Search tips
Search criteria

Results 1-25 (1154638)

Clipboard (0)

Related Articles

1.  RIG-like Helicase Innate Immunity Inhibits Vascular Endothelial Growth Factor Tissue Responses via a Type I IFN–dependent Mechanism 
Rationale: Vascular endothelial growth factor (VEGF) regulates vascular, inflammatory, remodeling, and cell death responses. It plays a critical role in normal pulmonary physiology, and VEGF excess and deficiency have been implicated in the pathogenesis of asthma and chronic obstructive pulmonary disease, respectively. Although viruses are an important cause of chronic obstructive pulmonary disease exacerbations and innate responses play an important role in these exacerbations, the effects of antiviral responses on VEGF homeostasis have not been evaluated.
Objectives: We hypothesized that antiviral innate immunity regulates VEGF tissue responses.
Methods: We compared the effects of transgenic VEGF165 in mice treated with viral pathogen–associated molecular pattern polyinosinic:polycytidylic acid [poly(I:C)], mice treated with live virus, and control mice.
Measurements and Main Results: Transgenic VEGF stimulated angiogenesis, edema, inflammation, and mucin accumulation. Each of these was abrogated by poly(I:C). These inhibitory effects were dose dependent, noted when poly(I:C) was administered before and after transgene activation, and mediated by a Toll-like receptor-3–independent and RIG-like helicase (RLH)– and type I IFN receptor–dependent pathway. VEGF stimulated the expression of VEGF receptor-1 and poly(I:C) inhibited this stimulation. Poly(I:C) also inhibited the ability of VEGF to activate extracellular signal–regulated kinase-1, Akt, focal adhesion kinase, and endothelial nitric oxide synthase, and aeroallergen-induced adaptive helper T-cell type 2 inflammation. Influenza and respiratory syncytial virus also inhibited VEGF-induced angiogenesis.
Conclusions: These studies demonstrate that poly(I:C) and respiratory viruses inhibit VEGF-induced tissue responses and adaptive helper T-cell type 2 inflammation and highlight the importance of a RLH- and type I IFN receptor–dependent pathway(s) in these regulatory events. They define a novel link between VEGF and antiviral and RLH innate immune responses and a novel pathway that regulates pulmonary VEGF activity.
PMCID: PMC3114061  PMID: 21278304
RIG-like helicase; mitochondrial antiviral signaling molecule; influenza virus; chronic obstructive pulmonary disease
2.  Vascular Endothelial Growth Factor Mediates Intracrine Survival in Human Breast Carcinoma Cells through Internally Expressed VEGFR1/FLT1 
PLoS Medicine  2007;4(6):e186.
While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods and Findings
We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable. MDA-MB-231 and MCF-7 breast cancer cells, transfected with antisense VEGF cDNA or with siVEGF (VEGF-targeted small interfering RNA), showed a significant reduction in VEGF expression and increased apoptosis as compared to the control cells. Additionally, specifically targeted knockdown of VEGFR1 expression by siRNA (siVEGFR1) significantly decreased the survival of breast cancer cells through down-regulation of protein kinase B (AKT) phosphorylation, while targeted knockdown of VEGFR2 or NRP1 expression had no effect on the survival of these cancer cells. Since a VEGFR1-specific ligand, placenta growth factor (PGF), did not, as expected, inhibit the breast cancer cell apoptosis induced by siVEGF, and since VEGFR1 antibody also had no effects on the survival of these cells, we examined VEGFR1 localization. VEGFR1 was predominantly expressed internally in MDA-MB-231 and MCF-7 breast cancer cells. Specifically, VEGFR1 was found to be colocalized with lamin A/C and was expressed mainly in the nuclear envelope in breast cancer cell lines and primary breast cancer tumors. Breast cancer cells treated with siVEGFR1 showed significantly decreased VEGFR1 expression levels and a lack of VEGFR1 expression in the nuclear envelope.
This study provides, to our knowledge for the first time, evidence of a unique survival system in breast cancer cells by which VEGF can act as an internal autocrine (intracrine) survival factor through its binding to VEGFR1. These results may lead to an improved strategy for tumor therapy based on the inhibition of angiogenesis.
Shalom Avraham and colleagues' study provides evidence of a survival system in breast cancer cells by which VEGF acts as an internal autocrine survival factor through its binding to VEGFR1.
Editors' Summary
One woman in eight will develop breast cancer during her lifetime. Most of these women live for many years after their diagnosis and many are cured of their cancer. However, sometimes the cancer grows inexorably and spreads (metastasizes) around the body despite the efforts of oncologists. Characteristics of the tumor known as prognostic factors can indicate whether this spreading is likely to happen. Large tumors that have metastasized have a poorer prognosis than small tumors that are confined to the breast. The expression of specific proteins within the tumor also provides prognostic information. One protein whose expression is associated with a poor prognosis is vascular endothelial growth factor (VEGF). VEGF stimulates angiogenesis—the growth of new blood vessels. Small tumors get the nutrients needed for their growth from existing blood vessels but large tumors need to organize their own blood supply. They do this, in part, by secreting VEGF. This compound binds to proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels), which then send a signal into the cell instructing it to make new blood vessels. Angiogenesis inhibitors, including molecules that block the activity of VEGF receptors, are being developed for the treatment of cancer.
Why Was This Study Done?
Some breast cancer cell lines (cells isolated from breast cancers and grown in the laboratory) make VEGF and VEGF receptors (VEGFR1, VEGFR2, and neuropilin 1 [NRP1]). But, although some studies have reported an association between VEGFR1 expression in breast tumors and a poor prognosis, other studies have found no expression of VEGFR1 in breast tumors. Consequently, the role of VEGF receptors in breast cancer is unclear. In this study, the researchers analyzed the expression and function of VEGF and its receptors in breast cancer cells to investigate whether and how VEGF helps these cells to survive.
What Did the Researchers Do and Find?
The researchers first examined the expression of VEGF receptors in several human breast cancer cell lines. All of them expressed VEGFR1, some expressed NRP1, but VEGFR2 expression was universally low. They then investigated the function of VEGF and its receptors in two human breast cancer cell lines (MDA-MB-231 and MCF-7). In both cell lines, blocking the expression of VEGF or of VEGFR1 (but not of the other two receptors) reduced cell survival by stimulating a specific process of cell death called apoptosis. Unexpectedly, adding VEGF to the cultures did not reverse the effect of blocking VEGF expression, a result that suggests that VEGF and VEGFR1 do not affect breast cancer cell survival by acting at the cell surface. Accordingly, when the researchers examined where VEGFR1 occurs in the cell, they found it on the membranes around the nucleus of the breast cancer cell lines and not on the cell surface; several primary breast tumors and normal breast tissue had the same localization pattern. Finally, the researchers showed that inhibitors of VEGF action that act at the cell surface did not affect the survival of the breast cancer cell lines.
What Do These Findings Mean?
These findings suggest that VEGF helps breast cancer cells to survive in a unique way: by binding to VEGFR1 inside the cell. In other words, whereas VEGF normally acts as a paracrine growth factor (it is released by one cell and affects another cell), in breast cancer cells it might act as an internal autocrine (intracrine) survival factor, a factor that affects the cells in which it is produced. These findings need confirming in more cell lines and in primary breast cancers but could have important implications for the treatment of breast cancer. Inhibitors of VEGF and VEGFR1 that act inside the cell (small molecule drugs) might block breast cancer growth more effectively than inhibitors that act at the cell surface (for example, proteins that bind to the receptor), because internally acting inhibitors might both kill the tumor directly and have antiangiogenic effects, whereas externally acting inhibitors could only have the second effect.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information for patients and professionals on breast cancer (in English and Spanish) and on angiogenesis (in English and Spanish)
MedlinePlus Encyclopedia information for patients on breast cancer (in English and Spanish)
CancerQuest, information from Emory University on cancer biology and on angiogenesis and angiogenesis inhibitors (in several languages)
Wikipedia pages on VEGF (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC1885450  PMID: 17550303
3.  A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA 
PLoS Medicine  2008;5(5):e94.
Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells.
Methods and Findings
Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the tumors did not respond to interferon (IFN)α therapy at all. We showed that stable silencing of endogenous vegf mRNA in HCT116 cells enhanced both STAT1 expression and IFNα responses.
These findings suggest that cancer cells have a survival system that is regulated by vegf mRNA and imply that both vegf mRNA and its protein may synergistically promote the malignancy of tumor cells. Therefore, combination of anti-vegf transcript strategies, such as siRNA-based gene silencing, with anti-VEGF antibody treatment may improve anti-cancer therapies that target VEGF.
Shigetada Teshima-Kondo and colleagues find that cancer cells have a survival system that is regulated by vegf mRNA and that vegf mRNA and its protein may synergistically promote the malignancy of tumor cells.
Editors' Summary
Normally, throughout life, cell division (which produces new cells) and cell death are carefully balanced to keep the body in good working order. But sometimes cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—disorganized masses of cells. When a cancer is small, it uses the body's existing blood supply to get the oxygen and nutrients it needs for its growth and survival. But, when it gets bigger, it has to develop its own blood supply. This process is called angiogenesis. It involves the release by the cancer cells of proteins called growth factors that bind to other proteins (receptors) on the surface of endothelial cells (the cells lining blood vessels). The receptors then send signals into the endothelial cells that tell them to make new blood vessels. One important angiogenic growth factor is “vascular endothelial growth factor” (VEGF). Tumors that make large amounts of VEGF tend to be more abnormal and more aggressive than those that make less VEGF. In addition, high levels of VEGF in the blood are often associated with poor responses to chemotherapy, drug regimens designed to kill cancer cells.
Why Was This Study Done?
Because VEGF is a key regulator of tumor development, several anti-VEGF therapies—drugs that target VEGF and its receptors—have been developed. These therapies strongly suppress the growth of tumor cells in the laboratory and in animals but, when used alone, are no better at increasing the survival times of patients with cancer than standard chemotherapy. Scientists are now looking for an explanation for this disappointing result. Like all proteins, cells make VEGF by “transcribing” its DNA blueprint into an mRNA copy (vegf mRNA), the coding region of which is “translated” into the VEGF protein. Other, “noncoding” regions of vegf mRNA control when and where VEGF is made. Scientists have recently discovered that the noncoding regions of some mRNAs suppress tumor development. In this study, therefore, the researchers investigate whether vegf mRNA has an unrecognized function in tumor cells that could explain the disappointing clinical results of anti-VEGF therapeutics.
What Did the Researchers Do and Find?
The researchers first used a technique called small interfering (si) RNA knockdown to stop VEGF expression in human colon cancer cells growing in dishes. siRNAs are short RNAs that bind to and destroy specific mRNAs in cells, thereby preventing the translation of those mRNAs into proteins. The treatment of human colon cancer cells with vegf-targeting siRNAs made the cells more sensitive to chemotherapy-induced apoptosis (a type of cell death). This sensitivity was only partly reversed by adding VEGF to the cells. By contrast, cancer cells engineered to make more vegf mRNA had increased resistance to chemotherapy-induced apoptosis. Treatment of these cells with an antibody that inhibited VEGF function did not completely block this resistance. Together, these results suggest that both vegf mRNA and VEGF protein have anti-apoptotic effects. The researchers show that the anti-apoptotic activity of vegf mRNA requires a noncoding part of the mRNA called the 5′ UTR, and that whereas human colon cancer cells expressing this 5′ UTR form tumors in mice, cells expressing a mutated 5′ UTR do not. Finally, they report that the expression of several pro-apoptotic genes and of an anti-tumor pathway known as the interferon/STAT1 tumor suppression pathway is down-regulated in tumors that express the vegf 5′ UTR.
What Do These Findings Mean?
These findings suggest that some cancer cells have a survival system that is regulated by vegf mRNA and are the first to show that a 5′UTR of mRNA can promote tumor growth. They indicate that VEGF and its mRNA work together to promote their development and to increase their resistance to chemotherapy drugs. They suggest that combining therapies that prevent the production of vegf mRNA (for example, siRNA-based gene silencing) with therapies that block the function of VEGF might improve survival times for patients whose tumors overexpress VEGF.
Additional Information.
Please access these Web sites via the online version of this summary at
This study is discussed further in a PLoS Medicine Perspective by Hughes and Jones
The US National Cancer Institute provides information about all aspects of cancer, including information on angiogenesis, and on bevacizumab, an anti-VEGF therapeutic (in English and Spanish)
CancerQuest, from Emory University, provides information on all aspects of cancer, including angiogenesis (in several languages)
Cancer Research UK also provides basic information about what causes cancers and how they develop, grow, and spread, including information about angiogenesis
Wikipedia has pages on VEGF and on siRNA (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2386836  PMID: 18494554
4.  Lung Macrophages Contribute to House Dust Mite Driven Airway Remodeling via HIF-1α 
PLoS ONE  2013;8(7):e69246.
HIF-1α is a transcription factor that is activated during hypoxia and inflammation and is a key regulator of angiogenesis in vivo. During the development of asthma, peribronchial angiogenesis is induced in response to aeroallergens and is thought to be an important feature of sustained chronic allergic inflammation. Recently, elevated HIF-1α levels have been demonstrated in both the lung tissue and bronchoalveolar lavage of allergic patients, respectively. Therefore, we investigated the role of HIF-1α on the development of angiogenesis and inflammation following acute and chronic allergen exposure. Our data shows that intranasal exposure to house dust mite (HDM) increases the expression of HIF-1α in the lung, whilst reducing the expression of the HIF-1α negative regulators, PHD1 and PHD3. Blockade of HIF-1α in vivo, significantly decreased allergic inflammation and eosinophilia induced by allergen, due to a reduction in the levels of IL-5 and Eotaxin-2. Importantly, HIF-1α blockade significantly decreased levels of VEGF-A and CXCL1 in the lungs, which in turn led to a profound decrease in the recruitment of endothelial progenitor cells and a reduction of peribronchial angiogenesis. Furthermore, HDM or IL-4 treatment of primary lung macrophages resulted in significant production of both VEGF-A and CXCL1; inhibition of HIF-1α activity abrogated the production of these factors via an up-regulation of PHD1 and PHD3. These findings suggest that novel strategies to reduce the expression and activation of HIF-1α in lung macrophages may be used to attenuate allergen-induced airway inflammation and angiogenesis through the modulation of VEGF-A and CXCL1 expression.
Clinical Relevance
This study provides new insights into the role of HIF-1α in the development of peribronchial angiogenesis and inflammation in a murine model of allergic airway disease. These findings indicate that strategies to reduce activation of macrophage derived HIF-1α may be used as a target to improve asthma pathology.
PMCID: PMC3720585  PMID: 23935964
5.  Production of Vascular Endothelial Growth Factors from Human Lung Macrophages Induced by Group IIA and Group X Secreted Phospholipases A2 
Angiogenesis and lymphangiogenesis mediated by vascular endothelial growth factors (VEGFs) are main features of chronic inflammation and tumors. Secreted phospholipases A2 (sPLA2s) are overexpressed in inflammatory lung diseases and cancer and they activate inflammatory cells by enzymatic and receptor-mediated mechanisms. We investigated the effect of sPLA2s on the production of VEGFs from human macrophages purified from the lung tissue of patients undergoing thoracic surgery. Primary macrophages express VEGF-A, VEGF-B, VEGF-C, and VEGF-D at both mRNA and protein level. Two human sPLA2s (group IIA and group X) induced the expression and release of VEGF-A and VEGF-C from macrophages. Enzymatically-inactive sPLA2s were as effective as the active enzymes in inducing VEGF production. Me-Indoxam and RO092906A, two compounds that block receptor-mediated effects of sPLA2s, inhibited group X-induced release of VEGF-A. Inhibition of the MAPK p38 by SB203580 also reduced sPLA2-induced release of VEGF-A. Supernatants of group X-activated macrophages induced an angiogenic response in chorioallantoic membranes that was inhibited by Me-Indoxam. Stimulation of macrophages with group X sPLA2 in the presence of adenosine analogs induced a synergistic increase of VEGF-A release and inhibited TNF-α production through a cooperation between A2A and A3 receptors. These results demonstrate that sPLA2s induce production of VEGF-A and VEGF-C in human macrophages by a receptor-mediated mechanism independent from sPLA2 catalytic activity. Thus, sPLA2s may play an important role in inflammatory and/or neoplastic angiogenesis and lymphangiogenesis.
PMCID: PMC3073479  PMID: 20357262
6.  Vascular endothelial growth factor-B gene transfer exacerbates retinal and choroidal neovascularization and vasopermeability without promoting inflammation 
Molecular Vision  2011;17:492-507.
The role of vascular endothelial growth factor (VEGF)-B in the eye is poorly understood. The present study was conducted to evaluate the effect of overexpression of VEGF-B via adeno-associated virus (AAV) gene transfer on ocular angiogenesis, inflammation, and the blood-retinal barrier (BRB).
Three recombinant AAV vectors were prepared, expressing the 167 (AAV-VEGF-B167) or 186 amino acid isoform (AAV-VEGF-B186) of VEGF-B or the green fluorescent protein (GFP) reporter gene (AAV-GFP). Approximately 1×109 viral genome copies of AAV-VEGF-B167, AAV-VEGF-B186, or AAV-GFP were intraocularly injected. The efficacy of the gene transfer was assessed by directly observing GFP, by immunohistochemistry, or by real-time PCR. A leukostasis assay using fluorescein isothiocyanate-conjugated Concanavalin A was used to evaluate inflammation. The BRB was assessed using a quantitative assay with 3H-mannitol as a tracer. Retinal neovascularization (NV) was assessed at postnatal day 17 in oxygen-induced ischemic retinopathy after intravitreal injection of AAV-VEGF-B in left eyes and AAV-GFP in right eyes at postnatal day 7. Two weeks after injection of AAV vectors, choroidal NV was generated by laser photocoagulation and assessed 2 weeks later.
GFP expression was clearly demonstrated, primarily in the retinal pigment epithelium (RPE) and outer retina, 1–6 weeks after delivery. mRNA expression levels of VEGF-B167 and VEGF-B186 were 5.8 and 12 fold higher in the AAV-VEGF-B167- and AAV-VEGF-B186-treated groups, respectively. There was no evidence of an inflammatory response or vessel abnormality following injection of the vectors in normal mice; however, VEGF-B increased retinal and choroidal neovascularization. AAV-VEGF-B186, but not AAV-VEGF-B167, enhanced retinal vascular permeability.
VEGF-B overexpression promoted pathological retinal and choroidal NV and BRB breakdown without causing inflammation, which is associated with the progression of diabetic retinopathy and age-related macular degeneration, showing that these complications are not dependent on inflammation. VEGF-B targeting could benefit antiangiogenic therapy.
PMCID: PMC3042363  PMID: 21364963
7.  Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung 
Nature medicine  2004;10(10):1095-1103.
Exaggerated levels of VEGF (vascular endothelial growth factor) are present in persons with asthma, but the role(s) of VEGF in normal and asthmatic lungs has not been defined. We generated lung-targeted VEGF165 transgenic mice and evaluated the role of VEGF in T-helper type 2 cell (TH2)-mediated inflammation. In these mice, VEGF induced, through IL-13–dependent and –independent pathways, an asthma-like phenotype with inflammation, parenchymal and vascular remodeling, edema, mucus metaplasia, myocyte hyperplasia and airway hyper-responsiveness. VEGF also enhanced respiratory antigen sensitization and TH2 inflammation and increased the number of activated DC2 dendritic cells. In antigen-induced inflammation, VEGF was produced by epithelial cells and preferentially by TH2 versus TH1 cells. In this setting, it had a critical role in TH2 inflammation, cytokine production and physiologic dysregulation. Thus, VEGF is a mediator of vascular and extravascular remodeling and inflammation that enhances antigen sensitization and is crucial in adaptive TH2 inflammation. VEGF regulation may be therapeutic in asthma and other TH2 disorders.
PMCID: PMC3434232  PMID: 15378055
8.  Computational Model of Vascular Endothelial Growth Factor Spatial Distribution in Muscle and Pro-Angiogenic Cell Therapy 
PLoS Computational Biology  2006;2(9):e127.
Members of the vascular endothelial growth factor (VEGF) family of proteins are critical regulators of angiogenesis. VEGF concentration gradients are important for activation and chemotactic guidance of capillary sprouting, but measurement of these gradients in vivo is not currently possible. We have constructed a biophysically and molecularly detailed computational model to study microenvironmental transport of two isoforms of VEGF in rat extensor digitorum longus skeletal muscle under in vivo conditions. Using parameters based on experimental measurements, the model includes: VEGF secretion from muscle fibers; binding to the extracellular matrix; binding to and activation of endothelial cell surface VEGF receptors; and internalization. For 2-D cross sections of tissue, we analyzed predicted VEGF distributions, gradients, and receptor binding. Significant VEGF gradients (up to 12% change in VEGF concentration over 10 μm) were predicted in resting skeletal muscle with uniform VEGF secretion, due to non-uniform capillary distribution. These relative VEGF gradients were not sensitive to extracellular matrix composition, or to the overall VEGF expression level, but were dependent on VEGF receptor density and affinity, and internalization rate parameters. VEGF upregulation in a subset of fibers increased VEGF gradients, simulating transplantation of pro-angiogenic myoblasts, a possible therapy for ischemic diseases. The number and relative position of overexpressing fibers determined the VEGF gradients and distribution of VEGF receptor activation. With total VEGF expression level in the tissue unchanged, concentrating overexpression into a small number of adjacent fibers can increase the number of capillaries activated. The VEGF concentration gradients predicted for resting muscle (average 3% VEGF/10 μm) is sufficient for cellular sensing; the tip cell of a vessel sprout is approximately 50 μm long. The VEGF gradients also result in heterogeneity in the activation of blood vessel VEGF receptors. This first model of VEGF tissue transport and heterogeneity provides a platform for the design and evaluation of therapeutic approaches.
It is not currently possible to experimentally quantify the gradients of protein concentration in the extracellular space in vivo. However, the concentration gradients of vascular endothelial growth factor (VEGF) are essential for both initiation and directed guidance of new blood vessels. The authors develop a computational model of VEGF transport in tissue in vivo (skeletal muscle, though the method is applicable to other tissues and other proteins) with realistic geometry and including biophysical interactions of VEGF, its receptors, and the extracellular matrix. Using this model, the authors predict for the first time the distribution of VEGF concentration and VEGF receptor activation throughout the tissue. VEGF concentration gradients are significant, up to 12% change in VEGF concentration over 10 μm in resting muscle. Transplanting VEGF-overexpressing myocytes (for therapeutic induction of blood vessel growth) increases the gradients significantly. Endothelial cells in sprouting vessels are approximately 50 μm long, and therefore the predicted gradients across the cell are high and sufficient for chemotactic guidance of the new vessels. The VEGF concentration gradients also result in significant heterogeneity in the activation of VEGF receptors on blood vessels throughout the tissue, a possible reason for the sporadic nature of sprout initiation.
PMCID: PMC1570371  PMID: 17002494
9.  Angiotensin II Evokes Angiogenic Signals within Skeletal Muscle through Co-ordinated Effects on Skeletal Myocytes and Endothelial Cells 
PLoS ONE  2014;9(1):e85537.
Skeletal muscle overload induces the expression of angiogenic factors such as vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2, leading to new capillary growth. We found that the overload-induced increase in angiogenesis, as well as increases in VEGF, MMP-2 and MT1-MMP transcripts were abrogated in muscle VEGF KO mice, highlighting the critical role of myocyte-derived VEGF in controlling this process. The upstream mediators that contribute to overload-induced expression of VEGF have yet to be ascertained. We found that muscle overload increased angiotensinogen expression, a precursor of angiotensin (Ang) II, and that Ang II signaling played an important role in basal VEGF production in C2C12 cells. Furthermore, matrix-bound VEGF released from myoblasts induced the activation of endothelial cells, as evidenced by elevated endothelial cell phospho-p38 levels. We also found that exogenous Ang II elevates VEGF expression, as well as MMP-2 transcript levels in C2C12 myotubes. Interestingly, these responses also were observed in skeletal muscle endothelial cells in response to Ang II treatment, indicating that these cells also can respond directly to the stimulus. The involvement of Ang II in muscle overload-induced angiogenesis was assessed. We found that blockade of AT1R-dependent Ang II signaling using losartan did not attenuate capillary growth. Surprisingly, increased levels of VEGF protein were detected in overloaded muscle from losartan-treated rats. Similarly, we observed elevated VEGF production in cultured endothelial cells treated with losartan alone or in combination with Ang II. These studies conclusively establish the requirement for muscle derived VEGF in overload-induced angiogenesis and highlight a role for Ang II in basal VEGF production in skeletal muscle. However, while Ang II signaling is activated following overload and plays a role in muscle VEGF production, inhibition of this pathway is not sufficient to halt overload-induced angiogenesis, indicating that AT1-independent signals maintain VEGF production in losartan-treated muscle.
PMCID: PMC3887063  PMID: 24416421
10.  The role of AMP-activated protein kinase in the functional effects of vascular endothelial growth factor-A and -B in human aortic endothelial cells 
Vascular Cell  2011;3:9.
Vascular endothelial growth factors (VEGFs) are key regulators of endothelial cell function and angiogenesis. We and others have previously demonstrated that VEGF-A stimulates AMP-activated protein kinase (AMPK) in cultured endothelial cells. Furthermore, AMPK has been reported to regulate VEGF-mediated angiogenesis. The role of AMPK in the function of VEGF-B remains undetermined, as does the role of AMPK in VEGF-stimulated endothelial cell proliferation, a critical process in angiogenesis.
Human aortic endothelial cells (HAECs) were incubated with VEGF-A and VEGF-B prior to examination of HAEC AMPK activity, proliferation, migration, fatty acid oxidation and fatty acid transport. The role of AMPK in the functional effects of VEGF-A and/or VEGF-B was assessed after downregulation of AMPK activity with chemical inhibitors or infection with adenoviruses expressing a dominant negative mutant AMPK.
Incubation of HAECs with VEGF-B rapidly stimulated AMPK activity in a manner sensitive to an inhibitor of Ca2+/calmodulin-dependent kinase kinase (CaMKK), without increasing phosphorylation of endothelial NO synthase (eNOS) phosphorylation at Ser1177. Downregulation of AMPK abrogated HAEC proliferation in response to VEGF-A or VEGF-B. However, activation of AMPK by agents other than VEGF inhibited proliferation. Downregulation of AMPK abrogated VEGF-A-stimulated HAEC migration, whereas infection with adenoviruses expressing constitutively active mutant AMPK stimulated chemokinesis. Neither VEGF-A nor VEGF-B had any significant effect on HAEC fatty acid oxidation, yet prolonged incubation with VEGF-A stimulated fatty acid uptake in an AMPK-dependent manner. Inhibition of eNOS abrogated VEGF-mediated proliferation and migration, but was without effect on VEGF-stimulated fatty acid transport, ERK or Akt phosphorylation.
These data suggest that VEGF-B stimulates AMPK by a CaMKK-dependent mechanism and stimulation of AMPK activity is required for proliferation in response to either VEGF-A or VEGF-B and migration in response to VEGF-A. AMPK activation alone was not sufficient, however, to stimulate proliferation in the absence of VEGF. VEGF-stimulated NO synthesis is required for the stimulation of proliferation by VEGF-A or VEGF-B, yet this may be independent of eNOS Ser1177 phosphorylation.
PMCID: PMC3094250  PMID: 21507243
11.  The effects of budesonide on angiogenesis in a murine asthma model 
The aim of this study is to determine the effects and mechanisms of budesonide on angiogenesis in a murine asthma model.
Material and methods
Murine asthma models were established and mice were divided into three groups: the model group (OVA-sensitized and challenged mice), the BUD group (budesonide-treated mice) and the PBS group (normal control mice). Mice in the BUD group were administered with inhaled budesonide (100 µg/kg) daily. The effects on airway inflammation, angiogenesis, expression of hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were examined.
Administration of budesonide ameliorated allergic airway inflammation (2.90 ±0.18 vs. 4.80 ±0.20, p < 0.01) and significantly reduced the percentage vascularity (0.78 ±0.14 vs. 2.83 ±0.90, p < 0.01) compared with those in the asthmatic model mice. It also reduced the expression of HIF-1α (immunohistochemistry results: 71.70 ±1.40 vs. 89.60 ±0.79, p < 0.001; western blotting results: 0.88 ±0.41 vs. 0.97 ±0.47, p < 0.05), as well as that of VEGF (immunohistochemistry results: 26.30 ±1.03 vs. 93.30 ±1.54, p < 0.001; western blotting results: 1.12 ±0.22 vs. 2.08 ±0.30, p < 0.01). Percentage vascularity had positive correlation with both HIF-1α (r = 0.785, p < 0.01) and VEGF (r = 0.693, p < 0.01) expression. Furthermore, there is positive relationship between HIF-1α and VEGF expression (r = 0.641, p < 0.05).
The results demonstrate that budesonide has an important inhibitory effect on angiogenesis in asthma. Inhaled administration of budesonide achieved anti-angiogenic activity through inhibition of HIF-1α and VEGF expression. The results support a potential anti-remodeling role for budesonide in the treatment of human asthma.
PMCID: PMC3648823  PMID: 23671450
angiogenesis; budesonide; asthma; hypoxia inducible factor-1α; vascular endothelial growth factor
12.  Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17-mediated autoimmunity in the CNS 
Immunology and Cell Biology  2012;90(5):505-509.
Different viruses trigger pattern recognition receptor systems, such as Toll-like receptors or cytosolic RIG-I like helicases (RLH), and thus induce early type I interferon (IFN-I) responses. Such responses may confer protection until adaptive immunity is activated to an extent that the pathogen can be eradicated. Interestingly, the same innate immune mechanisms that are relevant for early pathogen defense have a role in ameliorating experimental autoimmune encephalomyelitis (EAE), a rodent model of human multiple sclerosis. We and others found that mice devoid of a component of the IFN-I receptor (Ifnar1−/−) showed significantly enhanced autoimmune disease of the central nervous system (CNS). A detailed analysis revealed that in wild-type mice IFN-I triggering of myeloid cells was instrumental in reducing brain damage. A more recent study indicated that similar to Ifnar1−/− mice, RLH-signaling-deficient mice showed enhanced autoimmune disease of the CNS as well. Moreover, when peripherally treated with synthetic RLH ligands wild-type animals with EAE disease showed reduced clinical scores. Under such conditions, IFN-I receptor triggering of dendritic cells had a crucial role. The therapeutic effect of treatment with RLH ligands was associated with negative regulation of Th1 and Th17 T-cell responses within the CNS. These experiments are consistent with the hypothesis that spatiotemporal conditions of, and cell types involved in, disease-ameliorating IFN-I responses differ significantly, depending on whether they were endogenously induced in the context of EAE pathogenesis within the CNS or upon therapeutic RLH triggering in the periphery. It is attractive to speculate that RLH triggering represents a new strategy to treat multiple sclerosis by stimulating endogenous immunoregulatory IFN-I responses.
PMCID: PMC3365287  PMID: 22430251
experimental autoimmune encephalomyelitis; interferon-beta; new therapy approach
13.  Redox Regulation of SERCA2 Is Required for Vascular Endothelial Growth Factor-Induced Signaling and Endothelial Cell Migration 
Antioxidants & Redox Signaling  2012;17(8):1099-1108.
Aims: Vascular endothelial growth factor (VEGF) increases angiogenesis by stimulating endothelial cell (EC) migration. VEGF-induced nitric oxide (•NO) release from •NO synthase plays a critical role, but the proteins and signaling pathways that may be redox-regulated are poorly understood. The aim of this work was to define the role of •NO-mediated redox regulation of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) in VEGF-induced signaling and EC migration. Results: VEGF-induced EC migration was prevented by the •NO synthase inhibitor, N (G)-nitro-L-arginine methyl ester (LNAME). Either VEGF or •NO stimulated endoplasmic reticulum (ER) 45Ca2+ uptake, a measure of SERCA activity, and knockdown of SERCA2 prevented VEGF-induced EC migration and 45Ca2+ uptake. S-glutathione adducts on SERCA2b, identified immunochemically, were increased by VEGF, and were prevented by LNAME or overexpression of glutaredoxin-1 (Glrx-1). Furthermore, VEGF failed to stimulate migration of ECs overexpressing Glrx-1. VEGF or •NO increased SERCA S-glutathiolation and stimulated migration of ECs in which wild-type (WT) SERCA2b was overexpressed with an adenovirus, but did neither in those overexpressing a C674S SERCA2b mutant, in which the reactive cysteine-674 was mutated to a serine. Increased EC Ca2+ influx caused by VEGF or •NO was abrogated by overexpression of Glrx-1 or the C674S SERCA2b mutant. ER store-emptying through the ryanodine receptor (RyR) and Ca2+ entry through Orai1 were also required for VEGF- and •NO-induced EC Ca2+ influx. Innovation and Conclusions: These results demonstrate that •NO-mediated activation of SERCA2b via S-glutathiolation of cysteine-674 is required for VEGF-induced EC Ca2+ influx and migration, and establish redox regulation of SERCA2b as a key component in angiogenic signaling. Antioxid. Redox Signal. 00, 000–000.
PMCID: PMC3423867  PMID: 22472004
14.  Activation of Multiple Signaling Pathways Is Critical for Fibroblast Growth Factor 2- and Vascular Endothelial Growth Factor-Stimulated Ovine Fetoplacental Endothelial Cell Proliferation1 
Biology of reproduction  2007;78(1):143-150.
Fibroblast growth factor-2 (FGF2) and vascular endothelial growth factor (VEGF) are two key regulators of placental angiogenesis. The potent vasodilator nitric oxide (NO) could also act as a key mediator of FGF2- and VEGF-induced angiogenesis. However, the postreceptor signaling pathways governing these FGF2- and VEGF-induced placental angiogenic responses are poorly understood. In this study, we assessed the role of endogenous NO, mitogen-activated protein kinase 3/1 (MAPK3/1), and v-akt murine thymoma viral oncogene homolog 1 (AKT1) in FGF2- and VEGF-stimulated proliferation of ovine fetoplacental endothelial (OFPAE) cells. Both FGF2 and VEGF time-dependently stimulated (P < 0.05) NO production and activated AKT1. Both FGF2- and VEGF-stimulated cell proliferation was dose-dependently inhibited (P < 0.05) by NG-monomethyl-L-arginine (L-NMMA; an NO synthase inhibitor), PD98059 (a selective MAPK3/1 kinase 1 and 2 [MAP2K1/2] inhibitor), or LY294002 (a selective phosphatidylinositol 3 kinase [PI3K] inhibitor) but not by phenyl-4,4,5,5 tetramethylimidazoline-1-oxyl 3-oxide (PTIO, a potent extracellular NO scavenger). At the maximal inhibitory dose without cytotoxicity, PD98059 and LY294002 completely inhibited VEGF-induced cell proliferation but only partially attenuated (P < 0.05) FGF2-induced cell proliferation. PD98059 and LY294002 also inhibited (P < 0.05) FGF2- and VEGF-induced phosphorylation of MAPK3/1 and AKT1, respectively. L-NMMA did not significantly affect FGF2- and VEGF-induced phosphorylation of either MAPK3/1 or AKT1. Thus, in OFPAE cells, both FGF2- and VEGF-stimulated cell proliferation is partly mediated via NO as an intracellular and downstream signal of MAPK3/1 and AKT1 activation. Moreover, activation of both MAP2K1/2/MAPK3/1 and PI3K/AKT1 pathways is critical for FGF2-stimulated cell proliferation, whereas activation of either one pathway is sufficient for mediating the VEGF-induced maximal cell proliferation, indicating that these two kinase pathways differentially mediate the FGF2- and VEGF-stimulated OFPAE cell proliferation.
PMCID: PMC2441762  PMID: 17901071
AKT1; endothelial cell proliferation; FGF2; growth factors; kinases; MAPK3/1; nitric oxide; pregnancy; vascular endothelial growth factor
15.  Granzyme B Releases Vascular Endothelial Growth Factor from Extracellular Matrix and Induces Vascular Permeability 
The formation of unstable, leaky neovessels underlies the pathogenesis of many chronic inflammatory diseases. Granzyme B (GZMB) is an immune-derived serine protease that accumulates in the extracellular matrix (ECM) during chronic inflammation and is capable of cleaving fibronectin (FN). Vascular endothelial growth factor (VEGF) is a potent vascular permeabilizing agent that is sequestered in the ECM through its interaction with FN. As GZMB levels are elevated in chronic inflammatory diseases that are associated with increased vascular permeability, the role of GZMB in the regulation of VEGF bioavailability and vascular permeability were assessed.
Methods and Results
GZMB was added to either VEGF-bound to FN or VEGF-bound to endothelial cell (EC)-derived ECM. Supernatants containing released VEGF were assessed to determine VEGF activity by treating EC and evaluating VEGF receptor-2 (VEGFR2) phosphorylation. GZMB released VEGF from both FN and from EC-derived matrix, while GZMB inhibition prevented FN cleavage and VEGF release. GZMB-mediated VEGF release resulted in significant phosphorylation of VEGFR2. The role of GZMB-mediated VEGF release in altering vascular permeability was also assessed in vivo using a Miles/Evan’s Blue permeability assay. GZMB induced a significant VEGF-dependent increase in vascular permeability in vivo that was reduced in the presence of an anti-VEGF neutralizing antibody. Inflammatory-mediated vascular leakage was also assessed in GZMB-KO mice using a delayed-type hypersensitivity model. GZMB-KO mice exhibited reduced microvascular leakage compared to C57\B6 controls.
GZMB increases vascular permeability in part through the proteolytic release of ECM-sequestered VEGF leading to VEGFR2 activation and increased vascular permeability in vivo. These findings present a novel role for GZMB as a modulator of vascular response during chronic inflammation.
PMCID: PMC4074428  PMID: 24791744 CAMSID: cams4292
Fibronectin; Granzyme B; Inflammation; VEGF; Vascular permeability
16.  Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis 
The Journal of Experimental Medicine  2002;196(11):1497-1506.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new “giant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation.
PMCID: PMC2194262  PMID: 12461084
17.  Vascular endothelial growth factor promoter-based conditionally replicative adenoviruses for pan-carcinoma application 
Cancer gene therapy  2006;14(1):105-116.
Treatment of advanced lung cancer is one of the major challenges in current medicine because of the high morbidity and mortality of the disease. Advanced stage lung cancer is refractory to conventional therapies and has an extremely poor prognosis. Thus, new therapeutic approaches are needed. Lung tumor formation depends on angiogenesis in which the vascular endothelial growth factor (VEGF) produced by cancer cells plays a pivotal role. Neutralizing VEGF with a soluble VEGF receptor suppresses tumor growth; however, the anticancer effect with this therapy is weakened after the intratumoral vascular network is completed. In this study, we turned the expression of VEGF by tumors to therapeutic advantage using a conditionally replication-competent adenovirus (CRAd) in which the expression of E1 is controlled by the human VEGF promoter. This virus achieved good levels of viral replication in lung cancer cells and induced a substantial anticancer effect in vitro and in vivo. As a further enhancement, the cancer cell killing effect was improved with tropism modification of the virus to express the knob domain of Ad3, which improved infectivity for cancer cells. These VEGF promoter-based CRAds also showed a significant cell killing effect for various types of cancer lines other than lung cancer. Conversely, the VEGF promoter has low activity in normal tissues, and the CRAd caused no damage to normal bronchial epithelial cells. Since tumor-associated angiogenesis via VEGF signalling is common in many types of cancers, these CRAds may be applicable to a wide range of tumors. We concluded that VEGF promoter-based CRAds have the potential to be an effective strategy for cancer treatment.
PMCID: PMC2203213  PMID: 17024232
VEGF; replicative adenovirus; angiogenesis; chimeric vector
18.  Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma 
Gut  2001;48(1):87-96.
BACKGROUND/AIMS—Vascular endothelial growth factor (VEGF) plays a key role in regulation of tumour associated angiogenesis. In the current study we analysed expression of VEGF and its receptors in human hepatocellular carcinoma (HCC) and investigated the molecular mechanisms of VEGF regulation by hypoxia.
METHODS—VEGF, kinase domain region (KDR)/fetal liver kinase 1 (flk-1), and flt-1 expression were examined by immunohistochemistry and in situ hybridisation in 15 human HCC tissues. Expression of VEGF and regulation by hypoxia were assessed in three human HCC cell lines using a quantitative competitive reverse transcription-polymerase chain reaction, ELISA, and a series of 5' deletion reporter gene constructs of the human VEGF promoter in transient transfection assays.
RESULTS—We observed over expression of VEGF mRNA and protein in HCC compared with cirrhosis or normal liver. Expression of VEGF in tumour cells was strongly increased in areas directly adjacent to necrotic/hypoxic regions. Both VEGF receptors were detected in vascular endothelia of HCC while only KDR/flk-1 receptors were detected in endothelial cells of cirrhotic livers. Expression of VEGF was observed in all human HCC cell lines examined. Hypoxia (1% oxygen) resulted in profound upregulation of VEGF mRNA and protein levels. Furthermore, hypoxia treatment resulted in a doubling of VEGF mRNA stability. Deletion analysis of the human VEGF 5' flanking region −2018 and +50 demonstrated induction of VEGF promoter activity under hypoxic conditions which was significantly decreased following deletion of the region −1286 and −789 suggesting a substantial contribution of the −975 putative hypoxia inducible factor 1 binding site to hypoxia mediated transcriptional activation of the VEGF gene.
CONCLUSION—These data suggest hypoxia as a central stimulus of angiogenesis in human HCC through upregulation of VEGF gene expression by at least two distinct molecular mechanisms: activation of VEGF gene transcription and an increase in VEGF mRNA stability.

Keywords: hepatocellular carcinoma; angiogenesis; vascular endothelial growth factor; hypoxia
PMCID: PMC1728160  PMID: 11115828
19.  A placenta growth factor 2 variant acts as dominant negative of vascular endothelial growth factor A by heterodimerization mechanism 
Angiogenesis is one of the crucial events for cancer development and growth and vascular endothelial growth factor (VEGF) family plays an essential role in this biological phenomenon. The members of VEGF family mainly involved in angiogenesis are VEGF-A, VEGF-B and placental growth factor (PlGF), which exert their activity through the binding and activation of two VEGF receptors, VEGFR-1 and VEGFR-2. Human VEGF-A and PlGF are expressed in different isoforms and have the peculiarity to form heterodimer if co-expressed in the same cell. The difference of two main human PlGF isoforms, PlGF1 and PlGF2, consist in the exclusive ability of PlGF2 to bind heparin and Neuropilin receptors. As previously reported for PlGF1 isoform, we have generated a PlGF2 variant named PlGF2 -DE, in which the residues D72 and E73 were substituted with alanine, that is unable to bind and activate VEGFR-1 but is still able to heterodimerize with VEGF. Here we report that overexpression in VEGF-A producing human tumor cell line derived from ovarian carcinoma (A2780) of PlGF2-DE variant by stable transfection, significantly reduces the production of VEGF-A homodimer via heterodimerization, determining a strong inhibition of xenograft tumor growth and associated neoangiogenesis, as well as significant reduction of monocyte-macrophage infiltration. Conversely, the overexpression of PlGF2wt, also reducing the VEGF-A homodimer production comparably to PlGF2-DE variant through the generation of VEGF-A/PlGF2 heterodimer, does not inhibit tumor growth and vessel density compared to control, but induces increase of monocyte-macrophage infiltration. Interestingly the comparison of PlGF2wt with PlGF1wt overexpression evidences a significant reduction of monocyte-macrophages recruitment as unique difference among the activity of the two PlGFwt isoforms. Therefore, the ‘less soluble’ PlGF2 shows a limited potential in monocyte-macrophages recruitment. In conclusion data here reported demonstrate that PlGF-DE variant acts as ‘dominant negative’ of VEGF-A independently from the PlGF isoform utilized, that the expression of active PlGF2 homodimer and VEGF-A/PlGF2 heterodimer is sufficient to rescue pro-angiogenic activity lost for reduction of VEGF-A due to heterodimerization mechanism, and that PlGF2 shows lower activity into recruitment of monocyte-macrophage cells compared to PlGF1 isoform.
PMCID: PMC3180054  PMID: 21969185
Angiogenesis; VEGF family; PlGF; VEGF/PlGF heterodimer; ovarian carcinoma; CD31; F4/80
20.  The Herpes Simplex Virus-1 Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization 
PLoS Pathogens  2011;7(10):e1002278.
Herpes simplex virus-1 (HSV-1) causes lifelong infection affecting between 50 and 90% of the global population. In addition to causing dermal lesions, HSV-1 is a leading cause of blindness resulting from recurrent corneal infection. Corneal disease is characterized by loss of corneal immunologic privilege and extensive neovascularization driven by vascular endothelial growth factor-A (VEGF-A). In the current study, we identify HSV-1 infected cells as the dominant source of VEGF-A during acute infection, and VEGF-A transcription did not require TLR signaling or MAP kinase activation. Rather than being an innate response to the pathogen, VEGF-A transcription was directly activated by the HSV-1 encoded immediate early transcription factor, ICP4. ICP4 bound the proximal human VEGF-A promoter and was sufficient to promote transcription. Transcriptional activation also required cis GC-box elements common to the VEGF-A promoter and HSV-1 early genes. Our results suggest that the neovascularization characteristic of ocular HSV-1 disease is a direct result of HSV-1's major transcriptional regulator, ICP4, and similarities between the VEGF-A promoter and those of HSV-1 early genes.
Author Summary
Herpes simplex virus-type 1 is the leading cause of infectious corneal blindness in the industrialized world. Most of the morbidity associated with the virus is due to the host response to episodic reactivation of latent virus. Corneal immunologic privilege is associated with a number of factors including the absence of blood and lymphatic vessels. Conversely, corneal hem (blood)- and lymph-angiogenesis driven by inflammation correlate with the loss of privilege. Neovascularization is a common phenomenon in HSV-1 keratitis that correlates with poor prognosis. We have previously discovered HSV-1 elicits corneal lymphangiogenesis through a unique mechanism involving vascular endothelial growth factor (VEGF)-A independent of that described for other insults including transplantation or bacterial infection. However, the viral-encoded product(s) that elicit host production of VEGF-A is(are) unknown. In this paper, we have identified infected cell protein-4 (ICP4) as the primary virus-encoded product that drives VEGF-A expression. As VEGF-A is involved in driving neovascularization associated with tumor growth and metastasis, proteins that influence transcriptional regulation of VEGF-A may be useful in the development of adjunct therapy for such disparate diseases as cancer and HSV-1 keratitis.
PMCID: PMC3188529  PMID: 21998580
21.  Vascular Endothelial Growth Factor (VEGF) in Seizures: A Double-Edged Sword 
Vascular endothelial growth factor (VEGF) is a vascular growth factor which induces the development of new blood vessels (angiogenesis), vascular permeability, and inflammation. In brain, receptors for VEGF have been localized to vascular endothelium, neurons, and glia. VEGF is upregulated after hypoxic injury to the brain, such as occurs with cerebral ischemia or high-altitude edema, and has been implicated in the blood-brain barrier breakdown which occurs during these conditions. Given its recently-described role as an inflammatory mediator, VEGF could also contribute to the inflammatory responses observed in cerebral ischemia. After seizures, blood-brain barrier breakdown and inflammation is also observed in brain, albeit on a lower scale than that observed after stroke. Recent evidence has suggested a role for inflammation in seizure disorders. We have described striking increases in VEGF protein in both neurons and glia after pilocarpine-induced status epilepticus in the brain. Increases in VEGF could contribute to the blood-brain barrier breakdown and inflammation observed after seizures. However, VEGF has also been shown to be neuroprotective across several experimental paradigms, and hence could potentially protect vulnerable cells from damage associated with seizures. Therefore, the role of VEGF after seizures could be either protective or destructive. Although only further research will determine the exact nature of VEGF's role after seizures, preliminary data indicate that VEGF plays a protective role after seizures.
PMCID: PMC2504497  PMID: 15250585
22.  Formation of the Collateral Circulation is Regulated by Vascular Endothelial Growth Factor-A and A Disintegrin and Metalloprotease Family Members 10 and 17 
Circulation research  2012;111(12):1539-1550.
The density of native (pre-existing) collaterals varies widely and is a significant determinant of variation in severity of stroke, myocardial infarction and peripheral artery disease. However, little is known about mechanisms responsible for formation of the collateral circulation in healthy tissues.
We previously found that variation in VEGF expression causes differences in collateral density of newborn and adult mice. Herein, we sought to determine mechanisms of collaterogenesis in the embryo and the role of VEGF in this process.
Methods and Results
Pial collaterals begin forming between embryonic day (E) 13.5 and 14.5 as sprout-like extensions from arterioles of existing cerebral artery trees. Global VEGF-A overexpressing mice (Vegf hi/+) formed more—and Vegf lo/+ formed fewer—collaterals during embryogenesis, in association with differences in vascular patterning. Conditional global reduction of Vegf or Flk1 only during collaterogenesis significantly reduced collateral formation, but now without affecting vascular patterning, and the effects remained in adulthood. Endothelial-specific Vegf reduction had no effect on collaterogenesis. Endothelial-specific reduction of a disintegrin-and-metalloprotease-domain-10 (Adam10) and inhibition of γ-secretase increased collateral formation, consistent with their roles in VEGF-induced Notch1 activation and suppression of “pro-sprouting” signals. Endothelial-specific knockdown of Adam17 reduced collateral formation, consistent with its roles in endothelial cell migration and embryonic vascular stabilization, but not in activation of ligand-bound Notch1. These effects also remained in adulthood.
Formation of pial collaterals occurs during a narrow developmental window via a sprouting angiogenesis-like mechanism, requires paracrine VEGF-stimulation of Flk1-Notch signaling, and adult collateral number is dependent on embryonic collaterogenesis.
PMCID: PMC3518639  PMID: 22965144
collateral; angiogenesis; VEGF; ADAM; embryo
23.  Aflibercept in wet AMD: specific role and optimal use 
Vascular endothelial growth factor (VEGF) is a naturally occurring glycoprotein in the body that acts as a growth factor for endothelial cells. It regulates angiogenesis, enhances vascular permeability, and plays a major role in wet age-related macular degeneration. The consistent association between choroidal neovascularization and increased VEGF expression provides a strong reason for exploring the therapeutic potential of anti-VEGF agents in the treatment of this disorder. Blockade of VEGF activity is currently the most effective strategy for arresting choroidal angiogenesis and reducing vascular permeability, which is frequently the main cause of visual acuity deterioration. In recent years, a number of other molecules have been developed to increase the efficacy and to prolong the durability of the anti-VEGF effect. Aflibercept (EYLEA®; Regeneron Pharmaceutical Inc and Bayer), also named VEGF Trap-eye, is the most recent member of the anti-VEGF armamentarium that was approved by the US Food and Drug Administration in November 2011. Because of its high binding affinity and long duration of action, this drug is considered to be a promising clinically proven anti-VEGF agent for the treatment of wet maculopathy.
This article reviews the current literature and clinical trial data regarding the efficacy and the pharmacological properties of VEGF-Trap eye and describes the possible advantages of its use over the currently used “older” anti-VEGF drugs.
For this review, a search of PubMed from January 1989 to May 2013 was performed using the following terms (or combination of terms): vascular endothelial growth factors, VEGF, age-related macular degeneration, VEGF-Trap eye in wet AMD, VEGF-Trap eye in diabetic retinopathy, VEGF-Trap eye in retinal vein occlusions, aflibercept. Studies were limited to those published in English.
Results and conclusion
Two Phase III clinical trials, VEGF Trap-eye Investigation of Efficacy and Safety in Wet AMD (VIEW) 1 and 2, comparing VEGF Trap-eye to ranibizumab demonstrated the noninferiority of this novel compound. The clinical equivalence of this compound against ranibizumab is maintained even when the injections are administered at 8-week intervals, which indicates the potential to reduce the risk of monthly intravitreal injections and the burden of monthly monitoring.
PMCID: PMC3749085  PMID: 23990705
aflibercept; AMD; neovascularization; VEGF; VEGF inhibition; VEGF-Trap eye
24.  Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation 
The Journal of Experimental Medicine  2010;207(10):2255-2269.
The role of lymphangiogenesis in inflammation has remained unclear. To investigate the role of lymphatic versus blood vasculature in chronic skin inflammation, we inhibited vascular endothelial growth factor (VEGF) receptor (VEGFR) signaling by function-blocking antibodies in the established keratin 14 (K14)–VEGF-A transgenic (Tg) mouse model of chronic cutaneous inflammation. Although treatment with an anti–VEGFR-2 antibody inhibited skin inflammation, epidermal hyperplasia, inflammatory infiltration, and angiogenesis, systemic inhibition of VEGFR-3, surprisingly, increased inflammatory edema formation and inflammatory cell accumulation despite inhibition of lymphangiogenesis. Importantly, chronic Tg delivery of the lymphangiogenic factor VEGF-C to the skin of K14-VEGF-A mice completely inhibited development of chronic skin inflammation, epidermal hyperplasia and abnormal differentiation, and accumulation of CD8 T cells. Similar results were found after Tg delivery of mouse VEGF-D that only activates VEGFR-3 but not VEGFR-2. Moreover, intracutaneous injection of recombinant VEGF-C156S, which only activates VEGFR-3, significantly reduced inflammation. Although lymphatic drainage was inhibited in chronic skin inflammation, it was enhanced by Tg VEGF-C delivery. Together, these results reveal an unanticipated active role of lymphatic vessels in controlling chronic inflammation. Stimulation of functional lymphangiogenesis via VEGFR-3, in addition to antiangiogenic therapy, might therefore serve as a novel strategy to treat chronic inflammatory disorders of the skin and possibly also other organs.
PMCID: PMC2947063  PMID: 20837699
25.  (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer 
AIM: To demonstrate that (-)-Epigallocatechin-3-gallate (EGCG) inhibits vascular endothelial growth factor (VEGF) expression and angiogenesis induced by interleukin-6 (IL-6) via suppressing signal transducer and activator of transcription 3 (Stat3) activity in gastric cancer.
METHODS: Human gastric cancer (AGS) cells were treated with IL-6 (50 ng/mL) and EGCG at different concentrations. VEGF, total Stat3 and activated Stat3 protein levels in the cell lyses were examined by Western blotting, VEGF protein level in the conditioned medium was measured by enzyme-linked immunosorbent assay, and the level of VEGF mRNA was evaluated by reverse transcription polymerase chain reaction (RT-PCR). Stat3 nuclear translocation was determined by Western blotting with nuclear extract, and Stat3-DNA binding activity was examined with Chromatin immunoprecipitation (ChIP) assay. IL-6 induced endothelial cell proliferation was measured with 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazoliumbromide assay, in vitro angiogenesis was determined with endothelial cell tube formation assay in Matrigel, and IL-6-induced angiogenesis in vitro was measured with Matrigel plug assay.
RESULTS: There was a basal expression and secretion of VEGF in AGS cells. After stimulation with IL-6, VEGF expression was apparently up-regulated and a 2.4-fold increase was observed. VEGF secretion in the conditioned medium was also increased by 2.8 folds. When treated with EGCG, VEGF expression and secretion were dose-dependently decreased. IL-6 also increased VEGF mRNA expression by 3.1 folds. EGCG treatment suppressed VEGF mRNA expression in a dose-dependent manner. EGCG dose-dependently inhibited Stat3 activation induced by IL-6, but did not change the total Stat3 expression. When treated with EGCG or AG490, VEGF expressions were reduced to the level or an even lower level in the tumor cells not stimulated with IL-6. However, PD98059 and LY294002 did not change VEGF expression induced by IL-6. EGCG inhibited Stat3 nucleus translocation, and Stat3-DNA binding activity was also markedly decreased by EGCG. Furthermore, EGCG inhibited IL-6 induced vascular endothelial cell proliferation and tube formation in vitro and angiogenesis in vitro.
CONCLUSION: EGCG inhibits IL-6-induced VEGF expression and angiogenesis via suppressing Stat3 activity in gastric cancer, which has provided a novel mechanistic insight into the anti-angiogenic activity of EGCG.
PMCID: PMC3098399  PMID: 21633597
Epigallocatechin-3-gallate; Vascular endothelial growth factor; Signal transducer and activator of transcription 3; Angiogenesis; Gastric cancer

Results 1-25 (1154638)