Search tips
Search criteria

Results 1-25 (1014009)

Clipboard (0)

Related Articles

1.  TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J 
The Notch-driven transcription factor RBP-J inhibits osteoclast formation in response to TNF.
Tumor necrosis factor (TNF) plays a key role in the pathogenesis of inflammatory bone resorption and associated morbidity in diseases such as rheumatoid arthritis and periodontitis. Mechanisms that regulate the direct osteoclastogenic properties of TNF to limit pathological bone resorption in inflammatory settings are mostly unknown. Here, we show that the transcription factor recombinant recognition sequence binding protein at the Jκ site (RBP-J) strongly suppresses TNF-induced osteoclastogenesis and inflammatory bone resorption, but has minimal effects on physiological bone remodeling. Myeloid-specific deletion of RBP-J converted TNF into a potent osteoclastogenic factor that could function independently of receptor activator of NF-κB (RANK) signaling. In the absence of RBP-J, TNF effectively induced osteoclastogenesis and bone resorption in RANK-deficient mice. Activation of RBP-J selectively in osteoclast precursors suppressed inflammatory osteoclastogenesis and arthritic bone resorption. Mechanistically, RBP-J suppressed induction of the master regulator of osteoclastogenesis (nuclear factor of activated T cells, cytoplasmic 1) by attenuating c-Fos activation and suppressing induction of B lymphocyte–induced maturation protein-1, thereby preventing the down-regulation of transcriptional repressors such as IRF-8 that block osteoclast differentiation. Thus, RBP-J regulates the balance between activating and repressive signals that regulate osteoclastogenesis. These findings identify RBP-J as a key upstream negative regulator of osteoclastogenesis that restrains excessive bone resorption in inflammatory settings.
PMCID: PMC3280875  PMID: 22249448
2.  IL-27 inhibits human osteoclastogenesis by abrogating RANKL-mediated induction of NFATc1 and suppressing proximal RANK signaling 
Arthritis and rheumatism  2010;62(2):402.
IL-27 has stimulatory and regulatory immune functions and is expressed in rheumatoid arthritis synovium. We investigated the effects of IL-27 on human osteoclastogenesis to determine whether IL-27 can stimulate or attenuate osteoclast-mediated bone resorption that is a hallmark of rheumatoid arthritis.
Osteoclasts were generated from blood-derived human CD14+ cells. The effects of IL-27 on osteoclast formation were evaluated by counting the number of TRAP+ multinucleated cells and measuring expression of osteoclast-related genes. The induction of NFATc1 and the activation of signaling pathways downstream of RANK were measured by immunoblotting. The expression of key molecules implicated in osteoclastogenesis (NFATc1, RANK, costimulatory receptors, ITAM-harboring adaptors) was measured by real time RT-PCR. Murine osteoclast precursors were obtained from bone marrow. Responsiveness to IL-27 of synovial fluid macrophages derived from RA patients was also tested.
IL-27 inhibited human osteoclastogenesis, suppressed the induction of NFATc1, downregulated expression of RANK and TREM-2, and inhibited RANKL-mediated activation of ERK, p38 and NF-κB in osteoclast precursors. Synovial fluid macrophages derived from RA patients were refractory to the effects of IL-27. In contrast to humans, IL-27 only moderately suppressed murine osteoclastogenesis, likely due to low expression of the IL-27 receptor subunit WSX-1 on murine osteoclast precursors.
IL-27 inhibits human osteoclastogenesis by a direct mechanism suppressing responses of osteoclast precursors to RANKL. Our findings suggest that in addition to its well-known anti-inflammatory effects, IL-27 plays a homeostatic role in restraining bone erosion. This homeostatic function is compromised under conditions of chronic inflammation such as RA synovitis.
PMCID: PMC2822027  PMID: 20112358
Osteoclastogenesis; Cytokines; Interleukins; RANKL; Rheumatoid Arthritis
3.  Direct Inhibition of Human RANK+ Osteoclast Precursors Identifies a Homeostatic Function of IL-1β 
IL-1β is a key mediator of bone resorption in inflammatory settings, such as rheumatoid arthritis (RA). IL-1β promotes osteoclastogenesis by inducing RANKL expression on stromal cells and synergizing with RANKL to promote later stages of osteoclast differentiation. Because IL-1Rs share a cytosolic Toll–IL-1R domain and common intracellular signaling molecules with TLRs that can directly inhibit early steps of human osteoclast differentiation, we tested whether IL-1β also has suppressive properties on osteoclastogenesis in primary human peripheral blood monocytes and RA synovial macrophages. Early addition of IL-1β, prior to or together with RANKL, strongly inhibited human osteoclastogenesis as assessed by generation of TRAP+ multinucleated cells. IL-1β acted directly on human osteoclast precursors (OCPs) to strongly suppress expression of RANK, of the costimulatory triggering receptor expressed on myeloid cells 2 receptor, and of the B cell linker adaptor important for transmitting RANK-induced signals. Thus, IL-1β rendered early-stage human OCPs refractory to RANK stimulation. Similar inhibitory effects of IL-1β were observed using RA synovial macrophages. One mechanism of RANK inhibition was IL-1β–induced proteolytic shedding of the M-CSF receptor c-Fms that is required for RANK expression. These results identify a homeostatic function of IL-1β in suppressing early OCPs that contrasts with its well-established role in promoting later stages of osteoclast differentiation. Thus, the rate of IL-1–driven bone destruction in inflammatory diseases, such as RA, can be restrained by its direct inhibitory effects on early OCPs to limit the extent of inflammatory osteolysis.
PMCID: PMC3016227  PMID: 20935210
4.  Inhibition of RANK Expression and Osteoclastogenesis by TLRs and IFN-γ in Human Osteoclast Precursors1 
TLRs have been implicated in promoting osteoclast-mediated bone resorption associated with inflammatory conditions. TLRs also activate homeostatic mechanisms that suppress osteoclastogenesis and can limit the extent of pathologic bone erosion associated with infection and inflammation. We investigated mechanisms by which TLRs suppress osteoclastogenesis. In human cell culture models, TLR ligands suppressed osteoclastogenesis by inhibiting expression of receptor activator of NF-κB (RANK), thereby making precursor cells refractory to the effects of RANKL. Similar but less robust inhibition of RANK expression was observed in murine cells. LPS suppressed generation of osteoclast precursors in mice in vivo, and adsorption of LPS onto bone surfaces resulted in diminished bone resorption. Mechanisms that inhibited RANK expression were down-regulation of RANK transcription, and inhibition of M-CSF signaling that is required for RANK expression. TLRs inhibited M-CSF signaling by rapidly down-regulating cell surface expression of the M-CSF receptor c-Fms by a matrix metalloprotease- and MAPK-dependent mechanism. Additionally, TLRs cooperated with IFN-γ to inhibit expression of RANK and of the CSF1R gene that encodes c-Fms, and to synergistically inhibit osteoclastogenesis. Our findings identify a new mechanism of homeostatic regulation of osteoclastogenesis that targets RANK expression and limits bone resorption during infection and inflammation.
PMCID: PMC2783334  PMID: 19890054
5.  IL-10 Suppresses Calcium-mediated Costimulation of RANK Signaling During Human Osteoclast Differentiation by Inhibiting TREM-2 Expression 
Induction of effective osteoclastogenesis by RANK requires costimulation by ITAM-coupled receptors. In humans, the TREM-2 ITAM-coupled receptor plays a key role in bone remodeling, as patients with TREM-2 mutations exhibit defective osteoclastogenesis and bone lesions. We have identified a new rapidly induced costimulatory pathway for RANK signaling that is dependent on TREM-2 and mediated by calcium signaling. TREM-2-dependent calcium signals are required for RANK-mediated activation of CaMKII and downstream MEK and ERK MAPKs that are important for osteoclastogenesis. IL-10 inhibited RANK-induced osteoclastogenesis and selectively inhibited calcium signaling downstream of RANK by inhibiting transcription of TREM-2. Downregulation of TREM-2 expression resulted in diminished RANKL-induced activation of the CaMK-MEK-ERK pathway and decreased expression of the master regulator of osteoclastogenesis NFATc1. These findings provide a new mechanism of inhibition of human osteoclast differentiation. The results also yield insights into crosstalk between ITAM-coupled receptors and heterologous receptors such as RANK, and identify a mechanism by which IL-10 can suppress cellular responses to TNFR family members.
PMCID: PMC2742169  PMID: 19625651
6.  Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors 
Bone remodeling in physiological and pathological conditions represents a balance between bone resorption mediated by osteoclasts and bone formation by osteoblasts. Bone resorption is tightly and dynamically regulated by multiple mediators, including cytokines that act directly on osteoclasts and their precursors, or indirectly by modulating osteoblast lineage cells that in turn regulate osteoclast differentiation. The critical role of cytokines in inducing and promoting osteoclast differentiation, function and survival is covered by the accompanying review by Zwerina and colleagues. Recently, it has become clear that negative regulation of osteoclastogenesis and bone resorption by inflammatory factors and cytokines, downstream signaling pathways, and a newly described network of transcriptional repressors plays a key role in bone homeostasis by fine tuning bone remodeling and restraining excessive bone resorption in inflammatory settings. In this review we discuss negative regulators of osteoclastogenesis and mechanisms by which these factors suppress bone resorption.
PMCID: PMC3239342  PMID: 21861861
7.  Interferon regulatory factor 8 regulates bone metabolism by suppressing osteoclastogenesis 
Nature medicine  2009;15(9):1066-1071.
Bone metabolism results from a balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases such as periodontitis and rheumatoid arthritis are characterized by increased bone destruction due to enhanced osteoclastogenesis1,2. Here we report that interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, is a key regulatory molecule for osteoclastogenesis. IRF8 expression in osteoclast precursors was downregulated during the initial phase of osteoclast differentiation induced by receptor activator of nuclear factor κB ligand (RANKL, also called TRANCE, ODF, and OPGL), which is encoded by the Tnfsf11 gene. Mice deficient in IRF8 exhibited severe osteoporosis due to increased numbers of osteoclasts, and enhanced bone destruction following lipopolysaccharide (LPS) administration. Irf8–/– osteoclast precursors underwent increased osteoclastogenesis in response to RANKL and tumor necrosis factor α (TNFα). IRF8 suppressed osteoclastogenesis by inhibiting the function and expression of nuclear factor of activated T cells c1 (NFATc1). Our results show that IRF8 inhibits osteoclast formation under physiological and pathological conditions, and suggest a model where downregulation of inhibitory factors like IRF8 contributes to RANKL-mediated osteoclastogenesis.
PMCID: PMC2755267  PMID: 19718038
8.  Differential Roles of MAPK Kinases MKK3 and MKK6 in Osteoclastogenesis and Bone Loss 
PLoS ONE  2014;9(1):e84818.
Bone mass is maintained by osteoclasts that resorb bone and osteoblasts that promote matrix deposition and mineralization. Bone homeostasis is altered in chronic inflammation as well as in post-menopausal loss of estrogen, which favors osteoclast activity that leads to osteoporosis. The MAPK p38α is a key regulator of bone loss and p38 inhibitors preserve bone mass by inhibiting osteoclastogenesis. p38 function is regulated by two upstream MAPK kinases, namely MKK3 and MKK6. The goal of this study was to assess the effect of MKK3- or MKK6-deficiency on osteoclastogenesis in vitro and on bone loss in ovariectomy-induced osteoporosis in mice. We demonstrated that MKK3 but not MKK6, regulates osteoclast differentiation from bone marrow cells in vitro. Expression of NFATc1, a master transcription factor in osteoclastogenesis, is decreased in cells lacking MKK3 but not MKK6. Expression of osteoclast-specific genes Cathepsin K, osteoclast-associated receptor and MMP9, was inhibited in MKK3−/− cells. The effect of MKK-deficiency on ovariectomy-induced bone loss was then evaluated in female WT, MKK3−/− and MKK6−/− mice by micro-CT analysis. Bone loss was partially inhibited in MKK3−/− as well as MKK6−/− mice, despite normal osteoclastogenesis in MKK6−/− cells. This correlated with the lower osteoclast numbers in the MKK-deficient ovariectomized mice. These studies suggest that MKK3 and MKK6 differentially regulate bone loss due to estrogen withdrawal. MKK3 directly mediates osteoclastogenesis while MKK6 likely contributes to pro-inflammatory cytokine production that promotes osteoclast formation.
PMCID: PMC3882259  PMID: 24400116
9.  The Newly Discovered Cytokine IL-34 Is Expressed in Gingival Fibroblasts, Shows Enhanced Expression by Pro-Inflammatory Cytokines, and Stimulates Osteoclast Differentiation 
PLoS ONE  2013;8(12):e81665.
Interleukin-34 (IL-34) is a recently discovered cytokine functionally overlapping macrophage colony stimulating factor (M-CSF), a mediator of inflammation and osteoclastogenesis in bone-degenerative diseases such as rheumatoid arthritis. The objective of this study was to assess the expression of IL-34 in human gingival fibroblasts and investigate if the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and Interleukin-1Β (IL-1β) modulate its expression, and moreover if IL-34 could contribute to recruitment of bone-resorbing osteoclasts.
IL-34 expression was evaluated in gingival fibroblasts by real time PCR following stimulation by TNF-α, IL-1β, and treatment with inhibitors of intracellular pathways. The formation of osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining of bone marrow macrophages treated with IL-34 or M-CSF in addition to receptor activator of nuclear factor kappa-B ligand (RANKL).
IL-34 was expressed in gingival fibroblasts. The expression was enhanced by TNF-α and IL-1β, regulated by the transcription factor nuclear factor kappa B (NF-κΒ) and activation of c-Jun N-terminal kinase (JNK). Further, IL-34 supports RANKL-induced osteoclastogensis of bone marrow macrophages, independently of M-CSF.
In conclusion, this study shows for the first time IL-34 expression in human gingival fibroblasts, stimulated by TNF-α and IL-1β, key mediators of periodontal inflammation. Furthermore, IL-34 can be substituted for M-CSF in RANKL-induced osteoclastogenesis. IL-34 may contribute to inflammation and osteoclastogenesis in bone-degenerative diseases such as periodontitis.
PMCID: PMC3858262  PMID: 24339952
10.  A DNA Microarray Analysis of Chemokine and Receptor Genes in the Rat Dental Follicle – Role of Secreted Frizzled-Related Protein-1 in Osteoclastogenesis 
Bone  2007;41(2):266-272.
The dental follicle, a loose connective tissue sac that surrounds the unerupted tooth, appears to regulate the osteoclastogenesis needed for eruption; i.e., bone resorption to form an eruption pathway. Thus, DNA microarray studies were conducted to determine which chemokines and their receptors were expressed chronologically in the dental follicle, chemokines that might attract osteoclast precursors. In the rat first mandibular molar, a major burst of osteoclastogenesis occurs at day 3 with a minor burst at day 10. The results of the microarray confirmed our previous studies showing the gene expression of molecules such as CSF-1 and MCP-1 in the dental follicle cells. Other new genes also were detected, including secreted frizzled-related protein-1 (SFRP-1), which was found to be down-regulated at days 3 and 9. Using rat bone marrow cultures to conduct in vitro osteoclastogenic assays, it was demonstrated that SFRP-1 inhibited osteoclast formation in a concentration-dependent fashion. However, with increasing concentrations of SFRP-1, the number of TRAP-positive mononuclear cells increased suggesting that SFRP-1 inhibits osteoclast formation by inhibiting the fusion of mononuclear cells (osteoclast precursors). Co-culturing bone marrow mononuclear cells and dental follicle cells demonstrated that the dental follicle cells were secreting a product(s) that inhibited osteoclastogenesis, as measured by counting of TRAP-positive osteoclasts. Adding an antibody either to SFRP-1 or OPG partially restored osteoclastogenesis. Adding both anti-SFRP-1 and anti-OPG fully negated the inhibitory effect of the follicle cells upon osteoclastogenesis. These results strongly suggest that SFRP-1 and OPG, both secreted by the dental follicle cells, use different pathways to exert their inhibitory effect on osteoclastogenesis. Based on these in vitro studies of osteoclastogenesis, it is likely that the down-regulation of SFRP-1 gene expression in the dental follicle at days 3 and 9 is a contributory factor in allowing the major and minor bursts of osteoclastogenesis to occur. Thus, inhibition of SFRP-1 gene expression in combination with inhibition of OPG gene expression likely are critical events in enabling alveolar bone resorption to occur such that teeth will erupt.
PMCID: PMC2023965  PMID: 17540629
Dental follicle; Microarray; Osteoclastogenesis; SFRP-1; Tooth eruption
11.  Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes 
Osteoclastogenesis plays an important role in the bone erosion of rheumatoid arthritis (RA). Recently, Notch receptors have been implicated in the development of osteoclasts. However, the responsible Notch ligands have not been identified yet. This study was undertaken to determine the role of individual Notch receptors and ligands in osteoclastogenesis.
Mouse bone marrow-derived macrophages or human peripheral blood monocytes were used as osteoclast precursors and cultured with receptor activator of nuclear factor-kappaB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF) to induce osteoclasts. Osteoclasts were detected by tartrate-resistant acid phosphatase (TRAP) staining. K/BxN serum-induced arthritic mice and ovariectomized mice were treated with anti-mouse Delta-like 1 (Dll1) blocking monoclonal antibody (mAb).
Blockade of a Notch ligand Dll1 with mAb inhibited osteoclastogenesis and, conversely, immobilized Dll1-Fc fusion protein enhanced it in both mice and humans. In contrast, blockade of a Notch ligand Jagged1 enhanced osteoclastogenesis and immobilized Jagged1-Fc suppressed it. Enhancement of osteoclastogenesis by agonistic anti-Notch2 mAb suggested that Dll1 promoted osteoclastogenesis via Notch2, while suppression by agonistic anti-Notch1 mAb suggested that Jagged1 suppressed osteoclastogenesis via Notch1. Inhibition of Notch signaling by a gamma-secretase inhibitor suppressed osteoclastogenesis, implying that Notch2/Dll1-mediated enhancement was dominant. Actually, blockade of Dll1 ameliorated arthritis induced by K/BxN serum transfer, reduced the number of osteoclasts in the affected joints and suppressed ovariectomy-induced bone loss.
The differential regulation of osteoclastogenesis by Notch2/Dll1 and Notch1/Jagged1 axes may be a novel target for amelioration of bone erosion in RA patients.
PMCID: PMC3446412  PMID: 22390640
12.  Bone Impairment in Phenylketonuria Is Characterized by Circulating Osteoclast Precursors and Activated T Cell Increase 
PLoS ONE  2010;5(11):e14167.
Phenylketonuria (PKU) is a rare inborn error of metabolism often complicated by a progressive bone impairment of uncertain etiology, as documented by both ionizing and non- ionizing techniques.
Peripheral blood mononuclear cell (PBMC) cultures were performed to study osteoclastogenesis, in the presence or absence of recombinant human monocyte-colony stimulating factor (M-CSF) and receptor activator of NFκB ligand (RANKL). Flow cytometry was utilized to analyze osteoclast precursors (OCPs) and T cell phenotype. Tumour necrosis factor α (TNF-α), RANKL and osteoprotegerin (OPG) were quantified in cell culture supernatants by ELISA. The effects of RANKFc and anti-TNF-α antibodies were also investigated to determine their ability to inhibit osteoclastogenesis. In addition, bone conditions and phenylalanine levels in PKU patients were clinically evaluated.
Principal Findings
Several in vitro studies in PKU patients' cells identified a potential mechanism of bone formation inhibition commonly associated with this disorder. First, PKU patients disclosed an increased osteoclastogenesis compared to healthy controls, both in unstimulated and M-CSF/RANKL stimulated PBMC cultures. OCPs and the measured RANKL/OPG ratio were higher in PKU patients compared to healthy controls. The addition of specific antagonist RANKFc caused osteoclastogenesis inhibition, whereas anti-TNF-α failed to have this effect. Among PBMCs isolated from PKU patients, activated T cells, expressing CD69, CD25 and RANKL were identified. Confirmatory in vivo studies support this proposed model. These in vivo studies included the analysis of osteoclastogenesis in PKU patients, which demonstrated an inverse relation to bone condition assessed by phalangeal Quantitative Ultrasound (QUS). This was also directly related to non-compliance to therapeutic diet reflected by hyperphenylalaninemia.
Our results indicate that PKU spontaneous osteoclastogenesis depends on the circulating OCP increase and the activation of T cells. Osteoclastogenesis correlates with clinical parameters, suggesting its value as a diagnostic tool for an early assessment of an increased bone resorption in PKU patients.
PMCID: PMC2994752  PMID: 21152388
13.  Macrophage-Elicited Osteoclastogenesis in Response to Bacterial Stimulation Requires Toll-Like Receptor 2-Dependent Tumor Necrosis Factor-Alpha Production▿  
Infection and Immunity  2007;76(2):812-819.
The receptor activator of NF-κB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodontal disease. However, the contribution of macrophage-expressed TLRs to osteoclastogenesis has not been defined. In this study, we defined a requirement for TLR2 in tumor necrosis factor-alpha (TNF-α)-elicited osteoclastogenesis in response to exposure to P. gingivalis. Culture supernatant (CS) fluids from P. gingivalis-stimulated macrophages induced bone marrow macrophage-derived osteoclastogenesis. This activity was dependent on TNF-α and occurred independently of RANKL, interleukin-1β (IL-1β), and IL-6. CS fluids from P. gingivalis-stimulated TLR2−/− macrophages failed to express TNF-α, and these fluids induced significantly less osteoclast formation compared with that of the wild-type or the TLR4−/− macrophages. In addition, P. gingivalis exposure induced up-regulation of TLR2 expression on the cell surface of macrophages, which was demonstrated to functionally react to reexposure to P. gingivalis, as measured by a further increase in TNF-α production. These results demonstrate that macrophage-dependent TLR2 signaling is crucial for TNF-α-dependent/RANKL-independent osteoclastogenesis in response to P. gingivalis infection. Furthermore, the ability of P. gingivalis to induce the cell surface expression of TLR2 may contribute to the chronic inflammatory state induced by this pathogen.
PMCID: PMC2223461  PMID: 17998311
14.  Impact of Docosahexaenoic Acid on Gene Expression during Osteoclastogenesis in Vitro—A Comprehensive Analysis 
Nutrients  2013;5(8):3151-3162.
Polyunsaturated fatty acids (PUFAs), especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL) in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.
PMCID: PMC3775247  PMID: 23945674
polyunsaturated fatty acid; docosahexaenoic acid; osteoclast
15.  The Hemoglobin Receptor Protein of Porphyromonas gingivalis Inhibits Receptor Activator NF-κB Ligand-Induced Osteoclastogenesis from Bone Marrow Macrophages  
Infection and Immunity  2006;74(5):2544-2551.
Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-κB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-κB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-β) from bone marrow macrophages, but the induction level of IFN-β might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-β-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.
PMCID: PMC1459701  PMID: 16622189
16.  Interactomics profiling of the negative regulatory function of carbon monoxide on RANKL-treated RAW 264.7 cells during osteoclastogenesis 
BMC Systems Biology  2014;8:57.
During osteoclastogenesis, the maturation of osteoclast (OC) progenitors is stimulated by the receptor activator of nuclear factor-κB ligand (RANKL). Excess OC production plays a critical role in the pathogenesis of inflammatory bone disorders. Conversely, the inhibition of abnormal OC proliferation reduces inflammation-induced bone loss. Low concentrations of carbon monoxide (CO) are known to decrease inflammation and OC-mediated bone erosion but the molecular mechanism is unknown.
To obtain insight into the biological function of CO, cultured RANKL-treated RAW 264.7 cells were used in an in vitro experimental model of osteoclastogenesis. The results showed that CO inhibited: 1) tartrate-resistant acid phosphatase (TRAP)-positive cell formation; 2) F-actin ring production; 3) c-fos pathway activation; 4) the expression of cathepsin K, TRAP, calcitonin receptor, and matrix metalloproteinase-9 mRNAs; 5) the expression of nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 in translation. Protein-protein interaction analysis predicted mitogen-activated protein kinase kinase kinase 4 as the controlling hub.
Low-concentrations of CO (250 ppm) may inhibit osteoclastogenesis. Data from STRING- and IPA-based interactome analyses suggested that the expression of proteins with the functions of signal transduction, enzymes, and epigenetic regulation are significantly altered by CO during RANKL-induced osteoclastogenesis. Our study provides the first interactome analysis of osteoclastogenesis, the results of which supported the negative regulation of OC differentiation by CO.
PMCID: PMC4052347  PMID: 24886323
Carbon monoxide; Osteoclastogenesis; Interactome; RANKL; RAW 264.7
17.  Temporal differential effects of proinflammatory cytokines on osteoclastogenesis 
Bone destruction and inflammation are closely linked. Cytokines play an important role in inflammatory bone destruction by upregulating the receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). The direct role of cytokines that act in a non-RANKL-dependent manner has yet to be elucidated. The aim of this study was to investigate the direct osteoclastogenic properties of inflammatory cytokines at different time-points of osteoclastogenesis. Mouse bone marrow macrophages were stimulated with the macrophage colony-stimulating factor (M-CSF) and various concentrations of RANKL. Inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-17 and IL-23, were added to the culture system of osteoclastogenesis. Two time-points of cytokine treatment were set. The ‘early’ effect of each cytokine was investigated at the time of first RANKL treatment, whereas the ‘late’ effect was investigated 48 h after the first RANKL challenge. Osteoclast differentiation and function were assessed using an osteoclast marker [tartrate-resistant acid phosphatase (TRAP)] and by visualization of pit formation. A permissive level of RANKL was required for cytokine-associated osteoclastogenesis in all experiments. In the M-CSF/RANKL monocellular culture system, IL-1β enhanced and IL-6 decreased osteoclast formation in a dose-dependent manner, regardless of temporal differences. Other cytokines showed various responses according to the phase of osteoclast maturation and the concentration of each cytokine and RANKL. Furthermore, luciferase assays showed that both IL-1β and RANKL activated the NF-κB signaling pathway. Collectively, our data revealed that targeting IL-1β may be a promising strategy to inhibit inflammation-associated bone destruction and osteoporosis.
PMCID: PMC3621814  PMID: 23403591
inflammation; osteoclast; receptor activator nuclear factor-κB ligand; interleukin-1β; interleukin-6; nuclear factor-κB
18.  Stimulation of Osteoclast Formation by RANKL Requires Interferon Regulatory Factor-4 and Is Inhibited by Simvastatin in a Mouse Model of Bone Loss 
PLoS ONE  2013;8(9):e72033.
Diseases of bone loss are a major public health problem. Here, we report the novel therapeutic action of simvastatin in osteoclastogenesis and osteoprotection, demonstrated by the ability of simvastatin to suppress osteoclast formation in vitro and in vivo. We found that in vitro, IRF4 expression is upregulated during osteoclast differentiation induced by RANKL (receptor activator of nuclear factor-κB ligand), while simvastatin blocks RANKL-induced osteoclastogenesis and decreases expression of NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1), IRF4 and osteoclast markers. We also show that IRF4 acts in cooperation with NFATc2 and NF-κB on the promoter region of NFATc1 to accelerate its initial transcription during the early stage of osteoclastogenesis. Moreover, our study using IRF4 siRNA knockdown directly demonstrates the requirement for IRF4 in NFATc1 mRNA transcription and its necessity in RANKL-induced osteoclast differentiation. Our results suggest that the reduction in osteoclastogenesis is partly due to the inhibition of IRF4 production in RANKL-induced osteoclast differentiation. To investigate the in vivo effects of simvastatin in RANKL-treated mice, we examined the bone mineral density (BMD) of a mouse model of bone loss, and found that simvastatin significantly reduced bone loss by suppressing osteoclast numbers in vivo, even in the presence of high concentrations of RANKL. These results suggest that the depletion of osteoclasts is not due to the reduction in RANKL produced by osteoblasts in vivo. The results are consistent with the hypothesis that simvastatin blocks RANKL-induced IRF4 expression in osteoclastogenesis. We propose that the expression of IRF4 by osteoclasts could be a promising new therapeutic target in bone-loss diseases.
PMCID: PMC3770656  PMID: 24039733
19.  Molecular Mechanism of Thiazolidinedione-Mediated Inhibitory Effects on Osteoclastogenesis 
PLoS ONE  2014;9(7):e102706.
Thiazolidinediones are synthetic peroxisome proliferator-activated receptor γ agonists used to treat type 2 diabetes mellitus. Clinical evidence indicates that thiazolidinediones increase fracture risks in type 2 diabetes mellitus patients, but the mechanism by which thiazolidinediones augment fracture risks is not fully understood. Several groups recently demonstrated that thiazolidinediones stimulate osteoclast formation, thus proposing that thiazolidinediones induce bone loss in part by prompting osteoclastogenesis. However, numerous other studies showed that thiazolidinediones inhibit osteoclast formation. Moreover, the molecular mechanism by which thiazolidinediones modulate osteoclastogenesis is not fully understood. Here we independently address the role of thiazolidinediones in osteoclastogenesis in vitro and furthermore investigate the molecular mechanism underlying the in vitro effects of thiazolidinediones on osteoclastogenesis. Our in vitro data indicate that thiazolidinediones dose-dependently inhibit osteoclastogenesis from bone marrow macrophages, but the inhibitory effect is considerably reduced when bone marrow macrophages are pretreated with RANKL. In vitro mechanistic studies reveal that thiazolidinediones inhibit osteoclastogenesis not by impairing RANKL-induced activation of the NF-κB, JNK, p38 and ERK pathways in bone marrow macrophages. Nonetheless, thiazolidinediones inhibit osteoclastogenesis by suppressing RANKL-induced expression of NFATc1 and c-Fos, two key transcriptional regulators of osteoclastogenesis, in bone marrow macrophages. In addition, thiazolidinediones inhibit the RANKL-induced expression of osteoclast genes encoding matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphatase and carbonic anhydrase II in bone marrow macrophages. However, the ability of thiazolidinediones to inhibit the expression of NFATc1, c-Fos and the four osteoclast genes is notably weakened in RANKL-pretreated bone marrow macrophages. These in vitro studies have not only independently demonstrated that thiazolidinediones exert inhibitory effects on osteoclastogenesis but have also revealed crucial new insights into the molecular mechanism by which thiazolidinediones inhibit osteoclastogenesis.
PMCID: PMC4102552  PMID: 25032991
20.  Ubiquitin-Like Domain of IKKβ Regulates Osteoclastogenesis and Osteolysis 
Calcified tissue international  2013;93(1):78-85.
The transcription factor NF-κB family is central for osteoclastogenesis and inflammatory osteolysis. Activation of NF-κB dimers is regulated by a kinase complex predominantly containing IKKα (IKK1), IKKβ (IKK2), and a regulatory subunit, IKKγ/NEMO. IKKα and IKKβ catalyze the cytoplasmic liberation and nuclear translocation of various NF-κB subunits. The requirement of IKKα and IKKβ for normal bone homeostasis has been established. Congruently, mice devoid of IKKα or IKKβ exhibit in vitro and in vivo defects in osteoclastogenesis, and IKKβ-null mice are refractory to inflammatory arthritis and osteolysis. To better understand the molecular mechanism underlying IKKβ function in bone homeostasis and bone pathologies, we conducted structure-function analysis to determine IKKβ functional domains in osteoclasts. IKKβ encompasses several domains, of which, the ubiquitination-like domain (ULD) has been shown essential for IKKβ activation. In this study, we examined the role of ULD in IKKβ-mediated NF-κB activation in osteoclast precursors and its contribution to osteoclastogenesis and osteolysis. We generated and virally introduced IKKβ in which the ULD domain has been deleted (IKKβΔULD) into osteoclast progenitors. The results show that deletion of ULD diminishes IKKβ activity and that IKKβΔULD strongly inhibits osteoclastogenesis. In addition, unlike wild-type (WT)-IKKβ, IKKβΔULD fail to restore RANKL-induced osteoclastogenesis by IKKβ-null precursors. Finally, we provide evidence that IKKβΔULD blocks inflammatory osteolysis in a model of murine calvarial osteolysis. Thus, we identified the ULD as crucial for IKKβ activity and osteoclastogenesis and that ULD-deficient IKKβ is a potent inhibitor of osteoclastogenesis and osteolysis.
PMCID: PMC3706195  PMID: 23686246
IKKβ; Ubiquitin; Osteoclast; Osteolysis
21.  Magnolol Ameliorates Ligature-Induced Periodontitis in Rats and Osteoclastogenesis: In Vivo and In Vitro Study 
Periodontal disease characterized by alveolar bone resorption and bacterial pathogen-evoked inflammatory response has been believed to have an important impact on human oral health. The aim of this study was to evaluate whether magnolol, a main constituent of Magnolia officinalis, could inhibit the pathological features in ligature-induced periodontitis in rats and osteoclastogenesis. The sterile, 3–0 (diameter; 0.2 mm) black braided silk thread, was placed around the cervix of the upper second molars bilaterally and knotted medially to induce periodontitis. The morphological changes around the ligated molars and alveolar bone were examined by micro-CT. The distances between the amelocemental junction and the alveolar crest of the upper second molars bilaterally were measured to evaluate the alveolar bone loss. Administration of magnolol (100 mg/kg, p.o.) significantly inhibited alveolar bone resorption, the number of osteoclasts on bony surface, and protein expression of receptor activator of nuclear factor-κB ligand (RANKL), a key mediator promoting osteoclast differentiation, in ligated rats. Moreover, the ligature-induced neutrophil infiltration, expression of inducible nitric oxide synthase, cyclooxygenase-2, matrix metalloproteinase (MMP)-1 and MMP-9, superoxide formation, and nuclear factor-κB activation in inflamed gingival tissues were all attenuated by magnolol. In the in vitro study, magnolol also inhibited the growth of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans that are key pathogens initiating periodontal disease. Furthermore, magnolol dose dependently reduced RANKL-induced osteoclast differentiation from RAW264.7 macrophages, tartrate-resistant acid phosphatase (TRAP) activity of differentiated cells accompanied by a significant attenuation of resorption pit area caused by osteoclasts. Collectively, we demonstrated for the first time that magnolol significantly ameliorates the alveolar bone loss in ligature-induced experimental periodontitis by suppressing periodontopathic microorganism accumulation, NF-κB-mediated inflammatory mediator synthesis, RANKL formation, and osteoclastogenesis. These activities support that magnolol is a potential agent to treat periodontal disease.
PMCID: PMC3618931  PMID: 23573141
22.  The Large Zinc Finger Protein ZAS3 Is a Critical Modulator of Osteoclastogenesis 
PLoS ONE  2011;6(3):e17161.
Mice deficient in the large zinc finger protein, ZAS3, show postnatal increase in bone mass suggesting that ZAS3 is critical in the regulation of bone homeostasis. Although ZAS3 has been shown to inhibit osteoblast differentiation, its role on osteoclastogenesis has not been determined. In this report we demonstrated the role of ZAS3 in bone resorption by examining the signaling mechanisms involved in osteoclastogenesis.
Methodology/Principal Findings
Comparison of adult wild-type and ZAS3 knockout (ZAS3−/−) mice showed that ZAS3 deficiency led to thicker bones that are more resistant to mechanical fracture. Additionally, ZAS3−/− bones showed fewer osteoclasts and inefficient M-CSF/sRANKL-mediated osteoclastogenesis ex vivo. Utilizing RAW 264.7 pre-osteoclasts, we demonstrated that overexpression of ZAS3 promoted osteoclastogenesis and the expression of crucial osteoclastic molecules, including phospho-p38, c-Jun, NFATc1, TRAP and CTSK. Contrarily, ZAS3 silencing by siRNA inhibited osteoclastogenesis. Co-immunoprecipitation experiments demonstrated that ZAS3 associated with TRAF6, the major receptor associated molecule in RANK signaling. Furthermore, EMSA suggested that nuclear ZAS3 could regulate transcription by binding to gene regulatory elements.
Collectively, the data suggested a novel role of ZAS3 as a positive regulator of osteoclast differentiation. ZAS3 deficiency caused increased bone mass, at least in part due to decreased osteoclast formation and bone resorption. These functions of ZAS3 were mediated via activation of multiple intracellular targets. In the cytoplasmic compartment, ZAS3 associated with TRAF6 to control NF-kB and MAP kinase signaling cascades. Nuclear ZAS3 acted as a transcriptional regulator for osteoclast-associated genes. Additionally, ZAS3 activated NFATc1 required for the integration of RANK signaling in the terminal differentiation of osteoclasts. Thus, ZAS3 was a crucial molecule in osteoclast differentiation, which might potentially serve as a target in the design of therapeutic interventions for the treatment of bone diseases related to increased osteoclast activity such as postmenopausal osteoporosis, Paget's disease, and rheumatoid arthritis.
PMCID: PMC3048431  PMID: 21390242
23.  Noncanonical G-Protein-Dependent Modulation of Osteoclast Differentiation and Bone Resorption Mediated by Pasteurella multocida Toxin 
mBio  2014;5(6):e02190-14.
Pasteurella multocida toxin (PMT) induces atrophic rhinitis in animals, which is characterized by a degradation of nasal turbinate bones, indicating an effect of the toxin on bone cells such as osteoblasts and osteoclasts. The underlying molecular mechanism of PMT was defined as a persistent activation of heterotrimeric G proteins by deamidation of a specific glutamine residue. Here, we show that PMT acts directly on osteoclast precursor cells such as bone marrow-derived CD14+ monocytes and RAW246.7 cells to induce osteoclastogenesis as measured by expression of osteoclast-specific markers such as tartrate-resistant acid phosphatase and bone resorption activity. Treatment performed solely with PMT stimulates osteoclast differentiation, showing a receptor activator of nuclear factor-κB ligand (RANKL)-independent action of the toxin. The underlying signal transduction pathway was defined as activation of the heterotrimeric G proteins Gαq/11 leading to the transactivation of Ras and the mitogen-activated protein kinase pathway. Gαq/11 transactivates Ras via its effector phospholipase Cβ-protein kinase C (PKC) involving proline-rich tyrosine kinase 2 (Pyk2). PMT-induced activation of the mitogen-activated protein kinase pathway results in stimulation of the osteoclastogenic transcription factors AP-1, NF-κB, and NFATc1. In addition, Ca2+-dependent calcineurin activation of NFAT is crucial for PMT-induced osteoclastogenesis. The data not only elucidate a rationale for PMT-dependent bone loss during atrophic rhinitis but also highlight a noncanonical, G-protein-dependent pathway toward bone resorption that is distinct from the RANKL-RANK pathway but mimics it. We define heterotrimeric G proteins as as-yet-underestimated entities/players in the maturation of osteoclasts which might be of pharmacological relevance.
Pasteurella multocida toxin (PMT) induces degradation of nasal turbinate bones, leading to the syndrome of atrophic rhinitis. Recently, the molecular mechanism and substrate specificity of PMT were identified. The toxin activates heterotrimeric G proteins by a covalent modification. However, the mechanism by which PMT induces bone degradation is poorly understood. Our report demonstrates a direct effect of PMT on osteoclast precursor cells, leading to maturation of bone-degrading osteoclasts. Interestingly, PMT stimulates osteoclastogenesis independently of the cytokine RANKL, which is a key factor in induction of osteoclast differentiation. This implicates a noncanonical osteoclastogenic signaling pathway induced by PMT. The elucidated Gαq/11-dependent osteoclastogenic signal transduction pathway ends in osteoclastogenic NFAT signaling. The noncanonical, heterotrimeric G protein-dependent osteoclast differentiation process may be of pharmacological relevance, as members of this pathway are highly druggable. In particular, modulation of G protein-coupled receptor activity in osteoclast progenitors by small molecules might be of specific interest.
PMCID: PMC4235216  PMID: 25389180
24.  Inhibition of Osteoclastogenesis by Mechanically Loaded Osteocytes: Involvement of MEPE 
Calcified Tissue International  2010;87(5):461-468.
In regions of high bone loading, the mechanoresponsive osteocytes inhibit osteoclastic bone resorption by producing signaling molecules. One possible candidate is matrix extracellular phosphoglycoprotein (MEPE) because acidic serine- and aspartate-rich MEPE-associated motif peptides upregulate osteoprotegerin (OPG) gene expression, a negative regulator of osteoclastogenesis. These peptides are cleaved from MEPE when relatively more MEPE than PHEX (phosphate-regulating gene with homology to endopeptidases on the X chromosome) is present. We investigated whether mechanical loading of osteocytes affects osteocyte-stimulated osteoclastogenesis by involvement of MEPE. MLO-Y4 osteocytes were mechanically loaded by 1-h pulsating fluid flow (PFF; 0.7 ± 0.3 Pa, 5 Hz) or kept under static control conditions. Recombinant MEPE (0.05, 0.5, or 5 μg/ml) was added to some static cultures. Mouse bone marrow cells were seeded on top of the osteocytes to determine osteoclastogenesis. Gene expression of MEPE, PHEX, receptor activator of nuclear factor kappa-B ligand (RANKL), and OPG by osteocytes was determined after PFF. Osteocytes supported osteoclast formation under static control conditions. Both PFF and recombinant MEPE inhibited osteocyte-stimulated osteoclastogenesis. PFF upregulated MEPE gene expression by 2.5-fold, but not PHEX expression. PFF decreased the RANKL/OPG ratio at 1-h PFF treatment. Our data suggest that mechanical loading induces changes in gene expression by osteocytes, which likely contributes to the inhibition of osteoclastogenesis after mechanical loading of bone. Because mechanical loading upregulated gene expression of MEPE but not PHEX, possibly resulting in the upregulation of OPG gene expression, we speculate that MEPE is a soluble factor involved in the inhibition of osteoclastogenesis by osteocytes.
PMCID: PMC2964475  PMID: 20725825
Osteocytes; Osteoclastogenesis; Fluid shear stress; MEPE; OPG; RANKL
25.  Lactobacillus fermentation enhances the inhibitory effect of Hwangryun-haedok-tang in an ovariectomy-induced bone loss 
Hwangryun-haedok-tang (HRT) is traditional herbal medicine used to treat inflammatory-related diseases in Asia. However, its effect on osteoclastogenesis and bone loss is still unknown. In this study, we evaluated the effect of HRT and its fermented product (fHRT) on the receptor activator for the nuclear factor-κB ligand-induced osteoclastogenesis using murine bone marrow-derived macrophages and postmenopausal bone loss using an ovariectomy (OVX) rat model.
Tartrate resistant acid phosphatase (TRAP) staining was employed to evaluate osteoclast formation. mRNA level of transcription factor and protein levels of signaling molecules were determined by real-time quantitative polymerase chain reaction and Western blot analysis, respectively. Effect of HRT or fHRT on OVX-induced bone loss was evaluated using OVX rats orally administered HRT, or fHRT with 300 mg/kg for 12 weeks. Micro-CT analysis of femora was performed to analyze bone parameter.
HRT or fHRT treatment significantly decreased TRAP activity and the number of TRAP positive multinuclear cells on osteoclastogenesis. Interestingly, these inhibitory effects of HRT were enhanced by fermentation. Furthermore, fHRT significantly inhibited mRNA and protein expression of nuclear factor of activated T cells cytoplasmic 1, which leads to down-regulation of NFATc1-regulated mRNA expressions such as TRAP, the d2 isoform of vacuolar ATPase V(0) domain, and cathepsin K. Administration of fHRT significantly inhibited the decrease of bone mineral density, and improved bone parameter of femora more than that of HRT and vehicle in OVX rats.
This study demonstrated that lactic bacterial fermentation fortifies the inhibitory effect of HRT on osteoclastogenesis and bone loss. These results suggest that fermented HRT might have the beneficial potential on osteoporosis by inhibiting osteoclastogenesis.
PMCID: PMC3694040  PMID: 23680047
Hwangryun-haedok-tang; Lactobacillus curvatus; Osteoclastogenesis; RANKL; Ovariectomy

Results 1-25 (1014009)