PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (746300)

Clipboard (0)
None

Related Articles

1.  A non-electrolyte haemolysis assay for diagnosis and prognosis of sickle cell disease 
The Journal of Physiology  2013;591(6):1463-1474.
Red blood cells (RBCs) from patients with sickle cell disease (SCD) lyse in deoxygenated isosmotic non-electrolyte solutions. Haemolysis has features which suggest that it is linked to activation of the pathway termed Psickle. This pathway is usually described as a non-specific cationic conductance activated by deoxygenation, HbS polymerisation and RBC sickling. The current work addresses the hypothesis that this haemolysis will provide a novel diagnostic and prognostic test for SCD, dependent on the altered properties of the RBC membrane resulting from HbS polymerisation. A simple test represented by this haemolysis assay would be useful especially in less affluent deprived areas of the world where SCD is most prevalent. RBCs from HbSS and most HbSC individuals showed progressive lysis in deoxygenated isosmotic sucrose solution at pH 7.4 to a level greater than that observed with RBCs from HbAS or HbAA individuals. Cytochalasin B prevented haemolysis. Haemolysis was temperature- and pH-dependent. It required near physiological temperatures to occur in deoxygenated sucrose solutions at pH 7.4. At pH 6, haemolysis occurred even in oxygenated samples. Haemolysis was reduced in patients on long-term (>5 months) hydroxyurea treatment. Several manoeuvres which stabilise soluble HbS (aromatic aldehydes o-vanillin or 5-hydroxymethyl, and urea) reduced haemolysis, an effect not due to increased oxygen affinity. Conditions designed to elicit HbS polymerisation in cells from sickle trait patients (deoxygenated hyperosmotic sucrose solutions at pH 6) supported their haemolysis. These findings are consistent with haemolysis requiring HbS polymerisation and support the hypothesis that this may be used as a test for SCD.
doi:10.1113/jphysiol.2012.246579
PMCID: PMC3607166  PMID: 23297308
2.  A non-electrolyte haemolysis assay for diagnosis and prognosis of sickle cell disease 
The Journal of Physiology  2013;591(Pt 6):1463-1474.
Red blood cells (RBCs) from patients with sickle cell disease (SCD) lyse in deoxygenated isosmotic non-electrolyte solutions. Haemolysis has features which suggest that it is linked to activation of the pathway termed Psickle. This pathway is usually described as a non-specific cationic conductance activated by deoxygenation, HbS polymerisation and RBC sickling. The current work addresses the hypothesis that this haemolysis will provide a novel diagnostic and prognostic test for SCD, dependent on the altered properties of the RBC membrane resulting from HbS polymerisation. A simple test represented by this haemolysis assay would be useful especially in less affluent deprived areas of the world where SCD is most prevalent. RBCs from HbSS and most HbSC individuals showed progressive lysis in deoxygenated isosmotic sucrose solution at pH 7.4 to a level greater than that observed with RBCs from HbAS or HbAA individuals. Cytochalasin B prevented haemolysis. Haemolysis was temperature- and pH-dependent. It required near physiological temperatures to occur in deoxygenated sucrose solutions at pH 7.4. At pH 6, haemolysis occurred even in oxygenated samples. Haemolysis was reduced in patients on long-term (>5 months) hydroxyurea treatment. Several manoeuvres which stabilise soluble HbS (aromatic aldehydes o-vanillin or 5-hydroxymethyl, and urea) reduced haemolysis, an effect not due to increased oxygen affinity. Conditions designed to elicit HbS polymerisation in cells from sickle trait patients (deoxygenated hyperosmotic sucrose solutions at pH 6) supported their haemolysis. These findings are consistent with haemolysis requiring HbS polymerisation and support the hypothesis that this may be used as a test for SCD.
doi:10.1113/jphysiol.2012.246579
PMCID: PMC3607166  PMID: 23297308
3.  Inhibition of erythrocyte sickling in vitro by pyridoxal. 
Journal of Clinical Investigation  1978;62(4):888-891.
To test the antisickling activity of pyridoxal, we compared the oxygen affinity and the percent sickling at low PO2 of untreated erythrocytes with values for cells from the same blood sample incubated with pyridoxal, glyceraldehyde, or pyridoxine. Pyridoxal increased oxygen affinity much more than glyceraldehyde. 20 mM pyridoxal and glyceraldehyde had equivalent antisickling activity. At PO2 levels above 20 mm Hg, both agents reduced sickling to less than 2%. In samples examined by electron microscopy, pyridoxal reduced the percent sickled cells and the percent cells that contain hemoglobin S fibers by the same amount (from 74 to 3%). Pyridoxine had no effect on oxygen affinity or sockling. Pyridoxal reacts with intracellular hemoglobin to increase oxygen affinity, which inhibits hemoglobin S polymerization and sickling.
Images
PMCID: PMC371842  PMID: 701485
4.  Effects of o-vanillin on K+ transport of red blood cells from patients with sickle cell disease 
Blood Cells, Molecules & Diseases  2014;53(1-2):21-26.
Aromatic aldehydes like o-vanillin were designed to reduce the complications of sickle cell disease (SCD) by interaction with HbS, to reduce polymerisation and RBC sickling. Present results show that o-vanillin also directly affects RBC membrane permeability. Both the K+–Cl− cotransporter (KCC) and the Ca2 +-activated K+ channel (or Gardos channel) were inhibited with IC50 of about 0.3 and 1 mM, respectively, with activities almost completely abolished by 5 mM. Similar effects were observed in RBCs treated with the thiol reacting reagent N-ethylmaleimide or with the Ca2 + ionophore A23187, to circumvent any action via HbS polymerisation. The deoxygenation-induced cation conductance (sometimes termed Psickle) was partially inhibited, whilst deoxygenation-induced exposure of phosphatidylserine was completely abrogated. Na+/K+ pump activity was also reduced. Notwithstanding, o-vanillin stimulated K+ efflux through an unidentified pathway and resulted in reduction in cell volume (as measured by wet weight − dry weight). These actions are relevant to understanding how aromatic aldehydes may affect RBC membrane permeability per se as well as HbS polymerisation and thereby inform design of compounds most efficacious in ameliorating the complications of SCD.
doi:10.1016/j.bcmd.2014.02.004
PMCID: PMC4039999  PMID: 24594314
Sickle; Red blood cells; Aromatic aldehydes; o-Vanillin; Potassium permeability
5.  Hypoxia-induced in vivo sickling of transgenic mouse red cells. 
Journal of Clinical Investigation  1991;87(2):639-647.
To develop an animal model for sickle cell anemia, we have created transgenic mice that express a severe naturally occurring human sickling hemoglobin, Hb S Antilles. Due to its low solubility and oxygen affinity, Hb S Antilles has a greater propensity to cause red cell sickling than Hb S. To make transgenic animals that express a high level of Hb S Antilles, the erythroid-specific DNAse I hypersensitive site II from the human beta-globin cluster was linked independently to the human alpha 2-globin gene and to the beta S Antilles gene. Embryos were injected with both constructs simultaneously and seven transgenic mice were obtained, three of which contained both the human alpha and the human beta S Antilles transgene. After crossing the human transgenes into the mouse beta-thalassemic background a transgenic mouse line was derived in which approximately half the beta-globin chains in the murine red cells were human beta S Antilles. Deoxygenation of the transgenic red cells in vitro resulted in extensive sickling. An increase of in vivo sickling was achieved by placing these transgenic mice in a low oxygen environment. This murine model for red cell sickling should help to advance our understanding of sickle cell disease and may provide a model to test therapeutic interventions.
Images
PMCID: PMC296354  PMID: 1991848
6.  Erythrocyte Hb-S Concentration AN IMPORTANT FACTOR IN THE LOW OXYGEN AFFINITY OF BLOOD IN SICKLE CELL ANEMIA 
Journal of Clinical Investigation  1973;52(2):422-432.
The blood in sickle cell anemia has a very low oxygen affinity and, although 2,3-diphosphoglycerate (2,3-DPG) is increased, there is doubt as to whether this is the only factor responsible. In this study of 15 patients with sickle cell anemia (Hb SS) no correlation was found between oxygen affinity (P50 at pH 7.13) and 2,3-DPG in fresh venous blood. Whole populations of Hb SS erythrocytes were therefore separated, by an ultracentrifuge technique, into fractions of varying density. The packed red cell column was divided into three fractions; a bottom fraction rich in deformed cells or irreversibly sickled cells (ISC), with a very high mean corpuscular hemoglobin concentration (MCHC); a middle fraction containing cells with the highest content of fetal hemoglobin; and a top fraction containing reticulocytes and discoid cells but free of deformed cells. Oxygen affinity was shifted to the right in all layers (mean P50 (pH 7.13)±1SD: top 46.3±2.9 mm Hg: middle 49.8±4.9 mm Hg; bottom 61.0±5.8 mm Hg) compared with normal blood (top 32.1±0.7 mm Hg: bottom 30.1±0.5 mm Hg). 2.3-DPG was increased in the top fraction, but was low or normal in the bottom fraction (top 21.8±3.4 μmol/g Hb: middle 17.7±2.2 μmol/g Hb; bottom 13.8±3.1 μmol/g Hb; normal whole blood 14.3±1.2 μmol/g Hb). The level of 2,3-DPG in top fractions could not account for the degree of right shift of P50, and in the middle and bottom fractions the even greater right shifts were associated with lower levels of 2,3-DPG. Top fraction cells depleted of 2,3-DPG had a higher, but still abnormally low, oxygen affinity. A strong relationship was found between oxygen affinity and MCHC. The fractions with the greatest right shift in P50 had the highest MCHC (top 32.4±2.0; middle 36.2±3.1; bottom 44.6±3.2 g/100 ml, respectively) and the plot of P50 vs. MCHC showed a positive correlation (r = 0.90, P < 0.001).
The red cell population in sickle cell anemia is not homogeneous but contains cells of widely varying Hb F content, 2,3-DPG, and hemoglobin concentration. Paradoxically, the cells with the lowest O2 affinity have the lowest 2,3-DPG, but they also have the highest concentration of Hb S. The dense, deformed cell called the ISC is but the end stage in a process of membrane loss and consequent increase in hemoglobin concentration. The P50 of Hb SS blood is, to a large extent, determined by the presence of these cells (r = 0.85, P < 0.001). Increased concentration of Hb S in the cell favors deoxygenation and crystallization even at relatively high Po2. Lowered affinity for oxygen appears to be closely associated with Hb S concentration and not with 2,3-DPG content.
PMCID: PMC302272  PMID: 4683881
7.  Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. 
To understand the contribution to the pathophysiology of sickle cell anemia of the different erythrocyte density types present in the blood of these patients, we have studied the viscosimetric and hemodynamic characteristics of four major classes of hemoglobin SS erythrocytes. We have isolated reticulocytes, discocytes, dense discocytes, and irreversibly sickled cells (fractions I-IV) on Percoll-Renografin density gradients. Bulk viscosity was studied in a coneplate viscosimeter and the hemodynamic studies were performed on the isolated, artificially perfused mesoappendix vasculature of the rat (Baez preparation). Bulk viscosity measurements at shear rates of 230 S-1 demonstrate that when the cells are oxygenated, fraction I (reticulocyte rich) has a higher viscosity than expected from its low intracellular hemoglobin concentration. The rest of the fractions exhibit moderate increases in bulk viscosity pari-passu with the corresponding increases in density (mean corpuscular hemoglobin concentration). When deoxygenated, all cell fractions nearly doubled their bulk viscosity and the deoxy-oxy differences remained constant. The Baez preparation renders a different picture: oxygenated fractions behave as predicted by the viscosimetric data, but, when deoxygenated, cell fractions exhibit dramatically increased peripheral resistance and the deoxy-oxy difference are directly proportional to cell density, thus, the largest increases were observed for fractions III and IV. The differences between the rheological and the hemodynamic measurements are most probably due to the different sensitivity of the two methods to the extent of intracellular polymerization. These results also demonstrate that the hitherto unrecognized fraction III cells (very dense discocytes that change shape very little on deoxygenation) are as detrimental to the microcirculation as the irreversibly sickled cell-rich fraction IV. They may, however, induce obstruction by a different mechanism. As the extent to which these fractions are populated by erythrocytes varies considerably from patient to patient, the distribution function of cell densities in each sickle cell anemia patient might have consequences for the type of pathophysiological events occurring in their microcirculation.
Images
PMCID: PMC1129157  PMID: 6874947
8.  Phytomedicines and Nutraceuticals: Alternative Therapeutics for Sickle Cell Anemia 
The Scientific World Journal  2013;2013:269659.
Sickle cell anemia is a genetically inherited disease in which the “SS” individual possesses an abnormal beta globin gene. A single base substitution in the gene encoding the human β-globin subunit results in replacement of β6 glutamic acid by valine, leading to the devastating clinical manifestations of sickle cell disease. This substitution causes drastic reduction in the solubility of sickle cell hemoglobin (HbS) when deoxygenated. Under these conditions, the HbS molecules polymerize to form long crystalline intracellular mass of fibers which are responsible for the deformation of the biconcave disc shaped erythrocyte into a sickle shape. First-line clinical management of sickle cell anemia include, use of hydroxyurea, folic acid, amino acids supplementation, penicillinprophylaxis, and antimalarial prophylaxis to manage the condition and blood transfusions to stabilize the patient's hemoglobin level. These are quite expensive and have attendant risk factors. However, a bright ray of hope involving research into antisickling properties of medicinal plants has been rewarding. This alternative therapy using phytomedicines has proven to not only reduce crisis but also reverse sickling (in vitro). The immense benefits of phytomedicines and nutraceuticals used in the management of sickle cell anemia are discussed in this paper.
doi:10.1155/2013/269659
PMCID: PMC3586489  PMID: 23476125
9.  Nitric oxide reduces sickle hemoglobin polymerization: Potential role of nitric oxide-induced charge alteration in depolymerization 
We previously demonstrated that inhaling nitric oxide (NO) increases the oxygen affinity of sickle red blood cells (RBCs) in patients with sickle cell disease (SCD). Our recent studies found that NO lowered the P50 values of sickle hemoglobin (HbS) hemolysates but did not increase methemoglobin (metHb) levels, supporting the role of NO, but not metHb, in the oxygen affinity of HbS. Here we examine the mechanism by which NO increases HbS oxygen affinity. Because anti-sickling agents increase sickle RBC oxygen affinity, we first determined whether NO exhibits anti-sickling properties. The viscosity of HbS hemolysates, measured by falling ball assays, increased upon deoxygenation; NO treatment reduced the increment. Multiphoton microscopic analyses showed smaller HbS polymers in deoxygenated sickle RBCs and HbS hemolysates exposed to NO. These results suggest that NO inhibits HbS polymer formation and has anti-sickling properties. Furthermore, we found that HbS treated with NO exhibits an isoelectric point similar to that of HbA, suggesting that NO alters the electric charge of HbS. NO–HbS adducts had the same elution time as HbA upon high performance liquid chromatography analysis. This study demonstrates that NO may disrupt HbS polymers by abolishing the excess positive charge of HbS, resulting in increased oxygen affinity.
doi:10.1016/j.abb.2011.03.013
PMCID: PMC3889650  PMID: 21457702
Sickle cell disease; Nitric oxide; Oxygen affinity; Anti-sickling; Polymer formation
10.  Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo. 
Journal of Clinical Investigation  1997;100(5):1193-1198.
The hallmark of sickle cell disease (SCD) is the polymerization of deoxygenated sickle hemoglobin (HbS). In SCD patients, one strategy to reduce red blood cell (RBC) sickling is to increase HbS oxygen affinity. Our objective was to determine if low concentrations of nitric oxide (NO) gas would augment the oxygen affinity of RBCs containing homozygous HbS (SS). Blood containing normal adult hemoglobin (AA) or SS RBCs was incubated in vitro in the presence of varying concentrations of NO up to 80 ppm, and oxygen dissociation curves (ODCs) were measured. In addition, blood was obtained from three AA and nine SS volunteers, before and after breathing 80 ppm NO in air for 45 min, and the ODCs were measured. Exposure of SS RBCs to 80 ppm NO in vitro for 5 min or longer decreased the partial pressure of oxygen at which hemoglobin is 50% saturated with oxygen (P50), an average of 15% (4.8+/-1.7 mmHg mean+/-SE; P < 0.001). The increase in SS RBC oxygen affinity correlated with the NO concentration. The P50 of AA RBCs was unchanged (P > 0.1) by 80 ppm NO. In SS volunteers breathing 80 ppm NO for 45 min, the P50 decreased (P < 0.001) by 4.6+/-2.0 mmHg. 60 min after NO breathing was discontinued, the RBC P50 remained decreased in five of seven volunteers in whom the ODC was measured. There was no RBC P50 change (P > 0.1) in AA volunteers breathing NO. Methemoglobin (Mhb) remained low in all subjects breathing NO (SS Mhb 1.4+/-0.5%), and there was no correlation (r = 0.02) between the reduction in P50 and the change in Mhb. Thus, low concentrations of NO augment the oxygen affinity of sickle erythrocytes in vitro and in vivo without significant Mhb production. These results suggest that low concentrations of NO gas may offer an attractive new therapeutic model for the treatment of SCD.
PMCID: PMC508295  PMID: 9276736
11.  Effects of deoxygenation on active and passive Ca2+ transport and on the cytoplasmic Ca2+ levels of sickle cell anemia red cells. 
Journal of Clinical Investigation  1993;92(5):2489-2498.
Elevated [Ca2+]i in deoxygenated sickle cell anemia (SS) red cells (RBCs) could trigger a major dehydration pathway via the Ca(2+)-sensitive K+ channel. But apart from an increase in calcium permeability, the effects of deoxygenation on the Ca2+ metabolism of sickle cells have not been previously documented. With the application of 45Ca(2+)-tracer flux methods and the combined use of the ionophore A23187, Co2+ ions, and intracellular incorporation of the Ca2+ chelator benz-2, in density-fractionated SS RBCs, we show here for the first time that upon deoxygenation, the mean [Ca2+]i level of SS discocytes was significantly increased, two- to threefold, from a normal range of 9.4 to 11.4 nM in the oxygenated cells, to a range of 21.8 to 31.7 nM in the deoxygenated cells, closer to K+ channel activatory levels. Unlike normal RBCs, deoxygenated SS RBCs showed a two- to fourfold increase in pump-leak Ca2+ turnover. Deoxygenation of the SS RBCs reduced their Ca2+ pump Vmax, more so in reticulocyte- and discocyte-rich than in dense cell fractions, and decreased their cytoplasmic Ca2+ buffering. Analysis of these results suggests that both increased Ca2+ influx and reduced Ca2+ pump extrusion contribute to the [Ca2+]i elevation.
PMCID: PMC288434  PMID: 8227363
12.  Solenostemon monostachyus, Ipomoea involucrata and Carica papaya seed oil versus Glutathione, or Vernonia amygdalina: Methanolic extracts of novel plants for the management of sickle cell anemia disease 
Background
Sickle cell disease (SCD) is a genetic disease caused by an individual inheriting an allele for sickle cell hemoglobin from both parents and is associated with unusually large numbers of immature blood cells, containing many long, thin, crescent-shaped erythrocytes. It is a disease prevalent throughout many populations. The use of medicinal plants and nutrition in managing SCD is gaining increasing attention.
Methods
The antisickling effects of Solenostemon monostachyus (SolMon), Carica papaya seed oil (Cari-oil) and Ipomoea involucrata (Ipocrata) in male (HbSSM) and female (HbSSF) human sickle cell blood was examined in vitro and compared with controls, or cells treated with glutathione or an antisickling plant (Vernonia amygdalina; VerMyg).
Results
Levels of sickle blood cells were significantly reduced (P < 0.05) in all the plant-extract treated SCD patients’ blood compared with that of untreated SCD patients. RBCs in SolMon, Ipocrata, and Cari-oil treated samples were significantly higher (P < 0.05) compared with VerMyg-treated samples. The Fe2+/Fe3+ ratio was significantly reduced (P < 0.05) in all plant extract-treated HbSSM samples compared with controls. Hemoglobin concentration was significantly increased (P < 0.05) by SolMon treatment in HbSSF compared with VerMyg. Sickle cell polymerization inhibition exhibited by SolMon was significantly higher (P < 0.05) compared with that of VerMyg in HbSSF blood. Sickle cell polymerization inhibition in SolMon and Ipocrata were significantly higher (P < 0.05) compared with VerMyg in HbSSM blood. All plant extracts significantly reduced (P < 0.05) lactate dehydrogenase activity in both HbSSM and HbSSF-treated blood. Catalase activity was significantly increased (P < 0.05) in HbSSF blood treated with Ipocrata compared with glutathione. Cari-oil treated HbSSM and HbSSF blood had significantly increased (P < 0.05) peroxidase activity compared with controls.
Conclusions
Methanolic extracts from S. monostachyus, C. papaya seed oil and I. involucrata exhibited particular antisickling properties coupled with the potential to reduce stress in sickle cell patients. Each plant individually or in combination may be useful for the management of sickle cell disease.
doi:10.1186/1472-6882-12-262
PMCID: PMC3553046  PMID: 23259718
Sickle cell disease; Health; Management; Antisickling; Underutilized; Plants
13.  Effect of Intracellular Magnesium and Oxygen Tension on K+-Cl− Cotransport in Normal and Sickle Human Red Cells 
In red cells from normal individuals (HbA cells), the K+-Cl− cotransporter (KCC) is inactivated by low O2 tension whilst in those from sickle cell patients (HbS cells), it remains fully active. Changes in free intracellular [Mg2+] have been proposed as a mechanism. In HbA cells, KCC activity was stimulated by Mg2+ depletion and inhibited by Mg2+ loading but the effect of O2 was independent of Mg2+. At all [Mg2+]is, the transporter was stimulated in oxygenated cells, minimally active in deoxygenated ones. By contrast, the stimulatory effects of O2 was abolished by inhibitors of protein (de)phosphorylation. HbS cells had elevated KCC activity, which was of similar magnitude in oxygenated and deoxygenated cells, regardless of Mg2+ clamping. In deoxygenated cells, the antisickling agent dimethyl adipimidate inhibited sickling, Psickle and KCC. Results indicate a role for protein phosphorylation in O2 dependence of KCC, with different activities of the relevant enzymes in HbA and HbS cells, probably dependent on Hb polymerisation, but not on [Mg2+]i.
doi:10.1159/000092073
PMCID: PMC1475928  PMID: 16543728
KCl cotransport; Oxygen; Magnesium; Sickle cell
14.  The effect of deoxygenation on whole-cell conductance of red blood cells from healthy individuals and patients with sickle cell disease 
Blood  2006;109(6):2622-2629.
Red blood cells from patients with sickle cell disease (SCD) exhibit increased electrogenic cation permeability, particularly following deoxygenation and hemoglobin (Hb) polymerisation. This cation permeability, termed Psickle, contributes to cellular dehydration and sickling, and its inhibition remains a major goal for SCD treatment. Nevertheless, its characteristics remain poorly defined, its molecular identity is unknown, and effective inhibitors have not been established. Here, patch-clamp methodology was used to record whole-cell currents in single red blood cells from healthy individuals and patients with SCD. Oxygenated normal red blood cells had a low membrane conductance, unaffected by deoxygenation. Oxygenated HbS cells had significantly increased conductance and, on deoxygenation, showed a further rise in membrane conductance. The deoxygenation-induced pathway was variable in magnitude. It had equal permeability to Na+ and K+, but was less permeable to NMDG+ and Cl−. Conductance to Ca2+ was also of a similar magnitude to that of monovalent cations. It was inhibited by DIDS (100 μM), Zn2+ (100 μM), and by Gd3+ (IC50 of approximately 2 μM). It therefore shares some properties with Psickle. These findings represent the first electrical recordings of single HbS cells and will facilitate progress in understanding altered red blood cell cation transport characteristics of SCD.
doi:10.1182/blood-2006-03-001404
PMCID: PMC2951509  PMID: 17138828
15.  Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice 
Journal of Clinical Investigation  2004;114(8):1136-1145.
In sickle cell disease, intravascular sickling and attendant flow abnormalities underlie the chronic inflammation and vascular endothelial abnormalities. However, the relationship between sickling and vascular tone is not well understood. We hypothesized that sickling-induced vaso-occlusive events and attendant oxidative stress will affect microvascular regulatory mechanisms. In the present studies, we have examined whether microvascular abnormalities expressed in sickle transgenic-knockout Berkeley (BERK) mice (which express exclusively human α- and βS-globins with <1% γ-globin levels) are amenable to correction with increased levels of antisickling fetal hemoglobin (HbF). In BERK mice, sickling, increased oxidative stress, and hemolytic anemia are accompanied by vasodilation, compensatory increases in eNOS and COX-2, and attenuated vascular responses to NO-mediated vasoactive stimuli and norepinephrine. The hypotension and vasodilation (required for adequate oxygen delivery in the face of chronic anemia) are mediated by non-NO vasodilators (i.e., prostacyclin) as evidenced by induction of COX-2. In BERK mice, the resistance to NO-mediated vasodilators is associated with increased oxidative stress and hemolytic rate, and in BERK + γ mice (expressing 20% HbF), an improved response to these stimuli is associated with reduced oxidative stress and hemolytic rate. Furthermore, BERK + γ mice show normalization of vessel diameters, and eNOS and COX-2 expression. These results demonstrate a strong relationship between sickling and microvascular function in sickle cell disease.
doi:10.1172/JCI200421633
PMCID: PMC522244  PMID: 15489961
16.  Hypoxia Activates a Ca2+-Permeable Cation Conductance Sensitive to Carbon Monoxide and to GsMTx-4 in Human and Mouse Sickle Erythrocytes 
PLoS ONE  2010;5(1):e8732.
Background
Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca2+] ([Ca2+]i) and subsequent activation of KCa 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration.
Methodology/Principal Findings
We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca2+- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 µM), dipyridamole (100 µM), DIDS (100 µM), and carbon monoxide (25 ppm pretreatment). Deoxygenation also elevates sickle erythrocyte [Ca2+]i, in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca2+]i in mouse sickle erythrocytes did not require KCa3.1 activity.
Conclusions/Significance
The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca2+-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca2+ for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.
doi:10.1371/journal.pone.0008732
PMCID: PMC2806905  PMID: 20090940
17.  The in vitro antisickling and antioxidant effects of aqueous extracts Zanthoxyllum heitzii on sickle cell disorder 
Background
Several plant extracts from Rutaceae family are currently used to the management of sickle cell disorder (SCD) in the African. Few reports have shown that extracts from Zanthoxyllum or Fagara genus demonstrated anti-sickling property. This study investigates the in vitro antisickling and antioxidant properties of extracts from Zanthoxyllum heitzii.
Methods
The sickling of red blood cells (RBCs) was induced using sodium metabisulfite (2%) followed by treatment with extracts at different concentrations. The osmotic fragility tests permits to explore the effect of Z. heitzii extracts on haemoglobin S solubility and sickle cells membrane stability. For each extract, qualitative phytochemical tests were used to identify the presence of alkaloids, tannins, saponins, flavonoids, glycosides and phenols, while some quantitative methods such as Folin, Ferric Reducing Antioxidant Power (FRAP) and diphenyl 1, 2 picryl hydrazyl (DPPH) were used to determine the antioxidant potential of these extracts.
Results
Sodium metabisulphite increased the sickling of RBCs from 29.62 to 55.46% during 2 h. Treatment of sickling cells with extracts at different concentrations showed that a decrease of the percentage of sickling cells was found in both induced and non induced sickling cells. The fruits extract of Z. heitzii demonstrated the best anti-sickling property. The same extract at 250 μg/mL showed the best membrane cell stability compared to others. All the extracts revealed an antioxidant and anti-radical activities although lesser compared to the standard.
Conclusion
The fruit extract of Z. Heitzii demonstrated the most significant antisickling effect with a potential for use in the clinical management of SCD.
doi:10.1186/1472-6882-13-162
PMCID: PMC3708797  PMID: 23829696
Sickling cells; Reversibility; Antioxidant; Hemolysis; Zanthoxyllum heitzii
18.  Sodium-potassium pump, ion fluxes, and cellular dehydration in sickle cell anemia. 
Journal of Clinical Investigation  1987;79(6):1621-1628.
We studied the role of the sodium-potassium pump in erythrocytes of 12 patients with sickle cell anemia (SS). Ouabain-binding sites per cell and pump-mediated Rb/K uptake were significantly higher in SS patients than in white or black controls. Ouabain-resistant Rb/K influx was also greater than in normal controls or patients with sickle cell trait. Deoxygenation of SS erythrocytes increased ouabain-sensitive Rb/K influx without altering ouabain binding, presumably as the consequence of an increase in the passive influx of sodium. Deoxygenation increased mean corpuscular hemoglobin concentration (MCHC) by 5.5%, and studies of the density distribution of SS cells indicated an increase in highly dense fractions known to contain sickled erythrocytes. Ouabain prevented the rise in MCHC and reduced the percentage of dense cells. These findings indicate a magnified role for the sodium-potassium pump in the pathophysiology of SS erythrocytes and suggest that its inhibition might prove useful in therapy.
PMCID: PMC424484  PMID: 3034977
19.  Low shear red cell oxygen transport effectiveness is adversely affected by transfusion and further worsened by deoxygenation in sickle cell disease patients on chronic transfusion therapy 
Transfusion  2012;53(2):297-305.
BACKGROUND
Simple chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen carrying capacity, reducing demands for high cardiac output. While transfusion decreases factors associated with vaso-occlusion, including percent HbS, reticulocyte count and circulating cell-free hemoglobin, it increases blood viscosity, which reduces microvascular flow. The hematocrit to viscosity ratio (HVR) is an index of red cell oxygen transport effectiveness that varies with shear stress and balances the benefits of improved oxygen capacity to viscosity-mediated impairment of microvascular flow. We hypothesized that transfusion would improve HVR at high shear despite increased blood viscosity, but would decrease HVR at low shear.
STUDY DESIGN AND METHODS
To test this hypothesis, we examined oxygenated and deoxygenated blood samples from 15 sickle cell patients on CTT immediately pre-transfusion and again 12–120 hours post-transfusion.
RESULTS
Comparable changes in hemoglobin, hematocrit, reticulocyte count and hemoglobin S with transfusion were observed in all subjects. Viscosity, hematocrit and high-shear HVR increased with transfusion while low shear HVR decreased significantly.
CONCLUSION
Decreased low-shear HVR suggests impaired oxygen transport to low-flow regions and may explain why some complications of sickle cell anemia are ameliorated by chronic transfusion therapy and others may be made worse.
doi:10.1111/j.1537-2995.2012.03822.x
PMCID: PMC3510323  PMID: 22882132
sickle cell disease; chronic transfusion therapy; blood viscosity; hematocrit to viscosity ratio
20.  Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. 
Journal of Clinical Investigation  1993;92(1):520-526.
We have investigated the interaction of clotrimazole (CLT) and related compounds with the erythroid Ca(2+)-activated K+ channel, a mediator of sickle cell dehydration. We measured K+ transport, membrane potential, and cell volume upon activation of this pathway in sickle erythrocytes. CLT blocked almost completely Ca(2+)-activated K+ transport in homozygous hemoglobin S cells, with IC50 values of 29 +/- 15 nM in isotonic 20 mM salt solution and 51 +/- 15 nM in normal saline (n = 3). The inhibition of K+ transport by CLT was caused by a specific interaction with the Ca(2+)-activated K+ channel of human red cells, since it displaced bound 125I-Charybdotoxin, a specific ligand of the Gardos channel, with an IC50 (12 +/- 4 nM in isotonic 20 mM) similar to the IC50 values for flux inhibition. When homozygous hemoglobin S cells were dehydrated by incubation in the presence of 100 microM CaCl2 and the ionophore A23187, or by exposure to cycles of oxygenation and deoxygenation, CLT effectively inhibited cell dehydration and K+ loss. The IC50 of CLT for inhibition of Ca(2+)-activated K+ transport in sickle cells is significantly lower than plasma concentrations of CLT achievable after nontoxic oral doses. We therefore propose that oral administration of CLT may prevent red cell dehydration in patients with sickle cell anemia.
Images
PMCID: PMC293641  PMID: 8326017
21.  Effects of Cyanate and 2,3-Diphosphoglycerate on Sickling RELATIONSHIP TO OXYGENATION 
Journal of Clinical Investigation  1973;52(10):2542-2547.
Cyanate and 2,3-diphosphoglycerate (2,3-DPG) both influence the oxygen affinity of hemoglobin. The studies presented here concern the effects of these compounds on the sickling phenomenon. The inhibitory effect of cyanate on sickling is largely due to the fact that it increases the percentage of oxyhemoglobin S at a given oxygen tension. In addition, cyanate inhibits sickling by a mechanism that is independent of oxygenation. In this paper, we have demonstrated that the viscosity of carbamylated sickle blood was lower than that of non-carbamylated controls at the same oxygen saturation. Furthermore, carbamylation resulted in an increase in the minimum concentration of deoxy-sickle hemoglobin required for gelation.
Like cyanate, 2,3-DPG affected sickling of intact erythrocytes by two mechanisms. Since 2,3-DPG decreases the percentage of oxyhemoglobin S at a given oxygen tension, sickling is enhanced. In addition, 2,3-DPG had a direct effect. When the intracellular 2,3-DPG concentration was increased in vitro, a greater percentage of cells were sickled at a given oxygen saturation. Conversely, sickling was inhibited in cells in which 2,3-DPG was artificially lowered. These data indicate that the enhancement of sickling by 2,3-DPG is in part independent of its influence on oxygen affinity.
PMCID: PMC302513  PMID: 4729047
22.  Pathophisiology of Sickle Cell Disease and New Drugs for the Treatment 
A homozygous mutation in the gene for β globin, a subunit of adult hemoglobin A (HbA), is the proximate cause of sickle cell disease (SCD). Sickle hemoglobin (HbS) shows peculiar biochemical properties, which lead to polymerizing when deoxygenated. HbS polymerization is associated with a reduction in cell ion and water content (cell dehydration), increased red cell density which further accelerate HbS polymerization. Dense, dehydrated erythrocytes are likely to undergo instant polymerization in conditions of mild hypoxia due to their high HbS concentration, and HbS polymers may be formed under normal oxygen pressure. Pathophysiological studies have shown that the dense, dehydrated red cells may play a central role in acute and chronic clinical manifestations of sickle cell disease, in which intravascular sickling in capillaries and small vessels leads to vaso-occlusion and impaired blood flow in a variety of organs and tissue. The persistent membrane damage associated with HbS polymerization also favors the generation of distorted rigid cells and further contributes to vaso-occlusive crisis (VOCs) and cell destruction in the peripheral circulation. These damaged, dense sickle red cells also show a loss of phospholipid asymmetry with externalization of phosphatidylserine (PS), which is believed to play a significant role in promoting macrophage recognition with removal of erythrocytes (erythrophagocytosis). Vaso-occlusive events in the microcirculation result from a complex scenario involving the interactions between different cell types, including dense, dehydrated sickle cells, reticulocytes, abnormally activated endothelial cells, leukocytes, platelets and plasma factors such as cytokine and oxidized pro-inflammatory lipids. Hydroxycarbamide (hydroxyurea) is currently the only drug approved for chronic administration in adult patients with sickle cell disease to prevent acute painful crises and reduce the incidence of transfusion and acute chest crises. Here, we will focus on consolidated and experimental therapeutic strategies for the treatment of sickle cell disease, including: agents which reduce or prevent sickle cell dehydrationagents which reduce sickle cell-endothelial adhesive eventsnitric oxide (NO) or NO-related compoundsanti-oxidant agents
Correction of the abnormalities ranging from membrane cation transport pathways to red cell-endothelial adhesive events, might constitute new pharmacological targets for treating sickle cell disease.
doi:10.4084/MJHID.2009.024
PMCID: PMC3033152  PMID: 21415994
23.  Evidence for a direct reticulocyte origin of dense red cells in sickle cell anemia. 
Journal of Clinical Investigation  1991;87(1):113-124.
To explore our hypothesis of a direct reticulocyte origin of irreversibly sickled cells (ISCs), we fractionated light, reticulocyte-rich, and discocyte-rich sickle anemia red cells on Stractan gradients, and examined the effects of deoxygenation-induced sickling, external Ca2+, acidification, and replacing external Na+ by impermeant N-methyl-D-glucamine (NMG+). Sickling permeabilized light reticulocyte-rich cells to cations (Na+, K+, and Ca2+) more than discocytes; without external Ca2+, Na+ influx matched K+ efflux, with stable cell volume; with Ca2+, many light, low hemoglobin (Hb) F reticulocytes dehydrated rapidly (preventable by quinine, a Ca2(+)-dependent K+ channel inhibitor). Acidification of oxygenated discocytes (high mean Hb F) and reticulocyte-rich fractions yielded denser, reticulocyte-enriched cells with lower Hb F (as in light reticulocyte or dense ISC-rich fractions). Light cells shrank when NMG+ replaced Na+, supporting predictions of a Na(+)-dependent volume control system. Demonstration of sickling-induced, Ca2(+)-dependent dehydration of Hb F-free reticulocytes, and conservation of acid-stimulated K:Cl cotransport among low Hb F, reticulocyte-enriched cells in discocyte fractions support the hypothesis. Ancillary new findings included heparin stimulation of sickling-induced Na+ and K+ permeabilizations, and Ca2+ inhibition of the Na+ leak.
PMCID: PMC295004  PMID: 1702096
24.  Abnormal rheology of oxygenated blood in sickle cell anemia 
Journal of Clinical Investigation  1970;49(4):623-634.
The viscosity of oxygenated blood from patients with sickle cell anemia (Hb SS disease) was found to be abnormally increased, a property which contrasts with the well recognized viscous aberration produced by deoxygenation of Hb SS blood. Experiments designed to explain this finding led to considerations of deformation and aggregation, primary determinants of the rheologic behavior of erythrocytes as they traverse the microcirculation. Deformability of erythrocytes is in turn dependent upon internal viscosity (i.e. the state and concentration of hemoglobin in solution) and membrane flexibility. Definition of the contribution made by each of these properties to the abnormal viscosity of oxygenated Hb SS blood was made possible by analysis of viscosity measurements, made over a wide range of shear rates and cell concentrations, on Hb SS erythrocytes and normal erythrocytes suspended in Ringer's solution (where aggregation does not occur) and in plasma. Similar measurements were made on the two cell types separated by ultracentrifugation of Hb SS erythrocytes: high density erythrocytes composed of 50 to 70% irreversibly “sickled” cells (ISC) and low density erythrocytes composed of over 95% non-ISC.
Under all experimental conditions (hematocrit, shear rate, and suspending medium) the viscosity of ISC exceeds that of normal erythrocytes. The viscosity of non-ISC is elevated only in the absence of aggregation and over intermediate ranges of hematocrit. Analyses of the data reveal (a) an elevated internal viscosity of ISC: (b) a reduced membrane flexibility of both ISC and non-ISC, particularly at low shear rates; and (c) a reduced tendency for aggregation displayed by both cell types.
The abnormal viscosity of oxygenated Hb SS blood can be attributed to the altered rheology of ISC and, to a lesser extent, of non-ISC. These studies assign a role to the abnormal rheology of Hb SS erythrocytes in the pathogenesis of sickle cell anemia, even under conditions of complete oxygenation.
Images
PMCID: PMC322516  PMID: 5443167
25.  Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus 
Background
Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields. Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellulosic hydrolysates may be required to achieve efficient production of BC. Recent results suggest that phenolic compounds contribute to the inhibition of G. xylinus. However, very little is known about the effect on G. xylinus of specific lignocellulose-derived inhibitors. In this study, the inhibitory effects of four phenolic model compounds (coniferyl aldehyde, ferulic acid, vanillin and 4-hydroxybenzoic acid) on the growth of G. xylinus, the pH of the culture medium, and the production of BC were investigated in detail. The stability of the phenolics in the bacterial cultures was investigated and the main bioconversion products were identified and quantified.
Results
Coniferyl aldehyde was the most potent inhibitor, followed by vanillin, ferulic acid, and 4-hydroxybenzoic acid. There was no BC produced even with coniferyl aldehyde concentrations as low as 2 mM. Vanillin displayed a negative effect on the bacteria and when the vanillin concentration was raised to 2.5 mM the volumetric yield of BC decreased to ~40% of that obtained in control medium without inhibitors. The phenolic acids, ferulic acid and 4-hydroxybenzoic acid, showed almost no toxic effects when less than 2.5 mM. The bacterial cultures oxidized coniferyl aldehyde to ferulic acid with a yield of up to 81%. Vanillin was reduced to vanillyl alcohol with a yield of up to 80%.
Conclusions
This is the first investigation of the effect of specific phenolics on the production of BC by G. xylinus, and is also the first demonstration of the ability of G. xylinus to convert phenolic compounds. This study gives a better understanding of how phenolic compounds and G. xylinus cultures are affected by each other. Investigations in this area are useful for elucidating the mechanism behind inhibition of G. xylinus in lignocellulosic hydrolysates and for understanding how production of BC using lignocellulosic feedstocks can be performed in an efficient way.
doi:10.1186/1475-2859-13-62
PMCID: PMC4126184  PMID: 24884902
Gluconacetobacter xylinus; Phenolic compound; Bacterial cellulose; Inhibitor

Results 1-25 (746300)