Search tips
Search criteria

Results 1-25 (650404)

Clipboard (0)

Related Articles

1.  Polymorphisms of the ITGAM Gene Confer Higher Risk of Discoid Cutaneous Than of Systemic Lupus Erythematosus 
PLoS ONE  2010;5(12):e14212.
Lupus erythematosus (LE) is a heterogeneous disease ranging from mainly skin-restricted manifestations (discoid LE [DLE] and subacute cutaneous LE) to a progressive multisystem disease (systemic LE [SLE]). Genetic association studies have recently identified several strong susceptibility genes for SLE, including integrin alpha M (ITGAM), also known as CD11b, whereas the genetic background of DLE is less clear.
Principal Findings
To specifically investigate whether ITGAM is a susceptibility gene not only for SLE, but also for cutaneous DLE, we genotyped 177 patients with DLE, 85 patients with sporadic SLE, 190 index cases from SLE families and 395 population control individuals from Finland for nine genetic markers at the ITGAM locus. SLE patients were further subdivided by the presence or absence of discoid rash and renal involvement. In addition, 235 Finnish and Swedish patients positive for Ro/SSA-autoantibodies were included in a subphenotype analysis. Analysis of the ITGAM coding variant rs1143679 showed highly significant association to DLE in patients without signs of systemic disease (P-value  = 4.73×10−11, OR  = 3.20, 95% CI  = 2.23–4.57). Significant association was also detected to SLE patients (P-value  = 8.29×10−6, OR  = 2.14, 95% CI  = 1.52–3.00), and even stronger association was found when stratifying SLE patients by presence of discoid rash (P-value  = 3.59×10−8, OR  = 3.76, 95% CI  = 2.29–6.18).
We propose ITGAM as a novel susceptibility gene for cutaneous DLE. The risk effect is independent of systemic involvement and has an even stronger genetic influence on the risk of DLE than of SLE.
PMCID: PMC2996302  PMID: 21151989
2.  Genetically Determined Amerindian Ancestry Correlates with Increased Frequency of Risk Alleles for Systemic Lupus Erythematosus 
Arthritis and rheumatism  2010;62(12):3722-3729.
To analyze if genetically determined Amerindian ancestry predicts the increased presence of risk alleles of known susceptibility genes for systemic lupus erythematosus.
Single nucleotide polymorphisms within 16 confirmed genetic susceptibility loci for SLE were genotyped in a set of 804 Mestizo lupus patients and 667 Mestizo normal healthy controls. In addition, 347 admixture informative markers were genotyped. Individual ancestry proportions were determined using STRUCTURE. Association analysis was performed using PLINK, and correlation of the presence of risk alleles with ancestry was done using linear regression.
A meta-analysis of the genetic association of the 16 SNPs across populations showed that TNFSF4, STAT4, PDCD1, ITGAM, and IRF5 were associated with lupus in a Hispanic-Mestizo cohort enriched for European and Amerindian ancestry. In addition, two SNPs within the MHC region, previously associated in a genome-wide association study in Europeans, were also associated in Mestizos. Using linear regression we predict an average increase of 2.34 risk alleles when comparing a lupus patient with 100% Amerindian ancestry to an SLE patient with 0% American Indian Ancestry (p<0.0001). SLE patients with 43% more Amerindian ancestry are predicted to carry one additional risk allele.
Amerindian ancestry increased the number of risk alleles for lupus.
PMCID: PMC3078084  PMID: 20848568
3.  Evaluation of imputation-based association in and around the integrin-α-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE) 
Human Molecular Genetics  2009;18(6):1171-1180.
We recently identified a novel non-synonymous variant, rs1143679, at exon 3 of the ITGAM gene associated with systemic lupus erythematosus (SLE) susceptibility in European-Americans (EAs) and African-Americans. Using genome-wide association approach, three other studies also independently reported an association between SLE susceptibility and ITGAM or ITGAM-ITGAX region. The primary objectives of this study are to assess whether single or multiple causal variants from the same gene or any nearby gene(s) are involved in SLE susceptibility and to confirm a robust ITGAM association across nine independent data sets (n = 8211). First, we confirmed our previously reported association of rs1143679 (risk allele ‘A’) with SLE in EAs (P = 1.0 × 10−8) and Hispanic-Americans (P = 2.9 × 10−5). Secondly, using a comprehensive imputation-based association test, we found that ITGAM is one of the major non-human leukocyte antigen susceptibility genes for SLE, and the strongest association for EA is the same coding variant rs1143679 (log10Bayes factor=20, P = 6.17 × 10−24). Thirdly, we determined the robustness of rs1143679 association with SLE across three additional case–control samples, including UK (P = 6.2 × 10−8), Colombian (P = 3.6 × 10−7), Mexican (P = 0.002), as well as two independent sets of trios from UK (PTDT = 1.4 × 10−5) and Mexico (PTDT = 0.015). A meta-analysis combing all independent data sets greatly reinforces the association (Pmeta = 7.1 × 10−50, odds ratio = 1.83, 95% confidence interval = 1.69–1.98, n = 10 046). However, this ITGAM association was not observed in the Korean or Japanese samples, in which rs1143679 is monomorphic for the non-risk allele (G). Taken together along with our earlier findings, these results demonstrate that the coding variant, rs1143679, best explains the ITGAM-SLE association, especially in European- and African-derived populations, but not in Asian populations.
PMCID: PMC2649018  PMID: 19129174
4.  Evaluation of genetic association between an ITGAM non-synonymous SNP (rs1143679) and multiple autoimmune diseases 
Autoimmunity Reviews  2011;11(4):276-280.
Many autoimmune diseases (ADs) share similar underlying pathology and have a tendency to cluster within families, supporting the involvement of shared susceptibility genes. To date, most of the genetic variants associated with systemic lupus erythematosus (SLE) susceptibility also show association with others ADs. ITGAM and its associated ‘predisposing’ variant (rs1143679, Arg77His), predicted to alter the tertiary structures of the ligand-binding domain of ITGAM, may play a key role for SLE pathogenesis. The aim of this study is to examine whether the ITGAM variant is also associated with other ADs. We evaluated case-control association between rs1143679 and ADs (N=18,457) including primary Sjögren’s syndrome, systemic sclerosis, multiple sclerosis, rheumatoid arthritis, juvenile idiopathic arthritis, celiac disease, and type-1 diabetes. We also performed meta-analyses using our data in addition to available published data. Although the risk allele ‘A’ is relatively more frequent among cases for each disease, it was not significantly associated with any other ADs tested in this study. However, the meta-analysis for systemic sclerosis was associated with rs1143679 (pmeta=0.008). In summary, this study explored the role of ITGAM in general autoimmunity in seven non-lupus ADs, and only found association for systemic sclerosis when our results were combined with published results. Thus ITGAM may not be a general autoimmunity gene but this variant may be specifically associated with SLE and systemic sclerosis.
PMCID: PMC3224188  PMID: 21840425
ITGAM; autoimmune diseases; genetic susceptibility
5.  ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai 
Human Molecular Genetics  2009;18(11):2063-2070.
ITGAM was recently found to be associated with systemic lupus erythematosus (SLE) in populations of not only European ancestry, but also in Hispanic- and African-Americans, Mexicans and Colombians. The risk alleles in the gene, however, were found to be monomorphic in two Asian populations examined: Japanese and Korean. In this study, using a collection of 910 SLE patients and 2360 controls from Chinese living in Hong Kong, analyzed by both genome-wide association and direct sequencing, we confirmed the association of the same risk alleles in ITGAM with the disease. These findings were further replicated in the Thai population with 278 patients and 383 ethnicity- and geography-matched controls. Subphenotype stratification analyses showed significantly more involvement of the gene in patients with renal nephritis and neurological disorders. Although our results support a pivotal role by rs1143679 (R77H) in disease association, our data also suggests an additional contribution from rs1143683, another non-synonymous polymorphism in this gene (A858V). Therefore, despite the low-allele frequencies of the risk alleles of the gene in our two Asian populations, ITGAM was confirmed to be a risk factor related to disease susceptibility and probably severe manifestations of SLE.
PMCID: PMC2678927  PMID: 19286673
6.  Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus 
Annals of the rheumatic diseases  2011;70(10):1752-1757.
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus.
Materials and methods
4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria.
Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing.
Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
PMCID: PMC3232181  PMID: 21719445
7.  Association Study of ITGAM, ITGAX, and CD58 Autoimmune Risk Loci in Systemic Sclerosis: Results from 2 Large European Caucasian Cohorts 
The Journal of Rheumatology  2011;38(6):1033-1038.
Accumulating evidence shows that shared autoimmunity is critical for the pathogenesis of many autoimmune diseases. Systemic sclerosis (SSc) belongs to the connective tissue disorders, and recent data have highlighted strong associations with autoimmunity genes shared with other autoimmune diseases. To determine whether novel risk loci associated with systemic lupus erythematosus or multiple sclerosis may confer susceptibility to SSc, we tested single-nucleotide polymorphisms (SNP) from ITGAM, ITGAX, and CD58 for associations.
SNP harboring associations with autoimmune diseases, ITGAM rs9937837, ITGAX rs11574637, and CD58 rs12044852, were genotyped in 2 independent cohorts of European Caucasian ancestry: 1031 SSc patients and 1014 controls from France and 1038 SSc patients and 691 controls from the USA, providing a combined study population of 3774 individuals. ITGAM rs1143679 was additionally genotyped in the French cohort.
The 4 polymorphisms were in Hardy-Weinberg equilibrium in the 2 control populations, and allelic frequencies were similar to those expected in European Caucasian populations. Allelic and genotypic frequencies for these 3 SNP were found to be statistically similar in SSc patients and controls. Subphenotype analyses for subgroups having diffuse cutaneous subtype disease, specific autoantibodies, or fibrosing alveolitis did not reveal any difference between SSc patients and controls.
These results obtained through 2 large cohorts of SSc patients of European Caucasian ancestry do not support the implication of ITGAM, ITGAX, and CD58 genes in the genetic susceptibility of SSc, although they were recently identified as autoimmune disease risk genes.
PMCID: PMC3404507  PMID: 21362770
8.  Association Between a Functional Variant Downstream of TNFAIP3 and Systemic Lupus Erythematosus 
Nature genetics  2011;43(3):253-258.
Systemic Lupus Erythematosus (SLE, OMIM 152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic resequencing in ethnically diverse populations we fully characterized the TNFAIP3 risk haplotype and isolated a novel TT>A polymorphic dinucleotide associated with SLE in subjects of European (P = 1.58 × 10−8; odds ratio (OR) = 1.70) and Korean (P = 8.33 × 10−10; OR = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex comprised of NF-κB subunits with reduced avidity. Furthermore, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.
PMCID: PMC3103780  PMID: 21336280
9.  The rs1143679 (R77H) lupus associated variant of ITGAM (CD11b) impairs complement receptor 3 mediated functions in human monocytes 
Annals of the Rheumatic Diseases  2012;71(12):2028-2034.
The rs1143679 variant of ITGAM, encoding the R77H variant of CD11b (part of complement receptor 3; CR3), is among the strongest genetic susceptibility effects in human systemic lupus erythematosus (SLE). The authors aimed to demonstrate R77H function in ex-vivo human cells.
Monocytes/monocyte-derived macrophages from healthy volunteers homozygous for either wild type (WT) or 77H CD11b were studied. The genotype-specific expression of CD11b, and CD11b activation using conformation-specific antibodies were measured. Genotype-specific differences in iC3b-mediated phagocytosis, adhesion to a range of ligands and the secretion of cytokines following CR3 ligation were studied. The functionality of R77H was confirmed by replicating findings in COS7 cells expressing variant-specific CD11b.
No genotype-specific difference in CD11b expression or in the expression of CD11b activation epitopes was observed. A 31% reduction was observed in the phagocytosis of iC3b opsonised sheep erythrocytes (sRBCiC3b) by 77H cells (p=0.003) and reduced adhesion to a range of ligands: notably a 24% reduction in adhesion to iC3b (p=0.014). In transfected COS7 cells, a 42% reduction was observed in phagocytosis by CD11b (77H)-expressing cells (p=0.004). A significant inhibition was seen in the release of Toll-like receptor 7/8-induced pro-inflammatory cytokines from WT monocytes when CR3 was pre-engaged using sRBCiC3b, but no inhibition in 77H monocytes resulting in a significant difference between genotypes (interleukin (IL)-1β p=0.030; IL-6 p=0.029; tumour necrosis factor alpha p=0.027).
The R77H variant impairs a broad range of CR3 effector functions in human monocytes. This study discusses how perturbation of this pathway may predispose to SLE.
PMCID: PMC3488763  PMID: 22586164
10.  Variable association of reactive intermediate genes with systemic lupus erythematosus (SLE) in populations with different African ancestry 
The Journal of rheumatology  2013;40(6):842-849.
Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate related genes biological candidates for disease susceptibility. This study analyzed variation in reactive intermediate genes for association with SLE in two populations with African ancestry.
A total of 244 SNPs from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls) and. Single-marker, haplotype, and two-locus interaction tests were computed for these populations.
The glutathione reductase gene GSR (rs2253409, P=0.0014, OR [95% CI]=1.26 [1.09–1.44]) was the most significant single-SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575, P=0.0065, OR [95%CI]=2.10 [1.23–3.59]) and nitric oxide synthase gene NOS1 (rs561712, P=0.0072, OR [95%CI]=0.62 [0.44–0.88]) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409, P=0.00072, OR [95%CI]=1.26 [1.10–1.44]). Haplotype and two-locus interaction analyses also uncovered different loci in each population.
These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.
PMCID: PMC3735344  PMID: 23637325
systemic lupus erythematosus; African Americans; genetic association studies; oxygen compounds; single nucleotide polymorphism
11.  Admixture in Hispanic-Americans: Its impact on ITGAM association and implications for admixture mapping in SLE 
Genes and immunity  2009;10(5):539-545.
Systemic Lupus Erythematosus (SLE) disproportionately affects minorities, such as Hispanic-Americans. Prevalence of SLE is 3–5 times higher in Hispanic Americans (HA) than European derived populations, and have more active disease at the time of diagnosis, with more serious organ system involvement. HA is an admixed population, it is possible that there is an effect of admixture on the relative risk of disease. This admixture can create substantial increase of linkage disequilibrium (LD) in both magnitude and range, which can provide a unique opportunity for admixture mapping. Main objectives of this study are to (a) estimate hidden population structure in HA individuals; (b) estimate individual ancestry proportions and its impact on SLE risk; (c) assess impact of admixture on ITGAM association, a recently identified SLE susceptibility gene; and (d) estimate power of admixture mapping in HA. Our dataset contained 1,125 individuals, of whom 884 (657 SLE cases and 227 controls) were self classified as HA. Using 107 unlinked ancestry informative markers (AIMs) we estimated hidden population structure and individual ancestry in HA. Out of 5,671 possible pair-wise LD, 54% were statistically significant, indicating recent population admixture. The best fitted model for HA was a four population model with average ancestry of European (48%), American-Indian (40%), African (8%) and a fourth population (4%) with unknown ancestry. We also identified significant higher risk associated with American-Indian ancestry (OR=4.84, P=0.0001, 95%CI=2.14—10.95) on overall SLE. We showed that ITGAM is associated as a risk factor for SLE (OR= 2.06, P=8.74×10−5, 95%CI=1.44–2.97). This association is not affected by population substructure or admixture. We have demonstrated that HA have great potential and are an 3 appropriate population for admixture mapping. As expected, the case-only design is more powerful than case-control design, for any given admixture proportion or ancestry risk ratio.
PMCID: PMC2714406  PMID: 19387459
SLE; Association; Hispanics; Admixture mapping; Hispanic-American; Population structure
12.  Recent insights into the genetic basis of systemic lupus erythematosus 
Genes and immunity  2009;10(5):373-379.
Genetic variation was first shown to be part of the cause of systemic lupus erythematosus (SLE or lupus) in the 1970s with associations in the human leukocyte antigen (HLA) region. Almost four decades later, and with the help of increasingly powerful genetic approaches, more than 25 genes are now known to contribute to the mechanisms that predispose individuals to lupus. Over half of these loci have been discovered in the past two years, underscoring the extraordinary success of recent genome-wide association approaches in SLE. The now well established genetic risk factors include alleles in the MHC region (multiple genes), IRF5, ITGAM, STAT4, BLK, BANK1, PDCD1, PTPN22, TNFSF4, TNFAIP3, SPP1, ATG5, XKR6, PXK, some of the Fcγ receptors, and deficiencies in several complement components, including C1q, C4, and C2. As reviewed here, many of these genes fall into key pathways that are consistent with previous studies implicating immune complexes, host immune signal transduction, and interferon pathways in the pathogenesis of SLE. Other genetic loci have no known function or apparent immunological role and have the potential to reveal novel disease mechanisms. Certainly, as our understanding of the genetic etiology of SLE continues to mature, important new opportunities will emerge for developing more targeted and effective diagnostic and clinical management tools for this complex autoimmune disease.
PMCID: PMC3144759  PMID: 19440199
13.  Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production 
PLoS Genetics  2013;9(2):e1003222.
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
Author Summary
African-Americans (AA) are at increased risk of systemic lupus erythematosus (SLE), but the genetic basis of this risk increase is largely unknown. We used admixture mapping to localize disease-causing genetic variants that differ in frequency across populations. This approach is advantageous for localizing susceptibility genes in recently admixed populations like AA. Our genome-wide admixture scan identified seven admixture signals, and we followed the best signal at 2q22–24 with fine-mapping, imputation-based association analysis and experimental validation. We identified two independent coding variants and a non-coding variant within the IFIH1 gene associated with SLE. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
PMCID: PMC3575474  PMID: 23441136
14.  Pathways: Strategies for Susceptibility Genes in SLE 
Autoimmunity reviews  2010;9(7):473-476.
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder marked by an inappropriate immune response to nuclear antigens. Recent whole genome association and more focused studies have revealed numerous genes implicated in this disease process, including ITGAM, Fc gamma receptors, complement components, C-reactive protein, and others. One common feature of these molecules is their involvement in the immune opsonins pathway and phagocytic clearing of nuclear antigens and apoptotic debris which provide excessive exposure of lupus-related antigens to immune cells. Analysis of gene-gene interactions in the opsonin pathway and its relationship to SLE may provide a systems-based approach to identify additional candidate genes associated with disease able to account for a larger part of lupus susceptibility.
PMCID: PMC2868085  PMID: 20144911
SLE; opsonin; pathway; genetic association
15.  Osteopontin Alleles Are Associated with Clinical Characteristics in Systemic Lupus Erythematosus 
Variants of the osteopontin (OPN) gene have been associated with systemic lupus erythematosus (SLE) susceptibility and cytokine profiles in SLE patients. It is not known whether these alleles are associated with specific clinical phenotypes in SLE. We studied 252 well-characterized SLE patients from a multiethnic cohort, genotyping the rs11730582, rs28357094, rs6532040, and rs9138 SNPs in the OPN gene. Ancestry informative markers were used to control for genetic ancestry. The SLE-risk allele rs9138C in the 3′ UTR region was associated with photosensitivity in lupus patients across all ancestral backgrounds (meta-analysis OR = 3.2, 95% CI = 1.6–6.5, P = 1.0 × 10−3). Additionally, the promoter variant rs11730582C demonstrated suggestive evidence for association with two hematologic traits: thrombocytopenia (OR = 2.1, P = 0.023) and hemolytic anemia (OR = 2.6, P = 0.036). These clinical associations with SNPs in the promoter and 3′ UTR regions align with previously reported SLE-susceptibility SNPs in OPN and suggest potential roles for these variants in antibody-mediated cytopenias and skin inflammation in SLE.
PMCID: PMC3205903  PMID: 22131818
16.  Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus 
Nature genetics  2007;40(1):83-89.
Systemic lupus erythematosus (SLE) is a multisystem complex autoimmune disease of uncertain etiology (OMIM 152700). Over recent years a genetic component to SLE susceptibility has been established1–3. Recent successes with association studies in SLE have identified genes including IRF5 (refs. 4,5) and FCGR3B6. Two tumor necrosis factor (TNF) superfamily members located within intervals showing genetic linkage with SLE are TNFSF4 (also known as OX40L; 1q25), which is expressed on activated antigen-presenting cells (APCs)7,8 and vascular endothelial cells9, and also its unique receptor, TNFRSF4 (also known as OX40; 1p36), which is primarily expressed on activated CD4+ T cells10. TNFSF4 produces a potent co-stimulatory signal for activated CD4+ T cells after engagement of TNFRSF4 (ref. 11). Using both a family-based and a case-control study design, we show that the upstream region of TNFSF4 contains a single risk haplotype for SLE, which is correlated with increased expression of both cell-surface TNFSF4 and the TNFSF4 transcript. We hypothesize that increased expression of TNFSF4 predisposes to SLE either by quantitatively augmenting T cell–APC interaction or by influencing the functional consequences of T cell activation via TNFRSF4.
PMCID: PMC3705866  PMID: 18059267
17.  Association of intercellular adhesion molecule 1 (ICAM1) with diabetes and diabetic nephropathy 
Diabetes and diabetic nephropathy are complex diseases affected by genetic and environmental factors. Identification of the susceptibility genes and investigation of their roles may provide useful information for better understanding of the pathogenesis and for developing novel therapeutic approaches. Intercellular adhesion molecule 1 (ICAM1) is a cell surface glycoprotein expressed on endothelial cells and leukocytes in the immune system. The ICAM1 gene is located on chromosome 19p13 within the linkage region of diabetes. In the recent years, accumulating reports have implicated that genetic polymorphisms in the ICAM1 gene are associated with diabetes and diabetic nephropathy. Serum ICAM1 levels in diabetes patients and the icam1 gene expression in kidney tissues of diabetic animals are increased compared to the controls. Therefore, ICAM1 may play a role in the development of diabetes and diabetic nephropathy. In this review, we present genomic structure, variation, and regulation of the ICAM1 gene, summarized genetic and biological studies of this gene in diabetes and diabetic nephropathy and discussed about the potential application using ICAM1 as a biomarker and target for prediction and treatment of diabetes and diabetic nephropathy.
PMCID: PMC3551242  PMID: 23346076
intercellular adhesion molecule 1; diabetic nephropathy; end-stage renal disease; type 1 diabetes mellitus; type 2 diabetes mellitus
18.  IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2011;71(3):463-468.
High serum interferon α (IFNα) activity is a heritable risk factor for systemic lupus erythematosus (SLE). Auto-antibodies found in SLE form immune complexes which can stimulate IFNα production by activating endosomal Toll-like receptors and interferon regulatory factors (IRFs), including IRF5. Genetic variation in IRF5 is associated with SLE susceptibility; however, it is unclear how IRF5 functional genetic elements contribute to human disease.
1034 patients with SLE and 989 controls of European ancestry, 555 patients with SLE and 679 controls of African–American ancestry, and 73 patients with SLE of South African ancestry were genotyped at IRF5 polymorphisms, which define major haplotypes. Serum IFNα activity was measured using a functional assay.
In European ancestry subjects, anti-double-stranded DNA (dsDNA) and anti-Ro antibodies were each associated with different haplotypes characterised by a different combination of functional genetic elements (OR > 2.56, p >003C; 1.9×10−14 for both). These IRF5 haplotype-auto-antibody associations strongly predicted higher serum IFNα in patients with SLE and explained > 70% of the genetic risk of SLE due to IRF5. In African–American patients with SLE a similar relationship between serology and IFNα was observed, although the previously described European ancestry-risk haplotype was present at admixture proportions in African–American subjects and absent in African patients with SLE.
The authors define a novel risk haplotype of IRF5 that is associated with anti-dsDNA antibodies and show that risk of SLE due to IRF5 genotype is largely dependent upon particular auto-antibodies. This suggests that auto-antibodies are directly pathogenic in human SLE, resulting in increased IFNα in cooperation with particular combinations of IRF5 functional genetic elements.
SLE is a systemic autoimmune disorder affecting multiple organ systems including the skin, musculoskeletal, renal and haematopoietic systems. Humoral autoimmunity is a hallmark of SLE, and patients frequently have circulating auto-antibodies directed against dsDNA, as well as RNA binding proteins (RBP). Anti-RBP autoantibodies include antibodies which recognize Ro, La, Smith (anti-Sm), and ribonucleoprotein (anti-nRNP), collectively referred to as anti-retinol-binding protein). Anti-retinol-binding protein and anti-dsDNA auto-antibodies are rare in the healthy population.1 These auto-antibodies can be present in sera for years preceding the onset of clinical SLE illness2 and are likely pathogenic in SLE.34
PMCID: PMC3307526  PMID: 22088620
19.  CpG-DNA derived from sera in systemic lupus erythematosus enhances ICAM-1 expression on endothelial cells 
Annals of the Rheumatic Diseases  2001;60(7):685-689.
OBJECTIVE—To examine the effect of transfection of oligodeoxynucleotides (ODNs) containing a CpG motif (CpG-ODN), of which the sequence was derived from circulating DNA in the sera of patients with systemic lupus erythematosus (SLE), on the expression of intercellular adhesion molecule-1 (ICAM-1) and synthesis of mRNA for proinflammatory cytokines and ICAM-1 in human umbilical vein endothelial cells (EC).
METHODS—A CpG-ODN or a control analogue, GpC-ODN, was transfected into EC. ICAM-1 expression was examined by flow cytometry, and expression of mRNA in EC encoding interleukin 1 (IL1), IL6, IL8, tumour necrosis factor α (TNFα), interferon γ (IFNγ), and ICAM-1 was examined by semiquantitative reverse transcriptase-polymerase chain reaction.
RESULTS—The CpG-ODN augmented the expression of ICAM-1 on EC determined by flow cytometry and increased mRNA levels of IL6, IL8, TNFα, IFNγ, and ICAM-1, but the GpC-ODN did not.
CONCLUSION—Synthesised DNA, with a sequence corresponding to that of the fragment containing the CpG motif, in sera of patients with SLE was found to enhance ICAM-1 expression on EC, suggesting the participation of circulating DNA fragments in the pathogenesis of vasculitis in SLE.

PMCID: PMC1753728  PMID: 11406523
20.  High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions 
PLoS Genetics  2009;5(10):e1000696.
A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
Author Summary
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by autoantibody production and involvement of multiple organ systems. Although the cause of SLE remains unknown, several lines of evidence underscore the importance of genetic factors. As is true for most autoimmune diseases, a substantial genetic contribution to disease risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6. This region of the genome contains a large number of genes that participate in the immune response. However, the full contribution of this genomic region to SLE risk has not yet been defined. In the current study we characterize a large number of SLE patients and family members for approximately 2,000 MHC region variants to identify the specific genes that influence disease risk. Our results, for the first time, implicate four different MHC regions in SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation.
PMCID: PMC2758598  PMID: 19851445
21.  European Genetic Ancestry is Associated with a Decreased Risk of Lupus Nephritis 
Arthritis and rheumatism  2012;64(10):10.1002/art.34567.
African Americans, East Asians, and Hispanics with systemic lupus erythematosus (SLE) are more likely to develop renal disease than SLE patients of European descent. We investigated whether European genetic ancestry protects against the development of lupus nephritis and explored genetic and socioeconomic factors that might explain this effect.
This was a cross-sectional study of 1906 adults with SLE. Participants were genotyped for 126 single nucleotide polymorphisms (SNPs) informative for ancestry. A subset of participants was also genotyped for 80 SNPs in 14 candidate genes for renal disease in SLE. We used logistic regression to test the association between European ancestry and renal disease. Analyses adjusted for continental ancestries, socioeconomic status, and candidate genes.
Participants (n=1906) had on average 62.4% European, 15.8% African, 11.5% East Asian, 6.5% Amerindian, and 3.8% South Asian ancestry. Among participants, 34% (n=656) had renal disease. A 10% increase in European ancestry was associated with a 15% reduction in the odds of having renal disease after adjustment for disease duration and sex (OR 0.85, 95% CI 0.82-0.87, p=1.9 × 10−30). Adjusting for other genetic ancestries, measures of socioeconomic status, or SNPs in genes most associated with renal disease (IRF5 (rs4728142), BLK (rs2736340), STAT4 (rs3024912), ITGAM (rs9937837) and HLA-DRB1*0301 and DRB1*1501, p<0.05) did not substantively alter this relationship.
European ancestry is protective against the development of renal disease in SLE, an effect independent of other genetic ancestries, common risk alleles, and socioeconomic status.
PMCID: PMC3865923  PMID: 23023776
22.  Genetic susceptibility to systemic lupus erythematosus in the genomic era 
Nature reviews. Rheumatology  2010;6(12):683-692.
Our understanding of the genetic basis of systemic lupus erythematosus (SLE) has been rapidly advanced using large-scale, case–control, candidate gene studies as well as genome-wide association studies during the past 3 years. These techniques have identified more than 30 robust genetic associations with SLE including genetic variants of HLA and Fcγ receptor genes, IRF5, STAT4, PTPN22, TNFAIP3, BLK, BANK1, TNFSF4 and ITGAM. Most SLE-associated gene products participate in key pathogenic pathways, including Toll-like receptor and type I interferon signaling pathways, immune regulation pathways and those that control the clearance of immune complexes. Disease-associated loci that have not yet been demonstrated to have important functions in the immune system might provide new clues to the underlying molecular mechanisms that contribute to the pathogenesis or progression of SLE. Of note, genetic risk factors that are shared between SLE and other immune-related diseases highlight common pathways in the pathophysiology of these diseases, and might provide innovative molecular targets for therapeutic interventions.
PMCID: PMC3135416  PMID: 21060334
23.  Study of the common genetic background for rheumatoid arthritis and systemic lupus erythematosus 
Annals of the Rheumatic Diseases  2010;70(3):463-468.
Evidence is beginning to emerge that there may be susceptibility loci for rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) that are common to both diseases.
To investigate single nucleotide polymorphisms that have been reported to be associated with SLE in a UK cohort of patients with RA and controls.
3962 patients with RA and 9275 controls were included in the study. Eleven SNPs mapping to confirmed SLE loci were investigated. These mapped to the TNFSF4, BANK1, TNIP1, PTTG1, UHRF1BP1, ATG5, JAZF1, BLK, KIAA1542, ITGAM and UBE2L3 loci. Genotype frequencies were compared between patients with RA and controls using the trend test.
The SNPs mapping to the BLK and UBE2L3 loci showed significant evidence for association with RA. Two other SNPs, mapping to ATG5 and KIAA1542, showed nominal evidence for association with RA (p=0.02 and p=0.02, respectively) but these were not significant after applying a Bonferroni correction. Additionally, a significant global enrichment in carriage of SLE alleles in patients with RA compared with controls (p=9.1×10−7) was found. Meta-analysis of this and previous studies confirmed the association of the BLK and UBE2L3 gene with RA at genome-wide significance levels (p<5×10−8). Together, the authors estimate that the SLE and RA overlapping loci, excluding HLA-DRB1 alleles, identified so far explain ∼5.8% of the genetic susceptibility to RA as a whole.
The findings confirm the association of the BLK and UBE2L3 loci with RA, thus adding to the list of loci showing overlap between RA and SLE.
PMCID: PMC3033530  PMID: 21068098
24.  Genetic Factors Predisposing to Systemic Lupus Erythematosus and Lupus Nephritis 
Seminars in nephrology  2010;30(2):164-176.
Systemic Lupus Erythematosus (SLE) is a chronic inflammatory disease characterized by a loss of tolerance to self-antigens and the production of high titers of serum autoantibodies. Lupus nephritis can affect up to 74% of SLE patients, particularly those of Hispanic and African ancestries, and remains a major cause of morbidity and mortality. A genetic etiology in SLE is now well substantiated. Thanks to extensive collaborations, extraordinary progress has been made in the last few years and the number of confirmed genes predisposing to SLE has catapulted to approximately 30. Studies of other forms of genetic variation, such as CNVs and epigenetic alterations, are emerging and promise to revolutionize our knowledge about disease mechanisms. However, to date little progress has been made on the identification of genetic factors specific to lupus nephritis. On the near horizon, two large-scale efforts, a collaborative meta-analysis of lupus nephritis based on all genome-wide association data in Caucasians and parallel scans in four other ethnicities, are poised to make fundamental discoveries in the genetics of lupus nephritis. Collectively, these findings will demonstrate that a broad array of pathways underlines the genetic heterogeneity of SLE and lupus nephritis, and provide potential avenues for the development of novel therapies.
PMCID: PMC2847514  PMID: 20347645
Systemic Lupus Erythematosus (SLE); genetics; lupus nephritis
25.  The Role of Genetic Variation Near Interferon-Kappa in Systemic Lupus Erythematosus 
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by increased type I interferons (IFNs) and multiorgan inflammation frequently targeting the skin. IFN-kappa is a type I IFN expressed in skin. A pooled genome-wide scan implicated the IFNK locus in SLE susceptibility. We studied IFNK single nucleotide polymorphisms (SNPs) in 3982 SLE cases and 4275 controls, composed of European (EA), African-American (AA), and Asian ancestry. rs12553951C was associated with SLE in EA males (odds ratio = 1.93, P = 2.5 × 10−4), but not females. Suggestive associations with skin phenotypes in EA and AA females were found, and these were also sex-specific. IFNK SNPs were associated with increased serum type I IFN in EA and AA SLE patients. Our data suggest a sex-dependent association between IFNK SNPs and SLE and skin phenotypes. The serum IFN association suggests that IFNK variants could influence type I IFN producing plasmacytoid dendritic cells in affected skin.
PMCID: PMC2914299  PMID: 20706608

Results 1-25 (650404)