PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (897201)

Clipboard (0)
None

Related Articles

1.  Endothelin-1 Augments Na+/H+ Exchange Activity in Murine Pulmonary Arterial Smooth Muscle Cells via Rho Kinase 
PLoS ONE  2012;7(9):e46303.
Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1 increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing concentrations of ET-1 (10−10 to 10−8 M). We found that application of exogenous ET-1 increased pHi and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pHi.
doi:10.1371/journal.pone.0046303
PMCID: PMC3460862  PMID: 23029469
2.  Deficiency of the NHE1 Gene Prevents Hypoxia-induced Pulmonary Hypertension and Vascular Remodeling 
Rationale: Our previous studies found that Na+/H+ exchanger (NHE) activity played an essential role in pulmonary artery smooth muscle cell (PASMC) proliferation and in the development of hypoxia-induced pulmonary hypertension and vascular remodeling. Other investigators recently observed increased expression of the NHE isoform 1 (NHE1) gene in rodents with pulmonary hypertension induced by hypoxia. However, a causal role for the NHE1 gene in pulmonary hypertension has not been determined.
Objectives: To determine the causal role of the NHE1 gene in pulmonary hypertension and vascular remodeling.
Methods: We used NHE1-null mice to define the role of the NHE1 gene in the development of pulmonary hypertension and remodeling induced by hypoxia and to delineate the NHE1 regulatory pathway.
Measurements and Main Results: After 2 weeks of exposure to hypoxia, in contrast to wild-type hypoxic littermates, there was no significant increase in right ventricular systolic pressure, in the ratio of right ventricular to left ventricular plus septal weight [RV/(LV + S)], or in medial wall thickness of the pulmonary arterioles in homozygous mice (NHE1−/−). There was a significant decrease in Rho kinase (ROCK1 and ROCK2) expression, accompanied by an increase in p27 expression in NHE1−/− mice.
Conclusions: Our study demonstrated that deficiency of the NHE1 gene prevented the development of hypoxia-induced pulmonary hypertension and vascular remodeling in mice and revealed a novel regulatory pathway associated with NHE1 signaling.
doi:10.1164/rccm.200710-1522OC
PMCID: PMC2408441  PMID: 18310478
Na+/H+ exchanger isoform 1; pulmonary hypertension; vascular remodeling; hypoxia; mouse
3.  Enhanced Ca2+-sensing Receptor Function in Idiopathic Pulmonary Arterial Hypertension 
Circulation research  2012;111(4):469-481.
Rationale
A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. Increased resting [Ca2+]cyt and enhanced Ca2+ influx have been implicated in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH).
Objective
We examined whether the extracellular Ca2+-sensing receptor (CaSR) is involved in the enhanced Ca2+ influx and proliferation in IPAH-PASMC and whether blockade of CaSR inhibits experimental pulmonary hypertension.
Methods and Results
In normal PASMC superfused with Ca2+-free solution, addition of 2.2 mM Ca2+ to the perfusate had little effect on [Ca2+]cyt. In IPAH-PASMC, however, restoration of extracellular Ca2+ induced a significant increase in [Ca2+]cyt. Extracellular application of spermine also markedly raised [Ca2+]cyt in IPAH-PASMC, but not in normal PASMC. The calcimimetic R568 enhanced, whereas the calcilytic NPS 2143 attenuated, the extracellular Ca2+-induced [Ca2+]cyt rise in IPAH-PASMC. Furthermore, the protein expression level of CaSR in IPAH-PASMC was greater than in normal PASMC; knockdown of CaSR in IPAH-PASMC with siRNA attenuated the extracellular Ca2+-mediated [Ca2+]cyt increase and inhibited IPAH-PASMC proliferation. Using animal models of pulmonary hypertension, our data showed that CaSR expression and function were both enhanced in PASMC, whereas intraperitoneal injection of the calcilytic NPS 2143 prevented the development of pulmonary hypertension and right ventricular hypertrophy in rats injected with monocrotaline and mice exposed to hypoxia.
Conclusions
The extracellular Ca2+-induced increase in [Ca2+]cyt due to upregulated CaSR is a novel pathogenic mechanism contributing to the augmented Ca2+ influx and excessive PASMC proliferation in patients and animals with pulmonary arterial hypertension.
doi:10.1161/CIRCRESAHA.112.266361
PMCID: PMC3695473  PMID: 22730443
Pulmonary artery; smooth muscle cell; proliferation; G protein-coupled receptor; pulmonary hypertension; receptors
4.  Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway 
Respiratory Research  2013;14(1):2.
Background
Stromal interaction molecule 1 (STIM1) is a newly discovered Ca2+ sensor on the endoplasmic reticulum which is an indispensable part in the activation of store-operated Ca2+ channels (SOC). Recent studies demonstrate that SOC of pulmonary smooth muscle cells (PASMCs) were upregulated by chronic hypoxia which contribute to the enhanced pulmonary vasoconstriction and vascular remodeling. However, the exact role of STIM1 in the development of chronic hypoxic pulmonary hypertension(HPH) remains unclear.
Methods
In this study we investigated the cellular distribution and expression of STIM1 by immunofluorescence, qRTPCR and Western blotting methods in Wistar rat distal intrapulmonary arteries under normal and chronic hypobaric hypoxic conditions. In vitro, Wistar rat PASMCs were isolated and cultured. PASMCs were transfected with siRNA targeting STIM1 gene by liposome. The expression of STIM1 protein was detected by Western blotting. [3H]-thymidine ([3H]-TdR) incorporation were performed to detect PASMCs proliferation. The cell cycle was analyzed by flow cytometry. The SOC-mediated Ca2+ influx was calculated by Ca2+ fluorescence imaging and the nuclear translocation of NFATc3 was determined by immunofluorescence and Western blot analysis of nuclear extracts.
Results
We found that during the development of HPH and the initiation of vascular remodeling, the mRNA and protein expression levels of STIM1 significantly increased in the distal intrapulmonary arteries. Moderate hypoxia significantly promotes PASMCs proliferation and cell cycle progression. Silencing of STIM1 significantly decreased cellular proliferation and delayed the cell cycle progression induced by hypoxia. Silencing of STIM1 also significantly decreased SOC-mediated Ca2+ influx and inhibited the nuclear translocation of NFATc3 in hypoxic PASMCs.
Conclusion
Our findings suggest that chronic hypobaric hypoxia upregulates the expression of STIM1 in the distal intrapulmonary arteries which plays an important role in the hypoxia-induced PASMCs proliferation via SOC/Ca2+/NFAT pathway and may represent a novel therapeutic target for the prevention of hypoxia pulmonary hypertension.
doi:10.1186/1465-9921-14-2
PMCID: PMC3599439  PMID: 23289723
Stromal interaction molecule 1; RNA interference; Pulmonary hypertension; Hypoxia; Cell proliferation
5.  Sodium Tanshinone IIA Sulfonate Inhibits Canonical Transient Receptor Potential Expression in Pulmonary Arterial Smooth Muscle from Pulmonary Hypertensive Rats 
Danshen, the dried root of Salvia miltiorrhiza, is widely used in clinics in China for treating various diseases, including cardiovascular diseases. Sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of tanshinone IIA isolated as the major active component from Danshen, was recently reported to be effective in attenuating the characteristic pulmonary vascular changes associated with chronically hypoxic pulmonary hypertension (CHPH); however, the underlying detailed mechanisms are poorly understood. In this study, we investigated the effects of STS on basal intracellular Ca2+ concentration ([Ca2+]i) and store-operated Ca2+ entry (SOCE) in distal pulmonary arterial smooth muscle cells (PASMCs) exposed to prolonged hypoxia or isolated from CHPH rats. SOCE measured by Mn2+ quenching of Fura-2 fluorescence in PASMCs from rats exposed to chronic hypoxia (10% O2, 21 d) was increased by 59%, and basal [Ca2+]i was increased by 119%; this effect was inhibited by intraperitoneal injection of STS. These inhibitory effects of STS on hypoxic increases of SOCE and basal [Ca2+]i were associated with reduced expression of canonical transient receptor potential (TRPC)1 and TRPC6 in distal pulmonary arterial smooth muscle and decreases on right ventricular pressure, right ventricular hypertrophy, and peripheral pulmonary vessel thickening. In ex vivo cultured distal PASMCs from normoxic rats, STS (0–25 μM) dose-dependently inhibited hypoxia-induced cell proliferation and migration, paralleled with attenuation in increases of basal [Ca2+]i, SOCE, mRNA, and protein expression of TRPC1 and TRPC6. STS also relieved right ventricular systolic pressure, right ventricular hypertrophy, and TRPC1 and TRPC6 protein expression in distal pulmonary arteries in a monocrotaline-induced rat model of pulmonary arterial hypertension. These results indicate that STS prevents pulmonary arterial hypertension development likely by inhibiting TRPC1 and TRPC6 expression, resulting in normalized basal [Ca2+]i and attenuated proliferation and migration of PASMCs.
doi:10.1165/rcmb.2012-0071OC
PMCID: PMC3547081  PMID: 23065131
STS; TRPC; SOCE; pulmonary hypertension
6.  Tanshinone IIA Inhibits Hypoxia-Induced Pulmonary Artery Smooth Muscle Cell Proliferation via Akt/Skp2/p27-Associated Pathway 
PLoS ONE  2013;8(2):e56774.
We previously showed that tanshinone IIA ameliorated the hypoxia-induced pulmonary hypertension (HPH) partially by attenuating pulmonary artery remodeling. The hypoxia-induced proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the major causes for pulmonary arterial remodeling, therefore the present study was performed to explore the effects and underlying mechanism of tanshinone IIA on the hypoxia-induced PASMCs proliferation. PASMCs were isolated from male Sprague-Dawley rats and cultured in normoxic (21%) or hypoxic (3%) condition. Cell proliferation was measured with 3 - (4, 5 - dimethylthiazal - 2 - yl) - 2, 5 - diphenyltetrazoliumbromide assay and cell counting. Cell cycle was measured with flow cytometry. The expression of of p27, Skp-2 and the phosphorylation of Akt were measured using western blot and/or RT-PCR respectively. The results showed that tanshinone IIA significantly inhibited the hypoxia-induced PASMCs proliferation in a concentration-dependent manner and arrested the cells in G1/G0-phase. Tanshinone IIA reversed the hypoxia-induced reduction of p27 protein, a cyclin-dependent kinase inhibitor, in PASMCs by slowing down its degradation. Knockdown of p27 with specific siRNA abolished the anti-proliferation of tanshinone IIA. Moreover, tanshinone IIA inhibited the hypoxia-induced increase of S-phase kinase-associated protein 2 (Skp2) and the phosphorylation of Akt, both of which are involved in the degradation of p27 protein. In vivo tanshinone IIA significantly upregulated the hypoxia-induced p27 protein reduction and downregulated the hypoxia-induced Skp2 increase in pulmonary arteries in HPH rats. Therefore, we propose that the inhibition of tanshinone IIA on hypoxia-induce PASMCs proliferation may be due to arresting the cells in G1/G0-phase by slowing down the hypoxia-induced degradation of p27 via Akt/Skp2-associated pathway. The novel information partially explained the anti-remodeling property of tanshinone IIA on pulmonary artery in HPH.
doi:10.1371/journal.pone.0056774
PMCID: PMC3578942  PMID: 23437233
7.  STIM2 contributes to enhanced store-operated Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension 
Pulmonary Circulation  2011;1(1):84-94.
Pulmonary vasoconstriction and vascular remodeling are two major causes for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with idiopathic pulmonary arterial hypertension (IPAH). An increase in cytosolic free Ca2+concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation, which causes pulmonary vascular remodeling. Store-operated Ca2+ entry (SOCE), induced by depletion of stored Ca2+ in the sarcoplasmic reticulum (SR), can increase [Ca2+]cyt in PASMC, independent of other means of Ca2+ entry. Stromal interaction molecule (STIM) proteins, STIM1 and STIM2, were both recently identified as sensors for store depletion and also signaling molecules to open store-operated Ca2+ channels. We previously reported that SOCE was significantly enhanced in PASMC from IPAH patients compared to PASMC from normotensive control subjects. Enhanced SOCE plays an important role in the pathophysiological changes in PASMC associated with pulmonary arterial hypertension. In this study, we examine whether the expression levels of STIM1 and STIM2 are altered in IPAH-PASMC compared to control PASMC, and whether these putative changes in the STIM1 and STIM2 expression levels are responsible for enhanced SOCE and proliferation in IPAH-PASMC. Compared to control PASMC, the protein expression level of STIM2 was significantly increased in IPAH-PASMC, whereas STIM1 protein expression was not significantly changed. In IPAH-PASMC, the small interfering RNA (siRNA)-mediated knockdown of STIM2 decreased SOCE and proliferation, while knockdown of STIM2 in control PASMC had no effect on either SOCE or proliferation. Overexpression of STIM2 in the control PASMC failed to enhance SOCE or proliferation. These data indicate that enhanced protein expression of STIM2 is necessary, but not sufficient, for enhanced SOCE and proliferation of IPAH-PASMC.
doi:10.4103/2045-8932.78106
PMCID: PMC3121304  PMID: 21709766
Ca2+ signaling; Orai; Stromal interaction molecule; vascular remodeling; vasoconstriction
8.  STIM2 Contributes to Enhanced Store-operated Ca2+ Entry in Pulmonary Artery Smooth Muscle Cells from Patients with Idiopathic Pulmonary Arterial Hypertension 
Pulmonary circulation  2011;1(1):84-94.
Pulmonary vasoconstriction and vascular remodeling are two major causes for elevated pulmonary vascular resistance and pulmonary arterial pressure in patients with idiopathic pulmonary arterial hypertension (IPAH). An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation, which causes pulmonary vascular remodeling. Store-operated Ca2+ entry (SOCE), induced by depletion of stored Ca2+ in the sarcoplasmic reticulum (SR), can increase [Ca2+]cyt in PASMC independent of other means of Ca2+ entry. Stromal interaction molecule (STIM) proteins, STIM1 and STIM2, were recently identified as both sensors for store depletion and signaling molecules to open store-operated Ca2+ channels. We previously reported that SOCE was significantly enhanced in PASMC from IPAH patients compared to PASMC from normotensive control subjects. Enhanced SOCE plays an important role in the pathophysiological changes in PASMC associated with pulmonary arterial hypertension. In this study, we examine whether the expression level of STIM1 and STIM2 is altered in IPAH-PASMC compared to control PASMC and whether these putative changes in STIM1/2 expression level are responsible for enhanced SOCE and proliferation in IPAH-PASMC. Compared to control PASMC, the protein expression level of STIM2 was significantly increased whereas STIM1 protein expression was not significantly changed. In IPAH-PASMC, siRNA-mediated knockdown of STIM2 decreased SOCE and proliferation, while knockdown of STIM2 in control PASMC had no effect on either SOCE or proliferation. Overexpression of STIM2 in control PASMC failed to enhance SOCE or proliferation. These data indicate that enhanced protein expression of STIM2 is necessary, but not sufficient, for enhanced SOCE and proliferation of IPAH-PASMC.
doi:10.4103/2045-8932.78106
PMCID: PMC3121304  PMID: 21709766
Stromal interaction molecule protein; Orai; vasoconstriction; Ca2+ signaling; vascular remodeling
9.  Sildenafil Inhibits Hypoxia-Induced Transient Receptor Potential Canonical Protein Expression in Pulmonary Arterial Smooth Muscle via cGMP-PKG-PPARγ Axis 
Transient receptor potential canonical (TRPC) proteins play important roles in chronically hypoxic pulmonary hypertension (CHPH). Previous results indicated that sildenafil inhibited TRPC1 and TRPC6 expression in rat distal pulmonary arteries (PAs). However, the underlying mechanisms remain unknown. We undertook this study to investigate the downstream signaling of sildenafil’s regulation on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle cells (PASMCs). Hypoxia-exposed rats (10% O2 for 21 d) and rat distal PASMCs (4% O2 for 60 h) were taken as models to mimic CHPH. Real-time PCR, Western blotting, and Fura-2–based fluorescent microscopy were performed for mRNA, protein, and Ca2+ measurements, respectively. The cellular cyclic guanosine monophosphate (cGMP) analogue 8-(4-chlorophenylthio)-guanosine 3′,5′-cyclic monophosphate sodium salt (CPT-cGMP) (100 μM) inhibited TRPC1 and TRPC6 expression, store-operated Ca2+ entry (SOCE), and the proliferation and migration of PASMCs exposed to prolonged hypoxia. The inhibition of CPT-cGMP on TRPC1 and TRPC6 expression in PASMCs was relieved by either the inhibition or knockdown of cGMP-dependent protein kinase (PKG) and peroxisome proliferator–activated receptor γ (PPARγ) expression. Under hypoxic conditions, CPT-cGMP increased PPARγ expression. This increase was abolished by the PKG antagonists Rp8 or KT5823. PPARγ agonist GW1929 significantly decreased TRPC1 and TRPC6 expression in PASMCs. Moreover, hypoxia exposure decreased, whereas sildenafil treatment increased, PKG and PPARγ expression in PASMCs ex vivo, and in rat distal PAs in vivo. The suppressive effects of sildenafil on TRPC1 and TRPC6 in rat distal PAs and on the hemodynamic parameters of CHPH were inhibited by treatment with the PPARγ antagonist T0070907. We conclude that sildenafil inhibits TRPC1 and TRPC6 expression in PASMCs via cGMP-PKG-PPARγ–dependent signaling during CHPH.
doi:10.1165/rcmb.2012-0185OC
PMCID: PMC3824028  PMID: 23526219
sildenafil; PKG; PPARγ; TRPC; PASMCs
10.  Serotonin induces pulmonary artery smooth muscle cell migration 
Biochemical pharmacology  2006;71(3):386-397.
The chronic phase of pulmonary arterial hypertension (PAH) is associated with vascular remodeling, especially thickening of the smooth muscle layer of large pulmonary arteries and muscularization of small pulmonary vessels, which normally have no associated smooth muscle. Serotonin (5-hydroxytryptamine, 5-HT) has been shown to induce proliferation and hypertrophy of pulmonary artery smooth muscle cells (PASMC), and may be important for in vivo pulmonary vascular remodeling. Here, we show that 5-HT stimulates migration of pulmonary artery PASMC. Treatment with 5-HT for 16 h increased migration of PASMC up to four-fold as monitored in a modified Boyden chamber assay. Increased migratory responses were associated with cellular morphological changes and reorganization of the actin cytoskeleton. 5-HT-induced alterations in morphology were previously shown in our laboratory to require cAMP [Lee SL, Fanburg BL. Serotonin produces a configurational change of cultured smooth muscle cells that is associated with elevation of intracellular cAMP. J Cell Phys 1992;150(2):396–405], and the 5-HT4 receptor was pharmacologically determined to be the primary activator of cAMP in bovine PASMC [Becker BN, Gettys TW, Middleton JP, Olsen CL, Albers FJ, Lee SL, et al. 8-Hydroxy-2-(di-n-propylamino)tetralin-responsive 5-hydroxytryptamine4-like receptor expressed in bovine pulmonary artery smooth muscle cells. Mol Pharmacol 1992;42(5):817–25]. We examined the role of the 5-HT4 receptor and cAMP in 5-HT-induced bovine PASMC migration. PASMC express 5-HT4 receptor mRNA, and a 5-HT4 receptor antagonist and a cAMP antagonist completely blocked 5-HT-induced cellular migration. Consistent with our previous report that a cAMP-dependent Cl− channel is required for 5-HT-induced morphological changes in PASMC, phenylanthranilic acid, a Cl− channel blocker, inhibited actin cytoskeletal reorganization and migration produced by 5-HT. We conclude that 5-HT stimulates PASMC migration and associated cytoskeletal reorganization through the 5-HT4 receptor and cAMP activation of a chloride channel.
doi:10.1016/j.bcp.2005.10.035
PMCID: PMC1831537  PMID: 16316635
5-HT; Migration; cAMP; Cl− channel; Cytoskeleton; 5-HTT; 5-HT4 receptor; 5-HT1B/1D receptor; MAPK
11.  Absence of COX-2 exacerbates hypoxia-induced pulmonary hypertension and enhances contractility of vascular smooth muscle cells 
Circulation  2008;117(16):2114-2122.
Background
Cyclooxygenase-2 (COX-2) is upregulated in pulmonary artery smooth muscle cells (PASMC) during hypoxia and may play a protective role in the lung’s response to hypoxia. Selective COX-2 inhibition may have detrimental pulmonary vascular consequences during hypoxia.
Methods and Results
To investigate the role of COX-2 in the pulmonary vascular response to hypoxia, we subjected wild-type and COX-2 deficient mice to a model of chronic normobaric hypoxia. COX-2 null mice developed severe pulmonary hypertension with exaggerated elevation of right ventricular systolic pressure, significant right ventricular hypertrophy, and striking vascular remodeling following hypoxia. Pulmonary vascular remodeling in COX-2 deficient mice was characterized by PASMC hypertrophy, but not increased proliferation. Furthermore, COX-2 deficient mice had significant upregulation of the ET-1 receptor (ETAR) in the lung following hypoxia. Similarly, selective pharmacologic inhibition of COX-2 in wild-type mice exacerbated hypoxia-induced pulmonary hypertension and resulted in PASMC hypertrophy and increased ETAR expression in pulmonary arterioles. Absence of COX-2 in vascular smooth muscle cells during hypoxia in vitro augmented traction forces and enhanced contractility of an extracellular matrix. Treatment of COX-2 deficient PASMC with iloprost, a prostaglandin (PG) I2 analog, as well as PGE2, abrogated the potent contractile response to hypoxia and restored the wild-type phenotype.
Conclusions
Our findings reveal that hypoxia-induced pulmonary hypertension and vascular remodeling is exacerbated in the absence of COX-2 with enhanced ETA receptor expression and increased PASMC hypertrophy. COX-2 deficient PASMC have a maladaptive response to hypoxia manifested by exaggerated contractility which may be rescued by either COX-2-derived PGI2 or PGE2.
doi:10.1161/CIRCULATIONAHA.107.716241
PMCID: PMC2586933  PMID: 18391113
hypertension; pulmonary; hypertrophy; hypoxia; prostaglandins; remodeling; vasculature
12.  Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells 
Respiratory Research  2009;10(1):123.
Background
Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in cytosolic free [Ca2+] ([Ca2+]i) is a prerequisite for NFAT nuclear translocation. Elevated [Ca2+]i in PASMC of PAH patients has been demonstrated through up-regulation of store-operated Ca2+ channels (SOC) which is encoded by the transient receptor potential (TRP) channel protein. Thus we investigated if: 1) up-regulation of TRPC1 channel expression which induces enhancement of SOC-mediated Ca2+ influx and increase in [Ca2+]i is involved in hypoxia-induced PASMC proliferation; 2) hypoxia-induced promotion of [Ca2+]i leads to nuclear translocation of NFAT and regulates PASMC proliferation and TRPC1 expression; 3) the anti-proliferative effect of sildenafil is mediated by inhibition of this SOC/Ca2+/NFAT pathway.
Methods
Human PASMC were cultured under hypoxia (3% O2) with or without sildenafil treatment for 72 h. Cell number and cell viability were determined with a hemocytometer and MTT assay respectively. [Ca2+]i was measured with a dynamic digital Ca2+ imaging system by loading PASMC with fura 2-AM. TRPC1 mRNA and protein level were detected by RT-PCR and Western blotting respectively. Nuclear translocation of NFAT was determined by immunofluoresence microscopy.
Results
Hypoxia induced PASMC proliferation with increases in basal [Ca2+]i and Ca2+ entry via SOC (SOCE). These were accompanied by up-regulation of TRPC1 gene and protein expression in PASMC. NFAT nuclear translocation was significantly enhanced by hypoxia, which was dependent on SOCE and sensitive to SOC inhibitor SKF96365 (SKF), as well as cGMP analogue, 8-brom-cGMP. Hypoxia-induced PASMC proliferation and TRPC1 up-regulation were inhibited by SKF and NFAT blocker (VIVIT and Cyclosporin A). Sildenafil treatment ameliorated hypoxia-induced PASMC proliferation and attenuated hypoxia-induced enhancement of basal [Ca2+]i, SOCE, up-regulation of TRPC1 expression, and NFAT nuclear translocation.
Conclusion
The SOC/Ca2+/NFAT pathway is, at least in part, a downstream mediator for the anti-proliferative effect of sildenafil, and may have therapeutic potential for PAH treatment.
doi:10.1186/1465-9921-10-123
PMCID: PMC2797778  PMID: 20003325
13.  Krüppel-like Factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension 
Respiratory Research  2011;12(1):128.
Background
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease characterized by enhanced proliferation of pulmonary artery smooth muscle cell (PASMC) and suppressed apoptosis. This phenotype has been associated with the upregulation of the oncoprotein survivin promoting mitochondrial membrane potential hyperpolarization (decreasing apoptosis) and the upregulation of growth factor and cytokines like PDGF, IL-6 and vasoactive agent like endothelin-1 (ET-1) promoting PASMC proliferation. Krüppel-like factor 5 (KLF5), is a zinc-finger-type transcription factor implicated in the regulation of cell differentiation, proliferation, migration and apoptosis. Recent studies have demonstrated the implication of KLF5 in tissue remodeling in cardiovascular diseases, such as atherosclerosis, restenosis, and cardiac hypertrophy. Nonetheless, the implication of KLF5 in pulmonary arterial hypertension (PAH) remains unknown. We hypothesized that KLF5 up-regulation in PAH triggers PASMC proliferation and resistance to apoptosis.
Methods and results
We showed that KFL5 is upregulated in both human lung biopsies and cultured human PASMC isolated from distal pulmonary arteries from PAH patients compared to controls. Using stimulation experiments, we demonstrated that PDGF, ET-1 and IL-6 trigger KLF-5 activation in control PASMC to a level similar to the one seen in PAH-PASMC. Inhibition of the STAT3 pathway abrogates KLF5 activation in PAH-PASMC. Once activated, KLF5 promotes cyclin B1 upregulation and promotes PASMC proliferation and triggers survivin expression hyperpolarizing mitochondria membrane potential decreasing PASMC ability to undergo apoptosis.
Conclusion
We demonstrated for the first time that KLF5 is activated in human PAH and implicated in the pro-proliferative and anti-apoptotic phenotype that characterize PAH-PASMC. We believe that our findings will open new avenues of investigation on the role of KLF5 in PAH and might lead to the identification of new therapeutic targets.
doi:10.1186/1465-9921-12-128
PMCID: PMC3193170  PMID: 21951574
Pulmonary arterial hypertension; KLF5; STAT3; proliferation; apoptosis.
14.  Effect of hypoxia and Beraprost sodium on human pulmonary arterial smooth muscle cell proliferation: the role of p27kip1 
Respiratory Research  2007;8(1):77.
Background
Hypoxia induces the proliferation of pulmonary arterial smooth muscle cell (PASMC) in vivo and in vitro, and prostacyclin analogues are thought to inhibit the growth of PASMC. Previous studies suggest that p27kip1, a kind of cyclin-dependent kinase inhibitor, play an important role in the smooth muscle cell proliferation. However, the mechanism of hypoxia and the subcellular interactions between p27kip1 and prostacyclin analogues in human pulmonary arterial smooth muscle cell (HPASMC) are not fully understood.
Methods
We investigated the role of p27kip1 in the ability of Beraprost sodium (BPS; a stable prostacyclin analogue) to inhibit the proliferation of HPASMC during hypoxia. To clarify the biological effects of hypoxic air exposure and BPS on HPASMC, the cells were cultured in a hypoxic chamber under various oxygen concentrations (0.1–21%). Thereafter, DNA synthesis was measured as bromodeoxyuridine (BrdU) incorporation, the cell cycle was analyzed by flow cytometry with propidium iodide staining. The p27kip1 mRNA and protein expression and it's stability was measured by real-time RT-PCR and Western blotting. Further, we assessed the role of p27kip1 in HPASMC proliferation using p27kip1 gene knockdown using small interfering RNA (siRNA) transfection.
Results
Although severe hypoxia (0.1% oxygen) suppressed the proliferation of serum-stimulated HPASMC, moderate hypoxia (2% oxygen) enhanced proliferation in accordance with enhanced p27kip1 protein degradation, whereas BPS suppressed HPASMC proliferation under both hypoxic and normoxic conditions by suppressing p27kip1 degradation with intracellular cAMP-elevation. The 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP), a cAMP analogue, had similar action as BPS in the regulation of p27kip1. Moderate hypoxia did not affect the stability of p27kip1 protein expression, but PDGF, known as major hypoxia-induced growth factors, significantly decreased p27kip1 protein stability. We also demonstrated that BPS and 8-Br-cAMP suppressed HPASMC proliferation under both hypoxic and normoxic conditions by blocking p27kip1 mRNA degradation. Furthermore, p27kip1 gene silencing partially attenuated the effects of BPS and partially restored hypoxia-induced proliferation.
Conclusion
Our study suggests that moderate hypoxia induces HPASMC proliferation, which is partially dependent of p27kip1 down-regulation probably via the induction of growth factors such as PDGF, and BPS inhibits both the cell proliferation and p27kip1 mRNA degradation through cAMP pathway.
doi:10.1186/1465-9921-8-77
PMCID: PMC2164950  PMID: 17974037
15.  Glycogen Synthase Kinase 3beta Contributes to Proliferation of Arterial Smooth Muscle Cells in Pulmonary Hypertension 
PLoS ONE  2011;6(4):e18883.
Rationale
Pulmonary arterial hypertension (PAH) is a rare progressive pulmonary vascular disorder associated with vascular remodeling and right heart failure. Vascular remodeling involves numerous signaling cascades governing pulmonary arterial smooth muscle cell (PASMC) proliferation, migration and differentiation. Glycogen synthase kinase 3beta (GSK3ß) is a serine/threonine kinase and can act as a downstream regulatory switch for numerous signaling pathways. Hence, we hypothesized that GSK3ß plays a crucial role in pulmonary vascular remodeling.
Methods
All experiments were done with lung tissue or isolated PASMCs in a well-established monocrotaline (MCT)-induced PAH rat model. The mRNA expression of Wnt ligands (Wnt1, Wnt3a, Wnt5a), upstream Wnt signaling regulator genes (Frizzled Receptors 1, 2 and secreted Frizzled related protein sFRP-1) and canonical Wnt intracellular effectors (GSK3ß, Axin1) were assessed by real-time polymerase chain reaction and protein levels of GSK3ß, phospho-GSK3ß (ser 9) by western blotting and localization by immunohistochemistry. The role of GSK3ß in PASMCs proliferation was assessed by overexpression of wild-type GSK3ß (WT) and constitutively active GSK3ß S9A by [3H]-thymidine incorporation assay.
Results
Increased levels of total and phosphorylated GSK3ß (inhibitory phosphorylation) were observed in lungs and PASMCs isolated from MCT-induced PAH rats compared to controls. Further, stimulation of MCT-PASMCs with growth factors induced GSK3ß inactivation. Most importantly, treatment with the PDGFR inhibitor, Imatinib, attenuated PDGF-BB and FCS induced GSK3ß phosphorylation. Increased expression of GSK3ß observed in lungs and PASMC isolated from MCT-induced PAH rats was confirmed to be clinically relevant as the same observation was identified in human iPAH lung explants. Overexpression of GSK3ß significantly increased MCT-PASMCs proliferation by regulating ERK phosphorylation. Constitutive activation of GSK3ß (GSK3ß S9A, 9th serine replaced to alanine) inhibited MCT-PASMCs proliferation by decreasing ERK phosphorylation.
Conclusion
This study supports a central role for GSK3ß in vascular remodeling processes and suggests a novel therapeutic opportunity for the treatment of PAH.
doi:10.1371/journal.pone.0018883
PMCID: PMC3078925  PMID: 21533110
16.  Increased p22phox/Nox4 Expression Is Involved in Remodeling Through Hydrogen Peroxide Signaling in Experimental Persistent Pulmonary Hypertension of the Newborn 
Antioxidants & Redox Signaling  2013;18(14):1765-1776.
Abstract
Aim: To determine if the NADPH oxidase isoform Nox4 contributes to increased H2O2 generation in persistent pulmonary hypertension of the newborn (PPHN) pulmonary arteries (PA), and to identify downstream signaling targets of Nox4 that contribute to vascular remodeling and vasoconstriction. Results: PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs, PA, and PA smooth muscle cells (PASMC) were isolated from control and PPHN lambs. Increased expression of p22phox and Nox4 in PPHN lungs, PA, and PASMC was associated with increased reactive oxygen species in PPHN PA, increased protein thiol oxidation in PPHN PASMC, and a decreased activity of extracellular superoxide dismutase (ecSOD) in the lungs and PASMC. Nox4 small interfering RNA (siRNA) decreased Nox4 expression and thiol oxidation and increased the ecSOD activity in PPHN PASMC. An increased activity of nuclear factor-kappa B (NFκB) and expression of its target gene cyclin D1 were detected in PPHN lungs, PA, and PASMC. Nox4 siRNA and catalase attenuated these increases in PASMC, and catalase decreased cyclin D1 expression in PPHN lungs. Innovation: This study demonstrates for the first time that Nox4 expression is elevated in a lamb model of neonatal pulmonary hypertension. It identifies increased NFκB and cyclin D1 expression and a decreased ecSOD activity as targets of increased Nox4 signaling. Conclusion: PPHN increases p22phox and Nox4 expression and activity resulting in elevated H2O2 levels in PPHN PA. Increased H2O2 induces vasoconstriction via mechanisms involving ecSOD inactivation, and stimulates vascular remodeling via NFκB activation and increased cyclin D1 expression. Approaches that inhibit the pulmonary arterial Nox4 activity may attenuate vasoconstriction and vascular remodeling in PPHN. Antioxid. Redox Signal. 18, 1765–1776.
doi:10.1089/ars.2012.4766
PMCID: PMC3619152  PMID: 23244636
17.  Dihydropyridine Ca2+ Channel Blockers Increase Cytosolic [Ca2+] by Activating Ca2+-sensing Receptors in Pulmonary Arterial Smooth Muscle Cells 
Circulation research  2013;112(4):640-650.
Rationale
An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC proliferation and pulmonary vascular remodeling. The dihydropyridine Ca2+ channel blockers, such as nifedipine, have been used for treatment of idiopathic pulmonary arterial hypertension (IPAH).
Objective
Our previous study demonstrated that the Ca2+-sensing receptor (CaSR) was upregulated and the extracellular Ca2+-induced increase in [Ca2+]cyt was enhanced in PASMC from patients with IPAH and animals with experimental pulmonary hypertension. Here, we report that the dihydropyridines (e.g., nifedipine) increase [Ca2+]cyt by activating CaSR in PASMC from IPAH patients (in which CaSR is upregulated), but not in normal PASMC.
Methods and Results
The nifedipine-mediated increase in [Ca2+]cyt in IPAH-PASMC was concentration dependent with an EC50 of 0.20 µM. Knockdown of CaSR with siRNA in IPAH-PASMC significantly inhibited the nifedipine-induced increase in [Ca2+]cyt, whereas overexpression of CaSR in normal PASMC conferred the nifedipine-induced rise in [Ca2+]cyt. Other dihydropyridines, nicardipine and Bay K8644, had similar augmenting effects on the CaSR-mediated increase in [Ca2+]cyt in IPAH-PASMC; however, the non-dihydropyridine blockers, such as diltiazem and verapamil, had no effect on the CaSR-mediated rise in [Ca2+]cyt.
Conclusions
The dihydropyridine derivatives increase [Ca2+]cyt by potentiating the activity of CaSR in PASMC independently of their blocking (or activating) effect on Ca2+ channels; therefore, it is possible that use the dihydropyridine Ca2+ channel blockers (e.g., nifedipine) to treat IPAH patients with upregulated CaSR in PASMC may exacerbate pulmonary hypertension.
doi:10.1161/CIRCRESAHA.113.300897
PMCID: PMC3642037  PMID: 23300272
Calcium channel blocker; calcium-sensing receptor; nifedipine; nicardipine; pulmonary hypertension; smooth muscle cell
18.  Apelin inhibits the proliferation and migration of rat PASMCs via the activation of PI3K/Akt/mTOR signal and the inhibition of autophagy under hypoxia 
Apelin is highly expressed in the lungs, especially in the pulmonary vasculature, but the functional role of apelin under pathological conditions is still undefined. Hypoxic pulmonary hypertension is the most common cause of acute right heart failure, which may involve the remodeling of artery and regulation of autophagy. In this study, we determined whether treatment with apelin regulated the proliferation and migration of rat pulmonary arterial smooth muscle cells (SMCs) under hypoxia, and investigated the underlying mechanism and the relationship with autophagy. Our data showed that hypoxia activated autophagy significantly at 24 hrs. The addition of exogenous apelin decreased the level of autophagy and further inhibited pulmonary arterial SMC (PASMC) proliferation via activating downstream phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/the mammalian target of Rapamycin (mTOR) signal pathways. The inhibition of the apelin receptor (APJ) system by siRNA abolished the inhibitory effect of apelin in PASMCs under hypoxia. This study provides the evidence that exogenous apelin treatment contributes to inhibit the proliferation and migration of PASMCs by regulating the level of autophagy.
doi:10.1111/jcmm.12208
PMCID: PMC3955159  PMID: 24447518
apelin; hypoxia; autophagy; PI3K/Akt/mTOR; smooth muscle cells
19.  Xanthine Oxidase-Derived ROS Upregulate Egr-1 via ERK1/2 in PA Smooth Muscle Cells; Model to Test Impact of Extracellular ROS in Chronic Hypoxia 
PLoS ONE  2011;6(11):e27531.
Exposure of newborn calves to chronic hypoxia causes pulmonary artery (PA) hypertension and remodeling. Previous studies showed that the redox-sensitive transcription factor, early growth response-1 (Egr-1), is upregulated in the PA of chronically hypoxic calves and regulates cell proliferation. Furthermore, we established in mice a correlation between hypoxic induction of Egr-1 and reduced activity of extracellular superoxide dismutase (EC-SOD), an antioxidant that scavenges extracellular superoxide. We now hypothesize that loss of EC-SOD in chronically hypoxic calves leads to extracellular superoxide-mediated upregulation of Egr-1. To validate our hypothesis and identify the signaling pathways involved, we utilized PA tissue from normoxic and chronically hypoxic calves and cultured calf and human PA smooth muscle cells (PASMC). Total SOD activity was low in the PA tissue, and only the extracellular SOD component decreased with hypoxia. PA tissue of hypoxic calves showed increased oxidative stress and increased Egr-1 mRNA. To mimic the in vivo hypoxia-induced extracellular oxidant imbalance, cultured calf PASMC were treated with xanthine oxidase (XO), which generates extracellular superoxide and hydrogen peroxide. We found that 1) XO increased Egr-1 mRNA and protein, 2) XO induced the phosphorylation of ERK1/2 and, 3) pretreatment with an ERK1/2 inhibitor prevented induction of Egr-1 by XO. siRNA knock-down of EC-SOD in human PASMC also upregulated Egr-1 mRNA and protein, activated ERK1/2, and enhanced SMC proliferation and reduced apoptosis. We conclude that an oxidant/antioxidant imbalance arising from loss of EC-SOD in the PA with chronic hypoxia induces Egr-1 via activation of ERK1/2 and contributes to pulmonary vascular remodeling.
doi:10.1371/journal.pone.0027531
PMCID: PMC3225357  PMID: 22140445
20.  Role of histone deacetylases in regulation of phenotype of ovine newborn pulmonary arterial smooth muscle cells 
Cell proliferation  2013;46(6):654-664.
Objective
Pulmonary arterial hypertension, characterized by pulmonary vascular remodeling and vasoconstriction, is associated with excessive proliferative changes in the pulmonary vascular wall. However the role of HDACs in phenotypic alteration of pulmonary arterial smooth muscle cell (PASMC) is largely unknown.
Material and methods
PASMC were isolated from newborn sheep. Cell cycle analysis was performed by flow cytometry. The mRNA and protein expression was measured by real-time PCR and Western blot analysis. Wound-healing scratch assay was used to measure cell migration. The contractility of newborn PASMCs was determined by Gel contraction assay. Chromatin immunoprecipitation was used to examine histone modifications along the p21 promoter region. Global DNA methylation was measured by Liquid chromatography-mass spectroscopy.
Results
Inhibition of class I and II HDAC by apicidin and HDACi VIII suppressed proliferation of newborn PASMC and induced cell cycle arrest in G1 phase. Acetyl H3 level was increased in the newborn PASMC treated with apicidin and HDACi VIII. This was accompanied with increased expression of p21, and decreased expression of CCND1 but not p53. HDAC inhibition alters the histone codes around the p21 promoter region in NPASMC. Apicidin inhibited serum-induced cell migration, modulated the profiling of the expression of genes encoding pro-oxidant and antioxidant enzymes. Contractility and global DNA methylation level of newborn PASMCs was also markedly modulated by apicidin.
Conclusion
Our results demonstrate that class I HDAC is largely involved in phenotypic alteration of newborn PASMC.
doi:10.1111/cpr.12076
PMCID: PMC3904681  PMID: 24460719
epigenetics; histone deacetylase; apicidin; oxidative stress; newborn pulmonary arterial smooth muscle cells; phenotype; global DNA methylation
21.  Proteomic Analysis Reveals that Proteasome Subunit Beta 6 Is Involved in Hypoxia-Induced Pulmonary Vascular Remodeling in Rats 
PLoS ONE  2013;8(7):e67942.
Background
Chronic hypoxia (CH) is known to be one of the major causes of pulmonary hypertension (PH), which is characterized by sustained elevation of pulmonary vascular resistance resulting from vascular remodeling. In this study, we investigated whether the ubiquitin proteasome system (UPS) was involved in the mechanism of hypoxia-induced pulmonary vascular remodeling. We isolated the distal pulmonary artery (PA) from a previously defined chronic hypoxic pulmonary hypertension (CHPH) rat model, performed proteomic analyses in search of differentially expressed proteins belonging to the UPS, and subsequently identified their roles in arterial remodeling.
Results
Twenty-two proteins were differently expressed between the CH and normoxic group. Among them, the expression of proteasome subunit beta (PSMB) 1 and PSMB6 increased after CH exposure. Given that PSMB1 is a well-known structural subunit and PSMB6 is a functional subunit, we sought to assess whether PSMB6 could be related to the multiple functional changes during the CHPH process. We confirmed the proteomic results by real-time PCR and Western blot. With the increase in quantity of the active subunit, proteasome activity in both cultured pulmonary artery smooth muscle cells (PASMCs) and isolated PA from the hypoxic group increased. An MTT assay revealed that the proteasome inhibitor MG132 was able to attenuate the hypoxia-induced proliferation of PASMC in a dose-dependent manner. Knockdown of PSMB6 using siRNA also prevented hypoxia-induced proliferation.
Conclusion
The present study revealed the association between increased PSMB6 and CHPH. CH up-regulated proteasome activity and the proliferation of PASMCs, which may have been related to increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. These results suggested an essential role of the proteasome during CHPH development, a novel finding requiring further study.
doi:10.1371/journal.pone.0067942
PMCID: PMC3700908  PMID: 23844134
22.  BIX-01294 treatment blocks cell proliferation, migration, and contractility in ovine fetal pulmonary arterial smooth muscle cells 
Cell proliferation  2012;45(4):335-344.
Objectives
Recent studies have implicated a role for epigenetic phenomenon in the pathogenesis of pulmonary hypertension but its role in fetal pulmonary artery smooth muscle cell (PASMC) proliferation is still largely unknown. G9a is a key enzyme for histone H3 dimethylation at Lysine-9. In this study we investigated the role of G9a in ovine fetal PASMC proliferation, migration and contractility.
Material and methods
Cell proliferation was measured by cell counting and BrdU incorporation assay. Cell cycle analysis was performed by flow cytometry. Expression of cell cycle related genes was measured by real-time PCR. Wound-healing scratch assay was used to measure cell migration. Gel contraction assay was used to determine the contractility of fetal PASMCs. Global DNA methylation was measured by Liquid chromatography-mass spectroscopy.
Results
Inhibition of G9a by its inhibitor BIX-01294 decreased proliferation of fetal PASMCs and induced cell cycle arrest in G1 phase. This was accompanied with increased expression of p21 expression, but not p53 and other cell cycle-related genes. Treatment of fetal PASMCs with BIX-01294 inhibited platelet-derived growth factor-induced cell proliferation and migration. Contractility of fetal PASMCs was also markedly inhibited by BIX-01294. The expression of calponin and ROCK-II proteins was decreased by BIX-01294 in a dose dependent manner. BIX-01294 significantly increased global methylation level in fetal PASMCs. Our results demonstrate for the first time that histone lysine methylation is involved in cell proliferation, migration, contractility and global DNA methylation in fetal PASMCs. Further understanding of this mechanism may provide insight into proliferative vascular disease in lungs.
doi:10.1111/j.1365-2184.2012.00828.x
PMCID: PMC3649875  PMID: 22691107
23.  Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension 
PLoS ONE  2014;9(3):e90544.
Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.
doi:10.1371/journal.pone.0090544
PMCID: PMC3948681  PMID: 24614111
24.  NEPRILYSIN REGULATES PULMONARY ARTERY SMOOTH MUSCLE CELL PHENOTYPE THROUGH A PDGF RECEPTOR DEPENDENT MECHANISM 
Hypertension  2013;61(4):921-930.
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation.
PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs.
NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor.
Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease.
doi:10.1161/HYPERTENSIONAHA.111.199588
PMCID: PMC3667616  PMID: 23381789
Neprilysin; smooth muscle cell; migration; PDGFR; Src; PTEN
25.  Beta-estradiol attenuates hypoxic pulmonary hypertension by stabilizing the expression of p27kip1 in rats 
Respiratory Research  2010;11(1):182.
Background
Pulmonary vascular structure remodeling (PVSR) is a hallmark of pulmonary hypertension. P27kip1, one of critical cyclin-dependent kinase inhibitors, has been shown to mediate anti-proliferation effects on various vascular cells. Beta-estradiol (β-E2) has numerous biological protective effects including attenuation of hypoxic pulmonary hypertension (HPH). In the present study, we employed β-E2 to investigate the roles of p27kip1 and its closely-related kinase (Skp-2) in the progression of PVSR and HPH.
Methods
Sprague-Dawley rats treated with or without β-E2 were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models, which resemble moderate severity of hypoxia-induced PH in humans. Subsequently, hemodynamic and pulmonary pathomorphology data were gathered. Additionally, pulmonary artery smooth muscle cells (PASMCs) were cultured to determine the anti-proliferation effect of β-E2 under hypoxia exposure. Western blotting or reverse transcriptional polymerase chain reaction (RT-PCR) were adopted to test p27kip1, Skp-2 and Akt-P changes in rat lung tissue and cultured PASMCs.
Results
Chronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of right ventricle/left ventricle plus septum (RV/LV+S) ratio, medial width of pulmonary arterioles, accompanied with decreased expression of p27kip1 in rats. Whereas, β-E2 treatment repressed the elevation of RVSP, RV/LV+S, attenuated the PVSR of pulmonary arterioles induced by chronic hypoxia, and stabilized the expression of p27kip1. Study also showed that β-E2 application suppressed the proliferation of PASMCs and elevated the expression of p27kip1 under hypoxia exposure. In addition, experiments both in vivo and in vitro consistently indicated an escalation of Skp-2 and phosphorylated Akt under hypoxia condition. Besides, all these changes were alleviated in the presence of β-E2.
Conclusions
Our results suggest that β-E2 can effectively attenuate PVSR and HPH. The underlying mechanism may partially be through the increased p27kip1 by inhibiting Skp-2 through Akt signal pathway. Therefore, targeting up-regulation of p27kip1 or down-regulation of Skp-2 might provide new strategies for treatment of HPH.
doi:10.1186/1465-9921-11-182
PMCID: PMC3022723  PMID: 21182801

Results 1-25 (897201)