Search tips
Search criteria

Results 1-25 (743008)

Clipboard (0)

Related Articles

1.  Increased burst firing in substantia nigra pars reticulata neurons and enhanced response to selective D2 agonist in hemiparkinsonian rats after repeated administration of apomorphine. 
Journal of Korean Medical Science  2001;16(5):636-642.
Intermittent administrations of dopaminergic agents in hemiparkinsonian rat enhances the behavioral response to subsequent administration of the drugs. This phenomenon is known as "priming" and thought as comparable to drug-induced dyskinesia in patients with Parkinson's disease. We investigated the behavioral and electrophysiological changes in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats after repeated administrations of apomorphine. Administration of apomorphine (0.32 mg/kg, intraperitoneal, i.p.) twice daily for 6 days enhanced the rotation induced by apomorphine from 341 turns/hour at the beginning to 755 turns/hr at the end. At the same time, the response to selective D2 agonist quinpirole (0.26 mg/kg, i.p.) was also enhanced from 203 to 555 turns/hr. Extracellular single unit recording revealed no significant difference in the basal firing rates of substantia nigra pars reticulata (SNr) neurons between the ipsilateral and contralateral side of the 6-OHDA lesion regardless of the repeated administrations of apomorphine. In SNr of the lesion side, the units with burst firing pattern were found more frequently after repeated administrations of apomorphine and the suppressive effect of quinpirole on the firing rate was enhanced. These findings suggest that the increased percentage of the burst units is the important electrophysiological change in the development of enhanced response to selective D2 agonist.
PMCID: PMC3057592  PMID: 11641536
2.  Altered neuronal activity relationships between the pedunculopontine nucleus and motor cortex in a rodent model of Parkinson's disease 
Experimental neurology  2008;213(2):268-280.
The pedunculopontine nucleus (PPN) is a new deep brain stimulation (DBS) target for Parkinson's disease (PD), but little is known about PPN firing pattern alterations in PD. The anesthetized rat is a useful model for investigating the effects of dopamine loss on the transmission of oscillatory cortical activity through basal ganglia structures. After dopamine loss, synchronous oscillatory activity emerges in the subthalamic nucleus and substantia nigra pars reticulata in phase with cortical slow oscillations. To investigate the impact of dopamine cell lesion-induced changes in basal ganglia output on activity in the PPN, this study examines PPN spike timing with reference to motor cortex (MCx) local field potential (LFP) activity in urethane- and ketamine-anesthetized rats. Seven – ten days after unilateral 6-hydroxydopamine lesion of the medial forebrain bundle, spectral power in PPN spike trains and coherence between PPN spiking and PPN LFP activity increased in the ∼1 Hz range in urethane-anesthetized rats. PPN spike timing also changed from firing predominantly in-phase with MCx slow oscillations in the intact urethane-anesthetized rat to firing predominantly antiphase to MCx oscillations in the hemi-parkinsonian rat. These changes were not observed in the ketamine-anesthetized preparation. These observations suggest that dopamine loss alters PPN spike timing by increasing inhibitory oscillatory input to the PPN from basal ganglia output nuclei, a phenomenon that may be relevant to motor dysfunction and PPN DBS efficacy in PD patients.
PMCID: PMC4318559  PMID: 18601924
pedunculopontine nucleus; Parkinson's disease; motor cortex; oscillations; local field potential; dopamine; deep brain stimulation; basal ganglia; urethane; ketamine
3.  Phase Relationships Support a Role for Coordinated Activity in the Indirect Pathway in Organizing Slow Oscillations in Basal Ganglia Output after Loss of Dopamine 
Neuroscience  2006;144(2):762-776.
The goal of the present study was to determine the phase relationships of the slow oscillatory activity that emerges in basal ganglia nuclei in anesthetized rats after dopamine cell lesion in order to gain insight into the passage of this oscillatory activity through the basal ganglia network. Spike train recordings from striatum, subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNpr) were paired with simultaneous local field potential (LFP) recordings from SNpr or motor cortex ipsilateral to a unilateral lesion of substantia nigra dopamine neurons in urethane anesthetized rats. Dopamine cell lesion induced a striking increase in incidence of slow oscillations (0.3-2.5 Hz) in firing rate in all nuclei. Phase relationships assessed through paired recordings using SNpr LFP as a temporal reference showed that slow oscillatory activity in GP spike trains is predominantly antiphase with oscillations in striatum, and slow oscillatory activity in STN spike trains is in-phase with oscillatory activity in cortex but predominantly antiphase with GP oscillatory activity. Taken together, these results imply that after dopamine cell lesion in urethane anesthetized rats, increased oscillatory activity in GP spike trains is shaped more by increased phasic inhibitory input from the striatum than by phasic excitatory input from STN. In addition, results show that oscillatory activity in SNpr spike trains is typically antiphase with GP oscillatory activity and in-phase with STN oscillatory activity. While these observations do not rule out additional mechanisms contributing to the emergence of slow oscillations in the basal ganglia after dopamine cell lesion in the anesthetized preparation, they are compatible with 1) increased oscillatory activity in the GP facilitated by an effect of dopamine loss on striatal ‘filtering’ of slow components of oscillatory cortical input, 2) increased oscillatory activity in STN spike trains supported by convergent antiphase inhibitory and excitatory oscillatory input from GP and cortex, respectively, and 3) increased oscillatory activity in SNpr spike trains organized by convergent antiphase inhibitory and excitatory oscillatory input from GP and STN, respectively.
PMCID: PMC3354994  PMID: 17112675
Parkinson’s disease; subthalamic nucleus; substantia nigra; globus pallidus; striatum; bursting; local field potentials
4.  Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat 
PLoS ONE  2013;8(12):e83608.
Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.
PMCID: PMC3877054  PMID: 24391793
5.  Involvement of Basal Ganglia Network in Motor Disabilities Induced by Typical Antipsychotics 
PLoS ONE  2009;4(7):e6208.
Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, α-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat.
Methods and Findings
The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats. We show that α-flupentixol induced EPS paralleled by a decrease in the firing rate and a disorganization of the firing pattern in both substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN). Furthermore, α-flupentixol induced an increase in the firing rate of globus pallidus (GP) neurons. In the striatum, we recorded two populations of medium spiny neurons (MSNs) after their antidromic identification. At basal level, both striato-pallidal and striato-nigral MSNs were found to be unaffected by α-flupentixol. However, during electrical cortico-striatal activation only striato-pallidal, but not striato-nigral, MSNs were found to be inhibited by α-flupentixol. Together, our results suggest that the changes in STN and SNr neuronal activity are a consequence of increased neuronal activity of globus pallidus (GP). Indeed, after selective GP lesion, α-flupentixol failed to induce EPS and to alter STN neuronal activity.
Our study reports strong evidence to show that hypokinesia and catalepsy induced by α-flupentixol are triggered by dramatic changes occurring in basal ganglia network. We provide new insight into the key role of GP in the pathophysiology of APD-induced EPS suggesting that the GP can be considered as a potential target for the treatment of EPS.
PMCID: PMC2704377  PMID: 19587792
6.  The Antiparkinsonian and Antidyskinetic Mechanisms of Mucuna pruriens in the MPTP-Treated Nonhuman Primate 
Chronic treatment with levodopa (LD) in Parkinson's disease (PD) can cause drug induced dyskinesias. Mucuna pruriens endocarp powder (MPEP) contains several compounds including natural LD and has been reported to not cause drug-induced dyskinesias. We evaluated the effects of Mucuna pruriens to determine if its underlying mechanistic actions are exclusively due to LD. We first compared MPEP with and without carbidopa (CD), and LD+CD in hemiparkinsonian (HP) monkeys. Each treatment ameliorated parkinsonism. We then compared the neuronal firing properties of the substantia nigra reticulata (SNR) and subthalamic nucleus (STN) in HP monkeys with MPEP+CD and LD+CD to evaluate basal ganglia circuitry alterations. Both treatments decreased SNR firing rate compared to HP state. However, LD+CD treatments significantly increased SNR bursting firing patterns that were not seen with MPEP+CD treatments. No significant changes were seen in STN firing properties. We then evaluated the effects of a water extract of MPEP. Oral MPWE ameliorated parkinsonism without causing drug-induced dyskinesias. The distinctive neurophysiological findings in the basal ganglia and the ability to ameliorate parkinsonism without causing dyskinesias strongly suggest that Mucuna pruriens acts through a novel mechanism that is different from that of LD.
PMCID: PMC3445014  PMID: 22997535
7.  Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys 
The motor symptoms of Parkinson’s disease (PD) are commonly attributed to striatal dopamine loss, but reduced dopamine innervation of basal ganglia output nuclei, the internal globus pallidus (GPi) and the substantia nigra pars reticulata (SNr) may also contribute to symptoms and signs of PD. Both structures express dopamine D1 and D5 receptors under normal conditions, and we have recently demonstrated that their local activation reduces neuronal discharge rates and enhances bursts and oscillatory activity in both nuclei of normal monkeys [M.A. Kliem et al. (2007) J. Neurophysiol., 89, 1489–1500]. Here, we determined the ultrastructural localization and function of D1-like receptors in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. In both normal and MPTP-treated monkeys, most of the D1 and D5 receptor immunoreactivity was associated with unmyelinated axons, but we also found significant postsynaptic D5 receptor immunostaining in dendrites of GPi and SNr neurons. A significant proportion of axonal D1 immunostaining was bound to the plasma membrane in both normal and MPTP-treated monkeys. Local microinjections of the D1 / D5 receptor agonist SKF82958 significantly reduced discharge rates in GPi and SNr neurons, while they increased burst firing and oscillatory activity in the 3–15-Hz band in SNr, but not in GPi, of parkinsonian monkeys. Together with our recent findings from normal monkeys, these data provide evidence that functional D1 / D5 receptors are expressed in GPi and SNr in both normal and parkinsonian states, and that their activation by endogenous dopamine (under normal conditions) or dopamine receptor agonists (in parkinsonism) may regulate basal ganglia outflow.
PMCID: PMC4305335  PMID: 20374284
D1; D5; globus pallidus; MPTP; Parkinson’s disease; substantia nigra
8.  Active Decorrelation in the Basal Ganglia 
Neuroscience  2013;250:467-482.
The cytoarchitecturally-homogeneous appearance of the globus pallidus, subthalamic nucleus and substantia nigra has long been said to imply a high degree of afferent convergence and sharing of inputs by nearby neurons. Moreover, axon collaterals of neurons in the external segment of the globus pallidus and the substantia nigra pars reticulata arborize locally and make inhibitory synapses on other cells of the same type. These features suggest that the connectivity of the basal ganglia may impose spike-time correlations among the cells, and it has been puzzling that experimental studies have failed to demonstrate such correlations. One possible solution arises from studies of firing patterns in basal ganglia cells, which reveal that they are nearly all pacemaker cells. Their high rate of firing does not depend on synaptic excitation, but they fire irregularly because a dense barrage of synaptic inputs normally perturbs the timing of their autonomous activity. Theoretical and computational studies show that the responses of repetitively firing neurons to shared input or mutual synaptic coupling often defy classical intuitions about temporal synaptic integration. The patterns of spike timing among such neurons depend on the ionic mechanism of pacemaking, the level of background uncorrelated cellular and synaptic noise, and the firing rates of the neurons, as well as the properties of their synaptic connections. Application of these concepts to the basal ganglia circuitry suggests that the connectivity and physiology of these nuclei may be configured to prevent the establishment of permanent spike-timing relationships between neurons. The development of highly synchronous oscillatory patterns of activity in Parkinson’s disease may result from the loss of pacemaking by some basal ganglia neurons, and accompanying breakdown of the mechanisms responsible for active decorrelation.
PMCID: PMC3772785  PMID: 23892007
Phase-resetting; network oscillations; basal ganglia; Parkinson’s disease; spike-timing; subthalamic nucleus; globus pallidus
9.  Beta Frequency Synchronization in Basal Ganglia Output during Rest and Walk in a Hemiparkinsonian Rat 
Experimental Neurology  2009;221(2):307-319.
Synchronized oscillatory neuronal activity in the beta frequency range has been observed in the basal ganglia of Parkinson’s disease patients and hypothesized to be antikinetic. The unilaterally lesioned rat model of Parkinson’s disease allows examination of this hypothesis by direct comparison of beta activity in basal ganglia output in non-lesioned and dopamine cell lesioned hemispheres during motor activity. Bilateral substantia nigra pars reticulata (SNpr) recordings of units and local field potentials (LFP) were obtained with EMG activity from the scapularis muscle in control and unilaterally nigrostriatal lesioned rats trained to walk on a rotary treadmill. After left hemispheric lesion, rats had difficulty walking contraversive on the treadmill but could walk in the ipsiversive direction. During inattentive rest, SNpr LFP power in the 12–25 Hz range (low beta) was significantly greater in the dopamine-depleted hemisphere than in non-lesioned and control hemispheres. During walking, low beta power was reduced in all hemispheres, while 25–40 Hz (high beta) activity was selectively increased in the lesioned hemisphere. High beta power increases were reduced by L-DOPA administration. SNpr spiking was significantly more synchronized with SNpr low beta LFP oscillations during rest and high beta LFP oscillations during walking in the dopamine-depleted hemispheres compared with non-lesioned hemispheres. Data show that dopamine loss is associated with opposing changes in low and high beta range SNpr activity during rest and walk and suggest that increased synchronization of high beta activity in SNpr output from the lesioned hemisphere during walking may contribute to gait impairment in the hemiparkinsonian rat.
PMCID: PMC3384738  PMID: 19948166
Parkinson’s disease; basal ganglia; substantia nigra pars reticulata; beta frequency; local field potentials; gait; synchronization; dopamine; movement; 6-hydroxydopamine
10.  Disinhibition Bursting of Dopaminergic Neurons 
Substantia nigra pars compacta (SNpc) dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr) and globus pallidus (GP), and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006). The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006). Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR) produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc). Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.
PMCID: PMC3095811  PMID: 21617731
dopamine; GABA; burst; model; network
11.  Lesion of Subthalamic Nucleus in Parkinsonian Rats : Effects of Dopamine D1 and D2 Receptor Agonists on the Neuronal Activities of the Substantia Nigra Pars Reticulata 
It was hypothesized that dopamine agonist administration and subthalamic nucleus (STN) lesion in the rat might have a synergistic effect on the neuronal activities of substantia nigra pars reticulata (SNpr) as observed in patients with Parkinson's disease. The effects of SKF38393 (a D1 receptor agonist) and Quinpirole (a D2 receptor agonist) were compared in parkinsonian rat models with 6- hydroxydopamine (6-OHDA) after STN lesion.
SKF38393 and Quinpirole were consecutively injected intrastriatally. SNpr was microrecorded to ascertain the activity of the basal ganglia output structure. The effect of SKF38393 or Quinpirole injection on the firing rate and firing patterns of SNpr was investigated in medial forebrain bundle (MFB) lesioned rats and in MFB+STN lesioned rats.
The administration of SKF38393 decreased SNpr neuronal firing rates and the percentage of burst neurons in the MFB lesioned rats, but did not alter them in MFB+STN lesioned rats. The administration ofQuinpirole significantly decreased the spontaneous firing rate in the MFB lesioned rats. However, after an additional STN lesion, it increased the percentage of burst neurons.
This study demonstrated that dopamine agonists and STN lesion decreased the hyperactive firing rate and the percentage of burst neurons of SNpr neurons in 6-OHDA lesioned rats, respectively. Quinpirole with STN lesion increased a percentage of burst neurons. To clear the exact interactive mechanism of D1 and D2 agonist and the corresponding location, it should be followed a study using a nonselective dopamine agonist and D1, D2 selective antagonist.
PMCID: PMC2588170  PMID: 19096589
6-hydroxydopamine; Substantia nigra pars reticulate; Kainic acid; Subthalamic nucleus; Dopamine agonist; Parkinson's disease
12.  Activity of Neurochemically Heterogeneous Dopaminergic Neurons in the Substantia Nigra during Spontaneous and Driven Changes in Brain State 
Dopaminergic neurons of the substantia nigra (SN) and ventral tegmental area (VTA) are collectively implicated in motor- and reward-related behaviors. However, dopaminergic SN and VTA neurons differ on several functional levels, and dopaminergic SN neurons themselves vary in their intrinsic electrical properties, neurochemical characteristics and connections. This heterogeneity is not only important for normal function; calbindin (CB) expression by some dopaminergic SN neurons has been linked with their increased survival in Parkinson’s disease. To test whether the activity of CB-negative and CB-positive dopaminergic SN neurons differs during distinct spontaneous and driven brain states, we recorded single units in anesthetized rats before, during and after aversive somatosensory stimuli. Recorded neurons were juxtacellularly labeled, confirmed to be dopaminergic, and tested for CB immunoreactivity. During cortical slow-wave activity, the firing of most dopaminergic neurons was slow and regular/irregular and unrelated to cortical slow oscillations. During spontaneous cortical activation, dopaminergic SN neurons fired in a more regular manner, with fewer bursts, but did not change their firing rate. Regardless of brain state, CB-negative dopaminergic neurons fired significantly faster than CB-positive dopaminergic neurons. This difference in firing rate was not mirrored by different firing patterns. Most CB-negative and CB-positive dopaminergic neurons did not respond to the aversive stimuli; of those that did respond, most were inhibited. We conclude that CB-negative and CB-positive dopaminergic neurons exhibit different activities in vivo. Furthermore, the firing of dopaminergic SN neurons is brain state-dependent, and, unlike dopaminergic VTA neurons, they are not commonly recruited or inhibited by aversive stimuli.
PMCID: PMC4262786  PMID: 19261887
13.  Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits 
The Journal of Clinical Investigation  2014;124(10):4629-4641.
Parkinson’s disease (PD) is the most prevalent hypokinetic movement disorder, and symptomatic PD pathogenesis has been ascribed to imbalances between the direct and indirect pathways in the basal ganglia circuitry. Here, we applied glutamate receptor blockers to the subthalamic nucleus (STN) of parkinsonian rats and evaluated locomotor behaviors via single-unit and local-field recordings. Using this model, we found that inhibition of NMDAergic cortico-subthalamic transmission ameliorates parkinsonian motor deficits without eliciting any vivid turning behavior and abolishes electrophysiological abnormalities, including excessive subthalamic bursts, cortico-subthalamic synchronization, and in situ beta synchronization in both the motor cortex and STN. Premotor cortex stimulation revealed that cortico-subthalamic transmission is deranged in PD and directly responsible for the excessive stimulation-dependent bursts and time-locked spikes in the STN, explaining the genesis of PD-associated pathological bursts and synchronization, respectively. Moreover, application of a dopaminergic agent via a microinfusion cannula localized the therapeutic effect to the STN, without correcting striatal dopamine deficiency. Finally, optogenetic overactivation and synchronization of cortico-subthalamic transmission alone sufficiently and instantaneously induced parkinsonian-associated locomotor dysfunction in normal mice. In addition to the classic theory emphasizing the direct-indirect pathways, our data suggest that deranged cortico-subthalamic transmission via the NMDA receptor also plays a central role in the pathophysiology of parkinsonian motor deficits.
PMCID: PMC4191009  PMID: 25202982
14.  Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: An immunohistological study 
Purinergic Signalling  2007;3(4):389-398.
Our work aimed to provide a topographical analysis of all known ionotropic P2X1–7 and metabotropic P2Y1,2,4,6,11–14 receptors that are present in vivo at the protein level in the basal ganglia nuclei and particularly in rat brain slices from striatum and substantia nigra. By immunohistochemistry-confocal and Western blotting techniques, we show that, with the exception of P2Y11,13 receptors, all other subtypes are specifically expressed in these areas in different amounts, with ratings of low (P2X5,6 and P2Y1,6,14 in striatum), medium (P2X3 in striatum and substantia nigra, P2X6,7 and P2Y1 in substantia nigra) and high. Moreover, we describe that P2 receptors are localized on neurons (colocalizing with neurofilament light, medium and heavy chains) with features that are either dopaminergic (colocalizing with tyrosine hydroxylase) or GABAergic (colocalizing with parvalbumin and calbindin), and they are also present on astrocytes (P2Y2,4, colocalizing with glial fibrillary acidic protein). In addition, we aimed to investigate the expression of P2 receptors after dopamine denervation, obtained by using unilateral injection of 6-hydroxydopamine as an animal model of Parkinson’s disease. This generates a rearrangement of P2 proteins: most P2X and P2Y receptors are decreased on GABAergic and dopaminergic neurons, in the lesioned striatum and substantia nigra, respectively, as a consequence of dopaminergic denervation and/or neuronal degeneration. Conversely, P2X1,3,4,6 on GABAergic neurons and P2Y4 on astrocytes augment their expression exclusively in the lesioned substantia nigra reticulata, probably as a compensatory reaction to dopamine shortage. These results disclose the presence of P2 receptors in the normal and lesioned nigro-striatal circuit, and suggest their potential participation in the mechanisms of Parkinson’s disease.
PMCID: PMC2072921  PMID: 18404452
Parkinson’s disease; Purinergic receptors; Rat brain; Tyrosine hydroxylase; γ-Aminobutyric acid; 6-Hydroxydopamine
15.  Revised Nomenclature for Avian Telencephalon and Some Related Brainstem Nuclei 
The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names.
Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of γ-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues.
For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized.
The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists.
PMCID: PMC2518311  PMID: 15116397
pallium; basal ganglia; telencephalon; brainstem; evolution; terminology; birds; mammals
16.  Bidirectional Control of Absence Seizures by the Basal Ganglia: A Computational Evidence 
PLoS Computational Biology  2014;10(3):e1003495.
Absence epilepsy is believed to be associated with the abnormal interactions between the cerebral cortex and thalamus. Besides the direct coupling, anatomical evidence indicates that the cerebral cortex and thalamus also communicate indirectly through an important intermediate bridge–basal ganglia. It has been thus postulated that the basal ganglia might play key roles in the modulation of absence seizures, but the relevant biophysical mechanisms are still not completely established. Using a biophysically based model, we demonstrate here that the typical absence seizure activities can be controlled and modulated by the direct GABAergic projections from the substantia nigra pars reticulata (SNr) to either the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of thalamus, through different biophysical mechanisms. Under certain conditions, these two types of seizure control are observed to coexist in the same network. More importantly, due to the competition between the inhibitory SNr-TRN and SNr-SRN pathways, we find that both decreasing and increasing the activation of SNr neurons from the normal level may considerably suppress the generation of spike-and-slow wave discharges in the coexistence region. Overall, these results highlight the bidirectional functional roles of basal ganglia in controlling and modulating absence seizures, and might provide novel insights into the therapeutic treatments of this brain disorder.
Author Summary
Epilepsy is a general term for conditions with recurring seizures. Absence seizures are one of several kinds of seizures, which are characterized by typical 2–4 Hz spike-and-slow wave discharges (SWDs). There is accumulating evidence that absence seizures are due to abnormal interactions between cerebral cortex and thalamus, and the basal ganglia may take part in controlling such brain disease via the indirect basal ganglia-thalamic pathway relaying at superior colliculus. Actually, the basal ganglia not only send indirect signals to thalamus, but also communicate with several key nuclei of thalamus through multiple direct GABAergic projections. Nevertheless, whether and how these direct pathways regulate absence seizure activities are still remain unknown. By computational modelling, we predicted that two direct inhibitory basal ganglia-thalamic pathways emitting from the substantia nigra pars reticulata may also participate in the control of absence seizures. Furthermore, we showed that these two types of seizure control can coexist in the same network, and depending on the instant network state, both lowing and increasing the activation of SNr neurons may inhibit the SWDs due to the existence of competition. Our findings emphasize the bidirectional modulation effects of basal ganglia on absence seizures, and might have physiological implications on the treatment of absence epilepsy.
PMCID: PMC3952815  PMID: 24626189
17.  Subthalamic Nucleus Electrical Stimulation Modulates Calcium Activity of Nigral Astrocytes 
PLoS ONE  2012;7(7):e41793.
The substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia, delivering inhibitory efferents to the relay nuclei of the thalamus. Pathological hyperactivity of SNr neurons is known to be responsible for some motor disorders e.g. in Parkinson's disease. One way to restore this pathological activity is to electrically stimulate one of the SNr input, the excitatory subthalamic nucleus (STN), which has emerged as an effective treatment for parkinsonian patients. The neuronal network and signal processing of the basal ganglia are well known but, paradoxically, the role of astrocytes in the regulation of SNr activity has never been studied.
Principal Findings
In this work, we developed a rat brain slice model to study the influence of spontaneous and induced excitability of afferent nuclei on SNr astrocytes calcium activity. Astrocytes represent the main cellular population in the SNr and display spontaneous calcium activities in basal conditions. Half of this activity is autonomous (i.e. independent of synaptic activity) while the other half is dependent on spontaneous glutamate and GABA release, probably controlled by the pace-maker activity of the pallido-nigral and subthalamo-nigral loops. Modification of the activity of the loops by STN electrical stimulation disrupted this astrocytic calcium excitability through an increase of glutamate and GABA releases. Astrocytic AMPA, mGlu and GABAA receptors were involved in this effect.
Astrocytes are now viewed as active components of neural networks but their role depends on the brain structure concerned. In the SNr, evoked activity prevails and autonomous calcium activity is lower than in the cortex or hippocampus. Our data therefore reflect a specific role of SNr astrocytes in sensing the STN-GPe-SNr loops activity and suggest that SNr astrocytes could potentially feedback on SNr neuronal activity. These findings have major implications given the position of SNr in the basal ganglia network.
PMCID: PMC3407058  PMID: 22848608
18.  Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia 
The cerebral cortex and basal ganglia (BG) form a neural circuit that is disrupted in disorders such as Parkinson’s disease. We found that neuronal activity (c-Fos) in the BG followed cortical activity, i.e., high in arousal state and low in sleep state. To determine if cortical activity is necessary for BG activity, we administered atropine to rats to induce a dissociative state resulting in slow-wave electroencephalography but hyperactive motor behaviors. Atropine blocked c-Fos expression in the cortex and BG, despite high c-Fos expression in the sub-cortical arousal neuronal groups and thalamus, indicating that cortical activity is required for BG activation. To identify which glutamate receptors in the BG that mediate cortical inputs, we injected ketamine [N-methyl-d-aspartate (NMDA) receptor antagonist] and 6-cyano-nitroquinoxaline-2, 3-dione (CNQX, a non-NMDA receptor antagonist). Systemic ketamine and CNQX administration revealed that NMDA receptors mediated subthalamic nucleus (STN) input to internal globus pallidus (GPi) and substantia nigra pars reticulata (SNr), while non-NMDA receptor mediated cortical input to the STN. Both types of glutamate receptors were involved in mediating cortical input to the striatum. Dorsal striatal (caudoputamen, CPu) dopamine depletion by 6-hydroxydopamine resulted in reduced activity of the CPu, globus pallidus externa (GPe), and STN but increased activity of the GPi, SNr, and putative layer V neurons in the motor cortex. Our results reveal that the cortical activity is necessary for BG activity and clarifies the pathways and properties of the BG-cortical network and their putative role in the pathophysiology of BG disorders.
PMCID: PMC3972462  PMID: 24723855
cerebral cortex; basal ganglia; arousal; atropine; 6-hydroxydopamine; c-Fos; rat
19.  Transplantation of Neuronal-Primed Human Bone Marrow Mesenchymal Stem Cells in Hemiparkinsonian Rodents 
PLoS ONE  2011;6(5):e19025.
Bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promise in in vitro neuronal differentiation and in cellular therapy for neurodegenerative disorders, including Parkinson' disease. However, the effects of intracerebral transplantation are not well defined, and studies do not agreed on the optimal neuronal differentiation method. Here, we investigated three growth factor-based neuronal differentiation procedures (using FGF-2/EGF/PDGF/SHH/FGF-8/GDNF), and found all to be capable of eliciting an immature neural phenotype, in terms of cell morphology and gene/protein expression. The neuronal-priming (FGF-2/EGF) method induced neurosphere-like formation and the highest NES and NR4A2 expression by hMSCs. Transplantation of undifferentiated and neuronal-primed hMSCs into the striatum and substantia nigra of 6-OHDA-lesioned hemiparkinsonian rats revealed transient graft survival of 7 days, despite the reported immunosuppressive properties of MSCs and cyclosporine-immunosuppression of rats. Neither differentiation of hMSCs nor induction of host neurogenesis was observed at injection sites, and hMSCs continued producing mesodermal fibronectin. Strategies for improving engraftment and differentiation post-transplantation, such as prior in vitro neuronal-priming, nigral and striatal grafting, and co-transplantation of olfactory ensheathing cells that promote neural regeneration, were unable to provide advantages. Innate inflammatory responses (Iba-1-positive microglia/macrophage and GFAP-positive astrocyte activation and accumulation) were detected around grafts within 7 days. Our findings indicate that growth factor-based methods allow hMSC differentiation toward immature neuronal-like cells, and contrary to previous reports, only transient survival and engraftment of hMSCs occurs following transplantation in immunosuppressed hemiparkinsonian rats. In addition, suppression of host innate inflammatory responses may be a key factor for improving hMSC survival and engraftment.
PMCID: PMC3100305  PMID: 21625433
20.  Bidirectional Modulation of Substantia Nigra Activity by Motivational State 
PLoS ONE  2013;8(8):e71598.
A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational states on the activity of GABA neurons in the substantia nigra pars reticulata and the neighboring dopaminergic (DA) neurons in the pars compacta. Both types of neurons show short-latency bursts to a cue predicting a food reward. As mice became sated by repeated consumption of food pellets, one class of neurons reduced cue-elicited firing, whereas another class of neurons progressively increased firing. Extinction or pre-feeding just before the test session dramatically reduced the phasic responses and their motivational modulation. These results suggest that signals related to the current motivational state bidirectionally modulate behavior and the magnitude of phasic response of both DA and GABA neurons in the substantia nigra.
PMCID: PMC3735640  PMID: 23936522
21.  Ketamine-Induced Oscillations in the Motor Circuit of the Rat Basal Ganglia 
PLoS ONE  2011;6(7):e21814.
Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.
We recorded local field potentials from motor cortex, caudate-putamen (CPU), substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN) in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg), and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.
Ketamine induced coherent oscillations in low gamma (50 Hz), high gamma (80 Hz) and high frequency (HFO, 150 Hz) bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.
These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency-specific pattern of connectivity among the structures analyzed.
PMCID: PMC3146469  PMID: 21829443
22.  The inhibitory microcircuit of the substantia nigra provides feedback gain control of the basal ganglia output 
eLife  2014;3:e02397.
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function.
eLife digest
The basal ganglia are a group of nuclei located deep within the brain that are involved in the control of movement. The death of neurons in one particular nucleus—known as the substantia nigra—gives rise to a range of symptoms that are characteristic of Parkinson’s disease, including slowness of movement and tremors.
Although the basic anatomy and circuitry of the basal ganglia were worked out many years ago, it is not clear how these structures control voluntary movement. Based on insights from engineering, Brown et al. propose a model in which negative feedback within the substantia nigra—largely overlooked by previous models—regulates the output of the basal ganglia and thus contributes to the control of movement.
Most areas of the brain contain projection neurons, which connect to other areas of the brain, and interneurons, which do not form connections beyond the nucleus in which they reside. In these areas, dedicated networks of interneurons use feedback to exert control over the signals that the projection neurons carry to other areas of the brain.
However, it is thought that the substantia nigra does not contain interneurons. This led Brown et al. to propose that structures called axon collaterals form a microcircuit that can instead supply such feedback in the substantia nigra. Axons are the nerve fibres that carry signals away from the cell body of a neuron, and axon collaterals are branches of those axons. Data obtained by recording and manipulating electrical activity in the substantia nigra were consistent with this model and further experiments allowed this microcircuit to be mapped in detail.
By revealing the circuit mechanisms of negative feedback within the substantia nigra, the work of Brown et al. changes our understanding of the basal ganglia and could have implications for understanding the mechanisms and ultimately the treatment of disorders such as Parkinson’s disease.
PMCID: PMC4067753  PMID: 24849626
optogenetics; electrophysiology; basal ganglia; neural circuits; synaptic integration; biophysics; mouse
23.  Extrastriatal Dopaminergic Circuits of the Basal Ganglia 
The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction.
PMCID: PMC2987554  PMID: 21103009
subthalamic nucleus; globus pallidus; substantia nigra; Parkinson's disease; basal ganglia; dopamine; GABA; glutamate
24.  Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease 
Neuroscience  2011;198:54-68.
Neurons in the subthalamic nucleus occupy a pivotal position in the circuitry of the basal ganglia. They receive direct excitatory input from the cerebral cortex and the intralaminar nuclei of the thalamus, and directly excite the inhibitory basal ganglia output neurons in the internal segment of the globus pallidus and the substantia nigra. They are also engaged in a reciprocal synaptic arrangement with inhibitory neurons in the external segment of the globus pallidus. Although once viewed as a simple relay of extrinsic input to the basal ganglia, physiological studies of subthalamic neurons have revealed that activity in these neurons does not directly reflect their pattern of extrinsic excitation. Subthalamic neurons are autonomously active at rates comparable to those observed in vivo, and they generate complex patterns of intrinsic activity arising from the interactions between voltage sensitive ion channels on the somatodendritic and axonal membranes. Extrinsic synaptic excitation does not create the firing pattern of the subthalamic neuron, but rather controls the timing of action potentials generated intrinsically. The dopaminergic innervation of the subthalamic nucleus, although moderate, can directly influence firing patterns by acting both on synaptic transmission and voltage-sensitive ion channels responsible for intrinsic properties. Furthermore, chronic dopamine depletion in Parkinson’s disease may modify both synaptic transmission and integration in the subthalamic nucleus, in addition to its effects on other regions of the basal ganglia.
PMCID: PMC3206160  PMID: 21723918
Parkinson’s disease; dopamine; oscillations; spontaneous firing; basal ganglia
25.  Nigral stimulation for resistant axial motor impairment in Parkinson’s disease? A randomized controlled trial 
Brain  2013;136(7):2098-2108.
Gait and balance disturbances typically emerge in advanced Parkinson’s disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata improves axial symptoms compared with standard subthalamic nucleus stimulation. Twelve patients were enrolled in this 2 × 2 cross-over double-blind randomized controlled clinical trial and both the safety and efficacy of combined subthalamic nucleus and substantia nigra pars reticulata stimulation were evaluated compared with standard subthalamic nucleus stimulation. The primary outcome measure was the change of a broad-scaled cumulative axial Unified Parkinson’s Disease Rating Scale score (Scale II items 13–15, Scale III items 27–31) at ‘3-week follow-up’. Secondary outcome measures specifically addressed freezing of gait, balance, quality of life, non-motor symptoms and neuropsychiatric symptoms. For the primary outcome measure no statistically significant improvement was observed for combined subthalamic nucleus and substantia nigra pars reticulata stimulation at the ‘3-week follow-up’. The secondary endpoints, however, revealed that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata might specifically improve freezing of gait, whereas balance impairment remained unchanged. The combined stimulation of subthalamic nucleus and substantia nigra pars reticulata was safe, and of note, no clinically relevant neuropsychiatric adverse effect was observed. Patients treated with subthalamic nucleus and substantia nigra pars reticulata stimulation revealed no ‘global’ effect on axial motor domains. However, this study opens the perspective that concomittant stimulation of the substantia nigra pars reticulata possibly improves otherwise resistant freezing of gait and, therefore, highly warrants a subsequent phase III randomized controlled trial.
PMCID: PMC3692032  PMID: 23757762
Parkinson’s disease; DBS; gait; freezing; subthalamic nucleus

Results 1-25 (743008)