Methods and Results
A non-obstructive collar was introduced to inflict carotid artery injury in mice and subsequent activation of immune cells in draining lymph nodes and spleen were studied by flow cytometry. Carotid artery injury of wild type mice was associated with mobilization of both Th1 type CD4+IFNγ+ and regulatory CD4+CD25+FoxP3+ T cells in draining lymph nodes. Studies using FoxP3-green fluorescent protein (GFP) transgenic C57/Bl6 mice demonstrated scattered presence of regulatory T cells in the adventitial tissue of injured arteries as well as a massive emigration of regulatory T cells from the spleen in response to carotid injury. However, deletion of antigen presentation to CD4+ T cells (H20 mice), as well as deletion of regulatory T cells (through treatment with blocking anti-CD25 antibodies), did not affect neointima formation. Also deletion of antigen presentation to CD8+ T cells (Tap10 mice) was without effect on carotid collar-induced neointima formation.
The results demonstrate that carotid artery injury is associated with mobilization of regulatory T cells. Depletion of regulatory T cells does not, however, influence the subsequent repair processes leading to the formation of a neointima. The results also demonstrate that lack of CD8+ T cells does not influence neointima formation in presence of functional CD4+ T cells and B cells.
PMCID: PMC3519876  PMID: 23240042
13.  S-phase kinase-associated protein-2 (Skp2) promotes vascular smooth muscle cell proliferation and neointima formation in vivo 
Journal of Vascular Surgery  2009;50(5-4):1135-1142.
Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development of postangioplasty or in-stent restenosis, venous graft failure, and atherosclerosis. Our previous work has demonstrated S-phase kinase-associated protein-2 (Skp2), an F-box subunit of SCFSkp2 ubiquitin ligase, as an important mediator and common final pathway for growth factors, extracellular matrices, and cyclic-nucleotides to regulate VSMC proliferation in vitro. However, whether alteration of Skp2 function also regulates VSMC proliferation in vivo and neointimal thickening postvascular injury remains unclear. We investigated the effect of Skp2 on VSMC proliferation and neointimal formation in vivo.
Methods and Results
Firstly, we demonstrated that Skp2-null mice developed significantly smaller neointimal areas than wild-type mice after carotid ligation. Secondly, to further identify a local rather than a systemic effect of Skp2 alteration, we demonstrated that adenovirus-mediated expression of dominant-negative Skp2 in the balloon-injured rat carotid artery significantly increased medial p27Kip1 levels, inhibited VSMC proliferation, and the subsequent neointimal thickening. Lastly, to determine if Skp2 alone is sufficient to drive VSMC proliferation and lesion development in vivo, we demonstrated that adenovirus-delivery of wild-type Skp2 to the minimally-injured rat carotids is sufficient to downregulate p27Kip1 protein levels, enhanced medial VSMC proliferation, and the neointimal thickening.
This data provides, we believe for the first time, a more comprehensive understanding of Skp2 in the regulation of VSMC proliferation and neointimal formation and suggests that Skp2 is a promising target in the treatment of vasculoproliferative diseases.
Clinical Relevance
This manuscript describes our latest work investigating the role of the Skp2, an F-box protein component of the SCFskp2 ubiquitin-ligase, in promoting VSMC proliferation, and neointima formation in response to vascular injury in vivo. Our previous work has identified a major role for Skp2 as a key target for numerous positive and negative growth regulatory signals in vitro. These signals converge to regulate the expression of Skp2, which then controls cell-cycle progression by promoting degradation of the cyclin-dependent kinase inhibitor, p27Kip1. Until now, there has been no data in the literature on the role played by Skp2 in the regulation of VSMC proliferation and neointima formation in vivo. Our current manuscript describes, we believe for the first time, the important role played by Skp2 in these processes, using both mouse and rat arterial injury models. This is important because proliferation of VSMCs underlies the development of postangioplasty or post-stenting restenosis, venous graft failure, and transplant arteriosclerosis. Our work demonstrates for the first time that Skp2 is a major regulator of VSMC proliferation and neointimal thickening in vivo in response to vascular injury and highlights Skp2 as a potential target for future strategies designed to combat vasculoproliferative diseases.
PMCID: PMC2774860  PMID: 19878790
14.  Evidence supporting changes in Nogo-B levels as a marker of neointimal expansion but not adaptive arterial remodeling 
Vascular pharmacology  2006;46(4):293-301.
Both neointimal hyperplasia and inward remodeling contribute to restenosis and lumen loss. Nogo-B has been recently described as an inhibitor of vascular injury and neointimal hyperplasia. To determine whether Nogo-B expression may be a mediator of inward remodeling, we examine the localization of expression of Nogo-B in an in vivo model that examines both neointimal hyperplasia and inward remodeling. The rabbit carotid artery was subjected to balloon injury, outflow branch ligation to reduce flow, or both balloon injury and reduction in flow. In balloon injury-induced neointimal hyperplasia Nogo-B expression was reduced in the intima and media but stimulated in the adventitia. In low flow-induced inward remodeling medial Nogo-B expression was not reduced and adventitial Nogo-B expression was not stimulated. Low flow significantly augmented balloon injury-induced neointimal hyperplasia and was accompanied by reduced intimal and medial Nogo-B expression, and increased adventitial Nogo-B expression in both smooth muscle cells and macrophages. Low flow-induced inward remodeling is not associated with changes in medial Nogo-B expression and is distinct from injury-induced neointimal hyperplasia. Pharmacological strategies to inhibit neointimal hyperplasia and restenosis using normal flow models may only partially account for lumen loss and therefore may not accurately predict responses in patients with extensive outflow disease.
PMCID: PMC1839844  PMID: 17207665
neointimal hyperplasia; flow-induced remodeling; Nogo-B; rabbit
15.  The anti-inflammatory agent bindarit inhibits neointima formation in both rats and hyperlipidaemic mice 
Cardiovascular Research  2009;84(3):485-493.
Bindarit is an original compound with peculiar anti-inflammatory activity due to a selective inhibition of a subfamily of inflammatory chemokines, including the monocyte chemotactic proteins MCP-1/CCL2, MCP-3/CCL7, and MCP-2/CCL8. In this study, we investigated the effect of bindarit on neointima formation using two animal models of arterial injury: rat carotid artery balloon angioplasty and wire-induced carotid injury in apolipoprotein E-deficient (apoE−/−) mice.
Methods and results
Treatment of rats with bindarit (200 mg/kg/day) significantly reduced balloon injury-induced neointima formation by 39% at day 14 without affecting re-endothelialization and reduced the number of medial and neointimal proliferating cells at day 7 by 54 and 30%, respectively. These effects were associated with a significant reduction of MCP-1 levels both in sera and in injured carotid arteries of rats treated with bindarit. In addition, in vitro data showed that bindarit (10–300 µM) reduced rat vascular smooth muscle cell (VSMC) proliferation, migration, and invasion, processes contributing to the injury-induced neointima formation in vivo. Similar results were observed in hypercholesterolaemic apoE−/− mice in which bindarit administration resulted in a 42% reduction of the number of proliferating cells at day 7 after carotid injury and in a 47% inhibition of neointima formation at day 28. Analysis of the cellular composition in neointimal lesions of apoE−/− mice treated with bindarit showed that the relative content of macrophages and the number of VSMCs were reduced by 66 and 30%, respectively, compared with the control group.
This study demonstrates that bindarit is effective in reducing neointima formation in both non-hyperlipidaemic and hyperlipidaemic animal models of vascular injury by a direct effect on VSMC proliferation and migration and by reducing neointimal macrophage content. All of these data were associated with the inhibition of MCP-1 production.
PMCID: PMC2777949  PMID: 19592568
Bindarit; Neointima hyperplasia; Monocyte chemoattractant protein-1; Macrophages; Vascular smooth muscle cells
16.  Integrin αvβ3 as a Target in the Prevention of Neointimal Hyperplasia 
While there are major advances made in the treatment of recurrent stenosis (restenosis) often resulting from percutaneous coronary and peripheral interventions, the persistent complications of acute thrombosis secondary to intimal hyperplasia and restenosis remain a mainstay for repeat hospitalizations in this patient population. For many years, a ubiquitous cell surface receptor called the αvβ3 integrin was the target of many investigators in the prevention of intimal hyperplasia and restenosis as its interaction with the extracellular matrix was believed to coordinate the migration of smooth muscle cells from the media to the intima, the seminal event in the formation of intimal lesion. After the publication of uniformly positive studies demonstrating that αvβ3 integrin blockade led to a significant reduction in new intimal (neointimal) lesion formation in a variety of animal models of balloon angioplasty, early clinical trials supported the association of decreased target lesion revascularization and the use of antagonists to the SMC integrin αvβ3 and its related platelet integrin αIIbβ3. However, a series of clinical trials subsequently demonstrated that these antagonists did not necessarily prevent revascularizations by inhibiting intimal hyperplasia. Additional animal studies subsequently showed that indeed in the setting of pre-existing smooth muscle cells in the intimal lesion (i.e., atherosclerotic plaque, fatty streaks), inhibiting smooth muscle cell migration by way of β3 integrin blockade was an ineffective approach in the prevention of intimal hyperplasia and restenosis as demonstrated in the clinical trials. However, given the wealth of basic and clinical information on the αvβ3 integrin and the use of its antagonists in the vasculature, we discuss in this manuscript our new approach to an old solution by targeting a new clinical problem of early failure arteriovenous access for hemodialysis. Given the uniqueness of arteriovenous access in that there are essentially no significant atherosclerotic lesions in the artery and vein prior to the anastomosis, the seminal event of the coordinated migration of smooth muscle cells from the media to the neointima could by targeted once again with β3 integrin antagonists.
PMCID: PMC1939972  PMID: 17544022
17.  Lysophosphatidic Acid Induces Neointima Formation Through PPARγ Activation 
Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor–like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)γ antagonist GW9662 and mimicked by PPARγ agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine. In contrast, stearoyl-oxovaleryl phosphatidylcholine, a PPARα agonist and polypeptide epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor failed to elicit neointima. The structure-activity relationship for neointima induction by LPA analogs in vivo is identical to that of PPARγ activation in vitro and disparate from that of LPA G protein–coupled receptor activation. Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662. These results suggest that selected LPA analogs are important novel endogenous PPARγ ligands capable of mediating vascular remodeling and that activation of the nuclear transcription factor PPARγ is both necessary and sufficient for neointima formation by components of oxidized low density lipoprotein.
PMCID: PMC2212723  PMID: 15007093
neointima; LPA; PPAR; atherogenesis; lipid mediator
18.  B-mode ultrasound common carotid artery intima-media thickness and external diameter: cross-sectional and longitudinal associations with carotid atherosclerosis in a large population sample 
Arterial diameter and intima-media thickness (IMT) enlargement may each be related to the atherosclerotic process. Their separate or combined enlargement may indicate different arterial phenotypes with different atherosclerosis risk.
We investigated cross-sectional (baseline 1987–89: n = 7956) and prospective (median follow-up = 5.9 years: n = 4845) associations between baseline right common carotid artery (RCCA) external diameter and IMT with existing and incident carotid atherosclerotic lesions detected by B-mode ultrasound in any right or left carotid segments. Logistic regression models (unadjusted, adjusted for IMT, or adjusted for IMT and risk factors) were used to relate baseline diameter to existing carotid lesions while comparably adjusted parametric survival models assessed baseline diameter associations with carotid atherosclerosis progression (incident carotid lesions). Four baseline arterial phenotypes were categorized as having 1) neither IMT nor diameter enlarged (reference), 2) isolated IMT thickening, 3) isolated diameter enlargement, and 4) enlargement of both IMT and diameter. The association between these phenotypes and progression to definitive carotid atherosclerotic lesions was assessed over the follow-up period.
Each standard deviation increment of baseline RCCA diameter was associated with increasing carotid lesion prevalence (unadjusted odds ratio [OR] = 1.54, 95% confidence interval [CI] = 1.47–1.62) and with progression of carotid atherosclerosis (unadjusted hazards ratio (HR) = 1.37, 95% CI = 1.28–1.46); and the associations remained significant even after adjustment for IMT and risk factors (prevalence OR = 1.11, 95% CI = 1.04–1.18; progression HR = 1.11, 95% CI = 1.03–1.19). Controlling for gender, age and race, persons with both RCCA IMT and diameter in the upper 50th percentiles had the greatest risk of progressing to clearly defined carotid atherosclerotic lesions (all HR = 1.71, 95% CI = 1.47–2.0; men HR = 1.88, 95% CI = 1.48–2.39; women HR = 1.59, 95% CI = 1.31–1.95) while RCCA IMT or diameter alone in the upper 50th percentile produced significantly lower estimated risks.
RCCA IMT and external diameter provide partially overlapping information relating to carotid atherosclerotic lesions. More importantly, the RCCA phenotype of coexistent wall thickening with external diameter enlargement indicates higher atherosclerotic risk than isolated wall thickening or diameter enlargement.
PMCID: PMC2277382  PMID: 18321381
19.  Increased Neointimal Thickening in Dystrophin-Deficient mdx Mice 
PLoS ONE  2012;7(1):e29904.
The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), encodes a large cytoskeletal protein present in muscle fibers. While dystrophin in skeletal muscle has been extensively studied, the function of dystrophin in vascular smooth muscle is less clear. Here, we have analyzed the role of dystrophin in injury-induced arterial neointima formation.
Methodology/Principal Findings
We detected a down-regulation of dystrophin, dystroglycan and β-sarcoglycan mRNA expression when vascular smooth muscle cells de-differentiate in vitro. To further mimic development of intimal lesions, we performed a collar-induced injury of the carotid artery in the mdx mouse, a model for DMD. As compared with control mice, mdx mice develop larger lesions with increased numbers of proliferating cells. In vitro experiments demonstrate increased migration of vascular smooth muscle cells from mdx mice whereas the rate of proliferation was similar in cells isolated from wild-type and mdx mice.
These results show that dystrophin deficiency stimulates neointima formation and suggest that expression of dystrophin in vascular smooth muscle cells may protect the artery wall against injury-induced intimal thickening.
PMCID: PMC3251593  PMID: 22238670
20.  Mononuclear cell therapy reverts cuff-induced thrombosis in apolipoprotein E-deficient mice 
Stem/progenitor cell-based therapy has successfully been used as a novel therapeutic strategy for vascular diseases triggered by endothelial dysfunction. The aim of this study was to investigate the effects of mononuclear cell (MNC) therapy in situ on carotid cuff-induced occlusive thrombus in the apolipoprotein E knockout (apoE-/-) mouse.
Spleen-derived MNCs were isolated from green fluorescent protein (GFP)-transgenic mice for cell treatment. A cuff-induced thrombus model was produced by placing a nonconstrictive silastic collar around the left common carotid artery in 20-week-old female apoE-/- mice. After 10 days, the cuff was removed, and the animals received in situ MNCs (Cuff-MNC) or vehicle (Cuff-Vehicle) and were compared with sham-operated animals (Sham).
The histological analysis showed that the MNC treatment reverted occlusive thrombus formation compared to the vehicle and the vessel lumen area to that observed in the Sham group (MNC, 50 ± 4; Vehicle, 20 ± 4; Sham, 55 ± 2 x103 μm2; p < 0.01). The animals that underwent the carotid cuff placement developed compensatory vessel enlargement, which was reduced by the MNC therapy. In addition, the treatment was able to reduce superoxide anion production, which likely contributed to the reduced apoptosis that was observed. Lastly, the immunofluorescence analysis revealed the presence of endothelial progenitor cells (EPCs) in the carotid endothelia of the apoE-/- mice.
In situ short-term MNC therapy was able to revert cuff-induced occlusive thrombi in the carotid arteries of apoE-/- mice, possibly through the homing of EPCs, reduction of oxidative stress and decreased apoptosis.
PMCID: PMC3477089  PMID: 22849299
ApoE-/-; Mononuclear cells; Thrombus; Cuff model
21.  Increased Expression of Chitinase 3-Like 1 in Aorta of Patients with Atherosclerosis and Suppression of Atherosclerosis in Apolipoprotein E-Knockout Mice by Chitinase 3-Like 1 Gene Silencing 
Mediators of Inflammation  2014;2014:905463.
Introduction. The purpose of this study was to investigate the changes of chitinase 3-like 1 (CHI3L1) in the aorta of patients with coronary atherosclerosis and to determine whether inhibition of CHI3L1 by lentivirus-mediated RNA interference could stabilize atherosclerotic plaques in apolipoprotein E-knockout (ApoE−/−) mice. Methods. We collected discarded aortic specimens from patients undergoing coronary artery bypass graft surgery and renal arterial tissues from kidney donors. A lentivirus carrying small interfering RNA targeting the expression of CHI3L1 was constructed. Fifty ApoE−/− mice were divided into control group and CHI3L1 gene silenced group. A constrictive collar was placed around carotid artery to induce plaques formation. Then lentivirus was transfected into carotid plaques. Results. We found that CHI3L1 was overexpressed in aorta of patients with atherosclerosis and its expression was correlated with the atherosclerotic risk factors. After lentivirus transduction, mRNA and protein expression of CHI3L1 were attenuated in carotid plaques, leading to reduced plaque content of lipids and macrophages, and increased plaque content of collagen and smooth muscle cells. Moreover, CHI3L1 gene silencing downregulated the expression of local proinflammatory mediators. Conclusions. CHI3L1 is overexpressed in aorta from patients with atherosclerosis and the lentivirus-mediated CHI3L1 gene silencing could represent a new strategy to inhibit plaques progression.
PMCID: PMC3960764  PMID: 24729664
22.  Requirement for p38 mitogen-activated protein kinase activity in neointima formation after vascular injury 
Circulation  2008;118(6):658-666.
Angioplasty and stent delivery are performed to treat atherosclerotic vascular disease, but often cause deleterious neointimal lesion formation. Previously, growth factor receptor-bound protein 2 (Grb2), an intracellular linker protein, was shown to be essential for neointima formation and for p38 mitogen-activated protein kinase (MAPK) activation in vascular smooth muscle cells (SMCs). In this study, the role of vascular SMC p38α MAPK in neointimal development was examined.
Methods and Results
Compound transgenic mice were generated with doxycycline-inducible, SMC-specific expression of dominant negative p38α MAPK (DN-p38α). Doxycycline treatment resulted in the expression of DN-p38α mRNA and protein in transgenic arteries. Doxycycline-treated compound transgenic mice were resistant to neointima formation 21 days after carotid injury and also showed reduced arterial p38 MAPK activation. To explore the mechanism by which p38α MAPK promotes neointima formation, an in vitro SMC culture system was employed. Inhibition of p38α MAPK in cultured SMCs by treatment with SB202190 or with short interfering RNA (siRNA) blocked platelet-derived growth factor (PDGF)-induced SMC proliferation, DNA replication, phosphorylation of the retinoblastoma protein (Rb), and induction of mini-chromosome maintenance protein 6 (MCM6).
SMC p38α MAPK activation is required for neointima formation perhaps because of its ability to promote Rb phosphorylation and MCM6 expression.
PMCID: PMC2700025  PMID: 18645058
restenosis; smooth muscle cell; signal transduction
23.  C-Reactive Protein Mediated Vascular Injury Requires Complement 
We previously demonstrated that vascular injury-induced neointima formation is exaggerated in human C-reactive protein transgenic (CRPtg) compared to non-transgenic (NTG) mice. We now test the hypothesis that complement is required for this effect.
Methods and Results
CRPtg and NTG with a normal complement system versus their counterparts lacking expression of complement protein C3 (CRPtg/C3-/- and NTG/C3-/-) underwent carotid artery ligation. 28 days later, the injured vessels in CRPtg had thicker neointimas and more immunoreactive C3 in the surrounding adventitia compared to NTG. In CRPtg/C3-/- there was no increase in neointimal thickness compared to NTG or NTG/C3-/-. Decreasing human CRP blood levels (via administration of a selective antisense oligonucleotide) eliminated the depletion of serum C3 associated with vascular injury and reduced immunoreactive C3 in the resultant lesions. In injured vessels C3 co-localized with F4/80 (macrophage marker) and in-vitro, human CRP elicited increased expression of C3 by bone-marrow derived macrophages.
Human CRP exaggeration of neointima formation in injured mouse carotid arteries associates with decreased circulating C3 and increased tissue-localized C3. C3 elimination or pharmacological reduction of human CRP prevents CRP-driven exacerbation of the injury response. In the CRPtg model system, mouse C3 is essential for the effect of human CRP.
PMCID: PMC2897052  PMID: 20339115
24.  OxLDL-targeted iron oxide nanoparticles for in vivo MRI detection of perivascular carotid collar induced atherosclerotic lesions in ApoE-deficient mice 
Journal of Lipid Research  2012;53(5):829-838.
Atherosclerotic disease is a leading cause of morbidity and mortality in developed countries, and oxidized LDL (OxLDL) plays a key role in the formation, rupture, and subsequent thrombus formation in atherosclerotic plaques. In the current study, anti-mouse OxLDL polyclonal antibody and nonspecific IgG antibody were conjugated to polyethylene glycol-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, and a carotid perivascular collar model in apolipoprotein E-deficient mice was imaged at 7.0 Tesla MRI before contrast administration and at 8 h and 24 h after injection of 30 mg Fe/kg. The results showed MRI signal loss in the carotid atherosclerotic lesions after administration of targeted anti-OxLDL-USPIO at 8 h and 24 h, which is consistent with the presence of the nanoparticles in the lesions. Immunohistochemistry confirmed the colocalization of the OxLDL/macrophages and iron oxide nanoparticles. The nonspecific IgG-USPIO, unconjugated USPIO nanoparticles, and competitive inhibition groups had limited signal changes (p < 0.05). This report shows that anti-OxLDL-USPIO nanoparticles can be used to directly detect OxLDL and image atherosclerotic lesions within 24 h of nanoparticle administration and suggests a strategy for the therapeutic evaluation of atherosclerotic plaques in vivo.
PMCID: PMC3329382  PMID: 22393161
atherosclerosis; molecular imaging; magnetic resonance imaging; low density lipoprotein
25.  H19, a developmentally regulated gene, is reexpressed in rat vascular smooth muscle cells after injury. 
Journal of Clinical Investigation  1994;93(1):355-360.
Vascular smooth muscle cell migration, proliferation, and differentiation are central to blood vessel development. Since neointimal formation after vascular injury may require the reexpression of a smooth muscle developmental sequence, we examined the expression of H19, a developmentally regulated gene, in rat blood vessels. Expression of the H19 gene is associated with the differentiation process that takes place during development of many tissues. Consistent with this, H19 was highly expressed in the 1-d-old rat aorta but was undetectable in the adult. H19 transcripts were only minimally detected in uninjured carotid artery but were abundant at 7 and 14 d after injury and were localized by in situ hybridization, primarily to the neointima. H19 transcript were undetectable in proliferating neointimal cells in culture but became highly abundant in postconfluent, differentiated neointimal cells. H19 transcripts were only minimally expressed in adult medial smooth muscle cells grown under the identical conditions. Thus, H19 may play an important role in the normal development and differentiation of the blood vessel and in the phenotypic changes of the smooth muscle cells, which are associated with neointimal lesion formation. The vascular injury model may be a useful system to use in examining the function of H19.
PMCID: PMC293782  PMID: 8282806

Results 1-25 (706872)