Search tips
Search criteria

Results 1-25 (978377)

Clipboard (0)

Related Articles

1.  Immune Defenses against Batrachochytrium dendrobatidis, a Fungus Linked to Global Amphibian Declines, in the South African Clawed Frog, Xenopus laevis▿  
Infection and Immunity  2010;78(9):3981-3992.
Batrachochytrium dendrobatidis is a chytrid fungus that causes the lethal skin disease chytridiomycosis in amphibians. It is regarded as an emerging infectious disease affecting diverse amphibian populations in many parts of the world. Because there are few model amphibian species for immunological studies, little is known about immune defenses against B. dendrobatidis. We show here that the South African clawed frog, Xenopus laevis, is a suitable model for investigating immunity to this pathogen. After an experimental exposure, a mild infection developed over 20 to 30 days and declined by 45 days postexposure. Either purified antimicrobial peptides or mixtures of peptides in the skin mucus inhibited B. dendrobatidis growth in vitro. Skin peptide secretion was maximally induced by injection of norepinephrine, and this treatment resulted in sustained skin peptide depletion and increased susceptibility to infection. Sublethal X-irradiation of frogs decreased leukocyte numbers in the spleen and resulted in greater susceptibility to infection. Immunization against B. dendrobatidis induced elevated pathogen-specific IgM and IgY serum antibodies. Mucus secretions from X. laevis previously exposed to B. dendrobatidis contained significant amounts of IgM, IgY, and IgX antibodies that bind to B. dendrobatidis. These data strongly suggest that both innate and adaptive immune defenses are involved in the resistance of X. laevis to lethal B. dendrobatidis infections.
PMCID: PMC2937463  PMID: 20584973
2.  Defects in Host Immune Function in Tree Frogs with Chronic Chytridiomycosis 
PLoS ONE  2014;9(9):e107284.
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused mass mortality leading to population declines and extinctions in many frog species worldwide. The lack of host resistance may be due to fungal immunosuppressive effects that have been observed when Bd is incubated with cultured lymphocytes, but whether in vivo host immunosuppression occurs is unknown. We used a broad range of hematologic and protein electrophoresis biomarkers, along with various functional tests, to assess immune competence in common green (Litoria caerulea) and white-lipped (L. infrafrenata) tree frogs experimentally infected with Bd. Compared with uninfected frogs, Bd infection in L. caerulea caused a reduction in immunoglobulin and splenic lymphocyte responses to antigenic stimulation with sheep red blood cells, along with decreased white blood cell and serum protein concentrations, indicating possible impaired immune response capability of Bd-infected frogs. This is the first in vivo study suggesting that infection with Bd causes multiple defects in systemic host immune function, and this may contribute to disease development in susceptible host species. Although L. infrafrenata failed to maintain Bd infection after exposure, white blood cell and serum globulin concentrations were lower in recovered frogs compared with unexposed frogs, but antigen-specific serum and splenic antibody, and splenic cellular, responses were similar in both recovered and unexposed frogs. This may indicate potential systemic costs associated with infection clearance and/or redirection of host resources towards more effective mechanisms to overcome infection. No clear mechanism for resistance was identified in L. infrafrenata, suggesting that localized and/or innate immune defense mechanisms may be important factors involved in disease resistance in this species.
PMCID: PMC4161418  PMID: 25211333
3.  Genome-Wide Transcriptional Response of Silurana (Xenopus) tropicalis to Infection with the Deadly Chytrid Fungus 
PLoS ONE  2009;4(8):e6494.
Emerging infectious diseases are of great concern for both wildlife and humans. Several highly virulent fungal pathogens have recently been discovered in natural populations, highlighting the need for a better understanding of fungal-vertebrate host-pathogen interactions. Because most fungal pathogens are not fatal in the absence of other predisposing conditions, host-pathogen dynamics for deadly fungal pathogens are of particular interest. The chytrid fungus Batrachochytrium dendrobatidis (hereafter Bd) infects hundreds of species of frogs in the wild. It is found worldwide and is a significant contributor to the current global amphibian decline. However, the mechanism by which Bd causes death in amphibians, and the response of the host to Bd infection, remain largely unknown. Here we use whole-genome microarrays to monitor the transcriptional responses to Bd infection in the model frog species, Silurana (Xenopus) tropicalis, which is susceptible to chytridiomycosis. To elucidate the immune response to Bd and evaluate the physiological effects of chytridiomycosis, we measured gene expression changes in several tissues (liver, skin, spleen) following exposure to Bd. We detected a strong transcriptional response for genes involved in physiological processes that can help explain some clinical symptoms of chytridiomycosis at the organismal level. However, we detected surprisingly little evidence of an immune response to Bd exposure, suggesting that this susceptible species may not be mounting efficient innate and adaptive immune responses against Bd. The weak immune response may be partially explained by the thermal conditions of the experiment, which were optimal for Bd growth. However, many immune genes exhibited decreased expression in Bd-exposed frogs compared to control frogs, suggesting a more complex effect of Bd on the immune system than simple temperature-mediated immune suppression. This study generates important baseline data for ongoing efforts to understand differences in response to Bd between susceptible and resistant frog species and the effects of chytridiomycosis in natural populations.
PMCID: PMC2727658  PMID: 19701481
4.  First Evidence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Hong Kong Amphibian Trade 
PLoS ONE  2014;9(3):e90750.
The emerging infectious amphibian diseases caused by amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranaviruses are responsible for global amphibian population declines and extinctions. Although likely to have been spread by a variety of activities, transcontinental dispersal appears closely associated with the international trade in live amphibians. The territory of Hong Kong reports frequent, high volume trade in amphibians, and yet the presence of Bd and ranavirus have not previously been detected in either traded or free-ranging amphibians. In 2012, a prospective surveillance project was conducted to investigate the presence of these pathogens in commercial shipments of live amphibians exported from Hong Kong International Airport. Analysis of skin (Bd) and cloacal (ranavirus) swabs by quantitative PCR detected pathogen presence in 31/265 (11.7%) and in 105/185 (56.8%) of amphibians, respectively. In addition, the water in which animals were transported tested positive for Bd, demonstrating the risk of pathogen pollution by the disposal of untreated wastewater. It is uncertain whether Bd and ranavirus remain contained within Hong Kong’s trade sector, or if native amphibians have already been exposed. Rapid response efforts are now urgently needed to determine current pathogen distribution in Hong Kong, evaluate potential trade-associated exposure to free-ranging amphibians, and identify opportunities to prevent disease establishment.
PMCID: PMC3944218  PMID: 24599268
5.  Evaluation of Amphotericin B and Chloramphenicol as Alternative Drugs for Treatment of Chytridiomycosis and Their Impacts on Innate Skin Defenses 
Applied and Environmental Microbiology  2014;80(13):4034-4041.
Chytridiomycosis, an amphibian skin disease caused by the emerging fungal pathogen Batrachochytrium dendrobatidis, has been implicated in catastrophic global amphibian declines. The result is an alarming decrease in amphibian diversity that is a great concern for the scientific community. Clinical trials testing potential antifungal drugs are needed to identify alternative treatments for amphibians infected with this pathogen. In this study, we quantified the MICs of chloramphenicol (800 μg/ml), amphotericin B (0.8 to 1.6 μg/ml), and itraconazole (Sporanox) (20 ng/ml) against B. dendrobatidis. Both chloramphenicol and amphotericin B significantly reduced B. dendrobatidis infection in naturally infected southern leopard frogs (Rana [Lithobates] sphenocephala), although neither drug was capable of complete fungal clearance. Long-term exposure of R. sphenocephala to these drugs did not inhibit antimicrobial peptide (AMP) synthesis, indicating that neither drug is detrimental to this important innate skin defense. However, we observed that chloramphenicol, but not amphotericin B or itraconazole, inhibited the growth of multiple R. sphenocephala skin bacterial isolates in vitro at concentrations below the MIC against B. dendrobatidis. These results indicate that treatment with chloramphenicol might dramatically alter the protective natural skin microbiome when used as an antifungal agent. This study represents the first examination of the effects of alternative antifungal drug treatments on amphibian innate skin defenses, a crucial step to validating these treatments for practical applications.
PMCID: PMC4054225  PMID: 24771024
6.  Seasonal Pattern of Batrachochytrium dendrobatidis Infection and Mortality in Lithobates areolatus: Affirmation of Vredenburg's “10,000 Zoospore Rule” 
PLoS ONE  2011;6(3):e16708.
To fully comprehend chytridiomycosis, the amphibian disease caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), it is essential to understand how Bd affects amphibians throughout their remarkable range of life histories. Crawfish Frogs (Lithobates areolatus) are a typical North American pond-breeding species that forms explosive spring breeding aggregations in seasonal and semipermanent wetlands. But unlike most species, when not breeding Crawfish Frogs usually live singly—in nearly total isolation from conspecifics—and obligately in burrows dug by crayfish. Crayfish burrows penetrate the water table, and therefore offer Crawfish Frogs a second, permanent aquatic habitat when not breeding. Over the course of two years we sampled for the presence of Bd in Crawfish Frog adults. Sampling was conducted seasonally, as animals moved from post-winter emergence through breeding migrations, then back into upland burrow habitats. During our study, 53% of Crawfish Frog breeding adults tested positive for Bd in at least one sample; 27% entered breeding wetlands Bd positive; 46% exited wetlands Bd positive. Five emigrating Crawfish Frogs (12%) developed chytridiomycosis and died. In contrast, all 25 adult frogs sampled while occupying upland crayfish burrows during the summer tested Bd negative. One percent of postmetamorphic juveniles sampled were Bd positive. Zoospore equivalents/swab ranged from 0.8 to 24,436; five out of eight frogs with zoospore equivalents near or >10,000 are known to have died. In summary, Bd infection rates in Crawfish Frog populations ratchet up from near zero during the summer to over 25% following overwintering; rates then nearly double again during and just after breeding—when mortality occurs—before the infection wanes during the summer. Bd-negative postmetamorphic juveniles may not be exposed again to this pathogen until they take up residence in crayfish burrows, or until their first breeding, some years later.
PMCID: PMC3053364  PMID: 21423745
7.  Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease 
PLoS ONE  2014;9(1):e87101.
Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.
PMCID: PMC3906108  PMID: 24489847
8.  More than Skin Deep: Functional Genomic Basis for Resistance to Amphibian Chytridiomycosis 
Genome Biology and Evolution  2014;7(1):286-298.
The amphibian-killing chytrid fungus Batrachochytrium dendrobatidis (Bd) is one of the most generalist pathogens known, capable of infecting hundreds of species globally and causing widespread population declines and extinctions. However, some host species are seemingly unaffected by Bd, tolerating or clearing infections without clinical signs of disease. Variation in host immune responses is commonly evoked for these resistant or tolerant species, yet to date, we have no direct comparison of amphibian species responses to infection at the level of gene expression. In this study, we challenged four Central American frog species that vary in Bd susceptibility, with a sympatric virulent strain of the pathogen. We compared skin and spleen orthologous gene expression using differential expression tests and coexpression gene network analyses. We found that resistant species have reduced skin inflammatory responses and increased expression of genes involved in skin integrity. In contrast, only highly susceptible species exhibited suppression of splenic T-cell genes. We conclude that resistance to chytridiomycosis may be related to a species’ ability to escape the immunosuppressive activity of the fungus. Moreover, our results indicate that within-species differences in splenic proteolytic enzyme gene expression may contribute to intraspecific variation in survival. This first comparison of amphibian functional immunogenomic architecture in response to Bd provides insights into key genetic mechanisms underlying variation in disease outcomes among amphibian species.
PMCID: PMC4316636  PMID: 25539724
Batrachochytrium dendrobatidis; immunogenomics; comparative transcriptomics; immunosuppression; amphibian immunity
9.  Prior Infection Does Not Improve Survival against the Amphibian Disease Chytridiomycosis 
PLoS ONE  2013;8(2):e56747.
Many amphibians have declined globally due to introduction of the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Hundreds of species, many in well-protected habitats, remain as small populations at risk of extinction. Currently the only proven conservation strategy is to maintain species in captivity to be reintroduced at a later date. However, methods to abate the disease in the wild are urgently needed so that reintroduced and wild animals can survive in the presence of Bd. Vaccination has been widely suggested as a potential strategy to improve survival. We used captive-bred offspring of critically endangered booroolong frogs (Litoria booroolongensis) to test if vaccination in the form of prior infection improves survival following re exposure. We infected frogs with a local Bd isolate, cleared infection after 30 days (d) using itraconazole just prior to the onset of clinical signs, and then re-exposed animals to Bd at 110 d. We found prior exposure had no effect on survival or infection intensities, clearly showing that real infections do not stimulate a protective adaptive immune response in this species. This result supports recent studies suggesting Bd may evade or suppress host immune functions. Our results suggest vaccination is unlikely to be useful in mitigating chytridiomycosis. However, survival of some individuals from all experimental groups indicates existence of protective innate immunity. Understanding and promoting this innate resistance holds potential for enabling species recovery.
PMCID: PMC3579874  PMID: 23451076
10.  The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus ▿  
Applied and Environmental Microbiology  2009;75(21):6635-6638.
The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.
PMCID: PMC2772424  PMID: 19717627
11.  Germ Tube Mediated Invasion of Batrachochytrium dendrobatidis in Amphibian Skin Is Host Dependent 
PLoS ONE  2012;7(7):e41481.
Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines.
We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea.
Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus.
In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host epidermis.
PMCID: PMC3401113  PMID: 22911798
12.  Fungal Infection Intensity and Zoospore Output of Atelopus zeteki, a Potential Acute Chytrid Supershedder 
PLoS ONE  2014;9(3):e93356.
Amphibians vary in their response to infection by the amphibian-killing chytrid fungus, Batrachochytrium dendrobatidis (Bd). Highly susceptible species are the first to decline and/or disappear once Bd arrives at a site. These competent hosts likely facilitate Bd proliferation because of ineffective innate and/or acquired immune defenses. We show that Atelopus zeteki, a highly susceptible species that has undergone substantial population declines throughout its range, rapidly and exponentially increases skin Bd infection intensity, achieving intensities that are several orders of magnitude greater than most other species reported. We experimentally infected individuals that were never exposed to Bd (n = 5) or previously exposed to an attenuated Bd strain (JEL427-P39; n = 3). Within seven days post-inoculation, the average Bd infection intensity was 18,213 zoospores (SE: 9,010; range: 0 to 66,928). Both average Bd infection intensity and zoospore output (i.e., the number of zoospores released per minute by an infected individual) increased exponentially until time of death (t50 = 7.018, p<0.001, t46 = 3.164, p = 0.001, respectively). Mean Bd infection intensity and zoospore output at death were 4,334,422 zoospores (SE: 1,236,431) and 23.55 zoospores per minute (SE: 22.78), respectively, with as many as 9,584,158 zoospores on a single individual. The daily percent increases in Bd infection intensity and zoospore output were 35.4% (SE: 0.05) and 13.1% (SE: 0.04), respectively. We also found that Bd infection intensity and zoospore output were positively correlated (t43 = 3.926, p<0.001). All animals died between 22 and 33 days post-inoculation (mean: 28.88; SE: 1.58). Prior Bd infection had no effect on survival, Bd infection intensity, or zoospore output. We conclude that A. zeteki, a highly susceptible amphibian species, may be an acute supershedder. Our results can inform epidemiological models to estimate Bd outbreak probability, especially as they relate to reintroduction programs.
PMCID: PMC3968150  PMID: 24675899
13.  Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens 
The northern leopard frog (Rana pipiens or Lithobates pipiens) is historically found in most of the provinces of Canada and the northern and southwest states of the United States. In the last 50 years, populations have suffered significant losses, especially in the western regions of the species range. Using a peptidomics approach, we show that the pattern of expressed antimicrobial skin peptides of frogs from three geographically separated populations are distinct, and we report the presence of four peptides (brevinin-1Pg, brevinin-1Pl, ranatuerin-2Pb, and ranatuerin-2Pc) that have not previously been found in skin secretions. The differences in expressed peptides reflect differences in the distribution of alleles for the newly described Brevinin1.1 locus in the three populations. When enriched peptide mixtures were tested for their ability to inhibit growth of the pathogenic amphibian chytrid (Batrachochytrium dendrobatidis), peptides from Minnesota or Vermont frogs were more effective that peptides from Michigan frogs. Four of the purified peptides were tested for their ability to inhibit growth of two bacterial pathogens (Aeromonas hydrophila and Staphylococcus epidermidis) and B. dendrobatidis. Three of the four were effective inhibitors of B. dendrobatidis and S. epidermidis, but none inhibited A. hydrophila. We interpret these differences in expression and activity of antimicrobial peptides as evidence to suggest that each population may have been selected to express a suite of peptides that reflects current and past encounters with skin microbes.
PMCID: PMC2927990  PMID: 19622371
Antimicrobial peptides; Aeromonas hydrophila; Batrachochytrium dendrobatidis; Brevinin-1; Lithobates; Mass spectrometry; Peptidomics; Rana palustris; Rana pipiens; Ranatuerin-2; Staphylococcus epidermidis; Temporin
14.  Host Stress Response Is Important for the Pathogenesis of the Deadly Amphibian Disease, Chytridiomycosis, in Litoria caerulea 
PLoS ONE  2013;8(4):e62146.
Chytridiomycosis, a disease caused by Batrachochytrium dendrobatidis, has contributed to worldwide amphibian population declines; however, the pathogenesis of this disease is still somewhat unclear. Previous studies suggest that infection disrupts cutaneous sodium transport, which leads to hyponatremia and cardiac failure. However, infection is also correlated with unexplained effects on appetite, skin shedding, and white blood cell profiles. Glucocorticoid hormones may be the biochemical connection between these disparate effects, because they regulate ion homeostasis and can also influence appetite, skin shedding, and white blood cells. During a laboratory outbreak of B. dendrobatidis in Australian Green Tree Frogs, Litoria caerulea, we compared frogs showing clinical signs of chytridiomycosis to infected frogs showing no signs of disease and determined that diseased frogs had elevated baseline corticosterone, decreased plasma sodium and potassium, and altered WBC profiles. Diseased frogs also showed evidence of poorer body condition and elevated metabolic rates compared with frogs showing no signs of disease. Prior to displaying signs of disease, we also observed changes in appetite, body mass, and the presence of shed skin associated with infected but not yet diseased frogs. Collectively, these results suggest that elevated baseline corticosterone is associated with chytridiomycosis and correlates with some of the deleterious effects observed during disease development.
PMCID: PMC3632538  PMID: 23630628
15.  Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs 
Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host–pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found.
PMCID: PMC2842693  PMID: 19864287
thermoregulation; behavioural fever; Batrachochytrium dendrobatidis; chytridiomycosis; amphibian declines; host–pathogen interactions
16.  The Amphibian (Xenopus laevis) Type I Interferon Response to Frog Virus 3: New Insight into Ranavirus Pathogenicity 
Journal of Virology  2014;88(10):5766-5777.
The increasing prevalence of ranavirus (RV; Iridoviridae) infections of wild and commercially maintained aquatic species is raising considerable concerns. While Xenopus laevis is the leading model for studies of immunity to RV, amphibian antiviral interferon (IFN) responses remain largely uncharacterized. Accordingly, an X. laevis type I interferon was identified, the expression of the gene for this IFN was examined in RV (frog virus 3 [FV3])-infected tadpoles and adult frogs by quantitative PCR, and a recombinant form of this molecule (recombinant X. laevis interferon [rXlIFN]) was produced for the purpose of functional studies. This rXlIFN protected the kidney-derived A6 cell line and tadpoles against FV3 infection, decreasing the infectious viral burdens in both cases. Adult frogs are naturally resistant to FV3 and clear the infection within a few weeks, whereas tadpoles typically succumb to this virus. Hence, as predicted, virus-infected adult X. laevis frogs exhibited significantly more robust FV3-elicited IFN gene expression than tadpoles; nevertheless, they also tolerated substantially greater viral burdens following infection. Although tadpole stimulation with rXlIFN prior to FV3 challenge markedly impaired viral replication and viral burdens, it only transiently extended tadpole survival and did not prevent the eventual mortality of these animals. Furthermore, histological analysis revealed that despite rXlIFN treatment, infected tadpoles had considerable organ damage, including disrupted tissue architecture and extensive necrosis and apoptosis. Conjointly, these findings indicate a critical protective role for the amphibian type I IFN response during ranaviral infections and suggest that these viruses are more pathogenic to tadpole hosts than was previously believed, causing extensive and fatal damage to multiple organs, even at very low titers.
IMPORTANCE Ranavirus infections are threatening wild and commercially maintained aquatic species. The amphibian Xenopus laevis is extensively utilized as an infection model for studying ranavirus-host immune interactions. However, little is known about amphibian antiviral immunity and, specifically, type I interferons (IFNs), which are central to the antiviral defenses of other vertebrates. Accordingly, we identified and characterized an X. laevis type I interferon in the context of infection with the ranavirus frog virus 3 (FV3). FV3-infected adult frogs displayed more robust IFN gene expression than tadpoles, possibly explaining why they typically clear FV3 infections, whereas tadpoles succumb to them. Pretreatment with a recombinant X. laevis IFN (rXlIFN) substantially reduced viral replication and infectious viral burdens in a frog kidney cell line and in tadpoles. Despite reducing FV3 loads and extending the mean survival time, rXlIFN treatments failed to prevent tadpole tissue damage and mortality. Thus, FV3 is more pathogenic than was previously believed, even at very low titers.
PMCID: PMC4019129  PMID: 24623410
17.  Cutaneous Bacteria of the Redback Salamander Prevent Morbidity Associated with a Lethal Disease 
PLoS ONE  2010;5(6):e10957.
Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is an infectious disease that causes population declines of many amphibians. Cutaneous bacteria isolated from redback salamanders, Plethodon cinereus, and mountain yellow-legged frogs, Rana muscosa, inhibit the growth of Bd in vitro. In this study, the bacterial community present on the skin of P. cinereus individuals was investigated to determine if it provides protection to salamanders from the lethal and sub-lethal effects of chytridiomycosis. When the cutaneous bacterial community was reduced prior to Bd exposure, salamanders experienced a significantly greater decrease in body mass, which is a symptom of the disease, when compared to infected individuals with a normal bacterial community. In addition, a greater proportion of infected individuals with a reduced bacterial community experienced limb-lifting, a behavior seen only in infected individuals. Overall, these results demonstrate that the cutaneous bacterial community of P. cinereus provides protection to the salamander from Bd and that alteration of this community can change disease resistance. Therefore, symbiotic microbes associated with this species appear to be an important component of its innate skin defenses.
PMCID: PMC2881031  PMID: 20532032
18.  Riding the Wave: Reconciling the Roles of Disease and Climate Change in Amphibian Declines 
PLoS Biology  2008;6(3):e72.
We review the evidence for the role of climate change in triggering disease outbreaks of chytridiomycosis, an emerging infectious disease of amphibians. Both climatic anomalies and disease-related extirpations are recent phenomena, and effects of both are especially noticeable at high elevations in tropical areas, making it difficult to determine whether they are operating separately or synergistically. We compiled reports of amphibian declines from Lower Central America and Andean South America to create maps and statistical models to test our hypothesis of spatiotemporal spread of the pathogen Batrachochytrium dendrobatidis (Bd), and to update the elevational patterns of decline in frogs belonging to the genus Atelopus. We evaluated claims of climate change influencing the spread of Bd by including error into estimates of the relationship between air temperature and last year observed. Available data support the hypothesis of multiple introductions of this invasive pathogen into South America and subsequent spread along the primary Andean cordilleras. Additional analyses found no evidence to support the hypothesis that climate change has been driving outbreaks of amphibian chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Future studies should increase retrospective surveys of museum specimens from throughout the Andes and should study the landscape genetics of Bd to map fine-scale patterns of geographic spread to identify transmission routes and processes.
Author Summary
Once introduced, diseases may spread quickly through new areas, infecting naive host populations, such as has been documented in Ebola virus in African primates or rabies in North American mammals. What drives the spread of the pathogenic fungus Batrachochytrium dendrobatidis (Bd), which causes chytridiomycosis, is of particular concern because it has contributed to the global decline of amphibians. We modeled the spatiotemporal pattern of the loss of upland amphibian populations in Central and South America as a proxy for the arrival of Bd and found that amphibian declines in Central and South America are best explained by Bd spreading through upland populations; we identified four separate introductions of Bd into South America. Climate change seriously threatens biodiversity and influences endemic host–pathogen systems, but we found no evidence that climate change has been driving outbreaks of chytridiomycosis, as has been posited in the climate-linked epidemic hypothesis. Our findings further strengthen the spreading-pathogen hypothesis proposed for Central America, and identify new evidence for similar patterns of decline in South American amphibians. Our results will inform management and research efforts related to Bd and other invasive species, as effective conservation actions depend on correctly identifying essential threats to biodiversity, and possible synergistic interactions.
The spread of chytrid fungus, rather than climate change, best explains amphibian declines in Central and South America, based on an analysis of observed epidemics with predictable spatiotemporal patterns in four of five mountain ranges.
PMCID: PMC2270328  PMID: 18366257
19.  Endemic Infection of the Amphibian Chytrid Fungus in a Frog Community Post-Decline 
PLoS Biology  2004;2(11):e351.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of numerous frog species worldwide. In Queensland, Australia, it has been proposed as the cause of the decline or apparent extinction of at least 14 high-elevation rainforest frog species. One of these, Taudactylus eungellensis, disappeared from rainforest streams in Eungella National Park in 1985–1986, but a few remnant populations were subsequently discovered. Here, we report the analysis of B. dendrobatidis infections in toe tips of T. eungellensis and sympatric species collected in a mark-recapture study between 1994 and 1998. This longitudinal study of the fungus in individually marked frogs sheds new light on the effect of this threatening infectious process in field, as distinct from laboratory, conditions. We found a seasonal peak of infection in the cooler months, with no evidence of interannual variation. The overall prevalence of infection was 18% in T. eungellensis and 28% in Litoria wilcoxii/jungguy, a sympatric frog that appeared not to decline in 1985–1986. No infection was found in any of the other sympatric species. Most importantly, we found no consistent evidence of lower survival in T. eungellensis that were infected at the time of first capture, compared with uninfected individuals. These results refute the hypothesis that remnant populations of T. eungellensis recovered after a B. dendrobatidis epidemic because the pathogen had disappeared. They show that populations of T. eungellensis now persist with stable, endemic infections of B. dendrobatidis.
Recapture experiments provide evidence that some amphibian species can now persist with infections of the pathogenic chytrid fungus and suggests, for example, that frogs and fungus might be coevolving
PMCID: PMC521176  PMID: 15502873
20.  Interacting Symbionts and Immunity in the Amphibian Skin Mucosome Predict Disease Risk and Probiotic Effectiveness 
PLoS ONE  2014;9(4):e96375.
Pathogenesis is strongly dependent on microbial context, but development of probiotic therapies has neglected the impact of ecological interactions. Dynamics among microbial communities, host immune responses, and environmental conditions may alter the effect of probiotics in human and veterinary medicine, agriculture and aquaculture, and the proposed treatment of emerging wildlife and zoonotic diseases such as those occurring on amphibians or vectored by mosquitoes. Here we use a holistic measure of amphibian mucosal defenses to test the effects of probiotic treatments and to assess disease risk under different ecological contexts. We developed a non-invasive assay for antifungal function of the skin mucosal ecosystem (mucosome function) integrating host immune factors and the microbial community as an alternative to pathogen exposure experiments. From approximately 8500 amphibians sampled across Europe, we compared field infection prevalence with mucosome function against the emerging fungal pathogen Batrachochytrium dendrobatidis. Four species were tested with laboratory exposure experiments, and a highly susceptible species, Alytes obstetricans, was treated with a variety of temperature and microbial conditions to test the effects of probiotic therapies and environmental conditions on mucosome function. We found that antifungal function of the amphibian skin mucosome predicts the prevalence of infection with the fungal pathogen in natural populations, and is linked to survival in laboratory exposure experiments. When altered by probiotic therapy, the mucosome increased antifungal capacity, while previous exposure to the pathogen was suppressive. In culture, antifungal properties of probiotics depended strongly on immunological and environmental context including temperature, competition, and pathogen presence. Functional changes in microbiota with shifts in temperature provide an alternative mechanistic explanation for patterns of disease susceptibility related to climate beyond direct impact on host or pathogen. This nonlethal management tool can be used to optimize and quickly assess the relative benefits of probiotic therapies under different climatic, microbial, or host conditions.
PMCID: PMC4005770  PMID: 24789229
21.  Ranavirus infections associated with skin lesions in lizards 
Veterinary Research  2013;44(1):84.
Ranaviral disease in amphibians has been studied intensely during the last decade, as associated mass-mortality events are considered to be a global threat to wild animal populations. Several studies have also included other susceptible ectothermic vertebrates (fish and reptiles), but only very few cases of ranavirus infections in lizards have been previously detected. In this study, we focused on clinically suspicious lizards and tested these animals for the presence of ranaviruses. Virological screening of samples from lizards with increased mortality and skin lesions over a course of four years led to the detection of ranaviral infections in seven different groups. Affected species were: brown anoles (Anolis sagrei), Asian glass lizards (Dopasia gracilis), green anoles (Anolis carolinensis), green iguanas (Iguana iguana), and a central bearded dragon (Pogona vitticeps). Purulent to ulcerative-necrotizing dermatitis and hyperkeratosis were diagnosed in pathological examinations. All animals tested positive for the presence of ranavirus by PCR and a part of the major capsid protein (MCP) gene of each virus was sequenced. Three different ranaviruses were isolated in cell culture. The analyzed portions of the MCP gene from each of the five different viruses detected were distinct from one another and were 98.4-100% identical to the corresponding portion of the frog virus 3 (FV3) genome. This is the first description of ranavirus infections in these five lizard species. The similarity in the pathological lesions observed in these different cases indicates that ranaviral infection may be an important differential diagnosis for skin lesions in lizards.
PMCID: PMC3850657  PMID: 24073785
22.  Host Identity Matters in the Amphibian-Batrachochytrium dendrobatidis System: Fine-Scale Patterns of Variation in Responses to a Multi-Host Pathogen 
PLoS ONE  2013;8(1):e54490.
Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed “dose-dependent” responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits.
PMCID: PMC3554766  PMID: 23382904
23.  Unlikely Remedy: Fungicide Clears Infection from Pathogenic Fungus in Larval Southern Leopard Frogs (Lithobates sphenocephalus) 
PLoS ONE  2012;7(8):e43573.
Amphibians are often exposed to a wide variety of perturbations. Two of these, pesticides and pathogens, are linked to declines in both amphibian health and population viability. Many studies have examined the separate effects of such perturbations; however, few have examined the effects of simultaneous exposure of both to amphibians. In this study, we exposed larval southern leopard frog tadpoles (Lithobates sphenocephalus) to the chytrid fungus Batrachochytrium dendrobatidis and the fungicide thiophanate-methyl (TM) at 0.6 mg/L under laboratory conditions. The experiment was continued until all larvae completed metamorphosis or died. Overall, TM facilitated increases in tadpole mass and length. Additionally, individuals exposed to both TM and Bd were heavier and larger, compared to all other treatments. TM also cleared Bd in infected larvae. We conclude that TM affects larval anurans to facilitate growth and development while clearing Bd infection. Our findings highlight the need for more research into multiple perturbations, specifically pesticides and disease, to further promote amphibian heath.
PMCID: PMC3422277  PMID: 22912890
24.  Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine 
BMC Genetics  2013;14:26.
Hybridogenesis (hemiclonal inheritance) is a kind of clonal reproduction in which hybrids between parental species are reproduced by crossing with one of the parental species. European water frogs (Pelophylax esculentus complex) represent an appropriate model for studying interspecies hybridization, processes of hemiclonal inheritance and polyploidization. P. esculentus complex consists of two parental species, P. ridibundus (the lake frog) and P. lessonae (the pool frog), and their hybridogenetic hybrid – P. esculentus (the edible frog). Parental and hybrid frogs can reproduce syntopically and form hemiclonal population systems. For studying mechanisms underlying the maintenance of water frog population systems it is required to characterize the karyotypes transmitted in gametes of parental and different hybrid animals of both sexes.
In order to obtain an instrument for characterization of oocyte karyotypes in hybrid female frogs, we constructed cytological maps of lampbrush chromosomes from oocytes of both parental species originating in Eastern Ukraine. We further identified certain molecular components of chromosomal marker structures and mapped coilin-rich spheres and granules, chromosome associated nucleoli and special loops accumulating splicing factors. We recorded the dissimilarities between P. ridibundus and P. lessonae lampbrush chromosomes in the length of orthologous chromosomes, number and location of marker structures and interstitial (TTAGGG)n-repeat sites as well as activity of nucleolus organizer. Satellite repeat RrS1 was mapped in centromere regions of lampbrush chromosomes of the both species. Additionally, we discovered transcripts of RrS1 repeat in oocytes of P. ridibundus and P. lessonae. Moreover, G-rich transcripts of telomere repeat were revealed in association with terminal regions of P. ridibundus and P. lessonae lampbrush chromosomes.
The constructed cytological maps of lampbrush chromosomes of P. ridibundus and P. lessonae provide basis to define the type of genome transmitted within individual oocytes of P. esculentus females with different ploidy and from various population systems.
PMCID: PMC3648425  PMID: 23590698
Centromere; Chromosome; European water frog; Hybridization; Karyotype; Non-coding RNA; Nuclear body; Oocyte; Telomere
25.  Nothing a Hot Bath Won't Cure: Infection Rates of Amphibian Chytrid Fungus Correlate Negatively with Water Temperature under Natural Field Settings 
PLoS ONE  2011;6(12):e28444.
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10–50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75–100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.
There must be quite a few things a hot bath won't cure, but I don't know many of them - Sylvia Plath, “The Bell Jar” (1963).
PMCID: PMC3244395  PMID: 22205950

Results 1-25 (978377)