Search tips
Search criteria

Results 1-25 (1037753)

Clipboard (0)

Related Articles

1.  Differential Effects of Sphingosine 1–Phosphate Receptors on Airway and Vascular Barrier Function in the Murine Lung 
The therapeutic options for ameliorating the profound vascular permeability, alveolar flooding, and organ dysfunction that accompanies acute inflammatory lung injury (ALI) remain limited. Extending our previous finding that the intravenous administration of the sphingolipid angiogenic factor, sphingosine 1–phosphate (S1P), attenuates inflammatory lung injury and vascular permeability via ligation of S1PR1, we determine that a direct intratracheal or intravenous administration of S1P, or a selective S1P receptor (S1PR1) agonist (SEW-2871), produces highly concentration-dependent barrier-regulatory responses in the murine lung. The intratracheal or intravenous administration of S1P or SEW-2871 at < 0.3 mg/kg was protective against LPS-induced murine lung inflammation and permeability. However, intratracheal delivery of S1P at 0.5 mg/kg (for 2 h) resulted in significant alveolar–capillary barrier disruption (with a 42% increase in bronchoalveolar lavage protein), and produced rapid lethality when delivered at 2 mg/kg. Despite the greater selectivity for S1PR1, intratracheally delivered SEW-2871 at 0.5 mg/kg also resulted in significant alveolar–capillary barrier disruption, but was not lethal at 2 mg/kg. Consistent with the S1PR1 regulation of alveolar/vascular barrier function, wild-type mice pretreated with the S1PR1 inverse agonist, SB-649146, or S1PR1+/− mice exhibited reduced S1P/SEW-2871–mediated barrier protection after challenge with LPS. In contrast, S1PR2−/− knockout mice as well as mice with reduced S1PR3 expression (via silencing S1PR3-containing nanocarriers) were protected against LPS-induced barrier disruption compared with control mice. These studies underscore the potential therapeutic effects of highly selective S1PR1 receptor agonists in reducing inflammatory lung injury, and highlight the critical role of the S1P delivery route, S1PR1 agonist concentration, and S1PR1 expression in target tissues.
PMCID: PMC2951871  PMID: 19749179
SEW-2871; LPS; SB-649146; S1P; lung edema
2.  S1P1 Receptor Modulation Preserves Vascular Function in Mesenteric and Coronary Arteries after CPB in the Rat Independent of Depletion of Lymphocytes 
PLoS ONE  2014;9(5):e97196.
Cardiopulmonary bypass (CPB) may induce systemic inflammation and vascular dysfunction. Sphingosine 1-phosphate (S1P) modulates various vascular and immune responses. Here we explored whether agonists of the S1P receptors, FTY720 and SEW2871 improve vascular reactivity after CPB in the rat.
Experiments were done in male Wistar rats (total n = 127). Anesthesia was induced by isoflurane (2.5–3%) and maintained by fentanyl and midazolam during CPB. After catheterization of the left femoral artery, carotid artery and the right atrium, normothermic extracorporeal circulation was instituted for 60 minutes. In the first part of the study animals were euthanized after either 1 hour, 1 day, 2 or 5 days of the recovery period. In second part of the study animals were euthanized after 1 day of postoperative period. We evaluated the contractile response to phenylephrine (mesenteric arteries) or to serotonin (coronary artery) and vasodilatory response to acethylcholine (both arteries).
Contractile responses to phenylephrine were reduced at 1 day recovery after CPB and Sham as compared to healthy control animals (Emax, mN: 7.9±1.9, 6.5±1.5, and 11.3±1.3, respectively). Mainly FTY720, but not SEW2871, caused lymphopenia in both Sham and CPB groups. In coronary and mesenteric arteries, both FTY720 and SEW2871 normalized serotonin and phenylephrine-mediated vascular reactivity after CPB (p<0.05) and FTY720 increased relaxation to acetylcholine as compared with untreated rats that underwent CPB.
Pretreatment with FTY720 or SEW2871 preserves vascular function in mesenteric and coronary artery after CPB. Therefore, pharmacological activation of S1P1 receptors may provide a promising therapeutic intervention to prevent CPB-related vascular dysfunction in patients.
PMCID: PMC4018292  PMID: 24819611
3.  Differential involvement of ezrin/radixin/moesin proteins in sphingosine 1-phosphate-induced human pulmonary endothelial cell barrier enhancement 
Cellular signalling  2011;23(12):2086-2096.
Endothelial cell (EC) barrier dysfunction induced by inflammatory agonists is a frequent pathophysiologic event in multiple diseases. The platelet-derived phospholipid sphingosine-1 phosphate (S1P) reverses this dysfunction by potently enhancing the EC barrier through a process involving Rac GTPase-dependent cortical actin rearrangement as an integral step. In this study we explored the role of the ezrin, radixin, and moesin (ERM) family of actin-binding linker protein in modulating S1P-induced human pulmonary EC barrier enhancement. S1P induces ERM translocation to the EC periphery and promotes ERM phosphorylation on a critical threonine residue (Ezrin-567, Radixin-564, Moesin-558). This phosphorylation is dependent on activation of PKC isoforms and Rac1. The majority of ERM phosphorylation on these critical threonine residues after S1P occurs in moesin and ezrin. Baseline radixin phosphorylation is higher than in the other two ERM proteins but does not increase after S1P. S1P-induced moesin and ezrin threonine phosphorylation is not mediated by the barrier enhancing receptor S1PR1 because siRNA downregulation of S1PR1 fails to inhibit these phosphorylation events, while stimulation of EC with the S1PR1-specific agonist SEW2871 fails to induce these phosphorylation events. Silencing of either all ERM proteins or radixin alone (but not moesin alone) reduced S1P-induced Rac1 activation and phosphorylation of the downstream Rac1 effector PAK1. Radixin siRNA alone, or combined siRNA for all three ERM proteins, dramatically attenuates S1P-induced EC barrier enhancement (measured by transendothelial electrical resistance (TER), peripheral accumulation of diphospho-MLC, and cortical cytoskeletal rearrangement. In contrast, moesin depletion has the opposite effects on these parameters. Ezrin silencing partially attenuates S1P-induced EC barrier enhancement and cytoskeletal changes. Thus, despite structural similarities and reported functional redundancy, the ERM proteins differentially modulate S1P-induced alterations in lung EC cytoskeleton and permeability. These results suggest that ERM activation is an important regulatory event in EC barrier responses to S1P.
PMCID: PMC3651873  PMID: 21864676
ERM; Endothelial cells; Barrier function; Cytoskeleton; S1P; Rac1
4.  Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes 
Kidney international  2011;79(10):1090-1098.
Sphingosine 1-phosphate (S1P), a pleiotropic lipid mediator, binds to five related G-protein-coupled receptors to exert its effects. As S1P1 receptor (S1P1R) activation blocks kidney inflammation in acute renal injury, we tested whether activation of S1P1Rs ameliorates renal injury in early-stage diabetic nephropathy (DN) in rats. Urinary albumin excretion increased in vehicle-treated diabetic rats (single injection of streptozotocin), compared with controls, and was associated with tubule injury and increased urinary tumor necrosis factor-α (TNF-α) at 9 weeks. These effects were significantly reduced by FTY720, a non-selective, or SEW2871, a selective S1P1R agonist. Interestingly, only FTY720 was associated with reduced total lymphocyte levels. Albuminuria was reduced by SEW2871 in both Rag-1 (T- and B-cell deficient) and wild-type diabetic mice after 6 weeks, suggesting that the effect was independent of lymphocytes. Another receptor, S1P3R, did not contribute to the FTY720-mediated protection, as albuminuria was also reduced in diabetic S1P3R knockout mice. Further, both agonists restored WT-1 staining along with podocin and nephrin mRNA expression, suggesting podocyte protection. This was corroborated in vitro, as SEW2871 reduced TNF-α and vascular endothelial growth factor mRNA expression in immortalized podocytes grown in media containing high glucose. Whether targeting kidney S1P1Rs will be a useful therapeutic measure in DN will need direct testing.
PMCID: PMC3155206  PMID: 21289599
diabetic nephropathy; inflammation; lymphocytes; podocyte
5.  Enhancement of Neoangiogenesis and Follicle Survival by Sphingosine-1-Phosphate in Human Ovarian Tissue Xenotransplants 
PLoS ONE  2011;6(4):e19475.
Ovarian transplantation is one of the key approaches to restoring fertility in women who became menopausal as a result of cancer treatments. A major limitation of human ovarian transplants is massive follicular loss during revascularization. Here we investigated whether sphingosine-1-phosphate or its receptor agonists could enhance neoangiogenesis and follicle survival in ovarian transplants in a xenograft model. Human ovarian tissue xenografts in severe-combined-immunodeficient mice were treated with sphingosine-1-phosphate, its analogs, or vehicle for 1–10 days. We found that sphingosine-1-phosphate treatment increased vascular density in ovarian transplants significantly whereas FTY720 and SEW2871 had the opposite effect. In addition, sphingosine-1-phosphate accelerated the angiogenic process compared to vehicle-treated controls. Furthermore, sphingosine-1-phosphate treatment was associated with a significant proliferation of ovarian stromal cell as well as reduced necrosis and tissue hypoxia compared to the vehicle-treated controls. This resulted in a significantly lower percentage of apoptotic follicles in sphingosine-1-phosphate-treated transplants. We conclude that while sphingosine-1-phosphate promotes neoangiogenesis in ovarian transplants and reduces ischemic reperfusion injury, sphingosine-1-phosphate receptor agonists appear to functionally antagonize this process. Sphingosine-1-phosphate holds great promise to clinically enhance the survival and longevity of human autologous ovarian transplants.
PMCID: PMC3084884  PMID: 21559342
6.  Sphinganine-1-phosphate protects kidney and liver after hepatic ischemia and reperfusion in mice via S1P1 receptor activation 
Liver failure due to ischemia and reperfusion (IR) and subsequent acute kidney injury are significant clinical problems. We showed previously that liver IR selectively reduced plasma sphinganine-1-phosphate levels without affecting sphingosine 1-phosphate (S1P) levels. Furthermore, exogenous sphinganine 1-phosphate protected against both liver and kidney injury induced by liver IR. In this study, we elucidated the signaling mechanisms of sphinganine 1-phosphate-mediated renal and hepatic protection. A selective S1P1 receptor antagonist blocked the hepatic and renal protective effects of sphinganine 1-phosphate whereas a selective S1P2 or S1P3 receptor antagonist was without effect. Moreover, a selective S1P1 receptor agonist, SEW-2871, provided similar degree of liver and kidney protection compared with sphinganine-1-phosphate. Furthermore, in vivo gene knock-down of S1P1 receptors with small interfering RNA abolished the hepatic and renal protective effects of sphinganine 1-phosphate. In contrast to sphinganine 1-phosphate, S1P’s hepatic protection was enhanced with an S1P3 receptor antagonist. Inhibition of extracellular signal-regulated kinase, Akt or pertussis toxin-sensitive G-proteins blocked sphinganine-1-phosphate-mediated liver and kidney protection in vivo. Taken together, our results show that sphinganine 1-phosphate provided renal and hepatic protection after liver IR injury in mice via selective activation of S1P1 receptors and pertussis toxin-sensitive G-proteins with subsequent activation of ERK and Akt.
PMCID: PMC3007623  PMID: 20458275
Akt; dihydrosphingosine 1-phosphate; endothelial cell; extracellular signal-regulated kinase; necrosis; sphingolipid; sphingosine 1-phosphate
Journal of neurochemistry  2009;110(4):1191-1202.
Sphingosine-1-phosphate is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptors. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function. Here we report that S1P stimulated G- protein activity in the CNS, and results from [35S]GTPγS autoradiography using the S1P1-selective agonist SEW2871 and the S1P1/3-selective antagonist VPC44116 show that in several regions a majority of this activity is mediated by S1P1 receptors. S1P receptor activation inhibited glutamatergic neurotransmission as determined by electrophysiological recordings in cortical neurons in vitro, and this effect was mimicked by SEW2871 and inhibited by VPC44116. Moreover, central administration of S1P produced in vivo effects resembling the actions of cannabinoids, including thermal antinociception, hypothermia, catalepsy and hypolocomotion, but these actions were independent of CB1 receptors. At least one of the central effects of S1P, thermal antinociception, is also at least partly S1P1 receptor mediated because it was produced by SEW2871 and attenuated by VPC44116. These results indicate that CNS S1P receptors are part of a physiologically relevant and widespread neuromodulatory system, and that the S1P1 receptor contributes to S1P-mediated antinociception.
PMCID: PMC2754148  PMID: 19493165
S1P receptor; GPCR; Glutamate; Analgesia; Hypothermia; Autoradiography
8.  Post-Transplant Immunosuppression: Regulation of the Efflux of Allospecific Effector T Cells from Lymphoid Tissues 
PLoS ONE  2012;7(9):e45548.
A functional sphingosine-1-phosphate (S1P) receptor antagonist specifically inhibited the egress of activated allospecific T cells from draining popliteal lymph nodes in alloantigen-sensitised mice. The level of S1P receptor 1 (S1PR1) mRNA was similarly reduced 1 and 3 days after mitogenic activation of T cells. However, the response of these cells to the S1PR1-specific agonist SEW2871 was only reduced on the first day after T cell activation with normal receptor-mediated Akt-phosphorylation restored by day 3. Longitudinal analysis of CD69 expression showed that almost all T cells expressed this antigen on days 1 and 3 after activation. However, the absolute level of cell-surface expression of CD69 peaked on undivided T cells and was then halved by each of the first 3 cycles of mitosis. CD69-specific small interfering RNA (siRNA) reduced the maximal level of CD69 expression by undivided, mitogen-stimulated T cells. These cells retained their capacity to phosphorylate Akt in response to stimulation with SEW2871. These data show that S1P receptors are involved in controlling the egress of activated T cells from lymph nodes, and that S1PR1 function is regulated by the level of T cell surface CD69. They suggest a potential for augmentation of this process to deplete alloreactive effector cells after organ transplantation.
PMCID: PMC3445505  PMID: 23029087
9.  Protection from pulmonary ischemia-reperfusion injury by adenosine A2A receptor activation 
Respiratory Research  2009;10(1):58.
Lung ischemia-reperfusion (IR) injury leads to significant morbidity and mortality which remains a major obstacle after lung transplantation. However, the role of various subset(s) of lung cell populations in the pathogenesis of lung IR injury and the mechanisms of cellular protection remain to be elucidated. In the present study, we investigated the effects of adenosine A2A receptor (A2AAR) activation on resident lung cells after IR injury using an isolated, buffer-perfused murine lung model.
To assess the protective effects of A2AAR activation, three groups of C57BL/6J mice were studied: a sham group (perfused for 2 hr with no ischemia), an IR group (1 hr ischemia + 1 hr reperfusion) and an IR+ATL313 group where ATL313, a specific A2AAR agonist, was included in the reperfusion buffer after ischemia. Lung injury parameters and pulmonary function studies were also performed after IR injury in A2AAR knockout mice, with or without ATL313 pretreatment. Lung function was assessed using a buffer-perfused isolated lung system. Lung injury was measured by assessing lung edema, vascular permeability, cytokine/chemokine activation and myeloperoxidase levels in the bronchoalveolar fluid.
After IR, lungs from C57BL/6J wild-type mice displayed significant dysfunction (increased airway resistance, pulmonary artery pressure and decreased pulmonary compliance) and significant injury (increased vascular permeability and edema). Lung injury and dysfunction after IR were significantly attenuated by ATL313 treatment. Significant induction of TNF-α, KC (CXCL1), MIP-2 (CXCL2) and RANTES (CCL5) occurred after IR which was also attenuated by ATL313 treatment. Lungs from A2AAR knockout mice also displayed significant dysfunction, injury and cytokine/chemokine production after IR, but ATL313 had no effect in these mice.
Specific activation of A2AARs provides potent protection against lung IR injury via attenuation of inflammation. This protection occurs in the absence of circulating blood thereby indicating a protective role of A2AAR activation on resident lung cells such as alveolar macrophages. Specific A2AAR activation may be a promising therapeutic target for the prevention or treatment of pulmonary graft dysfunction in transplant patients.
PMCID: PMC2711962  PMID: 19558673
10.  Extracorporeal Lung Support Technologies – Bridge to Recovery and Bridge to Lung Transplantation in Adult Patients 
Executive Summary
For cases of acute respiratory distress syndrome (ARDS) and progressive chronic respiratory failure, the first choice or treatment is mechanical ventilation. For decades, this method has been used to support critically ill patients in respiratory failure. Despite its life-saving potential, however, several experimental and clinical studies have suggested that ventilator-induced lung injury can adversely affect the lungs and patient outcomes. Current opinion is that by reducing the pressure and volume of gas delivered to the lungs during mechanical ventilation, the stress applied to the lungs is eased, enabling them to rest and recover. In addition, mechanical ventilation may fail to provide adequate gas exchange, thus patients may suffer from severe hypoxia and hypercapnea. For these reasons, extracorporeal lung support technologies may play an important role in the clinical management of patients with lung failure, allowing not only the transfer of oxygen and carbon dioxide (CO2) but also buying the lungs the time needed to rest and heal.
The objective of this analysis was to assess the effectiveness, safety, and cost-effectiveness of extracorporeal lung support technologies in the improvement of pulmonary gas exchange and the survival of adult patients with acute pulmonary failure and those with end-stage chronic progressive lung disease as a bridge to lung transplantation (LTx). The application of these technologies in primary graft dysfunction (PGD) after LTx is beyond the scope of this review and is not discussed.
Clinical Applications of Extracorporeal Lung Support
Extracorporeal lung support technologies [i.e., Interventional Lung Assist (ILA) and extracorporeal membrane oxygenation (ECMO)] have been advocated for use in the treatment of patients with respiratory failure. These techniques do not treat the underlying lung condition; rather, they improve gas exchange while enabling the implantation of a protective ventilation strategy to prevent further damage to the lung tissues imposed by the ventilator. As such, extracorporeal lung support technologies have been used in three major lung failure case types:
As a bridge to recovery in acute lung failure – for patients with injured or diseased lungs to give their lungs time to heal and regain normal physiologic function.
As a bridge to LTx – for patients with irreversible end stage lung disease requiring LTx.
As a bridge to recovery after LTx – used as lung support for patients with PGD or severe hypoxemia.
Ex-Vivo Lung Perfusion and Assessment
Recently, the evaluation and reconditioning of donor lungs ex-vivo has been introduced into clinical practice as a method of improving the rate of donor lung utilization. Generally, about 15% to 20% of donor lungs are suitable for LTx, but these figures may increase with the use of ex-vivo lung perfusion. The ex-vivo evaluation and reconditioning of donor lungs is currently performed at the Toronto General Hospital (TGH) and preliminary results have been encouraging (Personal communication, clinical expert, December 17, 2009). If its effectiveness is confirmed, the use of the technique could lead to further expansion of donor organ pools and improvements in post-LTx outcomes.
Extracorporeal Lung support Technologies
The ECMO system consists of a centrifugal pump, a membrane oxygenator, inlet and outlet cannulas, and tubing. The exchange of oxygen and CO2 then takes place in the oxygenator, which delivers the reoxygenated blood back into one of the patient’s veins or arteries. Additional ports may be added for haemodialysis or ultrafiltration.
Two different techniques may be used to introduce ECMO: venoarterial and venovenous. In the venoarterial technique, cannulation is through either the femoral artery and the femoral vein, or through the carotid artery and the internal jugular vein. In the venovenous technique cannulation is through both femoral veins or a femoral vein and internal jugular vein; one cannula acts as inflow or arterial line, and the other as an outflow or venous line. Venovenous ECMO will not provide adequate support if a patient has pulmonary hypertension or right heart failure. Problems associated with cannulation during the procedure include bleeding around the cannulation site and limb ischemia distal to the cannulation site.
Interventional Lung Assist (ILA) is used to remove excess CO2 from the blood of patients in respiratory failure. The system is characterized by a novel, low-resistance gas exchange device with a diffusion membrane composed of polymethylpentene (PMP) fibres. These fibres are woven into a complex configuration that maximizes the exchange of oxygen and CO2 by simple diffusion. The system is also designed to operate without the help of an external pump, though one can be added if higher blood flow is required. The device is then applied across an arteriovenous shunt between the femoral artery and femoral vein. Depending on the size of the arterial cannula used and the mean systemic arterial pressure, a blood flow of up to 2.5 L/min can be achieved (up to 5.5 L/min with an external pump). The cannulation is performed after intravenous administration of heparin.
Recently, the first commercially available extracorporeal membrane ventilator (NovaLung GmbH, Hechingen, Germany) was approved for clinical use by Health Canada for patients in respiratory failure. The system has been used in more than 2,000 patients with various indications in Europe, and was used for the first time in North America at the Toronto General Hospital in 2006.
Evidence-Based Analysis
The research questions addressed in this report are:
Does ILA/ECMO facilitate gas exchange in the lungs of patients with severe respiratory failure?
Does ILA/ECMO improve the survival rate of patients with respiratory failure caused by a range of underlying conditions including patients awaiting LTx?
What are the possible serious adverse events associated with ILA/ECMO therapy?
To address these questions, a systematic literature search was performed on September 28, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2005 to September 28, 2008. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established.
Inclusion Criteria
Studies in which ILA/ECMO was used as a bridge to recovery or bridge to LTx
Studies containing information relevant to the effectiveness and safety of the procedure
Studies including at least five patients
Exclusion Criteria
Studies reporting the use of ILA/ECMO for inter-hospital transfers of critically ill patients
Studies reporting the use of ILA/ECMO in patients during or after LTx
Animal or laboratory studies
Case reports
Outcomes of Interest
Reduction in partial pressure of CO2
Correction of respiratory acidosis
Improvement in partial pressure of oxygen
Improvement in patient survival
Frequency and severity of adverse events
The search yielded 107 citations in Medline and 107 citations in EMBASE. After reviewing the information provided in the titles and abstracts, eight citations were found to meet the study inclusion criteria. One study was then excluded because of an overlap in the study population with a previous study. Reference checking did not produce any additional studies for inclusion. Seven case series studies, all conducted in Germany, were thus included in this review (see Table 1).
Also included is the recently published CESAR trial, a multicentre RCT in the UK in which ECMO was compared with conventional intensive care management. The results of the CESAR trial were published when this review was initiated. In the absence of any other recent RCT on ECMO, the results of this trial were considered for this assessment and no further searches were conducted. A literature search was then conducted for application of ECMO as bridge to LTx patients (January, 1, 2005 to current). A total of 127 citations on this topic were identified and reviewed but none were found to have examined the use of ECMO as bridge to LTx.
Quality of Evidence
To grade the quality of evidence, the grading system formulated by the GRADE working group and adopted by MAS was applied. The GRADE system classifies the quality of a body of evidence as high, moderate, low, or very low according to four key elements: study design, study quality, consistency across studies, and directness.
Trials on ILA
Of the seven studies identified, six involved patients with ARDS caused by a range of underlying conditions; the seventh included only patients awaiting LTx. All studies reported the rate of gas exchange and respiratory mechanics before ILA and for up to 7 days of ILA therapy. Four studies reported the means and standard deviations of blood gas transfer and arterial blood pH, which were used for meta-analysis.
Fischer et al. reported their first experience on the use of ILA as a bridge to LTx. In their study, 12 patients at high urgency status for LTx, who also had severe ventilation refractory hypercapnea and respiratory acidosis, were connected to ILA prior to LTx. Seven patients had a systemic infection or sepsis prior to ILA insertion. Six hours after initiation of ILA, the partial pressure of CO2 in arterial blood significantly decreased (P < .05) and arterial blood pH significantly improved (P < .05) and remained stable for one week (last time point reported). The partial pressure of oxygen in arterial blood improved from 71 mmHg to 83 mmHg 6 hours after insertion of ILA. The ratio of PaO2/FiO2 improved from 135 at baseline to 168 at 24 hours after insertion of ILA but returned to baseline values in the following week.
Trials on ECMO
The UK-based CESAR trial was conducted to assess the effectiveness and cost of ECMO therapy for severe, acute respiratory failure. The trial protocol were published in 2006 and details of the methods used for the economic evaluation were published in 2008. The study itself was a pragmatic trial (similar to a UK trial of neonatal ECMO), in which best standard practice was compared with an ECMO protocol. The trial involved 180 patients with acute but potentially reversible respiratory failure, with each also having a Murray score of ≥ 3.0 or uncompensated hypercapnea at a pH of < 7.2. Enrolled patients were randomized in a 1:1 ratio to receive either conventional ventilation treatment or ECMO while on ventilator. Conventional management included intermittent positive pressure ventilation, high frequency oscillatory ventilation, or both. As a pragmatic trial, a specific management protocol was not followed; rather the treatment centres were advised to follow a low volume low pressure ventilation strategy. A tidal volume of 4 to 8 mL/kg body weight and a plateau pressure of < 30 cm H2O were recommended.
Bridge to recovery
No RCTs or observational studies compared ILA to other treatment modalities.
Case series have shown that ILA therapy results in significant CO2 removal from arterial blood and correction of respiratory acidosis, as well as an improvement in oxygen transfer.
ILA therapy enabled a lowering of respiratory settings to protect the lungs without causing a negative impact on arterial blood CO2 and arterial blood pH.
The impact of ILA on patient long-term survival cannot be determined through the studies reviewed.
In-hospital mortality across studies ranged from 20% to 65%.
Ischemic complications were the most frequent adverse events following ILA therapy.
Leg amputation is a rare but possible outcome of ILA therapy, having occurred in about 0.9% of patients in these case series. New techniques involving the insertion of additional cannula into the femoral artery to perfuse the leg may lower this rate.
Bridge to LTx
The results of one case series (n=12) showed that ILA effectively removes CO2 from arterial blood and corrects respiratory acidosis in patients with ventilation refractory hypercapnea awaiting a LTx
Eight of the 12 patients (67%) awaiting a LTx were successfully transplanted and one-year survival for those transplanted was 80%
Since all studies are case series, the grade of the evidence for these observations is classified as “LOW”.
Bridge to recovery
Based on the results of a pragmatic trial and an intention to treat analysis, referral of patient to an ECMO based centre significantly improves patient survival without disability compared to conventional ventilation. The results of CESAR trial showed that:
For patients with information about disability, survival without severe disability was significantly higher in ECMO arm
Assuming that the three patients in the conventional ventilation arm who did not have information about severe disability were all disabled, the results were also significant.
Assuming that none of these patients were disabled, the results were at borderline significance
A greater, though not statistically significant, proportion of patients in ECMO arm survived.
The rate of serious adverse events was higher among patients in ECMO group
The grade of evidence for the above observations is classified as “HIGH”.
Bridge to LTx
No studies fitting the inclusion criteria were identified.
There is no accurate data on the use of ECMO in patients awaiting LTx.
Economic Analysis
The objective of the economic analysis was to determine the costs associated with extracorporeal lung support technologies for bridge to LTx in adults. A literature search was conducted for which the target population was adults eligible for extracorporeal lung support. The primary analytic perspective was that of the Ministry of Health and Long-Term Care (MOHLTC). Articles published in English and fitting the following inclusion criteria were reviewed:
Full economic evaluations including cost-effectiveness analyses (CEA), cost-utility analyses (CUA), cost-benefit analyses (CBA);
Economic evaluations reporting incremental cost-effectiveness ratios (ICER) i.e. cost per quality adjusted life year (QALY), life years gained (LYG), or cost per event avoided; and
Studies in patients eligible for lung support technologies for to lung transplantation.
The search yielded no articles reporting comparative economic analyses.
Resource Use and Costs
Costs associated with both ILA and ECMO (outlined in Table ES-1) were obtained from the University Health Network (UHN) case costing initiative (personal communication, UHN, January 2010). Consultation with a clinical expert in the field was also conducted to verify resource utilization. The consultant was situated at the UHN in Toronto. The UHN has one ECMO machine, which cost approximately $100,000. The system is 18 years old and is used an average of 3 to 4 times a year with 35 procedures being performed over the last 9 years. The disposable cost per patient associated with ECMO is, on average, $2,200. There is a maintenance cost associated with the machine (not reported by the UHN), which is currently absorbed by the hospital’s biomedical engineering department.
The average capital cost of an ILA device is $7,100 per device, per patient, while the average cost of the reusable pump $65,000. The UHN has performed 16 of these procedures over the last 2.5 years. Similarly, there is a maintenance cost not that was reported by UHN but is absorbed by the hospital’s biomedical engineering department.
Resources Associated with Extracorporeal Lung Support Technologies
Hospital costs associated with ILA were based on the average cost incurred by the hospital for 11 cases performed in the FY 07/08 (personal communication, UHN, January 2010). The resources incurred with this hospital procedure included:
Device and disposables
OR transplant
Surgical ICU
Laboratory work
Medical imaging
Clinical nutrition
Occupational therapy
Speech and language pathology
Social work
The average length of stay in hospital was 61 days for ILA (range: 5 to 164 days) and the average direct cost was $186,000 per case (range: $19,000 to $552,000). This procedure has a high staffing requirement to monitor patients in hospital, driving up the average cost per case.
PMCID: PMC3415698  PMID: 23074408
11.  Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats 
Background and Purpose
FTY720 is a known sphingosine-1-phosphate (S1P) receptor agonist. In the present study we investigated the neuroprotective effect of postischemic administration of FTY720 in rats with 2 hours transient middle cerebral artery occlusion (MCAO).
One hundred eleven male rats were randomly assigned to sham-operated and MCAO treated with vehicle, 0.25mg/kg and 1mg/kg of FTY720, another selective S1P receptor-1 (S1P1) agonist SEW2871 (5mg/kg), or 0.25mg/kg of FTY720+ a S1P antagonist VPC23019 (0.5mg/kg). Drugs were injected intraperitoneally immediately after reperfusion. Neurological score and infarct volume were assessed at 24 and 72 hours after MCAO. Western blotting, immunohistochemistry, and Terminal deoxynucleotidyl transferase-mediated uridine 5′-triphosphate-biotin nick end-labeling (TUNEL) were conducted at 24 hours after MCAO.
FTY720 significantly reduced infarct volume and improved neurological score at 24 and 72 hours after MCAO compared with the vehicle group. SEW2871 showed similar neuroprotective effects to FTY720, while VPC 20319 abolished the neuroprotective effects of FTY720. FTY720 significantly retained Akt and extracellular-signal regulated kinase phosphorylation and Bcl-2 expression, and decreased cleaved caspase-3 expression and TUNEL-positive neurons at 24 hours after MCAO. VPC23019 blocked the antiapoptotic effects of FTY720.
These data suggest that activation of S1P1 by FTY720 reduces neuronal death after transient MCAO.
PMCID: PMC2811754  PMID: 19940275
cerebral ischemia; FTY720; Sphingosine 1-phosphate receptor-1; apoptosis
12.  Prolonged Exposure to Sphingosine 1–Phosphate Receptor-1 Agonists Exacerbates Vascular Leak, Fibrosis, and Mortality after Lung Injury 
Sphingosine 1–phosphate (S1P) is a key endogenous regulator of the response to lung injury, maintaining endothelial barrier integrity through interaction with one of its receptors, S1P1. The short-term administration of S1P or S1P1 receptor agonists enhances endothelial monolayer barrier function in vitro, and attenuates injury-induced vascular leak in the lung and other organ systems in vivo. Although S1P1 agonists bind to and activate S1P1, several of these agents also induce receptor internalization and degradation, and may therefore act as functional antagonists of S1P1 after extended exposure. Here we report on the effects of prolonged exposure to these agents in bleomycin-induced lung injury. We demonstrate that repeated administration of S1P1 agonists dramatically worsened lung injury after bleomycin challenge, as manifested by increased vascular leak and mortality. Consistent with these results, prolonged exposure to S1P1 agonists in vitro eliminated the ability of endothelial cell monolayers to respond appropriately to the barrier-protective effects of S1P, indicating a loss of normal S1P–S1P1 signaling. As bleomycin-induced lung injury progressed, continued exposure to S1P1 agonists also resulted in increased pulmonary fibrosis. These data indicate that S1P1 agonists can act as functional antagonists of S1P1 on endothelial cells in vivo, which should be considered in developing these agents as therapies for vascular leak syndromes. Our findings also support the hypothesis that vascular leak is an important component of the fibrogenic response to lung injury, and suggest that targeting the S1P–S1P1 pathway may also be an effective therapeutic strategy for fibrotic lung diseases.
PMCID: PMC2993087  PMID: 20081052
lung injury; vascular leak; fibrosis; sphingosine 1–phosphate; S1P1
13.  3-amino-4-(3-hexylphenylamino)-4-oxobutyl phosphonic acid (W146), a Selective Antagonist of Sphingosine-1-phospahte Receptor Subtype 1, Enhances AMD3100-stimulated Mobilization of Hematopoietic Stem Progenitor Cells in Animals 
Sphingosine-1-phosphate (S1P), a serum-borne bioactive lipid, regulates various physiological functions. We observed that the S1P receptor subtype 1 (S1P1), a high affinity G-protein coupled receptor of S1P, is the major S1P receptor expressed in the Kit+/Sca-1+/Lin− (KSL) hematopoietic stem progenitor cells (HSPCs, KSL-HSPCs). In this study, we investigate function of S1P1 receptors in the regulation of HSPC mobilization in animals. Treatment with SEW2871, a specific agonist of S1P1, had no effect on KSL-HSPC mobilization. In addition, mice pretreated with SEW2871 followed by AMD3100, a well-known activator of KSL-HSPC mobilization by antagonizing the stromal-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) signaling axis, did not enhance the AMD3100-induced KSL-HSPC mobilization. In contrast, pretreatment of (R)-3-amino-4-(3-hexylphenylamino)-4-oxobutyl phosphonic acid (W146), a selective antagonist of S1P1, significantly augments AMD3100-induced KSL-HSPC mobilization into peripheral blood. The inactive enantiomer W140 was incapable of enhancing the AMD3100-induced KSL-HSPC mobilization. Moreover, treatment with selective antagonists for S1P2 and S1P3 had no effects on AMD3100-mediated KSL-HSPC mobilization. Collectively, our data suggest that S1P/S1P1 signaling regulates the SDF-1/CXCR4-mediated retention of KSL-HSPCs in bone marrow microenvironment.
PMCID: PMC4221244  PMID: 25383272
sphingosine-1-phosphate; sphingosine-1-phosphate receptor; hematopoietic stem cells; W146; SDF-1; CXCR4
14.  Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice 
Respiratory Research  2011;12(1):108.
Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response.
Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation.
MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury.
Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.
PMCID: PMC3166924  PMID: 21843339
Acute respiratory distress syndrome; Infection; Inflammation; Escherichia coli; Animal
15.  Adenosine A3 Receptor Activation Attenuates Lung Ischemia-Reperfusion Injury 
The Annals of thoracic surgery  2013;95(5):1762-1767.
Severe ischemia-reperfusion (IR) injury leads to primary graft dysfunction following lung transplantation. Adenosine receptors modulate inflammation after IR, and the adenosine A3 receptor (A3R) is expressed in lung tissue and inflammatory cells. This study tests the hypothesis that A3R agonism attenuates lung IR injury via a neutrophil-dependent mechanism.
Wild-type and A3R knockout (A3R−/−) mice underwent 1 hr left lung ischemia followed by 2 hrs reperfusion (IR). Cl-IB-MECA, a selective A3R agonist, was administered (100 µg/kg i.v.) 5 min prior to ischemia. Study groups included sham, IR, and IR+Cl-IB-MECA (n=6/group). Lung injury was assessed by measuring lung function, wet/dry weight, histopathology, and proinflammatory cytokines and myeloperoxidase levels in bronchoalveolar lavage fluid. Parallel in vitro experiments were performed to evaluate neutrophil chemotaxis, and neutrophil activation was measured following exposure to acute hypoxia-reoxygenation.
Treatment of wild-type mice with Cl-IB-MECA significantly improved lung function and decreased edema, cytokine expression, and neutrophil infiltration after IR. Cl-IB-MECA had no effects in A3R−/− mice. Cl-IB-MECA significantly decreased activation of wild-type, but not A3R−/−, neutrophils after acute hypoxia-reoxygenation and inhibited chemotaxis of wild-type neutrophils.
Exogenous activation of A3R by Cl-IB-MECA attenuates lung dysfunction, inflammation, and neutrophil infiltration after IR in wild-type but not A3R−/− mice. Results with isolated neutrophils suggest that the protective effects of Cl-IB-MECA are due, in part, to the prevention of neutrophil activation and chemotaxis. The use of A3R agonists may be a novel therapeutic strategy to prevent lung IR injury and primary graft dysfunction after transplantation.
PMCID: PMC3725313  PMID: 23541429
lung transplantation; inflammation
16.  Adenosine A2A Agonist Improves Lung Function During Ex-vivo Lung Perfusion 
The Annals of Thoracic Surgery  2011;92(5):1840-1846.
Ex-vivo lung perfusion (EVLP) is a novel technique to assess, and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against lung ischemia-reperfusion injury through its A2A receptor. We hypothesized that combining EVLP with adenosine A2A receptor agonist treatment would enhance lung functional quality and increase donor lung usage.
Eight bilateral pig lungs were harvested and flushed with cold Perfadex. After 14 hours storage at 4°C, EVLP was performed for 5 hours on two explanted lung groups: 1) Control group lungs (n=4), were perfused with Steen Solution and Dimethyl sulfoxide (DMSO), and 2) treated group lungs (n=4) received 10μM CGS21680, a selective A2A receptor agonist, in a Steen Solution-primed circuit. Lung histology, tissue cytokines, gas analysis and pulmonary function were compared between groups.
Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 vs. 5.2, p<0.03) and confirmed by histology. In addition, treated lung demonstrated significantly lower levels of interferon gamma (45.1 vs. 88.5, p<0.05). Other measured tissue cytokines (interleukin (IL) 1 beta, IL-6, and IL-8) were lower in treatment group, but values failed to reach statistical significance. Oxygenation index was improved in the treated group (1.5 vs. 2.3, p<0.01) as well as mean airway pressure (10.3 vs. 13 p<0.009).
EVLP is a novel and efficient way to assess and optimize lung function and oxygen exchange within donor lungs, and the use of adenosine A2A agonist potentiates its potential. EVLP with the concomitant administration of A2A agonist may enhance donor lung quality and could increase the donor lung pool for transplantation.
PMCID: PMC3259746  PMID: 22051279
Lung transplantation; Lung preservation; Ex vivo lung perfusion
17.  Adenosine A1 receptor activation attenuates lung ischemia-reperfusion injury 
Ischemia-reperfusion injury significantly contributes to morbidity and mortality in lung transplant patients. Currently no therapeutic agents are clinically available to prevent ischemia-reperfusion injury, and treatment strategies are limited to maintaining oxygenation and lung function. Adenosine can modulate inflammatory activity and injury via binding to various adenosine receptors, but the role of adenosine A1 receptor in ischemia-reperfusion injury and inflammation is not well understood. This study tests the hypothesis that selective, exogenous activation of A1 receptor is anti-inflammatory and attenuates lung ischemia-reperfusion injury.
Wild-type and A1 receptor knockout mice underwent 1 hour left lung ischemia and 2 hours reperfusion using an in vivo hilar-clamp model. An A1 receptor agonist, CCPA, was administered 5 minutes before ischemia. After reperfusion, lung function was evaluated by measuring airway resistance, pulmonary compliance and pulmonary artery pressure. Wet/dry weight ratio was used to assess edema. Myeloperoxidase and cytokine levels in bronchoalveolar lavage fluid were measured to determine neutrophil infiltration and inflammation.
In wild-type animals, CCPA significantly improved lung function and attenuated edema, cytokine expression and myeloperoxidase levels compared to vehicle-treated mice after ischemia-reperfusion. Lung ischemia-reperfusion injury was similar between A1 receptor knockout and wild-type mice, but CCPA had no effects in A1 receptor knockout mice. In vitro treatment of neutrophils with CCPA significantly reduced chemotaxis.
Exogenous A1 receptor activation improves lung function and decreases inflammation, edema and neutrophil chemotaxis after ischemia-reperfusion. These results suggest a potential therapeutic application for A1 receptor agonists for the prevention of lung ischemia-reperfusion injury after transplantation.
PMCID: PMC3657333  PMID: 23398646
18.  Sphingosine 1-Phosphate Mediates Hyperalgesia via a Neutrophil-Dependent Mechanism 
PLoS ONE  2013;8(1):e55255.
Novel classes of pain-relieving molecules are needed to fill the void between non-steroidal anti-inflammatory agents and narcotics. We have recently shown that intraplantar administration of sphingosine 1-phosphate (S1P) in rats causes peripheral sensitization and hyperalgesia through the S1P1 receptor subtype (S1PR1): the mechanism(s) involved are largely unknown and were thus explored in the present study. Intraplantar injection of carrageenan in rats led to a time-dependent development of thermal hyperalgesia that was associated with pronounced edema and infiltration of neutrophils in paw tissues. Inhibition of 1) S1P formation with SK-I, a sphingosine kinase inhibitor, 2) S1P bioavailability with the S1P blocking antibody Sphingomab, LT1002 (but not its negative control, LT1017) or 3) S1P actions through S1PR1 with the selective S1PR1 antagonist, W146 (but not its inactive enantiomer, W140) blocked thermal hyperalgesia and infiltration of neutrophils. Taken together, these findings identify S1P as an important contributor to inflammatory pain acting through S1PR1 to elicit hyperalgesia in a neutrophil-dependant manner. In addition and in further support, we demonstrate that the development of thermal hyperalgesia following intraplantar injection of S1P or SEW2871 (an S1PR1 agonist) was also associated with neutrophilic infiltration in paw tissues as these events were attenuated by fucoidan, an inhibitor of neutrophilic infiltration. Importantly, FTY720, an FDA-approved S1P receptor modulator known to block S1P-S1PR1 signaling, attenuated carrageenan-induced thermal hyperalgesia and associated neutrophil infiltration. Targeting the S1P/S1PR1 axis opens a therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents.
PMCID: PMC3555820  PMID: 23372844
19.  Sphingosine 1-Phosphate Potentiates Human Lung Fibroblast Chemotaxis through the S1P2 Receptor 
Migration of fibroblasts plays an essential role in tissue repair after injury. Sphingosine 1-phosphate (S1P) is a multifunctional mediator released by many cells that can be released in inflammation and after injury. This study evaluated the effect of S1P on fibroblast chemotaxis toward fibronectin. S1P alone did not affect fibroblast migration, but S1P enhanced fibronectin-directed chemotaxis in a concentration-dependent manner. The effect of S1P was not mimicked by dihydro (dh) S1P or the S1P1 receptor agonist SEW2871. S1P augmentation of fibroblast chemotaxis, however, was completely blocked by JTE-013, an S1P2 antagonist, but not by suramin, an S1P3 antagonist. Suppression of the S1P2 receptor by small interfering (si)RNA also completely blocked S1P augmentation of fibroblast chemotaxis to fibronectin. S1P stimulated Rho activation and focal adhesion kinase (FAK) phosphorylation, and these were also significantly inhibited by the S1P2 receptor antagonist (JTE-013) or by S1P2 siRNA. Further, the potentiation of S1P signaling was blocked by the Rho-kinase inhibitor Y-27632 in a concentration-dependent manner. Inhibition of FAK with siRNA reduced basal chemotaxis toward fibronectin slightly but significantly, and almost completely blocked S1P augmented chemotaxis. These results suggest that S1P-augmented fibroblast chemotaxis toward fibronectin depends on the S1P2 receptor and requires Rho and Rho-kinase, and FAK phosphorylation. By augmenting fibroblast recruitment, S1P has the potential to modulate tissue repair after injury. The pathways by which S1P mediates this effect, therefore, represent a potential therapeutic target to affect tissue repair and remodeling.
PMCID: PMC2542450  PMID: 18367729
sphingosine 1-phosphate; fibroblasts; migration; fibronectin
20.  Pre-Treatment with Allopurinol or Uricase Attenuates Barrier Dysfunction but Not Inflammation during Murine Ventilator-Induced Lung Injury 
PLoS ONE  2012;7(11):e50559.
Uric acid released from injured tissue is considered a major endogenous danger signal and local instillation of uric acid crystals induces acute lung inflammation via activation of the NLRP3 inflammasome. Ventilator-induced lung injury (VILI) is mediated by the NLRP3 inflammasome and increased uric acid levels in lung lavage fluid are reported. We studied levels in human lung injury and the contribution of uric acid in experimental VILI.
Uric acid levels in lung lavage fluid of patients with acute lung injury (ALI) were determined. In a different cohort of cardiac surgery patients, uric acid levels were correlated with pulmonary leakage index. In a mouse model of VILI the effect of allopurinol (inhibits uric acid synthesis) and uricase (degrades uric acid) pre-treatment on neutrophil influx, up-regulation of adhesion molecules, pulmonary and systemic cytokine levels, lung pathology, and regulation of receptors involved in the recognition of uric acid was studied. In addition, total protein and immunoglobulin M in lung lavage fluid and pulmonary wet/dry ratios were measured as markers of alveolar barrier dysfunction.
Uric acid levels increased in ALI patients. In cardiac surgery patients, elevated levels correlated significantly with the pulmonary leakage index. Allopurinol or uricase treatment did not reduce ventilator-induced inflammation, IκB-α degradation, or up-regulation of NLRP3, Toll-like receptor 2, and Toll-like receptor 4 gene expression in mice. Alveolar barrier dysfunction was attenuated which was most pronounced in mice pre-treated with allopurinol: both treatment strategies reduced wet/dry ratio, allopurinol also lowered total protein and immunoglobulin M levels.
Local uric acid levels increase in patients with ALI. In mice, allopurinol and uricase attenuate ventilator-induced alveolar barrier dysfunction.
PMCID: PMC3511544  PMID: 23226314
21.  Pretreatment Strategy with Adenosine A2A Receptor Agonist Attenuates Reperfusion Injury in a Preclinical Porcine Lung Transplantation Model 
Adenosine A2A receptor (A2AR) activation following lung transplantation attenuates ischemia-reperfusion (IR) injury by reducing inflammation. However, the effect of A2AR activation in donor lungs prior to transplant remains ill-defined. This study compares the efficacy of three different treatment strategies for A2AR agonist in a clinically relevant porcine lung transplantation model.
Mature porcine lungs underwent six hours cold ischemia prior to allotransplantation and four hours reperfusion. Five groups (n=6/group) were evaluated based upon treatment with ATL-1223, a selective A2AR agonist: Sham (thoracotomy alone), IR (transplant alone), ATL-D (donor pretreatment via ATL-1223 bolus), ATL-R (recipient treatment via ATL-1223 infusion), and ATL-D/R (combination of both ATL-1223 treatments). Lung function and injury were compared.
Blood oxygenation was significantly higher among ATL-D, ATL-R, and ATL-D/R groups versus IR (392.0±52.5, 428.9±25.5, 509.4±25.1 vs. 77.2±17.0 mmHg, respectively, p<0.001). ATL-1223-treated groups had lower pulmonary artery pressures (ATL-D=30.5±1.8, ATL-R=30.2±3.3, ATL-D/R=29.3±4.5 vs. IR=45.2±2.1 mmHg, p<0.001) and lower mean airway pressures versus IR (ATL-D=9.1±0.8, ATL-R=9.1±2.6, ATL-D/R=9.6±1.3 vs. IR=21.1 mmHg, p<0.001). Similarly, ATL-1223-treated groups had significantly lower lung wet/dry weight, proinflammatory cytokine expression and lung injury scores by histology compared to IR. Importantly, all parameters of lung function and injury in ATL-1223-treated groups were similar to Sham (all p>0.05).
Pretreatment of donor lungs with ATL-1223 was as efficacious as other treatment strategies in protecting against IR injury. If necessary, supplemental treatment of recipients with ATL-1223 may provide additional protection. These results support the development of pharmacologic A2AR agonists for use in human clinical trials for lung transplantation.
PMCID: PMC3212732  PMID: 21762933
Ischemia-reperfusion injury; Inflammation; Cytokines; Acute graft failure
22.  Cardiomyocyte S1P1 Receptor–mediated Extracellular Signal–related Kinase Signaling and Desensitization 
We examined the ability of sphingosine-1-phosphate (S1P) to desensitize extracellular signal–related kinase (ERK), a mitogen-activated protein kinase linked to antiapoptotic responses in the heart. In isolated adult mouse cardiomyocytes, S1P (10 nM–5 μM) induced ERK phosphorylation in a time- and dose-dependent manner. S1P stimulation of ERK was completely inhibited by an S1P1/3 subtype receptor antagonist (VPC23019), by a Gi protein inhibitor (pertussis toxin) and by a mitogen-activated protein kinase/ERK kinase inhibitor (PD98059). A selective S1P3 receptor antagonist (CAY10444) had no effect on S1P-induced ERK activation. The selective S1P1 agonist SEW2871 also induced ERK phosphorylation. Activation of ERK by restimulation with 100 nM S1P was suppressed after 1 hour of preincubation with 100 nM S1P but recovered fully the next day, suggesting receptor recycling. Similar results were obtained in protein kinase Cε-null cardiomyocytes. Treatment with the nonselective S1P receptor agonist FTY720 for 1 hour also reduced phospho-ERK expression in response to subsequent S1P stimulation. In contrast to S1P, some desensitization to FTY720 persisted after overnight exposure. Cell death induced by hypoxia/reoxygenation was reduced by pretreatment with exogenous S1P. This enhanced survival was abrogated by pretreatment with PD98059, VPC23019, or pertussis toxin. Thus, exogenous S1P induces rapid and reversible S1P1-mediated ERK phosphorylation. S1P-induced adult mouse cardiomyocyte survival requires ERK activation mediated via an S1P1–Gi pathway.
PMCID: PMC2835551  PMID: 19433984
adult cardiomyocytes; S1P receptors; ERK; signal transduction; receptor recycling; desensitization
23.  Lung endothelial barrier protection by iloprost in the two-hit models of VILI involves inhibition of Rho signaling 
Mechanical ventilation at high tidal volume may cause pulmonary capillary leakage and acute lung inflammation culminating in ventilator-induced lung injury. Iloprost is a stable synthetic analogue of prostaglandin I2 used for treatment of pulmonary hypertension, which also showed endothelium-dependent anti-edemagenic effects in the models of lung injury. To test the hypothesis that iloprost may attenuate lung inflammation and lung endothelial barrier disruption caused by pathologic lung distension and coagulation system component thrombin, we used cell and animal two-hit models of ventilator-induced lung injury. Mice received triple injection of iloprost (2 μg/kg, intravenous instillation) at 0, 40 and 80 min after onset of high tidal volume (HTV) mechanical ventilation (30 ml/kg, 4 hrs) combined with administration of thrombin receptor activating peptide 6 (TRAP6, 3 × 10−7 mol/mouse, intratracheal instillation). After 4 hrs of ventilation, bronchoalveolar lavage (BAL), histological analysis, and measurements of Evans blue accumulation in the lung tissue lung were performed. Effects of iloprost on endothelial barrier dysfunction were further assessed in pulmonary endothelial cells (EC) exposed to thrombin and pathologic (18%) cyclic stretch. Combination of HTV and TRAP6 enhanced accumulation of neutrophils in BAL fluid and lung parenchyma, increased BAL protein content and endothelial permeability judged by Evans blue extravasation in the lung tissue. These effects were markedly attenuated by iloprost. Application of 18% cyclic stretch to pulmonary EC enhanced thrombin-induced EC paracellular gap formation and Rho-GTPase-mediated phosphorylation of regulatory myosin light chains and myosin phosphatase. Iloprost markedly inhibited Rho-kinase mediated site-specific phosphorylation of myosin phosphatase, and prevented cyclic stretch- and thrombin-induced endothelial monolayer disruption. This study characterizes for the first time the protective effects of iloprost in the in vitro and in vivo two-hit models of VILI and supports consideration of iloprost as a new therapeutic treatment of VILI.
PMCID: PMC2814140  PMID: 20004361
ventilator-induced lung injury; vascular permeability; cyclic stretch; prostacyclin; thrombin; Rho
24.  Fingolimod and related compounds in a spontaneous autoimmune polyneuropathy 
Journal of neuroimmunology  2009;214(1-2):93-100.
We investigated potential therapeutic effects of sphingosine-1-phosphate (S1P) receptor modulators FTY720 (fingolimod) and selective S1P1 agonist SEW2871 on a spontaneous autoimmune polyneuropathy (SAP) when given orally at 7 mo (anticipated disease onset) for 4 weeks. Clinical severity, electrophysiologic and histological findings were ameliorated in mice treated with 1 mg/kg of FTY720. Subsequent studies showed that SEW2871 was also effective in halting the progression of SAP, which was accompanied by decreased proliferative and cytokine responses to myelin protein zero (P0), and an increase in regulatory T cells. We conclude that S1P receptor modulators may play a therapeutic role in autoimmune neuropathies.
PMCID: PMC2745511  PMID: 19647880
CIDP; Guillain-Barré syndrome; S1P receptors; NOD mice; FTY720; SEW2871
25.  High Density Lipoprotein Stimulated Migration of Macrophages Depends on the Scavenger Receptor Class B, Type I, PDZK1 and Akt1 and Is Blocked by Sphingosine 1 Phosphate Receptor Antagonists 
PLoS ONE  2014;9(9):e106487.
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI's C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.
PMCID: PMC4154704  PMID: 25188469

Results 1-25 (1037753)