Search tips
Search criteria

Results 1-25 (1176986)

Clipboard (0)

Related Articles

1.  The ancient Virus World and evolution of cells 
Biology Direct  2006;1:29.
Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from independent considerations, seem to be the most parsimonious among the existing ones.
Several genes coding for key proteins involved in viral replication and morphogenesis as well as the major capsid protein of icosahedral virions are shared by many groups of RNA and DNA viruses but are missing in cellular life forms. On the basis of this key observation and the data on extensive genetic exchange between diverse viruses, we propose the concept of the ancient virus world. The virus world is construed as a distinct contingent of viral genes that continuously retained its identity throughout the entire history of life. Under this concept, the principal lineages of viruses and related selfish agents emerged from the primordial pool of primitive genetic elements, the ancestors of both cellular and viral genes. Thus, notwithstanding the numerous gene exchanges and acquisitions attributed to later stages of evolution, most, if not all, modern viruses and other selfish agents are inferred to descend from elements that belonged to the primordial genetic pool. In this pool, RNA viruses would evolve first, followed by retroid elements, and DNA viruses. The Virus World concept is predicated on a model of early evolution whereby emergence of substantial genetic diversity antedates the advent of full-fledged cells, allowing for extensive gene mixing at this early stage of evolution. We outline a scenario of the origin of the main classes of viruses in conjunction with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data.
The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes) suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history.
W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.
PMCID: PMC1594570  PMID: 16984643
2.  Mutualistic Polydnaviruses Share Essential Replication Gene Functions with Pathogenic Ancestors 
PLoS Pathogens  2013;9(5):e1003348.
Viruses are usually thought to form parasitic associations with hosts, but all members of the family Polydnaviridae are obligate mutualists of insects called parasitoid wasps. Phylogenetic data founded on sequence comparisons of viral genes indicate that polydnaviruses in the genus Bracovirus (BV) are closely related to pathogenic nudiviruses and baculoviruses. However, pronounced differences in the biology of BVs and baculoviruses together with high divergence of many shared genes make it unclear whether BV homologs still retain baculovirus-like functions. Here we report that virions from Microplitis demolitor bracovirus (MdBV) contain multiple baculovirus-like and nudivirus-like conserved gene products. We further show that RNA interference effectively and specifically knocks down MdBV gene expression. Coupling RNAi knockdown methods with functional assays, we examined the activity of six genes in the MdBV conserved gene set that are known to have essential roles in transcription (lef-4, lef-9), capsid assembly (vp39, vlf-1), and envelope formation (p74, pif-1) during baculovirus replication. Our results indicated that MdBV produces a baculovirus-like RNA polymerase that transcribes virus structural genes. Our results also supported a conserved role for vp39, vlf-1, p74, and pif-1 as structural components of MdBV virions. Additional experiments suggested that vlf-1 together with the nudivirus-like gene int-1 also have novel functions in regulating excision of MdBV proviral DNAs for packaging into virions. Overall, these data provide the first experimental insights into the function of BV genes in virion formation.
Author Summary
Microorganisms form symbiotic associations with animals and plants that range from parasitic (pathogens) to beneficial (mutualists). Although numerous examples of obligate, mutualistic bacteria, fungi, and protozoans exist, viruses are almost always considered to be pathogens. An exception is the family Polydnaviridae, which consists of large DNA viruses that are obligate mutualists of insects called parasitoid wasps. Prior studies show that polydnaviruses in the genus Bracovirus evolved approximately 100 million years ago from a group of viruses called nudiviruses, which are themselves closely related to a large family of insect pathogens called baculoviruses. Polydnaviruses are thus of fundamental interest for understanding the processes by which viruses can evolve into mutualists. In this study we characterized the composition of virus particles from Microplitis demolitor bracovirus (MdBV) and conducted functional experiments to assess whether BV genes share similar functions with related essential baculovirus replication genes. Our results indicate that several genes in MdBV retain ancestral functions, but select other genes have novel functions unknown from baculoviruses. Our results also provide the first experimental data on the function of polydnavirus replication genes and enhance understanding of the similarities between these viruses and their pathogenic ancestors.
PMCID: PMC3649998  PMID: 23671417
3.  Patterns of Evolution and Host Gene Mimicry in Influenza and Other RNA Viruses 
PLoS Pathogens  2008;4(6):e1000079.
It is well known that the dinucleotide CpG is under-represented in the genomic DNA of many vertebrates. This is commonly thought to be due to the methylation of cytosine residues in this dinucleotide and the corresponding high rate of deamination of 5-methycytosine, which lowers the frequency of this dinucleotide in DNA. Surprisingly, many single-stranded RNA viruses that replicate in these vertebrate hosts also have a very low presence of CpG dinucleotides in their genomes. Viruses are obligate intracellular parasites and the evolution of a virus is inexorably linked to the nature and fate of its host. One therefore expects that virus and host genomes should have common features. In this work, we compare evolutionary patterns in the genomes of ssRNA viruses and their hosts. In particular, we have analyzed dinucleotide patterns and found that the same patterns are pervasively over- or under-represented in many RNA viruses and their hosts suggesting that many RNA viruses evolve by mimicking some of the features of their host's genes (DNA) and likely also their corresponding mRNAs. When a virus crosses a species barrier into a different host, the pressure to replicate, survive and adapt, leaves a footprint in dinucleotide frequencies. For instance, since human genes seem to be under higher pressure to eliminate CpG dinucleotide motifs than avian genes, this pressure might be reflected in the genomes of human viruses (DNA and RNA viruses) when compared to those of the same viruses replicating in avian hosts. To test this idea we have analyzed the evolution of the influenza virus since 1918. We find that the influenza A virus, which originated from an avian reservoir and has been replicating in humans over many generations, evolves in a direction strongly selected to reduce the frequency of CpG dinucleotides in its genome. Consistent with this observation, we find that the influenza B virus, which has spent much more time in the human population, has adapted to its human host and exhibits an extremely low CpG dinucleotide content. We believe that these observations directly show that the evolution of RNA viral genomes can be shaped by pressures observed in the host genome. As a possible explanation, we suggest that the strong selection pressures acting on these RNA viruses are most likely related to the innate immune response and to nucleotide motifs in the host DNA and RNAs.
Author Summary
Viruses are obligate intracellular parasites that use different strategies to sequester host cell machinery and avoid the host immune system. In this paper we explore the genomes of viruses that encode their genetic information in single-stranded RNA, a different material than the one used by their hosts (double-stranded DNA). It is interesting to observe that these viruses share some of the host's characteristics. For instance, one of the most underrepresented motifs in the DNA of vertebrates is the dinucleotide CpG. This is commonly thought to be due to methylation and deamination of cytosine residues in this dinucleotide. Surprisingly, the same CpG suppression is observed in vertebrate RNA viruses but not in RNA phages. We show that RNA viruses present similar dinucleotide pressures as their host genes. We find that the influenza A virus, which originated from an avian reservoir and replicated in humans over many generations, evolves to reduce the frequency of CpG dinucleotides mimicking the human genes. Influenza B, which has been in humans longer, exhibits an extremely low CpG dinucleotide content. These observations suggest that the evolution of RNA viruses is shaped by pressures observed in the host genome.
PMCID: PMC2390760  PMID: 18535658
4.  Virome Analysis for Identification of Novel Mammalian Viruses in Bat Species from Chinese Provinces 
Journal of Virology  2012;86(20):10999-11012.
Bats are natural hosts for a large variety of zoonotic viruses. This study aimed to describe the range of bat viromes, including viruses from mammals, insects, fungi, plants, and phages, in 11 insectivorous bat species (216 bats in total) common in six provinces of China. To analyze viromes, we used sequence-independent PCR amplification and next-generation sequencing technology (Solexa Genome Analyzer II; Illumina). The viromes were identified by sequence similarity comparisons to known viruses. The mammalian viruses included those of the Adenoviridae, Herpesviridae, Papillomaviridae, Retroviridae, Circoviridae, Rhabdoviridae, Astroviridae, Flaviridae, Coronaviridae, Picornaviridae, and Parvovirinae; insect viruses included those of the Baculoviridae, Iflaviridae, Dicistroviridae, Tetraviridae, and Densovirinae; fungal viruses included those of the Chrysoviridae, Hypoviridae, Partitiviridae, and Totiviridae; and phages included those of the Caudovirales, Inoviridae, and Microviridae and unclassified phages. In addition to the viruses and phages associated with the insects, plants, and bacterial flora related to the diet and habitation of bats, we identified the complete or partial genome sequences of 13 novel mammalian viruses. These included herpesviruses, papillomaviruses, a circovirus, a bocavirus, picornaviruses, a pestivirus, and a foamy virus. Pairwise alignments and phylogenetic analyses indicated that these novel viruses showed little genetic similarity with previously reported viruses. This study also revealed a high prevalence and diversity of bat astroviruses and coronaviruses in some provinces. These findings have expanded our understanding of the viromes of bats in China and hinted at the presence of a large variety of unknown mammalian viruses in many common bat species of mainland China.
PMCID: PMC3457178  PMID: 22855479
5.  An Evolutionary Analysis of the Secoviridae Family of Viruses 
PLoS ONE  2014;9(9):e106305.
The plant-infecting Secoviridae family of viruses forms part of the Picornavirales order, an important group of non-enveloped viruses that infect vertebrates, arthropods, plants and algae. The impact of the secovirids on cultivated crops is significant, infecting a wide range of plants from grapevine to rice. The overwhelming majority are transmitted by ecdysozoan vectors such as nematodes, beetles and aphids. In this study, we have applied a variety of computational methods to examine the evolutionary traits of these viruses. Strong purifying selection pressures were calculated for the coat protein (CP) sequences of nine species, although for two species evidence of both codon specific and episodic diversifying selection were found. By using Bayesian phylogenetic reconstruction methods CP nucleotide substitution rates for four species were estimated to range from between 9.29×10−3 to 2.74×10−3 (subs/site/year), values which are comparable with the short-term estimates of other related plant- and animal-infecting virus species. From these data, we were able to construct a time-measured phylogeny of the subfamily Comovirinae that estimated divergence of ninety-four extant sequences occurred less than 1,000 years ago with present virus species diversifying between 50 and 250 years ago; a period coinciding with the intensification of agricultural practices in industrial societies. Although recombination (modularity) was limited to closely related taxa, significant and often unique similarities in the protein domains between secovirid and animal infecting picorna-like viruses, especially for the protease and coat protein, suggested a shared ancestry. We discuss our results in a wider context and find tentative evidence to indicate that some members of the Secoviridae might have their origins in insects, possibly colonizing plants in a number of founding events that have led to speciation. Such a scenario; virus infection between species of different taxonomic kingdoms, has significant implications for virus emergence.
PMCID: PMC4152289  PMID: 25180860
6.  Discovery of Novel dsRNA Viral Sequences by In Silico Cloning and Implications for Viral Diversity, Host Range and Evolution 
PLoS ONE  2012;7(7):e42147.
Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts.
PMCID: PMC3407116  PMID: 22848734
7.  Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases 
Biology Direct  2006;1:39.
The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology.
I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal system, and viruses with the bacterial system never took off. I further suggest that the two other systems of DNA replication, the rolling circle mechanism and the protein-primed mechanism, which are represented in diverse selfish elements, also evolved prior to the emergence of the bacterial replication system. This hypothesis is compatible with the distinct structural affinities of PolB, which has the palm-domain fold shared with reverse transcriptases and RNA-dependent RNA polymerases, and PolC that has a distinct, unrelated nucleotidyltransferase fold. I propose that PolB is a descendant of polymerases that were involved in the replication of genetic elements in the RNA-protein world, prior to the emergence of DNA replication. By contrast, PolC might have evolved from an ancient non-templated polymerase, e.g., polyA polymerase. The proposed temporal succession of the evolving DNA replication systems does not depend on the specific scenario adopted for the evolution of cells and viruses, i.e., whether viruses are derived from cells or virus-like elements are thought to originate from a primordial gene pool. However, arguments are presented in favor of the latter scenario as the most parsimonious explanation of the evolution of DNA replication systems.
Comparative analysis of the diversity of genomic strategies and organizations of viruses and cellular life forms has the potential to open windows into the deep past of life's evolution, especially, with the regard to the origin of genome replication systems. When complemented with information on the evolution of the relevant protein folds, this comparative approach can yield credible scenarios for very early steps of evolution that otherwise appear to be out of reach.
Eric Bapteste, Patrick Forterre, and Mark Ragan.
PMCID: PMC1766352  PMID: 17176463
8.  Widespread Endogenization of Genome Sequences of Non-Retroviral RNA Viruses into Plant Genomes 
PLoS Pathogens  2011;7(7):e1002146.
Non-retroviral RNA virus sequences (NRVSs) have been found in the chromosomes of vertebrates and fungi, but not plants. Here we report similarly endogenized NRVSs derived from plus-, negative-, and double-stranded RNA viruses in plant chromosomes. These sequences were found by searching public genomic sequence databases, and, importantly, most NRVSs were subsequently detected by direct molecular analyses of plant DNAs. The most widespread NRVSs were related to the coat protein (CP) genes of the family Partitiviridae which have bisegmented dsRNA genomes, and included plant- and fungus-infecting members. The CP of a novel fungal virus (Rosellinia necatrix partitivirus 2, RnPV2) had the greatest sequence similarity to Arabidopsis thaliana ILR2, which is thought to regulate the activities of the phytohormone auxin, indole-3-acetic acid (IAA). Furthermore, partitivirus CP-like sequences much more closely related to plant partitiviruses than to RnPV2 were identified in a wide range of plant species. In addition, the nucleocapsid protein genes of cytorhabdoviruses and varicosaviruses were found in species of over 9 plant families, including Brassicaceae and Solanaceae. A replicase-like sequence of a betaflexivirus was identified in the cucumber genome. The pattern of occurrence of NRVSs and the phylogenetic analyses of NRVSs and related viruses indicate that multiple independent integrations into many plant lineages may have occurred. For example, one of the NRVSs was retained in Ar. thaliana but not in Ar. lyrata or other related Camelina species, whereas another NRVS displayed the reverse pattern. Our study has shown that single- and double-stranded RNA viral sequences are widespread in plant genomes, and shows the potential of genome integrated NRVSs to contribute to resolve unclear phylogenetic relationships of plant species.
Author Summary
Eukaryotic genomes contain sequences that have originated from DNA viruses and reverse-transcribing viruses, i.e., retroviruses, pararetroviruses (DNA viruses), and transposons. However, the sequences of non-retroviral RNA viruses, which are unable to convert their genomes to DNA, were until recently considered not to be integrated into eukaryotic nuclear genomes. We present evidence for multiple independent events of horizontal gene transfer from a wide range of RNA viruses, including plus-sense, minus-sense, and double-stranded RNA viruses, into the genomes of distantly related plant lineages. Some non-retroviral integrated RNA viral sequences are conserved across genera within a plant family, whereas others are retained only in a limited number of species in a genus. Integration profiles of non-retroviral integrated RNA viral sequences demonstrate the potential of these sequences to serve as powerful molecular tools for deciphering phylogenetic relationships among related plants. Moreover, this study highlights plants co-opting non-retroviral RNA virus sequences, and provides insights into plant genome evolution and interplay between non-reverse-transcribing RNA viruses and their hosts.
PMCID: PMC3136472  PMID: 21779172
9.  Evolution of influenza A virus PB2 genes: implications for evolution of the ribonucleoprotein complex and origin of human influenza A virus. 
Journal of Virology  1990;64(10):4893-4902.
Phylogenetic analysis of 20 influenza A virus PB2 genes showed that PB2 genes have evolved into the following four major lineages: (i) equine/Prague/56 (EQPR56); (ii and iii) two distinct avian PB2 lineages, one containing FPV/34 and H13 gull virus strains and the other containing North American avian and recent equine strains; and (iv) human virus strains joined with classic swine virus strains (i.e., H1N1 swine virus strains related to swine/Iowa/15/30). The human virus lineage showed the greatest divergence from its root relative to other lineages. The estimated nucleotide evolutionary rate for the human PB2 lineage was 1.82 x 10(-3) changes per nucleotide per year, which is within the range of published estimates for NP and NS genes of human influenza A viruses. At the amino acid level, PB2s of human viruses have accumulated 34 amino acid changes over the past 55 years. In contrast, the avian PB2 lineages showed much less evolution, e.g., recent avian PB2s showed as few as three amino acid changes relative to the avian root. The completion of evolutionary analyses of the PB1, PB2, PA and NP genes of the ribonucleoprotein (RNP) complex permits comparison of evolutionary pathways. Different patterns of evolution among the RNP genes indicate that the genes of the complex are not coevolving as a unit. Evolution of the PB1 and PB2 genes is less correlated with host-specific factors, and their proteins appear to be evolving more slowly than NP and PA. This suggests that protein functional constraints are limiting the evolutionary divergence of PB1 and PB2 genes. The parallel host-specific evolutionary pathways of the NP and PA genes suggest that these proteins are coevolving in response to host-specific factors. PB2s of human influenza A viruses share a common ancestor with classic swine virus PB2s, and the pattern of evolution suggests that the ancestor was an avian virus PB2. This same pattern of evolution appears in the other genes of the RNP complex. Antigenic studies of HA and NA proteins and sequence comparisons of NS and M genes also suggest a close ancestry for these genes in human and classic swine viruses. From our review of the evolutionary patterns of influenza A virus genes, we propose the following hypothesis: the common ancestor to current strains of human and classic swine influenza viruses predated the 1918 human pandemic virus and was recently derived from the avian host reservoir.
PMCID: PMC247979  PMID: 2398532
10.  Metagenomic Analysis of the Viromes of Three North American Bat Species: Viral Diversity among Different Bat Species That Share a Common Habitat▿  
Journal of Virology  2010;84(24):13004-13018.
Effective prediction of future viral zoonoses requires an in-depth understanding of the heterologous viral population in key animal species that will likely serve as reservoir hosts or intermediates during the next viral epidemic. The importance of bats as natural hosts for several important viral zoonoses, including Ebola, Marburg, Nipah, Hendra, and rabies viruses and severe acute respiratory syndrome-coronavirus (SARS-CoV), has been established; however, the large viral population diversity (virome) of bats has been partially determined for only a few of the ∼1,200 bat species. To assess the virome of North American bats, we collected fecal, oral, urine, and tissue samples from individual bats captured at an abandoned railroad tunnel in Maryland that is cohabitated by 7 to 10 different bat species. Here, we present preliminary characterization of the virome of three common North American bat species, including big brown bats (Eptesicus fuscus), tricolored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). In samples derived from these bats, we identified viral sequences that were similar to at least three novel group 1 CoVs, large numbers of insect and plant virus sequences, and nearly full-length genomic sequences of two novel bacteriophages. These observations suggest that bats encounter and disseminate a large assortment of viruses capable of infecting many different animals, insects, and plants in nature.
PMCID: PMC3004358  PMID: 20926577
11.  Diversification of Rice Yellow Mottle Virus and Related Viruses Spans the History of Agriculture from the Neolithic to the Present 
PLoS Pathogens  2008;4(8):e1000125.
The mechanisms of evolution of plant viruses are being unraveled, yet the timescale of their evolution remains an enigma. To address this critical issue, the divergence time of plant viruses at the intra- and inter-specific levels was assessed. The time of the most recent common ancestor (TMRCA) of Rice yellow mottle virus (RYMV; genus Sobemovirus) was calculated by a Bayesian coalescent analysis of the coat protein sequences of 253 isolates collected between 1966 and 2006 from all over Africa. It is inferred that RYMV diversified approximately 200 years ago in Africa, i.e., centuries after rice was domesticated or introduced, and decades before epidemics were reported. The divergence time of sobemoviruses and viruses of related genera was subsequently assessed using the age of RYMV under a relaxed molecular clock for calibration. The divergence time between sobemoviruses and related viruses was estimated to be approximately 9,000 years, that between sobemoviruses and poleroviruses approximately 5,000 years, and that among sobemoviruses approximately 3,000 years. The TMRCA of closely related pairs of sobemoviruses, poleroviruses, and luteoviruses was approximately 500 years, which is a measure of the time associated with plant virus speciation. It is concluded that the diversification of RYMV and related viruses has spanned the history of agriculture, from the Neolithic age to the present.
Author Summary
The timescale of the evolution of plant viruses is an enigma, and even its order of magnitude is unknown. This critical issue is addressed here by calculating the age of plant viruses. An accurate estimate of the age of Rice yellow mottle virus (RYMV) was obtained by statistical analysis of a set of dated sequences. The age of RYMV provides a reliable calibration of related viruses, applying recently developed relaxed molecular clock models. It was found that RYMV diversified approximately 200 years ago, and that inter-specific diversification ranged from 500 years to 9,000 years. Altogether, plant virus diversification has spanned the history of agriculture from the Neolithic age to the present. This suggests that the Neolithic was a period of epidemiological transition for plant virus diseases, as already proposed for infectious human diseases. Intrinsically, it is for the same reason: increased contacts between hosts, pathogens, and vectors. This is consistent with the view that RNA viruses have a recent origin, and that humans have become the world's greatest evolutionary force.
PMCID: PMC2495034  PMID: 18704169
12.  Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle 
BMC Microbiology  2013;13:242.
The bovine rumen hosts a diverse and complex community of Eukarya, Bacteria, Archea and viruses (including bacteriophage). The rumen viral population (the rumen virome) has received little attention compared to the rumen microbial population (the rumen microbiome). We used massively parallel sequencing of virus like particles to investigate the diversity of the rumen virome in thirteen lactating Australian Holstein dairy cattle all housed in the same location, 12 of which were sampled on the same day.
Fourteen putative viral sequence fragments over 30 Kbp in length were assembled and annotated. Many of the putative genes in the assembled contigs showed no homology to previously annotated genes, highlighting the large amount of work still required to fully annotate the functions encoded in viral genomes. The abundance of the contig sequences varied widely between animals, even though the cattle were of the same age, stage of lactation and fed the same diets. Additionally the twelve animals which were co-habited shared a number of their dominant viral contigs. We compared the functional characteristics of our bovine viromes with that of other viromes, as well as rumen microbiomes. At the functional level, we found strong similarities between all of the viral samples, which were highly distinct from the rumen microbiome samples.
Our findings suggest a large amount of between animal variation in the bovine rumen virome and that co-habiting animals may have more similar viromes than non co-habited animals. We report the deepest sequencing to date of the rumen virome. This work highlights the enormous amount of novelty and variation present in the rumen virome.
PMCID: PMC3827882  PMID: 24180266
Virome; Rumen; Bacteriophage; Metagenomics
13.  A virus responds instantly to the presence of the vector on the host and forms transmission morphs 
eLife  2013;2:e00183.
Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle.
eLife digest
Viruses are infectious agents that can replicate only inside a living host cell. When a virus infects an animal or plant, it introduces its own genetic material and tricks the host cells into producing viral proteins that can be used to assemble new viruses. An essential step in the life cycle of any virus is transmission to a new host: understanding this process can be crucial in the fight against viral epidemics.
Many viruses use living organisms, or vectors, to move between hosts. In the case of plant viruses such as cauliflower mosaic virus, the vectors are often aphids. When an aphid sucks sap out of a leaf, virus particles already present in the leaf become attached to its mouth, and these viruses can be transferred to the next plant that the insect feeds on. However, in order for cauliflower mosaic virus particles to become attached to the aphid, structures called transmission bodies must form beforehand in the infected plant cells. These structures are known to contain helper proteins that bind the viruses to the mouth of the aphid, but the precise role of the transmission body has remained obscure.
Now Martinière et al. show that the transmission body is in fact a dynamic structure that reacts to the presence of aphids and, in so doing, boosts the efficiency of viral transmission. In particular, they show that the action of an aphid feeding on an infected leaf triggers a rapid and massive influx of a protein called tubulin into the transmission body. The transmission body then bursts open, dispersing helper protein-virus particle complexes throughout the cell, where they become more accessible to aphids. This series of events increases viral transmission rates twofold to threefold.
The results show that a virus can detect insect vectors, likely by using the sensory system of its host, and trigger a response that boosts viral uptake and thus transmission. This is a novel concept in virology. It will be important to discover whether similar mechanisms are used by other viruses, including those that infect animals and humans.
PMCID: PMC3552618  PMID: 23358702
aphids; transmission; cell–virus–vector interactions; Arabidopsis; Viruses; Other
14.  The Fecal Viral Flora of Wild Rodents 
PLoS Pathogens  2011;7(9):e1002218.
The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat) collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in mammals.
Author Summary
Rodents are the natural reservoir of numerous zoonotic viruses causing serious diseases in humans. We used an unbiased metagenomic approach to characterize the viral diversity in rodent feces. In addition to diet-derived insect and plant viruses mammalian viral sequences were abundant and diverse. Most notably, multiple new circular viral DNA families, two new picornaviridae genera, and the first murine astrovirus and picobirnaviruses were characterized. A mouse kobuvirus was a close relative to the Aichi virus human pathogen. This study significantly increases the known genetic diversity of eukaryotic viruses in rodents and provides an initial description of their enteric viromes.
PMCID: PMC3164639  PMID: 21909269
15.  Broad Surveys of DNA Viral Diversity Obtained through Viral Metagenomics of Mosquitoes 
PLoS ONE  2011;6(6):e20579.
Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes.
PMCID: PMC3108952  PMID: 21674005
16.  Vertical Transmission Selects for Reduced Virulence in a Plant Virus and for Increased Resistance in the Host 
PLoS Pathogens  2014;10(7):e1004293.
For the last three decades, evolutionary biologists have sought to understand which factors modulate the evolution of parasite virulence. Although theory has identified several of these modulators, their effect has seldom been analysed experimentally. We investigated the role of two such major factors—the mode of transmission, and host adaptation in response to parasite evolution—in the evolution of virulence of the plant virus Cucumber mosaic virus (CMV) in its natural host Arabidopsis thaliana. To do so, we serially passaged three CMV strains under strict vertical and strict horizontal transmission, alternating both modes of transmission. We quantified seed (vertical) transmission rate, virus accumulation, effect on plant growth and virulence of evolved and non-evolved viruses in the original plants and in plants derived after five passages of vertical transmission. Our results indicated that vertical passaging led to adaptation of the virus to greater vertical transmission, which was associated with reductions of virus accumulation and virulence. On the other hand, horizontal serial passages did not significantly modify virus accumulation and virulence. The observed increases in CMV seed transmission, and reductions in virus accumulation and virulence in vertically passaged viruses were due also to reciprocal host adaptation during vertical passages, which additionally reduced virulence and multiplication of vertically passaged viruses. This result is consistent with plant-virus co-evolution. Host adaptation to vertically passaged viruses was traded-off against reduced resistance to the non-evolved viruses. Thus, we provide evidence of the key role that the interplay between mode of transmission and host-parasite co-evolution has in determining the evolution of virulence.
Author Summary
Virulence is a key property of parasites, and is linked to the emergence of new diseases and to the reduction of ecosystem biodiversity. Consequently, scientists have devoted a great effort to build theoretical models that predict which factors may modulate virulence evolution. However, whether (and how) these factors affect virulence evolution has been seldom analysed experimentally. Using the plant virus Cucumber mosaic virus (CMV) and its natural host Arabidopsis thaliana, we studied the role of two such factors: the mode of transmission, and host adaptation in response to parasite evolution. We serially passaged CMV under strict vertical and strict horizontal transmission, and a combination of both. Subsequently, we analysed differences in CMV seed (vertical) transmission rate, accumulation and virulence between evolved and non-evolved viruses. We also compared whether these differences varied in original plants and in plants evolved during vertical passaging. Vertical passaging increased CMV seed transmission, and reduced accumulation and virulence, while horizontal passaging had no effect. Changes during vertical passaging were determined also by reciprocal host adaptation, which additionally reduced virulence and accumulation of vertically transmitted viruses. Hence, we provide evidence that the interplay between the transmission mode and host-parasite co-evolution is central in determining virulence evolution.
PMCID: PMC4117603  PMID: 25077948
17.  Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses. 
Journal of Virology  1991;65(7):3704-3714.
A phylogenetic analysis of 52 published and 37 new nucleoprotein (NP) gene sequences addressed the evolution and origin of human and swine influenza A viruses. H1N1 human and classical swine viruses (i.e., those related to Swine/Iowa/15/30) share a single common ancestor, which was estimated to have occurred in 1912 to 1913. From this common ancestor, human and classical swine virus NP genes have evolved at similar rates that are higher than in avian virus NP genes (3.31 to 3.41 versus 1.90 nucleotide changes per year). At the protein level, human virus NPs have evolved twice as fast as classical swine virus NPs (0.66 versus 0.34 amino acid change per year). Despite evidence of frequent interspecies transmission of human and classical swine viruses, our analysis indicates that these viruses have evolved independently since well before the first isolates in the early 1930s. Although our analysis cannot reveal the original host, the ancestor virus was avianlike, showing only five amino acid differences from the root of the avian virus NP lineage. The common pattern of relationship and origin for the NP and other genes of H1N1 human and classical swine viruses suggests that the common ancestor was an avian virus and not a reassortant derived from previous human or swine influenza A viruses. The new avianlike H1N1 swine viruses in Europe may provide a model for the evolution of newly introduced avian viruses into the swine host reservoir. The NPs of these viruses are evolving more rapidly than those of human or classical swine viruses (4.50 nucleotide changes and 0.74 amino acid change per year), and when these rates are applied to pre-1930s human and classical swine virus NPs, the predicted date of a common ancestor is 1918 rather than 1912 to 1913. Thus, our NP phylogeny is consistent with historical records and the proposal that a short time before 1918, a new H1N1 avianlike virus entered human or swine hosts (O. T. Gorman, R. O. Donis, Y. Kawaoka, and R. G. Webster, J. Virol. 64:4893-4902, 1990). This virus provided the ancestors of all known human influenza A virus genes, except for HA, NA, and PB1, which have since been reassorted from avian viruses. We propose that during 1918 a virulent strain of this new avianlike virus caused a severe human influenza pandemic and that the pandemic virus was introduced into North American swine populations, constituting the origin of classical swine virus.
PMCID: PMC241390  PMID: 2041090
18.  Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission 
PLoS Pathogens  2011;7(5):e1002034.
Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid, nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the interaction of the virion with specific receptors of the nematode's feeding apparatus, and thereby severely diminishes its transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a nematode vector.
Author Summary
Numerous pathogenic viruses from animals and plants rely on vectors such as insects, worms or other organisms for their transmission from host to host. The reasons why certain vectors transmit some viruses but not others remain poorly understood. In plants, Grapevine fanleaf virus (GFLV), a major pathogen of grapes worldwide and its specific vector, the dagger nematode Xiphinema index, provides a well-established model illustrating this specificity. Here, we determined the high-resolution structures of two GFLV isolates that differ in their transmissibility. We show that this difference is due to a single mutation in a region exposed at the outer surface of the viral particles. This mutation does not alter the conformation of the particles but modifies the distribution of charges within a positively-charged pocket at the outer surface of virions which likely affects particle retention by X. index and, thereby also transmission efficiency. Therefore, we propose that this pocket is involved in the specific recognition of GFLV by its nematode vector. This work paves the way towards the characterization of the specific compound(s) within the nematodes that trigger vector specificity and provides novel perspectives to interfere with virus transmission.
PMCID: PMC3098200  PMID: 21625570
19.  Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses 
BMC Genomics  2013;14:158.
Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 – 348 Kb/319 – 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species. These new data allowed us to analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses.
Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined. Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the chloroviruses.
The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown viruses that infect the same hosts.
PMCID: PMC3602175  PMID: 23497343
20.  Computational Fitness Landscape for All Gene-Order Permutations of an RNA Virus 
PLoS Computational Biology  2009;5(2):e1000283.
How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV), a prototype RNA virus that encodes five genes (N-P-M-G-L), to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution.
Author Summary
Although many viruses are linked to diseases that adversely impact the health of their human, animal, and plant hosts, viruses could help promote wellness and treat disease if their “good traits” could be harnessed. Potentially useful virus traits include their abilities to stimulate a robust immune response, target specific tissues for the delivery of foreign genes, and destroy tumors. The exploitation of such traits in the engineering of virus-based vaccines, gene therapies and anti-cancer strategies is limited in part by our inability to control how viruses grow. Generally, viruses that grow poorly will be more desirable for vaccine applications, whereas viruses that grow and spread rapidly will be useful for destroying tumors. Further, gene therapies will rely on controlling the extent to which a therapeutic gene is delivered and expressed. Robust methods for controlling virus growth have yet to be discovered. However, for some viruses, such as vesicular stomatitis virus (VSV), growth can be very sensitive to the specific linear order of its five genes. Our current work is significant in combining experiments and computational models to identify which virus genes and genome positions most sensitively impact VSV growth, providing a foundation for its applications in human health.
PMCID: PMC2627932  PMID: 19197345
21.  Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes 
Virus Research  2011;164(1-2):114-121.
The genomes of numerous circoviruses and distantly related circular DNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, and plants (geminivirus and nanovirus), human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting their past host range. An ancient origin for viruses with rep-encoding single stranded small circular genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular viral genomes.
PMCID: PMC3289258  PMID: 22155583
circovirus; cyclovirus; Circoviridae; Rep protein; deep sequencing; circular ssDNA genome
22.  Population Diversity of Rice Stripe Virus-Derived siRNAs in Three Different Hosts and RNAi-Based Antiviral Immunity in Laodelphgax striatellus 
PLoS ONE  2012;7(9):e46238.
Small RNA-mediated gene silencing plays evolutionarily conserved roles in gene regulation and defense against invasive nucleic acids. Virus-derived small interfering RNAs (vsiRNAs) are one of the key elements involved in RNA silencing-based antiviral activities in plant and insect. vsiRNAs produced after viruses infecting hosts from a single kingdom (i.e., plant or animal) are well described. In contrast, vsiRNAs derived from viruses capable of infecting both plants and their insect vectors have not been characterized.
Methodology/Principal Findings
We examined Rice stripe virus (RSV)-derived small interfering RNAs in three different hosts, Oryza sativa, Nicotiana benthamiana and a natural RSV transmitting vector Laodelphgax striatellus, through deep sequencing. Our results show that large amounts of vsiRNAs generated in these hosts after RSV infection. The vsiRNAs from N. benthamiana and L. striatellus mapped equally to the genomic- and antigenomic-strand of RSV RNAs. They showed, however, a significant bias in those from O. sativa. Furthermore, our results demonstrate that the number and size distributions of vsiRNAs in the three hosts were very different. In O. sativa and N. benthamiana, most vsiRNAs were mapped to the discrete regions in the RSV genome sequence, and most of the vsiRNAs from these two hosts were generated from RSV genomic RNAs 3 and 4. In contrast, the vsiRNAs identified in L. striatellus distributed uniformly along the whole genome of RSV. We have also shown that silencing Agronaute 2 in L. striatellus enhanced RSV accumulation in this host.
Our study demonstrates that the core RNA-induced gene silencing (RNAi) machinery is present in L. striatellus. We also provide evidence that the RNAi-mediated immunity against RSV is present in L. striatellus. We propose that a common small RNA-mediated virus defense mechanism exists in both helipterum insects and plants, but the vsiRNAs are generated differentially in different hosts.
PMCID: PMC3460854  PMID: 23029445
23.  Mechanisms of GII.4 Norovirus Persistence in Human Populations  
PLoS Medicine  2008;5(2):e31.
Noroviruses are the leading cause of viral acute gastroenteritis in humans, noted for causing epidemic outbreaks in communities, the military, cruise ships, hospitals, and assisted living communities. The evolutionary mechanisms governing the persistence and emergence of new norovirus strains in human populations are unknown. Primarily organized by sequence homology into two major human genogroups defined by multiple genoclusters, the majority of norovirus outbreaks are caused by viruses from the GII.4 genocluster, which was first recognized as the major epidemic strain in the mid-1990s. Previous studies by our laboratory and others indicate that some noroviruses readily infect individuals who carry a gene encoding a functional alpha-1,2-fucosyltransferase (FUT2) and are designated “secretor-positive” to indicate that they express ABH histo-blood group antigens (HBGAs), a highly heterogeneous group of related carbohydrates on mucosal surfaces. Individuals with defects in the FUT2 gene are termed secretor-negative, do not express the appropriate HBGA necessary for docking, and are resistant to Norwalk infection. These data argue that FUT2 and other genes encoding enzymes that regulate processing of the HBGA carbohydrates function as susceptibility alleles. However, secretor-negative individuals can be infected with other norovirus strains, and reinfection with the GII.4 strains is common in human populations. In this article, we analyze molecular mechanisms governing GII.4 epidemiology, susceptibility, and persistence in human populations.
Methods and Findings
Phylogenetic analyses of the GII.4 capsid sequences suggested an epochal evolution over the last 20 y with periods of stasis followed by rapid evolution of novel epidemic strains. The epidemic strains show a linear relationship in time, whereby serial replacements emerge from the previous cluster. Five major evolutionary clusters were identified, and representative ORF2 capsid genes for each cluster were expressed as virus-like particles (VLPs). Using salivary and carbohydrate-binding assays, we showed that GII.4 VLP-carbohydrate ligand binding patterns have changed over time and include carbohydrates regulated by the human FUT2 and FUT3 pathways, suggesting that strain sensitivity to human susceptibility alleles will vary. Variation in surface-exposed residues and in residues that surround the fucose ligand interaction domain suggests that antigenic drift may promote GII.4 persistence in human populations. Evidence supporting antigenic drift was obtained by measuring the antigenic relatedness of GII.4 VLPs using murine and human sera and demonstrating strain-specific serologic and carbohydrate-binding blockade responses. These data suggest that the GII.4 noroviruses persist by altering their HBGA carbohydrate-binding targets over time, which not only allows for escape from highly penetrant host susceptibility alleles, but simultaneously allows for immune-driven selection in the receptor-binding region to facilitate escape from protective herd immunity.
Our data suggest that the surface-exposed carbohydrate ligand binding domain in the norovirus capsid is under heavy immune selection and likely evolves by antigenic drift in the face of human herd immunity. Variation in the capsid carbohydrate-binding domain is tolerated because of the large repertoire of similar, yet distinct HBGA carbohydrate receptors available on mucosal surfaces that could interface with the remodeled architecture of the capsid ligand-binding pocket. The continuing evolution of new replacement strains suggests that, as with influenza viruses, vaccines could be targeted that protect against norovirus infections, and that continued epidemiologic surveillance and reformulations of norovirus vaccines will be essential in the control of future outbreaks.
Through phylogenetic analysis of norovirus isolates, Ralph Baric and colleagues show that new epidemic strains arise as the variety of available cellular receptors permits antigenic drift in the viral capsid.
Editors' Summary
Noroviruses are the leading cause of viral gastroenteritis (stomach flu), the symptoms of which include nausea, vomiting, and diarrhea. There is no treatment for infection with these highly contagious viruses. While most people recover within a few days, the very young and old may experience severe disease. Like influenza, large outbreaks (epidemics) of norovirus infection occur periodically (often in closed communities such as cruise ships), and most people have several norovirus infections during their lifetime. Currently, 100,000–200,000 people are being infected each week in England with a new GII.4 variant. There are several reasons for this pattern of infection and reinfection. First, the immune response induced by a norovirus infection is short-lived in some people, but not all. Second, there are many different noroviruses. Based on their genomes (genetic blueprints), noroviruses belong to five “genogroups,” which are further subdivided into “genotypes.” An immune response to one norovirus provides little protection against noroviruses of other genogroups or genotypes. Third, like influenza viruses, noroviruses frequently acquire small changes in their genome. This process is called antigenic drift (antigens are the molecules on the surface of infectious agents that stimulate the production of antibodies, proteins that help the immune system recognize and deal with foreign invaders). Norovirus epidemics occur when virus variants emerge to which the human population has no immunity.
Why Was This Study Done?
It is unknown exactly how noroviruses change over time or how they persist in human populations. In addition, little is known about susceptibility to norovirus infections except that secretor-positive individuals—people who express “histoblood group antigens” (HBGAs, a heterogeneous group of sugar molecules by which noroviruses attach themselves to human cells) on the cells that line their mouths and guts—are more susceptible than secretor-negative people, who express these antigens only on red blood cells. Information of this sort is needed to devise effective intervention strategies, therapies, and vaccines to reduce the illness and economic costs associated with norovirus outbreaks. In this study, the researchers investigate the molecular mechanisms governing the emergence and persistence of epidemic norovirus strains in human populations by analyzing how GII.4 norovirus strains (the genotype usually associated with epidemics) have changed over time.
What Did the Researchers Do and Find?
The researchers analyzed the relationships among the sequences of the gene encoding the capsid protein of GII.4 norovirus strains isolated over the past 20 years. The capsid protein forms a shell around noroviruses and is involved in their binding to HBGAs and their recognition by the human immune system. The researchers found that the virus evolved in fits and starts. That is, for several years, one cluster of strains was predominant but then new epidemic strains emerged rapidly from the cluster. In all, the researchers identified five major evolutionary clusters. They then created “virus-like particles” (VLPs) using representative capsid genes from each cluster and showed that these VLPs bound to different HBGAs. Finally they measured the antigenic relatedness of the different VLPs using human blood collected during a 1988 GII.4 outbreak. Antibodies in these samples recognized the VLPs representing early GII.4 strains better than VLPs representing recent GII.4 strains. The ability of the blood samples to block the interaction of VLPs with their matching HBGAs showed a similar pattern.
What Do These Findings Mean?
These findings suggest that the part of the norovirus capsid protein that binds to sugars on host cells is under heavy immune selection and evolves over time by antigenic drift. They show that, like influenza viruses, GII.4 viruses evolve through serial changes in the capsid sequence that occur sporadically after periods of stability, probably to evade the build up of immunity within the human population. Variation in this region of the viral genome is possible because human populations express a great variety of HBGA molecules so there is always likely to be a subpopulation of people that is susceptible to the altered virus. Overall, these findings suggest that it should be possible to develop vaccines to protect against norovirus infections but, just as with influenza virus, surveillance systems will have to monitor how the virus is changing and vaccines will need to be reformulated frequently to provide effective protection against norovirus outbreaks.
Additional Information.
Please access these Web sites via the online version of this summary at
See a related PLoS Medicine Perspective article
The MedlinePlus encyclopedia has a page on viral gastroenteritis (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on viral gastroenteritis (in English and Spanish) and on noroviruses
The UK National Health Service's health website (NHS Direct) provides information about noroviruses
The UK Health Protection Agency and the US Food & Drug Administration also provide information about noroviruses
PMCID: PMC2235898  PMID: 18271619
24.  The Extraordinary Evolutionary History of the Reticuloendotheliosis Viruses 
PLoS Biology  2013;11(8):e1001642.
Reticuloendotheliosis viruses are mammalian retroviruses that were transmitted to avian hosts through inadvertent human intervention, and subsequently integrated their genetic material into the genomes of large DNA viruses, generating novel recombinant pathogens that now circulate naturally in poultry and wild birds.
The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events.
Author Summary
Retroviruses are characterized by their ability to insert a DNA copy of their genome into the chromosomes of infected cells. Occasionally, retroviruses insert into “germline” cells and are subsequently inherited as host alleles called endogenous retroviruses (ERVs). Vertebrate genomes contain thousands of ERV sequences derived from ancient retroviruses, and these viral sequences serve as molecular “fossils” that can be used to explore how retroviruses have evolved over millions of years. Here we combine an analysis of the retroviral “fossil record” with a phylogenetic and historical investigation to determine the origin of a group of avian retroviruses called reticuloendotheliosis viruses (REVs). We present evidence to demonstrate that rather than arising from natural infections of birds, REVs are in fact derived from mammalian retroviruses that were accidentally introduced into avian hosts during experimental studies of a malaria parasite in the late 1930s. Remarkably, REVs have subsequently inserted into the genomes of two large DNA viruses that infect birds, generating chimeric viruses that now circulate naturally in poultry and wild birds.
PMCID: PMC3754887  PMID: 24013706
25.  Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction 
PLoS Genetics  2010;6(8):e1001064.
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.
Author Summary
Ionotropic glutamate receptors (iGluRs) are a family of cell surface proteins best known for their role in allowing neurons to communicate with each other in the brain. We recently discovered a variant class of iGluRs in the fruit fly (Drosophila melanogaster), named Ionotropic Receptors (IRs), which function as olfactory receptors in its “nose,” prompting us to ask whether iGluR/IRs might have a more general function in detection of environmental chemicals. Here, we have identified families of IRs in olfactory and taste sensory organs throughout protostomes, one of the principal branches of animal life that includes snails, worms, crustaceans, and insects. Our findings suggest that this receptor family has an evolutionary ancient function in detecting odors and tastants in the external world. By comparing the repertoires of these chemosensory IRs among both closely- and distantly-related species, we have observed dynamic patterns of expansion and divergence of these receptor families in organisms occupying very different ecological niches. Notably, many of the receptors we have identified are in insects that are of significant harm to human health, such as the malaria mosquito. These proteins represent attractive targets for novel types of insect repellents to control the host-seeking behaviors of such pest species.
PMCID: PMC2924276  PMID: 20808886

Results 1-25 (1176986)