Search tips
Search criteria

Results 1-25 (658016)

Clipboard (0)

Related Articles

1.  Molecular characteristics of erythromycin-resistant Streptococcus pneumoniae from pediatric patients younger than five years in Beijing, 2010 
BMC Microbiology  2012;12:228.
Streptococcus pneumoniae is the main pathogen that causes respiratory infections in children younger than five years. The increasing incidence of macrolide- and tetracycline-resistant pneumococci among children has been a serious problem in China for many years. The molecular characteristics of erythromycin-resistant pneumococcal isolates that were collected from pediatric patients younger than five years in Beijing in 2010 were analyzed in this study.
A total of 140 pneumococcal isolates were collected. The resistance rates of all isolates to erythromycin and tetracycline were 96.4% and 79.3%, respectively. Of the 135 erythromycin-resistant pneumococci, 91.1% were non-susceptible to tetracycline. In addition, 30.4% of the erythromycin-resistant isolates expressed both the ermB and mef genes, whereas 69.6% expressed the ermB gene but not the mef gene. Up to 98.5% of the resistant isolates exhibited the cMLSB phenotype, and Tn6002 was the most common transposon present in approximately 56.3% of the resistant isolates, followed by Tn2010, with a proportion of 28.9%. The dominant sequence types (STs) in all erythromycin-resistant S. pneumoniae were ST271 (11.9%), ST81 (8.9%), ST876 (8.9%), and ST320 (6.7%), whereas the prevailing serotypes were 19F (19.3%), 23F (9.6%), 14 (9.6%), 15 (8.9%), and 6A (7.4%). The 7-valent pneumococcal conjugate vaccine (PCV7) and 13-valent pneumococcal conjugate vaccine (PCV13) coverage of the erythromycin-resistant pneumococci among the children younger than five years were 45.2% and 62.2%, respectively. ST320 and serotype 19A pneumococci were common in children aged 0 to 2 years. CC271 was the most frequent clonal complex (CC), which accounts for 24.4% of all erythromycin-resistant isolates.
The non-invasive S. pneumoniae in children younger than five years in Beijing presented high and significant resistance rates to erythromycin and tetracycline. The expressions of ermB and tetM genes were the main factors that influence pneumococcal resistance to erythromycin and tetracycline, respectively. Majority of the erythromycin-resistant non-invasive isolates exhibited the cMLSB phenotype and carried the ermB, tetM, xis, and int genes, suggesting the spread of the transposons of the Tn916 family. PCV13 provided higher serotype coverage in the childhood pneumococcal diseases caused by the erythromycin-resistant isolates better than PCV7. Further long-term surveys are required to monitor the molecular characteristics of the erythromycin-resistant S. pneumoniae in children.
PMCID: PMC3534231  PMID: 23043378
2.  Genotypes and serotype distribution of macrolide resistant invasive and non- invasive Streptococcus pneumoniae isolates from Lebanon 
This study determined macrolide resistance genotypes in clinical isolates of Streptococcus pneumoniae from multiple medical centers in Lebanon and assessed the serotype distribution in relation to these mechanism(s) of resistance and the source of isolate recovery.
Forty four macrolide resistant and 21 macrolide susceptible S. pneumoniae clinical isolates were tested for antimicrobial susceptibility according to CLSI guidelines (2008) and underwent molecular characterization. Serotyping of these isolates was performed by Multiplex PCR-based serotype deduction using CDC protocols. PCR amplification of macrolide resistant erm (encoding methylase) and mef (encoding macrolide efflux pump protein) genes was carried out.
Among 44 isolates resistant to erythromycin, 35 were resistant to penicillin and 18 to ceftriaxone. Examination of 44 macrolide resistant isolates by PCR showed that 16 isolates harbored the erm(B) gene, 8 isolates harbored the mef gene, and 14 isolates harbored both the erm(B) and mef genes. There was no amplification by PCR of the erm(B) or mef genes in 6 isolates. Seven different capsular serotypes 2, 9V/9A,12F, 14,19A, 19F, and 23, were detected by multiplex PCR serotype deduction in 35 of 44 macrolide resistant isolates, with 19F being the most prevalent serotype. With the exception of serotype 2, all serotypes were invasive. Isolates belonging to the invasive serotypes 14 and 19F harbored both erm(B) and mef genes. Nine of the 44 macrolide resistant isolates were non-serotypable by our protocols.
Macrolide resistance in S. pneumoniae in Lebanon is mainly through target site modification but is also mediated through efflux pumps, with serotype 19F having dual resistance and being the most prevalent and invasive.
PMCID: PMC3371826  PMID: 22248318
Antimicrobials; Macrolides; Resistance; Genes; Serotyping
3.  Distribution of Serotypes, Genotypes, and Resistance Determinants among Macrolide-Resistant Streptococcus pneumoniae Isolates ▿  
Macrolide resistance in Streptococcus pneumoniae has emerged as an important clinical problem worldwide over the past decade. The aim of this study was to analyze the phenotypes (serotype and antibiotic susceptibility), genotypes (multilocus sequence type [MLST] and antibiotic resistance gene/transposon profiles) among the 31% (102/328) of invasive isolates from children in New South Wales, Australia, in 2005 that were resistant to erythromycin. Three serotypes—19F (47 isolates [46%]), 14 (27 isolates [26%]), and 6B (12 isolates [12%])—accounted for 86 (84%) of these 102 isolates. Seventy four (73%) isolates had the macrolide-lincosamide-streptogramin B (MLSB) resistance phenotype and carried Tn916 transposons (most commonly Tn6002); of these, 73 (99%) contained the erythromycin ribosomal methylase gene [erm(B)], 34 (47%) also carried the macrolide efflux gene [mef(E)], and 41 (55%) belonged to serotype 19F. Of 28 (27%) isolates with the M phenotype, 22 (79%) carried mef(A), including 16 (57%) belonging to serotype 14, and only six (19%) carried Tn916 transposons. Most (84%) isolates which contained mef also contained one of the msr(A) homologues, mel or msr(D); 38 of 40 (95%) isolates with mef(E) (on mega) carried mel, and of 28 (39%) isolates with mef(A), 10 (39%) carried mel and another 11(39%) carried msr(D), on Tn1207.1. Two predominant macrolide-resistant S. pneumoniae clonal clusters (CCs) were identified in this population. CC-271 contained 44% of isolates, most of which belonged to serotype 19F, had the MLSB phenotype, were multidrug resistant, and carried transposons of the Tn916 family; CC-15 contained 23% of isolates, most of which were serotype 14, had the M phenotype, and carried mef(A) on Tn1207.1. Erythromycin resistance among S. pneumoniae isolates in New South Wales is mainly due to the dissemination of multidrug-resistant S. pneumoniae strains or horizontal spread of the Tn916 family of transposons.
PMCID: PMC2825966  PMID: 20065057
4.  Microbiological characterization of Streptococcus pneumoniae and non-typeable Haemophilus influenzae isolates as primary causes of acute otitis media in Bulgarian children before the introduction of conjugate vaccines 
Pneumococcal and Haemophilus influenzae type b (Hib) vaccines were introduced in our national immunisation program in April 2010. The aims of this retrospective, laboratory-based study were to determine the serotypes and antibiotic resistance of Streptococcus pneumoniae and H. influenzae isolates from middle ear fluid (MEF) collected before the introduction of immunization.
S. pneumoniae (n = 128) and H. influenzae (n = 40) strains isolated from MEF of children with AOM between 1994 and 2011 were studied. MICs were determined by a microdilution assay. Serotyping of S. pneumoniae was done by Quellung method and PCR capsular typing was used for H. influenzae. Macrolide resistance genes were detected by PCR for erythromycin resistant S. pneumoniae (ERSP). DNA sequencing of ftsI gene was performed for ampicillin nonsusceptible H. influenzae.
The most common serotypes found among children with pneumococcal AOM were 19 F (20.3%), 6B (15.6%), and 19A (10.9%). The potential coverage rates by the PCV7, PCV10 and PCV13 of children aged < 5 years were 63.6%, 66.4% and 85.5%, respectively. Reduced susceptibility to oral penicillin was seen in 68.1%; resistance to erythromycin was 46.9%. We found erm(B) gene in 56.7% of the ERSP, mef(E) gene in 25%; 15% harbored both genes erm(B) + mef(E) and 3.3% had mutations of L4 ribosomal protein. Of the 40 H. influenzae isolates 97.5% were nontypeable. Nonsusceptibility to ampicillin occurred in 25%. Ampicillin resistance groups were: β-lactamase-positive ampicillin resistant (BLPAR) strains (10%), β-lactamase-negative ampicillin resistant (BLNAR) strains (12.5%) and β-lactamase-positive amoxicillin-clavulanate resistant (BLPACR) strains (2.5%). Among BLNAR and BLPACR most of the isolates (5/6) belonged to group II, defined by the Asn526Lys substitution.
The levels of antibiotic resistance among S. pneumoniae and H. influenzae causing severe AOM in children are high in our settings. The existence of multidrug-resistant S. pneumoniae serotype 19A is of particular concern. The rate of BLNAR and BLPACR strains among H. influenzae isolates was 15%.
PMCID: PMC3622619  PMID: 23531034
AOM; S. pneumoniae; H. influenzae; Serotypes; Antibiotic resistance
5.  Increase in serotype 19A prevalence and amoxicillin non-susceptibility among paediatric Streptococcus pneumoniae isolates from middle ear fluid in a passive laboratory-based surveillance in Spain, 1997-2009 
BMC Infectious Diseases  2011;11:239.
Conjugate vaccines, such as the 7-valent conjugate vaccine (PCV7), alter serotype nasopharyngeal carriage, potentially increasing cases of otitis media by non-vaccine serotypes.
All paediatric middle ear fluid (MEF) isolates received in the Spanish Reference Laboratory for Pneumococci through a passive, laboratory-based surveillance system from January 1997 to June 2009 were analysed. Data from 1997 to 2000 were pooled as pre-vaccination period. Trends over time were explored by linear regression analysis.
A total of 2,077 isolates were analysed: 855 belonging to PCV7 serotypes, 466 to serotype 19A, 215 to serotype 3, 89 to serotype 6A and 452 to other serotypes (< 40 isolates each). Over time, there has been a decreasing trend for PCV7 serotypes (R2 = 0.944; p < 0.001, with significant decreasing trends for serotypes 19F, 14, 23F and 9V), and increasing trends for serotype 19A (R2 = 0.901; p < 0.001), serotype 3 (R2 = 0.463; p = 0.030) and other non-PCV7 serotypes (R2 = 0.877; p < 0.001), but not for serotype 6A (R2 = 0.311; p = 0.094). Considering all isolates, amoxicillin non-susceptibility showed an increasing trend (R2 = 0.528; p = 0.017). Regarding serotype 19A, increasing trends in non-susceptibility to penicillin (R2 = 0.726; p = 0.001), amoxicillin (R2 = 0.804; p < 0.001), cefotaxime (R2 = 0.546; p = 0.005) and erythromycin (R2 = 0.546; p = 0.009) were found, with amoxicillin non-susceptibility firstly detected in 2003 (7.4%) and increasing up to 38.0% in 2009. In PCV7 serotypes (which prevalence decreased from 70.7% during 1997-2000 to 10.6% in 2009) amoxicillin non-susceptibility rates showed an increasing trend (R2 = 0.702; p = 0.002). However, overall, amoxicillin non-susceptibility (≈25% in 2008-9) could be mainly attributed to serotype 19A (> 35% isolates) since PCV7 strains represented < 11% of total clinical isolates.
In contrast to reports on invasive pneumococcal strains, in MEF isolates the reduction in the prevalence of PCV7 serotypes was not associated with decreases in penicillin/erythromycin non-susceptibility. The high prevalence of serotype 19A among paediatric MEF isolates and the amoxicillin non-susceptibility found in this serotype are worrisome since amoxicillin is the most common antibiotic used in the treatment of acute otitis media. These data suggest that non-PCV7 serotypes (mainly serotype 19A followed by serotypes 3 and 6A) are important etiological agents of acute otitis media and support the added value of the broader coverage of the new 13-valent conjugate vaccine.
PMCID: PMC3180674  PMID: 21910891
Susceptibility; serotype 19A; middle ear isolates; non-susceptibility time trends; surveillance
6.  Effect of Pneumococcal Conjugate Vaccination on Serotype-Specific Carriage and Invasive Disease in England: A Cross-Sectional Study 
PLoS Medicine  2011;8(4):e1001017.
A cross sectional study by Stefan Flasche and coworkers document the serotype replacement of Streptococcus pneumoniae that has occurred in England since the introduction of PCV7 vaccination.
We investigated the effect of the 7-valent pneumococcal conjugate vaccine (PCV7) programme in England on serotype-specific carriage and invasive disease to help understand its role in serotype replacement and predict the impact of higher valency vaccines.
Methods and Findings
Nasopharyngeal swabs were taken from children <5 y old and family members (n = 400) 2 y after introduction of PCV7 into routine immunization programs. Proportions carrying Streptococcus pneumoniae and serotype distribution among carried isolates were compared with a similar population prior to PCV7 introduction. Serotype-specific case∶carrier ratios (CCRs) were estimated using national data on invasive disease. In vaccinated children and their contacts vaccine-type (VT) carriage decreased, but was offset by an increase in non-VT carriage, with no significant overall change in carriage prevalence, odds ratio 1.06 (95% confidence interval 0.76–1.49). The lower CCRs of the replacing serotypes resulted in a net reduction in invasive disease in children. The additional serotypes covered by higher valency vaccines had low carriage but high disease prevalence. Serotype 11C emerged as predominant in carriage but caused no invasive disease whereas 8, 12F, and 22F emerged in disease but had very low carriage prevalence.
Because the additional serotypes included in PCV10/13 have high CCRs but low carriage prevalence, vaccinating against them is likely to significantly reduce invasive disease with less risk of serotype replacement. However, a few serotypes with high CCRs could mitigate the benefits of higher valency vaccines. Assessment of the effect of PCV on carriage as well as invasive disease should be part of enhanced surveillance activities for PCVs.
Please see later in the article for the Editors' Summary
Editors' Summary
Pneumococcal diseases—major causes of illness and death in children and adults worldwide—are caused by Streptococcus pneumoniae, a bacterium that often colonizes the nasopharynx (the area of the throat behind the nose). Carriage of S. pneumoniae bacteria does not necessarily cause disease. However, these bacteria can cause local, noninvasive diseases such as ear infections and sinusitis and, more rarely, they can spread into the lungs, the bloodstream, or the covering of the brain, where they cause pneumonia, septicemia, and meningitis, respectively. Although these invasive pneumococcal diseases (IPDs) can be successfully treated if administered early, they can be fatal. Consequently, it is better to protect people against IPDs through vaccination than risk infection. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules (antigens) that it recognizes as foreign.
Why Was This Study Done?
There are more than 90 S. pneumoniae variants or “serotypes” characterized by different polysaccharide (complex sugar) coats, which trigger the immune response against S. pneumoniae and determine each serotype's propensity to cause IPD. The pneumococcal conjugate vaccine PCV7 contains polysaccharides (linked to a protein carrier) from the seven serotypes mainly responsible for IPD in the US in 2000 when routine childhood PCV7 vaccination was introduced in that country. PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes, which means that, after vaccination, previously uncommon, nonvaccine serotypes can colonize the nasopharynx. If these serotypes have a high invasiveness potential, then “serotype replacement” could reduce the benefits of vaccination. In this cross-sectional study (a study that investigates the relationship between a disease and an intervention in a population at one time point), the researchers investigate the effect of the UK PCV7 vaccination program (which began in 2006) on serotype-specific carriage and IPD in England to understand the role of PCV7 in serotype replacement and to predict the likely impact of vaccines containing additional serotypes (higher valency vaccines).
What Did the Researchers Do and Find?
The researchers examined nasopharyngeal swabs taken from PCV7-vaccinated children and their families for S. pneumoniae, determined the serotype of any bacteria they found, and compared the proportion of people carrying S. pneumoniae (carrier prevalence) and the distribution of serotypes in this study population and in a similar population that was studied in 2000/2001, before the PCV vaccination program began. Overall, there was no statistically significant change in carrier prevalence, but carriage of vaccine serotypes decreased in vaccinated children and their contacts whereas carriage of nonvaccine serotypes increased. The serotype-specific case-to-carrier ratios (CCRs; a measure of serotype invasiveness that was estimated using national IPD data) of the replacing serotypes were generally lower than those of the original serotypes, which resulted in a net reduction in IPD in children. Moreover, before PCV7 vaccination began, PCV7-included serotypes were responsible for similar proportions of pneumococcal carriage and disease; afterwards, the additional serotypes present in the higher valency vaccines PVC10 and PVC13 were responsible for a higher proportion of disease than carriage. Finally, three serotypes not present in the higher valency vaccines with outstandingly high CCRs (high invasiveness potential) are identified.
What Do These Findings Mean?
These findings document the serotype replacement of S. pneumoniae that has occurred in England since the introduction of PCV7 vaccination and highlight the importance of assessing the effects of pneumococcal vaccines on carriage as well as on IPDs. Because the additional serotypes included in PCV10 and PCV13 have high CCRs but low carriage prevalence and because most of the potential replacement serotypes have low CCRs, these findings suggest that the introduction of higher valency vaccines should further reduce the occurrence of invasive disease with limited risk of additional serotype replacement. However, the emergence of a few serotypes that have high CCRs but are not included in PCV10 and PCV13 might mitigate the benefits of higher valency vaccines. In other words, although the recent introduction of PCV13 into UK vaccination schedules is likely to have an incremental benefit on the reduction of IPD compared to PCV7, this benefit might be offset by increases in the carriage of some high CCR serotypes. These serotypes should be considered for inclusion in future vaccines.
Additional Information
Please access these Web sites via the online version of this summary at
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination
The US National Foundation for Infectious Diseases has a fact sheet on pneumococcal diseases
The UK Health Protection Agency provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
PMCID: PMC3071372  PMID: 21483718
7.  Polyclonal Population Structure of Streptococcus pneumoniae Isolates in Spain Carrying mef and mef plus erm(B)▿  
The population structure (serotypes, pulsed-field gel electrophoresis [PFGE] types, and multilocus sequencing types) of 45 mef-positive Streptococcus pneumoniae isolates [carrying mef alone (n = 17) or with the erm(B) gene n = 28)] were studied. They were selected from among all erythromycin-resistant isolates (n = 244) obtained from a collection of 712 isolates recovered from different Spanish geographic locations in the prevaccination period from 1999 to 2003. The overall rates of resistance (according to the criteria of the CLSI) among the 45 mef-positive isolates were as follows: penicillin G, 82.2%; cefotaxime, 22.2%; clindamycin, 62.2%; and tetracycline, 68.8% [mainly in isolates carrying erm(B) plus mef(E); P < 0.001]. No levofloxacin or telithromycin resistance was found. Macrolide resistance phenotypes (as determined by the disk diffusion approximation test) were 37.7% for macrolide resistance [with all but one due to mef(E)] and 62.2% for constitutive macrolide-lincosamide-streptogramin B resistance [cMLSB; with all due to mef(E) plus erm(B)]. Serotypes 14 (22.2%), 6B (17.7%), 19A (13.3%), and 19F (11.1%) were predominant. Twenty-five different DNA patterns (PFGE types) were observed. Our mef-positive isolates were grouped (by eBURST analysis) into four clonal complexes (n = 18) and 19 singleton clones (n = 27). With the exception of clone Spain9V-3, all clonal complexes (clonal complexes 6B, Spain6B-2, and Sweden15A-25) and 73.6% of singleton clones carried both the erm(B) and the mef(E) genes. The international multiresistant clones Spain23F-1 and Poland6B-20 were represented as singleton clones. A high proportion of mef-positive S. pneumoniae isolates presented the erm(B) gene, with all isolates expressing the cMLSB phenotype. A polyclonal population structure was demonstrated within our Spanish mef-positive S. pneumoniae isolates, with few clonal complexes overrepresented within this collection.
PMCID: PMC2415790  PMID: 18362188
8.  Seven-Year Surveillance of emm Types of Pediatric Group A Streptococcal Pharyngitis Isolates in Western Greece 
PLoS ONE  2013;8(8):e71558.
An experimental 26-valent M protein Group A streptococcal (GAS) vaccine has entered clinical studies. Pharyngeal GAS emm type surveillances in different areas and time-periods enhance the understanding of the epidemiology of GAS pharyngitis. Moreover, these surveillances, combined with the data on GAS invasive disease, can play a significant role in the formulation of multivalent type-specific vaccines.
During a 7-year period (1999–2005), 2408 GAS isolates were recovered from consecutive children with pharyngitis in Western Greece. The overall macrolide resistance rate was 22.8%. Along the study period we noted a tendency towards significantly decreased rates of resistance, with the lowest rates occurring in 2002 (15.3%), 2003 (15%) and 2004 (16.7%). A random sample of isolates from each year, 338 (61.7%) of the 548 macrolide-resistant and 205 (11%) of the macrolide-susceptible, underwent molecular analysis, including emm typing.
The 543 typed isolates had 28 different emm types. A statistically significant association was found between macrolide resistance and emm4, emm22 and emm77, whereas emm1, emm3, emm6, emm12, emm87 and emm89 were associated with macrolide susceptibility. A significant yearly fluctuation was observed in emm4, emm28 and emm77. The most common macrolide-resistant GAS were emm77 isolates harboring erm(A), either alone or in combination with mef(A), emm4 carrying mef(A), emm28 possessing erm(B), emm75 carrying mef(A), emm12 harboring mef(A) and emm22 carrying erm(A). We estimated that 82.8% of the isolates belonged to emm types included in the novel 26-valent M protein vaccine. The vaccine coverage rate was determined mainly by the increased frequency of nonvaccine emm4 isolates.
A limited number of emm types dominated among macrolide-susceptible and macrolide-resistant GAS isolates. We observed seasonal fluctuations, which were significant for emm4, emm28 and emm77. This type of data can serve as baseline information if the novel 26-valent M protein GAS vaccine is introduced into practice.
PMCID: PMC3747210  PMID: 23977078
9.  Serotypes, Clones, and Mechanisms of Resistance of Erythromycin-Resistant Streptococcus pneumoniae Isolates Collected in Spain▿  
The aim of this study was to analyze the distributions of antibiotic susceptibility patterns, serotypes, phenotypes, genotypes, and macrolide resistance genes among 125 nonduplicated erythromycin-resistant Streptococcus pneumoniae clinical isolates collected in a Spanish point prevalence study. The prevalence of resistance to macrolides in this study was 34.7%. Multiresistance (to three or more antimicrobials) was observed in 81.6% of these strains. Among 15 antimicrobials studied, cefotaxime, moxifloxacin, telithromycin, and quinupristin-dalfopristin were the most active drugs. The most frequent serotypes of erythromycin-resistant isolates were 19F (25%), 19A (17%), 6B (12%), 14 (10%), and 23F (10%). Of the 125 strains, 109 (87.2%) showed the MLSB phenotype [103 had the erm(B) gene and 6 had both erm(B) and mef(E) genes]. Sixteen (12.8%) strains showed the M phenotype [14 with mef(E) and 2 with mef(A)]. All isolates were tested by PCR for the presence of the int, xis, tnpR, and tnpA genes associated with conjugative transposons (Tn916 family and Tn917). Positive detection of erm(B), tet(M), int, and xis genes related to the Tn916 family was found in 77.1% of MLSB phenotype strains. In 16 strains, only the tndX, erm(B), and tet(M) genes were detected, suggesting the presence of Tn1116, a transposon recently described for Streptococcus pyogenes. Five clones, namely, Sweden15A-25, clone19F ST87, Spain23F-1, Spain6B-2, and clone19A ST276, accounted for half of the MLSB strains. In conclusion, the majority of erythromycin-resistant pneumococci isolated in Spain had the MLSB phenotype, belonged to multiresistant international clones, and carried the erm(B), tet(M), xis, and int genes, suggesting the spread of transposons of the Tn916 family.
PMCID: PMC2043242  PMID: 17606677
10.  Molecular Characterization of Pneumococci with Efflux-Mediated Erythromycin Resistance and Identification of a Novel mef Gene Subclass, mef(I) 
Antimicrobial Agents and Chemotherapy  2005;49(12):4999-5006.
The molecular genetics of macrolide resistance were analyzed in 49 clinical pneumococci (including an “atypical” bile-insoluble strain currently assigned to the new species Streptococcus pseudopneumoniae) with efflux-mediated erythromycin resistance (M phenotype). All test strains had the mef gene, identified as mef(A) in 30 isolates and mef(E) in 19 isolates (including the S. pseudopneumoniae strain) on the basis of PCR-restriction fragment length polymorphism analysis. Twenty-eight of the 30 mef(A) isolates shared a pulsed-field gel electrophoresis (PFGE) type corresponding to the England14-9 clone. Of those isolates, 27 (20 belonging to serotype 14) yielded multilocus sequence type ST9, and one isolate yielded a new sequence type. The remaining two mef(A) isolates had different PFGE types and yielded an ST9 type and a new sequence type. Far greater heterogeneity was displayed by the 19 mef(E) isolates, which fell into 11 PFGE types, 12 serotypes (though not serotype 14), and 12 sequence types (including two new ones and an undetermined type for the S. pseudopneumoniae strain). In all mef(A) pneumococci, the mef element was a regular Tn1207.1 transposon, whereas of the mef(E) isolates, 17 carried the mega element and 2 exhibited a previously unreported organization, with no PCR evidence of the other open reading frames of mega. The mef gene of these two isolates, which did not match with the mef(E) gene of the mega element (93.6% homology) and which exhibited comparable homology (91.4%) to the mef(A) gene of the Tn1207.1 transposon, was identified as a novel mef gene variant and was designated mef(I). While penicillin-nonsusceptible isolates (three resistant isolates and one intermediate isolate) were all mef(E) strains, tetracycline resistance was also detected in three mef(A) isolates, due to the tet(M) gene carried by a Tn916-like transposon. A similar mechanism accounted for resistance in four of the five tetracycline-resistant isolates carrying mef(E), in three of which mega was inserted in the Tn916-like transposon, giving rise to the composite element Tn2009. In the fifth mef(E)-positive tetracycline-resistant isolate (the S. pseudopneumoniae strain), tetracycline resistance was due to the presence of the tet(O) gene, apparently unlinked to mef(E).
PMCID: PMC1315940  PMID: 16304164
11.  Trends in antibacterial resistance among Streptococcus pneumoniae isolated in the USA: update from PROTEKT US Years 1–4 
The increasing prevalence of resistance to established antibiotics among key bacterial respiratory tract pathogens, such as Streptococcus pneumoniae, is a major healthcare problem in the USA. The PROTEKT US study is a longitudinal surveillance study designed to monitor the susceptibility of key respiratory tract pathogens in the USA to a range of commonly used antimicrobials. Here, we assess the geographic and temporal trends in antibacterial resistance of S. pneumoniae isolates from patients with community-acquired respiratory tract infections collected between Year 1 (2000–2001) and Year 4 (2003–2004) of PROTEKT US.
Antibacterial minimum inhibitory concentrations were determined centrally using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method; susceptibility was defined according to CLSI interpretive criteria. Macrolide resistance genotypes were determined by polymerase chain reaction.
A total of 39,495 S. pneumoniae isolates were collected during 2000–2004. The percentage of isolates resistant to erythromycin, penicillin, levofloxacin, and telithromycin were 29.3%, 21.2%, 0.9%, and 0.02%, respectively, over the 4 years, with marked regional variability. The proportion of isolates exhibiting multidrug resistance (includes isolates known as penicillin-resistant S. pneumoniae and isolates resistant to ≥ 2 of the following antibiotics: penicillin; second-generation cephalosporins, e.g. cefuroxime; macrolides; tetracyclines; and trimethoprim-sulfamethoxazole) remained stable at ~30% over the study period. Overall mef(A) was the most common macrolide resistance mechanism. The proportion of mef(A) isolates decreased from 68.8% to 62.3% between Year 1 and Year 4, while the percentage of isolates carrying both erm(B) and mef(A) increased from 9.7% to 18.4%. Over 99% of the erm(B)+mef(A)-positive isolates collected over Years 1–4 exhibited multidrug resistance. Higher than previously reported levels of macrolide resistance were found for mef(A)-positive isolates.
Over the first 4 years of PROTEKT US, penicillin and erythromycin resistance among pneumococcal isolates has remained high. Although macrolide resistance rates have stabilized, the prevalence of clonal isolates, with a combined erm(B) and mef(A) genotype together with high-level macrolide and multidrug resistance, is increasing, and their spread may have serious health implications. Telithromycin and levofloxacin both showed potent in vitro activity against S. pneumoniae isolates irrespective of macrolide resistance genotype.
PMCID: PMC2262084  PMID: 18190701
12.  Genotypes and Related Factors Reflecting Macrolide Resistance in Pneumococcal Pneumonia Infections in Japan▿  
Journal of Clinical Microbiology  2007;45(5):1440-1446.
Although macrolide-resistant Streptococcus pneumoniae strains possessing either the ermB or mefA gene are very common in Japan, clinical and microbial factors in community-acquired pneumonia (CAP) caused by different macrolide resistance genotypes have not been evaluated. A multicenter study of CAP caused by S. pneumoniae was performed in Japan from 2003 to 2005. A total of 156 isolates were tested for susceptibility to antibiotics correlated with ermB and mefA genotyping. Independent relationships between tested variables and possession of either the ermB or the mefA gene were identified. Of 156 isolates, 127 (81.4%) were resistant to erythromycin, with the following distribution of resistance genotypes: ermB alone (50.0%), mefA alone (23.7%), and both ermB and mefA (7.1%). All isolates were susceptible to telithromycin. By multivariate analysis, oxygen saturation of <90% on admission increased the risk for ermB-positive pneumococcal pneumonia (odds ratio [OR] = 11.1; 95% confidence interval [CI] = 1.30 to 95.0; P = 0.03), but there were no associations with mefA or with ermB mefA positivity. Penicillin nonsusceptibility was associated with mefA-positive and with ermB- and mefA-positive isolates (OR = 14.2; 95% CI = 4.27 to 46.9; P < 0.0001 and P < 0.0001, respectively) but not with ermB-positive isolates. The overall patient mortality was 5.1%. Mortality, the duration of hospitalization, and the resolution of several clinical markers were not associated with the different erythromycin resistance genotypes. In Japan, S. pneumoniae with erythromycin resistance or possession of ermB, mefA, or both genes was highly prevalent in patients with CAP. The risk factors for ermB-positive, mefA-positive, and double ermB-mefA-positive pneumococcal pneumonia were different, but the clinical outcomes did not differ.
PMCID: PMC1865875  PMID: 17344362
13.  Changing Trends in Antimicrobial Resistance and Serotypes of Streptococcus pneumoniae Isolates in Asian Countries: an Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study 
Antimicrobial resistance in Streptococcus pneumoniae remains a serious concern worldwide, particularly in Asian countries, despite the introduction of heptavalent pneumococcal conjugate vaccine (PCV7). The Asian Network for Surveillance of Resistant Pathogens (ANSORP) performed a prospective surveillance study of 2,184 S. pneumoniae isolates collected from patients with pneumococcal infections from 60 hospitals in 11 Asian countries from 2008 to 2009. Among nonmeningeal isolates, the prevalence rate of penicillin-nonsusceptible pneumococci (MIC, ≥4 μg/ml) was 4.6% and penicillin resistance (MIC, ≥8 μg/ml) was extremely rare (0.7%). Resistance to erythromycin was very prevalent in the region (72.7%); the highest rates were in China (96.4%), Taiwan (84.9%), and Vietnam (80.7%). Multidrug resistance (MDR) was observed in 59.3% of isolates from Asian countries. Major serotypes were 19F (23.5%), 23F (10.0%), 19A (8.2%), 14 (7.3%), and 6B (7.3%). Overall, 52.5% of isolates showed PCV7 serotypes, ranging from 16.1% in Philippines to 75.1% in Vietnam. Serotypes 19A (8.2%), 3 (6.2%), and 6A (4.2%) were the most prominent non-PCV7 serotypes in the Asian region. Among isolates with serotype 19A, 86.0% and 79.8% showed erythromycin resistance and MDR, respectively. The most remarkable findings about the epidemiology of S. pneumoniae in Asian countries after the introduction of PCV7 were the high prevalence of macrolide resistance and MDR and distinctive increases in serotype 19A.
PMCID: PMC3294909  PMID: 22232285
14.  Dominance of multidrug resistant CC271 clones in macrolide-resistant streptococcus pneumoniae in Arizona 
BMC Microbiology  2012;12:12.
Rates of resistance to macrolide antibiotics in Streptococcus pneumoniae are rising around the world due to the spread of mobile genetic elements harboring mef(E) and erm(B) genes and post-vaccine clonal expansion of strains that carry them.
Characterization of 592 clinical isolates collected in Arizona over a 10 year period shows 23.6% are macrolide resistant. The largest portion of the macrolide-resistant population, 52%, is dual mef(E)/erm(B)-positive. All dual-positive isolates are multidrug-resistant clonal lineages of Taiwan19F-14, mostly multilocus sequence type 320, carrying the recently described transposon Tn2010. The remainder of the macrolide resistant S. pneumoniae collection includes 31% mef(E)-positive, and 9% erm(B)-positive strains.
The dual-positive, multidrug-resistant S. pneumoniae clones have likely expanded by switching to non-vaccine serotypes after the heptavalent pneumococcal conjugate vaccine release, and their success limits therapy options. This upsurge could have a considerable clinical impact in Arizona.
PMCID: PMC3285076  PMID: 22251616
15.  Serotype and Genotype Replacement among Macrolide-Resistant Invasive Pneumococci in Adults: Mechanisms of Resistance and Association with Different Transposons▿  
Journal of Clinical Microbiology  2010;48(4):1310-1316.
The aim of this study was to analyze trends in adult invasive pneumococcal disease (IPD) due to macrolide-resistant strains and to study the evolution of serotypes, genotypes, and macrolide-resistant determinants of strains collected in a prospective study between 1999 and 2007 in Barcelona, Spain. IPD due to macrolide-resistant strains of serotypes included in the 7-valent conjugate vaccine (PCV7) decreased from 2.16/100,000 (pre-PCV7 period, 1999 to 2001) to 0.80/100,000 (late-PCV7 period, 2005 to 2007) (P = 0.001), whereas IPD due to macrolide-resistant strains of non-PCV7 serotypes increased from 1.08/100,000 to 2.83/100,000 (P < 0.001). These changes were related to a fall of clones of PCV7 serotypes (ST81 [P < 0.05], ST90, ST315, and ST17) and an increase in new clones of serotypes 19A and 24F (ST230) and 33F (ST717) in the late-PCV7 period. The most common phenotype was MLSB (90.9%), related to the erm(B) gene. The frequent association between MLSB phenotype and tetracycline resistance [tet(M) gene], was related to transposons of the Tn916-family such as Tn6002 or Tn3872. In conclusion, overall adult IPD rates due to macrolide-resistant pneumococci stabilized between 1999 and 2007 in Barcelona. The decrease in macrolide-resistant PCV7 pneumococci was balanced by the increase in macrolide-resistant non-PCV7 pneumococci.
PMCID: PMC2849543  PMID: 20147647
16.  Macrolide Efflux Genes mef(A) and mef(E) Are Carried by Different Genetic Elements in Streptococcus pneumoniae 
Journal of Clinical Microbiology  2002;40(3):774-778.
Susceptibilities to macrolides were evaluated in 267 Streptococcus pneumoniae isolates, of which 182 were from patients with invasive diseases and 85 were from healthy carriers. Of the 98 resistant isolates, 20 strains showed an M phenotype and carried mef. Strains that carried both mef(A) and mef(E) were found: 17 strains carried mef(A) and 3 carried mef(E). The characteristics of the strains carrying the mef genes and the properties of the mef-containing elements were studied. Strains carrying mef(A) belonged to serotype 14, were susceptible to all the antibiotics tested except erythromycin, and appeared to be clonally related by pulsed-field gel electrophoresis (PFGE). The three mef(E) strains belonged to different serotypes, showed different susceptibility profiles, and did not appear to be related by PFGE. The sequences of a fragment of the mef-containing element, which encompassed mef and the msr(A) homolog, were identical among the three mef(E)-positive strains and among the three mef(A)-positive strains, although there were differences between the sequences for the two variants at 168 positions. In all mef(A)-positive strains, the mef element was inserted in celB, which led to impairment of the competence of the strains. In line with insertion of the mef(E) element at a different site, the competence of the mef(E)-positive strains was maintained. Transfer of erythromycin resistance by conjugation was obtained from two of three mef(A) strains but from none of three mef(E) strains. Due to the important different characteristics of the strains carrying mef(A) or mef(E), we suggest that the distinction between the two genes be maintained.
PMCID: PMC120261  PMID: 11880392
17.  Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites 
PLoS Medicine  2013;10(9):e1001517.
In a pooled analysis of data collected from invasive pneumococcal disease surveillance databases, Daniel Feikin and colleagues examine serotype replacement after the introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs.
Please see later in the article for the Editors' Summary
Vaccine-serotype (VT) invasive pneumococcal disease (IPD) rates declined substantially following introduction of 7-valent pneumococcal conjugate vaccine (PCV7) into national immunization programs. Increases in non-vaccine-serotype (NVT) IPD rates occurred in some sites, presumably representing serotype replacement. We used a standardized approach to describe serotype-specific IPD changes among multiple sites after PCV7 introduction.
Methods and Findings
Of 32 IPD surveillance datasets received, we identified 21 eligible databases with rate data ≥2 years before and ≥1 year after PCV7 introduction. Expected annual rates of IPD absent PCV7 introduction were estimated by extrapolation using either Poisson regression modeling of pre-PCV7 rates or averaging pre-PCV7 rates. To estimate whether changes in rates had occurred following PCV7 introduction, we calculated site specific rate ratios by dividing observed by expected IPD rates for each post-PCV7 year. We calculated summary rate ratios (RRs) using random effects meta-analysis. For children <5 years old, overall IPD decreased by year 1 post-PCV7 (RR 0·55, 95% CI 0·46–0·65) and remained relatively stable through year 7 (RR 0·49, 95% CI 0·35–0·68). Point estimates for VT IPD decreased annually through year 7 (RR 0·03, 95% CI 0·01–0·10), while NVT IPD increased (year 7 RR 2·81, 95% CI 2·12–3·71). Among adults, decreases in overall IPD also occurred but were smaller and more variable by site than among children. At year 7 after introduction, significant reductions were observed (18–49 year-olds [RR 0·52, 95% CI 0·29–0·91], 50–64 year-olds [RR 0·84, 95% CI 0·77–0·93], and ≥65 year-olds [RR 0·74, 95% CI 0·58–0·95]).
Consistent and significant decreases in both overall and VT IPD in children occurred quickly and were sustained for 7 years after PCV7 introduction, supporting use of PCVs. Increases in NVT IPD occurred in most sites, with variable magnitude. These findings may not represent the experience in low-income countries or the effects after introduction of higher valency PCVs. High-quality, population-based surveillance of serotype-specific IPD rates is needed to monitor vaccine impact as more countries, including low-income countries, introduce PCVs and as higher valency PCVs are used.
Please see later in the article for the Editors' Summary
Editors’ Summary
Pneumococcal disease–a major cause of illness and death in children and adults worldwide–is caused by Streptococcus pneumoniae, a bacterium that often colonizes the nose and throat harmlessly. Unfortunately, S. pneumoniae occasionally spreads into the lungs, bloodstream, or covering of the brain, where it causes pneumonia, septicemia, and meningitis, respectively. These invasive pneumococcal diseases (IPDs) can usually be successfully treated with antibiotics but can be fatal. Consequently, it is better to avoid infection through vaccination. Vaccination primes the immune system to recognize and attack disease-causing organisms (pathogens) rapidly and effectively by exposing it to weakened or dead pathogens or to pathogen molecules that it recognizes as foreign (antigens). Because there are more than 90 S. pneumoniae variants or “serotypes,” each characterized by a different antigenic polysaccharide (complex sugar) coat, vaccines that protect against S. pneumoniae have to include multiple serotypes. Thus, the pneumococcal conjugate vaccine PCV7, which was introduced into the US infant immunization regimen in 2000, contains polysaccharides from the seven S. pneumoniae serotypes mainly responsible for IPD in the US at that time.
Why Was This Study Done?
Vaccination with PCV7 was subsequently introduced in several other high- and middle-income countries, and IPD caused by the serotypes included in the vaccine declined substantially in children and in adults (because of reduced bacterial transmission and herd protection) in the US and virtually all these countries. However, increases in IPD caused by non-vaccine serotypes occurred in some settings, presumably because of “serotype replacement.” PCV7 prevents both IPD caused by the serotypes it contains and carriage of these serotypes. Consequently, after vaccination, previously less common, non-vaccine serotypes can colonize the nose and throat, some of which can cause IPD. In July 2010, a World Health Organization expert consultation on serotype replacement called for a comprehensive analysis of the magnitude and variability of pneumococcal serotype replacement following PCV7 use to help guide the introduction of PCVs in low-income countries, where most pneumococcal deaths occur. In this pooled analysis of data from multiple surveillance sites, the researchers investigate serotype-specific changes in IPD after PCV7 introduction using a standardized approach.
What Did the Researchers Do and Find?
The researchers identified 21 databases that had data about the rate of IPD for at least 2 years before and 1 year after PCV7 introduction. They estimated whether changes in IPD rates had occurred after PCV7 introduction by calculating site-specific rate ratios–the observed IPD rate for each post-PCV7 year divided by the expected IPD rate in the absence of PCV7 extrapolated from the pre-PCV7 rate. Finally, they used a statistical approach (random effects meta-analysis) to estimate summary (pooled) rate ratios. For children under 5 years old, the overall number of observed cases of IPD in the first year after the introduction of PCV7 was about half the expected number; this reduction in IPD continued through year 7 after PCV7 introduction. Notably, the rate of IPD caused by the S. pneumonia serotypes in PCV7 decreased every year, but the rate of IPD caused by non-vaccine serotypes increased annually. By year 7, the number of cases of IPD caused by non-vaccine serotypes was 3-fold higher than expected, but was still smaller than the decrease in vaccine serotypes, thereby leading to the decrease in overall IPD. Finally, smaller decreases in overall IPD also occurred among adults but occurred later than in children 2 years or more after PCV7 introduction.
What Do These Findings Mean?
These findings show that consistent, rapid, and sustained decreases in overall IPD and in IPD caused by serotypes included in PCV7 occurred in children and thus support the use of PCVs. The small increases in IPD caused by non-vaccine serotypes that these findings reveal are likely to be the result of serotype replacement, but changes in antibiotic use and other factors may also be involved. These findings have several important limitations, however. For example, PCV7 is no longer made and extrapolation of these results to newer PCV10 and PCV13 formulations should be done cautiously. On the other hand, many of the serotypes causing serotype replacement after PCV7 are included in these higher valency vaccines. Moreover, because the data analyzed in this study mainly came from high-income countries, these findings may not be generalizable to low-income countries. Nevertheless, based on their analysis, the researchers make recommendations for the collection and analysis of IPD surveillance data that should allow valid interpretations of the effect of PCVs on IPD to be made, an important requisite for making sound policy decisions about vaccination against pneumococcal disease.
Additional Information
Please access these websites via the online version of this summary at
The US Centers for Disease Control and Prevention provides information for patients and health professionals on all aspects of pneumococcal disease and pneumococcal vaccination, including personal stories
Public Health England provides information on pneumococcal disease and on pneumococcal vaccines
The World Health Organization also provides information on pneumococcal vaccines
The not-for-profit Immunization Action Coalition has information on pneumococcal disease, including personal stories
MedlinePlus has links to further information about pneumococcal infections (in English and Spanish)
The International Vaccine Access Center at Johns Hopkins Bloomberg School of Public Health has more information on introduction of pneumococcal conjugate vaccines in low-income countries
PMCID: PMC3782411  PMID: 24086113
18.  Macrolide Resistance in Streptococcus pneumoniae in Hong Kong 
Erythromycin resistance rates among penicillin-susceptible Streptococcus pneumoniae were 38 and 92% among penicillin-intermediate and -resistant S. pneumoniae isolates from Hong Kong, respectively, and 27% (43 of 158) of the isolates showed the MLSB phenotype, and the majority carried the ermB gene; 73% (115 of 158) displayed the M phenotype, and all possessed the mef gene. The MLSB phenotype was predominant in penicillin-susceptible, macrolide-resistant isolates and in penicillin-nonsusceptible isolates of serotype 6B, whilst the M phenotype was predominant in penicillin-intermediate or -resistant isolates belonging to serotype 23F or 19F. Extensive spread of clones of drug-resistant pneumococci has led to the widespread presence of macrolide resistance in S. pneumoniae in Hong Kong.
PMCID: PMC90511  PMID: 11302833
19.  Molecular Epidemiology of Penicillin-Susceptible Non-β-Lactam-Resistant Streptococcus pneumoniae Isolates from Greek Children 
Journal of Clinical Microbiology  2003;41(12):5633-5639.
A total of 128 Streptococcus pneumoniae isolates that were susceptible to penicillin but resistant to non-β-lactam agents were isolated from young carriers in Greece and analyzed by antibiotic susceptibility testing, serotyping, restriction fragment end labeling (RFEL), and antibiotic resistance genotyping. The serotypes 6A/B (49%), 14 (14%), 19A/F (11%), 11A (9%), 23A/F (4%), 15B/C (2%), and 21 (2%) were most prevalent in this collection. Of the isolates, 65% were erythromycin resistant, while the remaining isolates were tetracycline and/or trimethoprim-sulfamethoxazole resistant. Fifty-nine distinct RFEL types were identified. Twenty different RFEL clusters, harboring 2 to 19 strains each, accounted for 76% of all strains. Confirmatory multilocus sequence typing analysis of the genetic clusters showed the presence of three international clones (Tennessee23F-4, England14-9, and Greece6B-22) representing 30% of the isolates. The erm(B) gene was present in 70% of the erythromycin-resistant isolates, whereas 18 and 8% contained the mef(A) and mef(E) genes, respectively. The pneumococci representing erm(B), erm(A), and mef genes belonged to distinct genetic clusters. In total, 45% of all isolates were tetracycline resistant. Ninety-six percent of these isolates contained the tet(M) gene. In conclusion, penicillin-susceptible pneumococci resistant to non-β-lactams are a genetically heterogeneous group displaying a variety of genotypes, resistance markers, and serotypes. This suggests that multiple genetic events lead to non-β-lactam-resistant pneumococci in Greece. Importantly, most of these genotypes are capable of disseminating within the community.
PMCID: PMC308965  PMID: 14662953
20.  Serotype Distribution and Antimicrobial Resistance of Streptococcus pneumoniae Isolates Causing Invasive Diseases from Shenzhen Children’s Hospital 
PLoS ONE  2013;8(6):e67507.
To provide guidance for clinical disease prevention and treatment, this study examined the epidemiology, antibiotic susceptibility, and serotype distribution of Streptococcus pneumoniae (S. pneumoniae) associated with invasive pneumococcal diseases (IPDs) among children less than 14 years of age in Shenzhen, China.
Materials and Methods
All the clinical strains were isolated from children less than 14 years old from January 2009 to August 2012. The serotypes and antibiotic resistance of strains of S. pneumoniae were determined using the capsular swelling method and the E-test.
A total of 89 strains were isolated and 87 isolates were included. The five prevailing serotypes were 19F (28.7%), 14 (16.1%), 23F (11.5%), 19A (9.2%) and 6B (6.9%). The most common sequence types (ST) were ST271 (21.8%), ST876 (18.4%), ST320 (8.0%) and ST81 (6.9%) which were mainly related to 19F, 14, 19A and 23F, respectively. The potential coverage by 7-, 10-, and 13-valent pneumococcal conjugate vaccine were 77.0%, 77.0%, and 89.7%, respectively. Among the 87 isolates investigated, 11.5% were resistant to penicillin, and for meningitis isolates, the resistance rate was 100%. Multi-drug resistance (MDR) was exhibited by 49 (56.3%) isolates. Eighty-four isolates were resistance to erythromycin, among which, 56 (66.7%) carried the ermB gene alone and 28 (33.3%) expressed both the ermB and mefA/E genes.
The potential coverage of PCV13 is higher than PCV7 and PCV10 because high rates of serotypes 19A and 6A in Shenzhen. The clinical treatment of IPD needs a higher drug concentration of antibiotics. Continued surveillance of the antimicrobial susceptibility and serotypes distribution of IPD isolates may be necessary.
PMCID: PMC3696094  PMID: 23840728
21.  Clonal Evolution Leading to Maintenance of Antibiotic Resistance Rates among Colonizing Pneumococci in the PCV7 Era in Portugal ▿  
Journal of Clinical Microbiology  2011;49(8):2810-2817.
The introduction of the seven-valent pneumococcal conjugate vaccine (PCV7) in Portugal led to extensive serotype replacement among carriers of pneumococci, with a marked decrease of PCV7 types. Although antimicrobial resistance was traditionally associated with PCV7 types, no significant changes in the rates of nonsusceptibility to penicillin, resistance to macrolides, or multidrug resistance were observed. This study aimed to investigate the mechanisms leading to maintenance of antimicrobial resistance, despite marked serotype replacement. We compared, through molecular typing, 252 antibiotic-resistant pneumococci recovered from young carriers in 2006 and 2007 (era of high PCV7 uptake) with collections of isolates from 2002 and 2003 (n=374; low-PCV7-uptake era) and 1996 to 2001 (n=805; pre-PCV7 era). We observed that the group of clones that has accounted for antimicrobial resistance since 1996 is essentially the same as the one identified in the PCV7 era. The relative proportions of such clones have, however, evolved substantially overtime. Notably, widespread use of PCV7 led to an expansion of two Pneumococcal Molecular Epidemiology Network (PMEN) clones expressing non-PCV7 capsular variants of the original strains: Sweden15AST63 (serotypes 15A and 19A) and Denmark14ST230 (serotypes 19A and 24F). These variants were already in circulation in the pre-PCV7 era, although they have now become increasingly abundant. Emergence of novel clones and de novo acquisition of resistance contributed little to the observed scenario. No evidence of capsular switch events occurring after PCV7 introduction was found. In the era of PCVs, antimicrobial resistance remains a problem among the carried pneumococci. Continuous surveillance is warranted to evaluate serotype and clonal shifts leading to maintenance of antimicrobial resistance.
PMCID: PMC3147772  PMID: 21632898
22.  Molecular Characterization and Antimicrobial Susceptibility of Streptococcus pneumoniae Isolated from Children Hospitalized with Respiratory Infections in Suzhou, China 
PLoS ONE  2014;9(4):e93752.
Dissemination of antibiotic resistant clones is recognized as an important factor in the emergence and prevalence of resistance in pneumococcus. This study was undertaken to survey the antimicrobial susceptibility and serotypes distribution of pneumococci and to explore the circulating clones in hospitalized children in Suzhou, China.
The pneumococci were isolated from the nasopharyngeal aspirates of children less than 5 years of age admitted to Soochow-University-Affiliated-Children's-Hospital with respiratory infections. The capsular serotypes were identified by multiplex polymerase chain reaction (PCR). Antimicrobial susceptibility was tested by E-test. The presence of ermB, mefA/E genes were detected by PCR and the genotypes were explored by Multilocus sequence typing (MLST).
From July 2012 to July 2013, a total of 175 pneumococcal isolates were collected and all strains were resistant to erythromycin and clindamycin, about 39.4% strains were non-susceptible to penicillin G. Overall, 174 (99.4%) isolates were resistant to ≥3 types of antibiotics. Serotypes 19F (28.1%), 6B (19.7%), 19A (18.0%), and 23F (17.4%) were the most common serotypes in all identified strains. The serotypes coverage of PCV7 and PCV13 were 71.9% and 89.9%, respectively. Four international antibiotic-resistant clones, including Taiwan19F-14 (n = 79), Spain23F-1(n = 25), Taiwan23F-15(n = 7) and Spain6B-2(n = 7), were identified. The Taiwan19F-14 clones have a higher non-susceptibility rate in β-lactams than other clones and non-clone isolates (p<0.001). In addition, 98.7% Taiwan19F-14 clones were positive of both ermB and mefA/E genes, compare to 33.3% in other clones and non-clone strains.
The spread of international antibiotic-resistant clones, especially Taiwan19F-14 clones, played a predominant role in the dissemination of antimicrobial resistant isolates in Suzhou, China. Considering the high prevalence of PCV7 serotypes and serotype 19A, the introduction of PCV13 may be a promising preventive strategy to control the increasing trend of clonal spread in China.
PMCID: PMC3977860  PMID: 24710108
23.  High Nasopharyngeal Carriage of Non-Vaccine Serotypes in Western Australian Aboriginal People Following 10 Years of Pneumococcal Conjugate Vaccination 
PLoS ONE  2013;8(12):e82280.
Invasive pneumococcal disease (IPD) continues to occur at high rates among Australian Aboriginal people. The seven-valent pneumococcal conjugate vaccine (7vPCV) was given in a 2-4-6-month schedule from 2001, with a 23-valent pneumococcal polysaccharide vaccine (23vPPV) booster at 18 months, and replaced with 13vPCV in July 2011. Since carriage surveillance can supplement IPD surveillance, we have monitored pneumococcal carriage in western Australia (WA) since 2008 to assess the impact of the 10-year 7vPCV program.
We collected 1,500 nasopharyngeal specimens from Aboriginal people living in varied regions of WA from August 2008 until June 2011. Specimens were cultured on selective media. Pneumococcal isolates were serotyped by the quellung reaction.
Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis were carried by 71.9%, 63.2% and 63.3% respectively of children <5 years of age, and 34.6%, 22.4% and 27.2% of people ≥5 years. Of 43 pneumococcal serotypes identified, the most common were 19A, 16F and 6C in children <5 years, and 15B, 34 and 22F in older people. 7vPCV serotypes accounted for 14.5% of all serotypeable isolates, 13vPCV for 32.4% and 23vPPV for 49.9%, with little variation across all age groups. Serotypes 1 and 12F were rarely identified, despite causing recent IPD outbreaks in WA. Complete penicillin resistance (MIC ≥2µg/ml) was found in 1.6% of serotype 19A (5.2%), 19F (4.9%) and 16F (3.2%) isolates and reduced penicillin susceptibility (MIC ≥0.125µg/ml) in 24.9% of isolates, particularly 19F (92.7%), 19A (41.3%), 16F (29.0%). Multi-resistance to cotrimoxazole, tetracycline and erythromycin was found in 83.0% of 23F isolates. Among non-serotypeable isolates 76.0% had reduced susceptibility and 4.0% showed complete resistance to penicillin.
Ten years after introduction of 7vPCV for Aboriginal Australian children, 7vPCV serotypes account for a small proportion of carried pneumococci. A large proportion of circulating serotypes are not covered by any currently licensed vaccine.
PMCID: PMC3857785  PMID: 24349245
24.  New Patterns in the Otopathogens Causing Acute Otitis Media Six to Eight Years After Introduction of Pneumococcal Conjugate Vaccine 
To describe NP and AOM otopathogens during the time frame 2007-2009, six to eight years after the introduction of 7-valent pneumococcal conjugate (PCV7) in the US and to compare nasopharyngeal (NP) colonization and acute otitis media (AOM) microbiology in children 6 to 36 months of age having 1st and 2nd AOM episodes with children who are otitis prone.
Prospectively, the microbiology of NP colonization and AOM episodes was determined in 120 children with absent or infrequent AOM episodes. NP samples were collected at 7 routine visits between 6 and 30 months of age and at the time of AOM. For 1st and subsequent AOM episodes, middle ear fluid (MEF) was obtained by tympanocentesis. Eighty otitis prone children were comparatively studied. All 200 children received age-appropriate doses of PCV7.
We found PCV7 serotypes were virtually absent: (0.9% isolated from both NP and MEF) in both study groups. However, non-PCV7 serotypes replaced PCV serotypes such that the frequency of isolation of S. pneumoniae (Spn) was nearly equal to that of non-typeable Haemophilus influenzae (NTHi). M. catarrhalis (Mcat) was less common and Staphylococcus aureus infrequent in the NP and MEF from the two groups. The proportion of Spn, NTHi and Mcat causing AOM was similar in children with 1st and 2nd AOM episodes compared to otitis prone children. However, oxacillin-resistant Spn isolated from the NP and MEF was 19% for the absent/infrequent and 58% for the otitis prone groups, p<0.0001. Beta-lactamase producing NTHi occurred more frequently in the otitis prone group, p=0.04.
Six to 8 years after widespread use of PCV7, Spn strains expressing vaccine-type serotypes have virtually disappeared from the NP and MEF of vaccinated children. NP colonization and AOM has changed to non-PCV7 strains of Spn. NTHi continues to be a major AOM pathogen. The otopathogens in 1st and 2nd AOM and in otitis prone children are very similar although Spn and NTHi are more often antibiotic resistant in the otitis prone.
PMCID: PMC3959886  PMID: 19935445
Nasopharyngeal; AOM; S. pneumoniae; H. influenzae; M. catarrhalis
25.  Mechanisms of Macrolide Resistance among Streptococcus pneumoniae Isolates from Russia▿  
Among 76 macrolide-nonsusceptible Streptococcus pneumoniae isolates collected between 2003 and 2005 from Central Russia, the resistance mechanisms detected in the isolates included erm(B) alone (50%), mef alone [mef(E), mef(I), or a different mef subclass; 19.7%], or both erm(B) and mef(E) (30.3%). Isolates with dual resistance genes [erm(B) and mef(E)] belonged to clonal complex CC81 or CC271.
PMCID: PMC2415785  PMID: 18378707

Results 1-25 (658016)