Search tips
Search criteria

Results 1-25 (1025537)

Clipboard (0)

Related Articles

1.  Deletion of the Huntingtin Polyglutamine Stretch Enhances Neuronal Autophagy and Longevity in Mice 
PLoS Genetics  2010;6(2):e1000838.
Expansion of a stretch of polyglutamine in huntingtin (htt), the protein product of the IT15 gene, causes Huntington's disease (HD). Previous investigations into the role of the polyglutamine stretch (polyQ) in htt function have suggested that its length may modulate a normal htt function involved in regulating energy homeostasis. Here we show that expression of full-length htt lacking its polyglutamine stretch (ΔQ-htt) in a knockin mouse model for HD (Hdh140Q/ΔQ), reduces significantly neuropil mutant htt aggregates, ameliorates motor/behavioral deficits, and extends lifespan in comparison to the HD model mice (Hdh140Q/+). The rescue of HD model phenotypes is accompanied by the normalization of lipofuscin levels in the brain and an increase in the steady-state levels of the mammalian autophagy marker microtubule-associate protein 1 light chain 3-II (LC3-II). We also find that ΔQ-htt expression in vitro increases autophagosome synthesis and stimulates the Atg5-dependent clearance of truncated N-terminal htt aggregates. ΔQ-htt's effect on autophagy most likely represents a gain-of-function, as overexpression of full-length wild-type htt in vitro does not increase autophagosome synthesis. Moreover, HdhΔQ/ΔQ mice live significantly longer than wild-type mice, suggesting that autophagy upregulation may be beneficial both in diseases caused by toxic intracellular aggregate-prone proteins and also as a lifespan extender in normal mammals.
Author Summary
Expansion of a stretch of glutamines near the amino-terminus of huntingtin (htt), the protein product of the IT15 gene, is a deleterious mutation that causes Huntington's disease (HD). Here we show, in contrast, that deletion of htt's normal polyglutamine stretch (ΔQ-htt) is a potentially beneficial mutation that can ameliorate HD mouse model phenotypes when ΔQ-htt is expressed together with a version of htt with the HD mutation. In addition, ΔQ-htt expression can enhance longevity when expressed in either an HD mouse model or in non–HD mice. ΔQ-htt's effects on both lifespan and HD model phenotypes are likely due to an increase in autophagy, a major recycling pathway in cells that is involved in the turnover of cellular components, and aggregated protein. Based on our results, we suggest that development of therapeutic agents that can stimulate autophagy may help both in treating neurodegenerative disorders like HD and also in increasing longevity.
PMCID: PMC2816686  PMID: 20140187
2.  Advantages and Limitations of Different p62-Based Assays for Estimating Autophagic Activity in Drosophila 
PLoS ONE  2012;7(8):e44214.
Levels of the selective autophagy substrate p62 have been established in recent years as a specific readout for basal autophagic activity. Here we compared different experimental approaches for using this assay in Drosophila larvae. Similar to the more commonly used western blots, quantifying p62 dots in immunostained fat body cells of L3 stage larvae detected a strong accumulation of endogenous p62 aggregates in null mutants for Atg genes and S6K. Importantly, genes whose mutation or silencing results in early stage lethality can only be analyzed by microscopy using clonal analysis. The loss of numerous general housekeeping genes show a phenotype in large-scale screens including autophagy, and the p62 assay was potentially suitable for distinguishing bona fide autophagy regulators from silencing of a DNA polymerase subunit or a ribosomal gene that likely has a non-specific effect on autophagy. p62 accumulation upon RNAi silencing of known autophagy regulators was dependent on the duration of the knockdown effect, unlike in the case of starvation-induced autophagy. The endogenous p62 assay was more sensitive than a constitutively overexpressed p62-GFP reporter, which showed self-aggregation and large-scale accumulation even in control cells. We recommend western blots for following the conversion of overexpressed p62-GFP reporters to estimate autophagic activity if sample collection from mutant larvae or adults is possible. In addition, we also showed that overexpressed p62 or Atg8 reporters can strongly influence the phenotypes of each other, potentially giving rise to false or contradicting results. Overexpressed p62 aggregates also incorporated Atg8 reporter molecules that might lead to a wrong conclusion of strongly enhanced autophagy, whereas expression of an Atg8 reporter transgene rescued the inhibitory effect of a dominant-negative Atg4 mutant on basal and starvation-induced autophagy.
PMCID: PMC3432079  PMID: 22952930
3.  Functional Analysis of Host Factors that Mediate the Intracellular Lifestyle of Cryptococcus neoformans 
PLoS Pathogens  2011;7(6):e1002078.
Cryptococcus neoformans (Cn), the major causative agent of human fungal meningoencephalitis, replicates within phagolysosomes of infected host cells. Despite more than a half-century of investigation into host-Cn interactions, host factors that mediate infection by this fungal pathogen remain obscure. Here, we describe the development of a system that employs Drosophila S2 cells and RNA interference (RNAi) to define and characterize Cn host factors. The system recapitulated salient aspects of fungal interactions with mammalian cells, including phagocytosis, intracellular trafficking, replication, cell-to-cell spread and escape of the pathogen from host cells. Fifty-seven evolutionarily conserved host factors were identified using this system, including 29 factors that had not been previously implicated in mediating fungal pathogenesis. Subsequent analysis indicated that Cn exploits host actin cytoskeletal elements, cell surface signaling molecules, and vesicle-mediated transport proteins to establish a replicative niche. Several host molecules known to be associated with autophagy (Atg), including Atg2, Atg5, Atg9 and Pi3K59F (a class III PI3-kinase) were also uncovered in our screen. Small interfering RNA (siRNA) mediated depletion of these autophagy proteins in murine RAW264.7 macrophages demonstrated their requirement during Cn infection, thereby validating findings obtained using the Drosophila S2 cell system. Immunofluorescence confocal microscopy analyses demonstrated that Atg5, LC3, Atg9a were recruited to the vicinity of Cn containing vacuoles (CnCvs) in the early stages of Cn infection. Pharmacological inhibition of autophagy and/or PI3-kinase activity further demonstrated a requirement for autophagy associated host proteins in supporting infection of mammalian cells by Cn. Finally, systematic trafficking studies indicated that CnCVs associated with Atg proteins, including Atg5, Atg9a and LC3, during trafficking to a terminal intracellular compartment that was decorated with the lysosomal markers LAMP-1 and cathepsin D. Our findings validate the utility of the Drosophila S2 cell system as a functional genomic platform for identifying and characterizing host factors that mediate fungal intracellular replication. Our results also support a model in which host Atg proteins mediate Cn intracellular trafficking and replication.
Author Summary
Cryptococcus neoformans is a facultative intracellular fungal pathogen that causes cryptococcosis in both immunocompromised and immunocompetent individuals worldwide. Initial infection usually occurs in the lungs, but the fungus can disseminate to other organs. The pathogen shows a predilection to the central nervous system (CNS), which can result in life-threatening cryptococcal meningoencephalitis. Significant progress has been made in developing molecular genetic approaches to elucidate mechanisms of Cn pathogenesis. However, because of the unavailability of genetically tractable host cell systems, host factors that mediate the phagocytosis, intracellular replication and escape of Cn have remained obscure. Our data demonstrate that the combination of Drosophila S2 cells and RNA interference technology provides a powerful platform for identifying and characterizing host factors that mediate Cn infection. After screening over 400 genes that were annotated to be associated with host cell membrane trafficking and phagosome formation, we identified 57 evolutionarily conserved gene products that when depleted significantly altered the infection phenotype of the pathogen. Finally, we demonstrated that Cn infection of host cells requires autophagy proteins (including Atg2a, Atg5 and Atg9a) and class III PI3-kinase activities, thereby implicating host cell autophagy in supporting the intracellular lifestyle of the pathogen. Our work contributes to understanding host mechanisms that mediate the intracellular survival and dissemination of Cn.
PMCID: PMC3116820  PMID: 21698225
4.  Effects of small Hsp genes on developmental stability and microenvironmental canalization 
Progression of development has to be insulated from the damaging impacts of environmental and genetic perturbations to produce highly predictable phenotypes. Molecular chaperones, such as the heat shock proteins (HSPs), are known to buffer various environmental stresses, and are deeply involved in protein homeostasis. These characteristics of HSPs imply that they might affect developmental buffering and canalization.
We examined the role of nine Hsp genes using the GAL4/UAS-RNAi system on phenotypic variation of various morphological traits in Drosophila melanogaster. The stability of bristle number, wing size and wing shape was characterized through fluctuating asymmetry (FA) and the coefficient of variation (CV), or among-individual variation. Progeny of the GAL4/Hsp-RNAi crosses tended to have reduced trait means for both wing size and wing shape. Transcriptional knockdown of Hsp67Bc and Hsp22 significantly increased FA of bristle number, while knockdown of Hsp67Ba significantly increased FA and among-individual variation of wing shape but only in males. Suppression of Hsp67Bb expression significantly increased among-individual variation of bristle number. The knockdown of gene expression was confirmed for Hsp67Ba, Hsp67Bc, Hsp22, and Hsp67Bb. Correlation between FA and CV or among-individual variation of each trait is weak and not significant except for the case of male wing shape.
Four small Hsp genes (Hsp22, Hsp67Ba, Hsp67Bb and Hsp67Bc) showed involvement in the processes of morphogenesis and developmental stability. Due to possible different functions in terms of developmental buffering of these small Hsps, phenotypic stability of an organism is probably maintained by multiple mechanisms triggered by different environmental and genetic stresses on different traits. This novel finding may lead to a better understanding of non-Hsp90 molecular mechanisms controlling variability in morphological traits.
PMCID: PMC2949873  PMID: 20846409
5.  20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body 
Autophagy  2013;9(8):1172-1187.
Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.
PMCID: PMC3748190  PMID: 23674061
20-hydroxyecdysone; fat body; autophagy; Atg genes; Atg1; ATG8; transcriptional regulation; TORC1; Bombyx mori
6.  An Atg1/Atg13 Complex with Multiple Roles in TOR-mediated Autophagy Regulation 
Molecular Biology of the Cell  2009;20(7):2004-2014.
The TOR kinases are conserved negative regulators of autophagy in response to nutrient conditions, but the signaling mechanisms are poorly understood. Here we describe a complex containing the protein kinase Atg1 and the phosphoprotein Atg13 that functions as a critical component of this regulation in Drosophila. We show that knockout of Atg1 or Atg13 results in a similar, selective defect in autophagy in response to TOR inactivation. Atg1 physically interacts with TOR and Atg13 in vivo, and both Atg1 and Atg13 are phosphorylated in a nutrient-, TOR- and Atg1 kinase-dependent manner. In contrast to yeast, phosphorylation of Atg13 is greatest under autophagic conditions and does not preclude Atg1-Atg13 association. Atg13 stimulates both the autophagic activity of Atg1 and its inhibition of cell growth and TOR signaling, in part by disrupting the normal trafficking of TOR. In contrast to the effects of normal Atg13 levels, increased expression of Atg13 inhibits autophagosome expansion and recruitment of Atg8/LC3, potentially by decreasing the stability of Atg1 and facilitating its inhibitory phosphorylation by TOR. Atg1-Atg13 complexes thus function at multiple levels to mediate and adjust nutrient-dependent autophagic signaling.
PMCID: PMC2663935  PMID: 19225150
7.  Autophagy Impairment Induces Premature Senescence in Primary Human Fibroblasts 
PLoS ONE  2011;6(8):e23367.
Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells.
Methodology/Principal Findings
Depletion of ATG7, ATG12, or lysosomal-associated membrane protein 2 (Lamp2) by transfecting siRNA or infecting cells with a virus containing gene-specific shRNA resulted in a senescence-like state in two strains of primary human fibroblasts. Prematurely senescent cells induced by autophagy impairment exhibited the senescent phenotypes, similar to the replicatively senescent cells, such as increased senescence associated β-galactosidase (SA-β-gal) activity, reactive oxygen species (ROS) generation, and accumulation of lipofuscin. In addition, expression levels of ribosomal protein S6 kinase1 (S6K1), p-S6K1, p-S6, and eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) in the mammalian target of rapamycin (mTOR) pathway and beclin-1, ATG7, ATG12-ATG5 conjugate, and the sequestosome 1 (SQSTM1/p62) monomer in the autophagy pathway were decreased in both the replicatively and the autophagy impairment-induced prematurely senescent cells. Furthermore, it was found that ROS scavenging by N-acetylcysteine (NAC) and inhibition of p53 activation by pifithrin-α or knockdown of p53 using siRNA, respectively, delayed autophagy impairment-induced premature senescence and restored the expression levels of components in the mTOR and autophagy pathways.
Taken together, we concluded that autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts.
PMCID: PMC3152578  PMID: 21858089
8.  Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris 
Autophagy  2011;7(4):375-385.
Autophagy-related (Atg) pathways deliver cytosol and organelles to the vacuole in double-membrane vesicles called autophagosomes, which are formed at the phagophore assembly site (PAS), where most of the core Atg proteins assemble. Atg28 is a component of the core autophagic machinery partially required for all Atg pathways in Pichia pastoris. This coiled-coil protein interacts with Atg17 and is essential for micropexophagy. However, the role of Atg28 in micropexophagy was unknown. We used the yeast two-hybrid system to search for Atg28 interaction partners from P. pastoris and identified a new Atg protein, named Atg35. The atg35Δ mutant was not affected in macropexophagy, cytoplasm-to-vacuole targeting or general autophagy. However, both Atg28 and Atg35 were required for micropexophagy and for the formation of the micropexophagic apparatus (MIPA). This requirement correlated with a stronger expression of both proteins on methanol and glucose. Atg28 mediated the interaction of Atg35 with Atg17. Trafficking of overexpressed Atg17 from the peripheral ER to the nuclear envelope was required to organize a peri-nuclear structure (PNS), the site of Atg35 colocalization during micropexophagy. In summary, Atg35 is a new Atg protein that relocates to the PNS and specifically regulates MIPA formation during micropexophagy.
PMCID: PMC3127218  PMID: 21169734
Atg protein; peroxisome; micropexophagy; MIPA; nucleus
9.  MiR-34 modulates Caenorhabditis elegans lifespan via repressing the autophagy gene atg9 
Age  2011;35(1):11-22.
Evidence for a regulatory role of the miR-34 family in senescence is growing. However, the exact role of miR-34 in aging in vivo remains unclear. Here, we report that a mir-34 loss-of-function mutation in Caenorhabditis elegans markedly delays the age-related physiological decline, extends lifespan, and increases resistance to heat and oxidative stress. We also found that RNAi against autophagy-related genes, atg4, bec-1, or atg9, significantly reversed the lifespan-extending effect of the mir-34 mutants. Furthermore, miR-34a inhibits Atg9A expression at the post-transcriptional level in vitro, and the miR-34a binding sequences in the 3'-UTR of Atg9A contributes to the modulation of Atg9A expression by miR-34a. Our results demonstrate that the C. elegans mir-34 mutation extends lifespan by enhancing autophagic flux in C. elegans, and that miR-34 represses autophagy by directly inhibiting the expression of the autophagy-related proteins Atg9 in mammalian cells.
Electronic supplementary material
The online version of this article (doi:10.1007/s11357-011-9324-3) contains supplementary material, which is available to authorized users.
PMCID: PMC3543738  PMID: 22081425
C. elegans; Mir-34; Autophagy; Aging; Lifespan
10.  Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila 
Autophagy  2014;10(3):453-467.
Phagophore-derived autophagosomes deliver cytoplasmic material to lysosomes for degradation and reuse. Autophagy mediated by the incompletely characterized actions of Atg proteins is involved in numerous physiological and pathological settings including stress resistance, immunity, aging, cancer, and neurodegenerative diseases. Here we characterized Atg17/FIP200, the Drosophila ortholog of mammalian RB1CC1/FIP200, a proposed functional equivalent of yeast Atg17. Atg17 disruption inhibits basal, starvation-induced and developmental autophagy, and interferes with the programmed elimination of larval salivary glands and midgut during metamorphosis. Upon starvation, Atg17-positive structures appear at aggregates of the selective cargo Ref(2)P/p62 near lysosomes. This location may be similar to the perivacuolar PAS (phagophore assembly site) described in yeast. Drosophila Atg17 is a member of the Atg1 kinase complex as in mammals, and we showed that it binds to the other subunits including Atg1, Atg13, and Atg101 (C12orf44 in humans, 9430023L20Rik in mice and RGD1359310 in rats). Atg17 is required for the kinase activity of endogenous Atg1 in vivo, as loss of Atg17 prevents the Atg1-dependent shift of endogenous Atg13 to hyperphosphorylated forms, and also blocks punctate Atg1 localization during starvation. Finally, we found that Atg1 overexpression induces autophagy and reduces cell size in Atg17-null mutant fat body cells, and that overexpression of Atg17 promotes endogenous Atg13 phosphorylation and enhances autophagy in an Atg1-dependent manner in the fat body. We propose a model according to which the relative activity of Atg1, estimated by the ratio of hyper- to hypophosphorylated Atg13, contributes to setting low (basal) vs. high (starvation-induced) autophagy levels in Drosophila.
PMCID: PMC4077884  PMID: 24419107
Atg1; Atg13; autophagy; Drosophila; Atg17/FIP200; lysosome; Ref(2)P/p62; TOR
11.  Characterisation of unusual families of ATG8-like proteins and ATG12 in the protozoan parasite Leishmania major 
Autophagy  2009;5(2):159-172.
Leishmania major possesses, apparently uniquely, four families of ATG8-like genes, designated ATG8, ATG8A, ATG8B and ATG8C, and 25 genes in total. L. major ATG8 and examples from the ATG8A, ATG8B and ATG8C families are able to complement a Saccharomyces cerevisiae ATG8-deficient strain, indicating functional conservation. Whereas ATG8 has been shown to form putative autophagosomes during differentiation and starvation of L. major, ATG8A primarily form puncta in response to starvation - indicating a role for ATG8A in starvation-induced autophagy. Recombinant ATG8A was processed at the scissile glycine by recombinant ATG4.2 but not ATG4.1 cysteine peptidases of L. major and, consistent with this, ATG4.2-deficient L. major mutants were unable to process ATG8A and were less able to withstand starvation than wild type cells. GFP-ATG8-containing puncta were less abundant in ATG4.2 over-expression lines, in which unlipidated ATG8 predominated, which is consistent with ATG4.2 being an ATG8-deconjugating enzyme as well as an ATG8A-processing enzyme. In contrast, recombinant ATG8, ATG8B and ATG8C were all processed by ATG4.1, but not by ATG4.2. ATG8B and ATG8C both have a distinct subcellular location close to the flagellar pocket, but the occurrence of the GFP-labelled puncta suggest that they do not have a role in autophagy. L. major genes encoding possible ATG5, ATG10 and ATG12 homologues were found to complement their respective S. cerevisiae mutants, and ATG12 localised in part to ATG8-containing puncta, suggestive of a functional ATG5-ATG12 conjugation pathway in the parasite. L. major ATG12 is unusual as it requires C-terminal processing by an as yet unidentified peptidase.
PMCID: PMC2642932  PMID: 19066473
autophagy; Leishmania; protozoan parasite; ATG4; ATG8; ATG12
12.  Activin Signaling Targeted by Insulin/dFOXO Regulates Aging and Muscle Proteostasis in Drosophila 
PLoS Genetics  2013;9(11):e1003941.
Reduced insulin/IGF signaling increases lifespan in many animals. To understand how insulin/IGF mediates lifespan in Drosophila, we performed chromatin immunoprecipitation-sequencing analysis with the insulin/IGF regulated transcription factor dFOXO in long-lived insulin/IGF signaling genotypes. Dawdle, an Activin ligand, is bound and repressed by dFOXO when reduced insulin/IGF extends lifespan. Reduced Activin signaling improves performance and protein homeostasis in muscles of aged flies. Activin signaling through the Smad binding element inhibits the transcription of Autophagy-specific gene 8a (Atg8a) within muscle, a factor controlling the rate of autophagy. Expression of Atg8a within muscle is sufficient to increase lifespan. These data reveal how insulin signaling can regulate aging through control of Activin signaling that in turn controls autophagy, representing a potentially conserved molecular basis for longevity assurance. While reduced Activin within muscle autonomously retards functional aging of this tissue, these effects in muscle also reduce secretion of insulin-like peptides at a distance from the brain. Reduced insulin secretion from the brain may subsequently reinforce longevity assurance through decreased systemic insulin/IGF signaling.
Author Summary
It is widely known that reduced insulin/IGF signaling slows aging in many contexts. This process requires the forkhead transcription factor (FOXO). FOXO modulates the expression of many genes, and the list of those associated with slow aging is impressive. But there are few data indicating the mechanisms or genes through which FOXO actually slows aging. Here, we identify a novel FOXO target, dawdle, the Activin-like ligand in fruit flies. We show that down-regulation of Activin signaling in muscle, but not in adipose tissue, leads to extended lifespan. In part it does so when it alleviates the negative transcriptional repression of its Smox transcription factor (a Smad transcription factor) upon a keystone autophagy gene, Atg8a. This double signaling cascade autonomously improves muscle performance (measured at cellular and functional levels) and nonautonomously extends lifespan as it reduces the secretion of insulin peptides from the brain. The work develops the emerging model for interacting autonomous-nonautonomous roles of insulin/IGF signaling as a systems integrative mechanism of aging control.
PMCID: PMC3820802  PMID: 24244197
13.  Overexpression of Atg5 in mice activates autophagy and extends lifespan 
Nature Communications  2013;4:2300.
Autophagy has been implicated in the ageing process, but whether autophagy activation extends lifespan in mammals is unknown. Here we show that ubiquitous overexpression of Atg5, a protein essential for autophagosome formation, extends median lifespan of mice by 17.2%. We demonstrate that moderate overexpression of Atg5 in mice enhances autophagy, and that Atg5 transgenic mice showed anti-ageing phenotypes, including leanness, increased insulin sensitivity and improved motor function. Furthermore, mouse embryonic fibroblasts cultured from Atg5 transgenic mice are more tolerant to oxidative damage and cell death induced by oxidative stress, and this tolerance was reversible by treatment with an autophagy inhibitor. Our observations suggest that the leanness and lifespan extension in Atg5 transgenic mice may be the result of increased autophagic activity.
Changes in autophagy have been shown to modulate lifespan in lower organisms. Here, Pyo et al. show that mice globally overexpressing the autophagy protein Atg5 live longer and are leaner than normal mice, providing the first evidence that increased autophagy extends lifespan in mammals.
PMCID: PMC3753544  PMID: 23939249
14.  Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila☆ 
Febs Letters  2014;588(3):408-413.
•Atg9 and Atg18 are required for autophagy upstream of Atg8a, unlike Atg2.•Atg9 accumulates on Ref(2)P aggregates in Atg8a, Atg7 and Atg2 mutants.•Ultrastructurally, Atg9 vesicles cluster around Ref(2)P aggregates in stalled PAS.•Atg9 does not accumulate on Ref(2)P upon loss of Atg18 or Vps34, while FIP200 does.•Atg18 simultaneously interacts with both Atg9 and Ref(2)P.
The Atg2–Atg18 complex acts in parallel to Atg8 and regulates Atg9 recycling from phagophore assembly site (PAS) during autophagy in yeast. Here we show that in Drosophila, both Atg9 and Atg18 are required for Atg8a puncta formation, unlike Atg2. Selective autophagic degradation of ubiquitinated proteins is mediated by Ref(2)P/p62. The transmembrane protein Atg9 accumulates on refractory to Sigma P (Ref(2)P) aggregates in Atg7, Atg8a and Atg2 mutants. No accumulation of Atg9 is seen on Ref(2)P in cells lacking Atg18 or Vps34 lipid kinase function, while the Atg1 complex subunit FIP200 is recruited. The simultaneous interaction of Atg18 with both Atg9 and Ref(2)P raises the possibility that Atg18 may facilitate selective degradation of ubiquitinated protein aggregates by autophagy.
Structured summary of protein interactions
Ref(2)Pphysically interacts with Atg18 by anti tag coimmunoprecipitation (View interaction) Atg18physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) CG8678physically interacts with Atg2 by anti tag coimmunoprecipitation (View interaction) Atg18physically interacts with atg9 by anti tag coimmunoprecipitation (View interaction)
PMCID: PMC3928829  PMID: 24374083
Atg, autophagy-related; PAS, phagophore assembly site; PI3P, phosphatidylinositol 3-phosphate; Ref(2)P, refractory to Sigma P; ULK, uncoordinated-51 like autophagy kinase; Vps, vacuolar protein sorting; WIPI, WD40 repeat domain phosphoinositide-interacting protein; Atg2; Atg7; Atg8a; Atg9; Atg18; Ref(2)P/p62
15.  Role and regulation of autophagy in heat stress responses of tomato plants 
As sessile organisms, plants are constantly exposed to a wide spectrum of stress conditions such as high temperature, which causes protein misfolding. Misfolded proteins are highly toxic and must be efficiently removed to reduce cellular proteotoxic stress if restoration of native conformations is unsuccessful. Although selective autophagy is known to function in protein quality control by targeting degradation of misfolded and potentially toxic proteins, its role and regulation in heat stress responses have not been analyzed in crop plants. In the present study, we found that heat stress induced expression of autophagy-related (ATG) genes and accumulation of autophagosomes in tomato plants. Virus-induced gene silencing (VIGS) of tomato ATG5 and ATG7 genes resulted in increased sensitivity of tomato plants to heat stress based on both increased development of heat stress symptoms and compromised photosynthetic parameters of heat-stressed leaf tissues. Silencing of tomato homologs for the selective autophagy receptor NBR1, which targets ubiquitinated protein aggregates, also compromised tomato heat tolerance. To better understand the regulation of heat-induced autophagy, we found that silencing of tomato ATG5, ATG7, or NBR1 compromised heat-induced expression of not only the targeted genes but also other autophagy-related genes. Furthermore, we identified two tomato genes encoding proteins highly homologous to Arabidopsis WRKY33 transcription factor, which has been previously shown to interact physically with an autophagy protein. Silencing of tomato WRKY33 genes compromised tomato heat tolerance and reduced heat-induced ATG gene expression and autophagosome accumulation. Based on these results, we propose that heat-induced autophagy in tomato is subject to cooperative regulation by both WRKY33 and ATG proteins and plays a critical role in tomato heat tolerance, mostly likely through selective removal of heat-induced protein aggregates.
PMCID: PMC4012191  PMID: 24817875
autophagy; heat tolerance; tomato; WRKY33; NBR1; ATG5; ATG7
16.  Small Heat Shock Proteins Potentiate Amyloid Dissolution by Protein Disaggregases from Yeast and Humans 
PLoS Biology  2012;10(6):e1001346.
The authors define how small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial prion, and then they exploit this knowledge to identify the human amyloid depolymerase.
How small heat shock proteins (sHsps) might empower proteostasis networks to control beneficial prions or disassemble pathological amyloid is unknown. Here, we establish that yeast sHsps, Hsp26 and Hsp42, inhibit prionogenesis by the [PSI+] prion protein, Sup35, via distinct and synergistic mechanisms. Hsp42 prevents conformational rearrangements within molten oligomers that enable de novo prionogenesis and collaborates with Hsp70 to attenuate self-templating. By contrast, Hsp26 inhibits self-templating upon binding assembled prions. sHsp binding destabilizes Sup35 prions and promotes their disaggregation by Hsp104, Hsp70, and Hsp40. In yeast, Hsp26 or Hsp42 overexpression prevents [PSI+] induction, cures [PSI+], and potentiates [PSI+]-curing by Hsp104 overexpression. In vitro, sHsps enhance Hsp104-catalyzed disaggregation of pathological amyloid forms of α-synuclein and polyglutamine. Unexpectedly, in the absence of Hsp104, sHsps promote an unprecedented, gradual depolymerization of Sup35 prions by Hsp110, Hsp70, and Hsp40. This unanticipated amyloid-depolymerase activity is conserved from yeast to humans, which lack Hsp104 orthologues. A human sHsp, HspB5, stimulates depolymerization of α-synuclein amyloid by human Hsp110, Hsp70, and Hsp40. Thus, we elucidate a heretofore-unrecognized human amyloid-depolymerase system that could have applications in various neurodegenerative disorders.
Author Summary
Amyloid fibers are protein aggregates that are associated with numerous neurodegenerative diseases, including Parkinson's disease, for which there are no effective treatments. They can also play beneficial roles; in yeast, for example, they are associated with increased survival and the evolution of new traits. Amyloid fibers are also central to many revolutionary concepts and important questions in biology and nanotechnology, including long-term memory formation and versatile self-organizing nanostructures. Thus, there is an urgent need to understand how we can promote beneficial amyloid assembly, or reverse pathogenic assembly, at will. In this study, we define the mechanisms by which small heat-shock proteins synergize to regulate the assembly and disassembly of a beneficial yeast prion. We then exploit this knowledge to discover an amyloid depolymerase machinery that is conserved from yeast to humans. Remarkably, the human small heat shock protein, HspB5, stimulates Hsp110, Hsp70, and Hsp40 chaperones to gradually depolymerize amyloid fibers formed by α-synuclein (which are implicated in Parkinson's disease) from their ends on a biologically relevant timescale. This newly identified and highly conserved amyloid-depolymerase system could have important therapeutic applications for various neurodegenerative disorders.
PMCID: PMC3378601  PMID: 22723742
17.  Atg7 Induces Basal Autophagy and Rescues Autophagic Deficiency in CryABR120G Cardiomyocytes 
Circulation research  2011;109(2):151-160.
Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. Several cardiomyopathies, including the αB-crystallin R120G mutation (CryABR120G) model of desmin-related cardiomyopathy, accumulate cytotoxic misfolded proteins in the form of pre-amyloid oligomers (PAOs) and aggresomes. Impaired autophagic function is a potential cause of misfolded protein accumulations, cytoplasmic aggregate loads and cardiac disease. Atg7, a mediator of autophagosomal biogenesis, is a putative regulator of autophagic function.
To determine whether autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes.
Methods and Results
To define the gain and loss of function effects of Atg7 expression on CryABR120G protein misfolding and aggregates, neonatal rat cardiomyocytes (RNC) were infected with adenoviruses expressing either wild-type CryAB or CryABR120G, and co-infected with Atg7 adenovirus or with Atg7 silencing siRNAs to produce gain- or loss-of Atg7 function. Atg7 overexpression effectively induced basal autophagy with no detrimental effects on cell survival, suggesting that Atg7 can activate autophagy with no apparent cytotoxic effects. Autophagic flux assays on CryABR120G expressing cardiomyocytes revealed reduced autophagic function, likely contributing to the failure of misfolded proteins and aggregates to be cleared. Co-expression of Atg7 and CryABR120G significantly reduced PAO staining, aggregate content and cardiomyocyte cytotoxicity. Conversely, Atg7 silencing in the CryABR120G background significantly inhibited the already reduced rate of autophagy and increased CryABR120G aggregate content and cytotoxicity.
Atg7 induces basal autophagy, rescues the CryABR120G autophagic deficiency, and attenuates the accumulation of misfolded proteins and aggregates in cardiomyocytes.
PMCID: PMC3150753  PMID: 21617129
autophagy; Atg7; aggregate; amyloid
18.  Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex 
Autophagy  2011;7(12):1500-1513.
A large protein complex consisting of Atg5, Atg12 and Atg16L1 has recently been shown to be essential for the elongation of isolation membranes (also called phagophores) during mammalian autophagy. However, the precise function and regulation of the Atg12–5-16L1 complex has largely remained unknown. In this study we identified a novel isoform of mammalian Atg16L, termed Atg16L2, that consists of the same domain structures as Atg16L1. Biochemical analysis revealed that Atg16L2 interacts with Atg5 and self-oligomerizes to form an ~800-kDa complex, the same as Atg16L1 does. A subcellular distribution analysis indicated that, despite forming the Atg12–5-16L2 complex, Atg16L2 is not recruited to phagophores and is mostly present in the cytosol. The results also showed that Atg16L2 is unable to compensate for the function of Atg16L1 in autophagosome formation, and knockdown of endogenous Atg16L2 did not affect autophagosome formation, indicating that Atg16L2 does not possess the ability to mediate canonical autophagy. Moreover, a chimeric analysis between Atg16L1 and Atg16L2 revealed that their difference in function in regard to autophagy is entirely attributable to the difference between their middle regions that contain a coiled-coil domain. Based on the above findings, we propose that formation of the Atg12–5-16L complex is necessary but insufficient to mediate mammalian autophagy and that an additional function of the middle region (especially around amino acid residues 229–242) of Atg16L1 (e.g., interaction with an unidentified binding partner on phagophores) is required for autophagosome formation.
PMCID: PMC3288023  PMID: 22082872
autophagy; Atg16L; autophagosome; coiled-coil domain; LC3; Rab33-binding protein; Rab effector
19.  OSU-03012 Stimulates PKR-Like Endoplasmic Reticulum-Dependent Increases in 70-kDa Heat Shock Protein Expression, Attenuating Its Lethal Actions in Transformed Cells 
Molecular pharmacology  2008;73(4):1168-1184.
We have further defined mechanism(s) by which 2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl}acetamide [OSU-03012 (OSU)], a derivative of the cyclooxygenase-2 (COX2) inhibitor celecoxib but lacking COX2 inhibitory activity, kills transformed cells. In cells lacking expression of protein kinase R-like endoplasmic reticulum kinase (PERK-/-), the lethality of OSU was attenuated. OSU enhanced the expression of Beclin 1 and ATG5 and cleavage of pro-caspase 4 in a PERK-dependent fashion and promoted the Beclin 1- and ATG5-dependent formation of vacuoles containing LC3, followed by a subsequent caspase 4-dependent cleavage of cathepsin B and a cathepsin B-dependent formation of low pH intracellular vesicles; cathepsin B was activated and released into the cytosol and genetic suppression of caspase 4, cathepsin B, or apoptosis-inducing factor function significantly suppressed cell killing. In parallel, OSU caused PERK-dependent increases in 70-kDa heat shock protein (HSP70) expression and decreases in 90-kDa heat shock protein (HSP90) and Grp78/BiP expression. Changes in HSP70 expression were post-transcriptional. Knockdown or small-molecule inhibition of HSP70 expression enhanced OSU toxicity, and overexpression of HSP70 suppressed OSU-induced low pH vesicle formation and lethality. Our data demonstrate that OSU-03012 causes cell killing that is dependent on PERK-induced activation of multiple toxic proteases. OSU-03012 also increased expression of HSP70 in a PERK-dependent fashion, providing support for the contention that OSU-03012-induced PERK signaling promotes both cell survival and cell death processes.
PMCID: PMC2674576  PMID: 18182481
20.  Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis 
Autophagy  2011;7(12):1514-1527.
The implications of autophagy-related genes in serious neural degenerative diseases have been well documented. However, the functions and regulation of the family genes in embryonic development remain to be rigorously studied. Here, we report on for the first time the important role of atg5 gene in zebrafish neurogenesis and organogenesis as evidenced by the spatiotemporal expression pattern and functional analysis. Using morpholino oligo knockdown and mRNA overexpression, we demonstrated that zebrafish atg5 is required for normal morphogenesis of brain regionalization and body plan as well as for expression regulation of neural gene markers: gli1, huC, nkx2.2, pink1, β-synuclein, xb51 and zic1. We further demonstrated that ATG5 protein is involved in autophagy by LC3-II/LC3I ratio and rapamycin-induction experiments, and that ATG5 is capable of regulating expression of itself gene in the manner of a feedback inhibition loop. In addition, we found that expression of another autophagy-related gene, atg12, is maintained at a higher constant level like a housekeeping gene. This indicates that the formation of the ATG12–ATG5 conjugate may be dependent on ATG5 protein generation and its splicing, rather than on ATG12 protein in zebrafish. Importantly, in the present study, we provide a mechanistic insight into the regulation and functional roles of atg5 in development of zebrafish nervous system.
PMCID: PMC3288024  PMID: 22082871
atg5; zebrafish; autophagy; neurogenesis; expression regulation; feedback inhibition; neural gene; rapamycin
21.  Impaired proteasomal degradation enhances autophagy via hypoxia signaling in Drosophila 
BMC Cell Biology  2013;14:29.
Two pathways are responsible for the majority of regulated protein catabolism in eukaryotic cells: the ubiquitin-proteasome system (UPS) and lysosomal self-degradation through autophagy. Both processes are necessary for cellular homeostasis by ensuring continuous turnover and quality control of most intracellular proteins. Recent studies established that both UPS and autophagy are capable of selectively eliminating ubiquitinated proteins and that autophagy may partially compensate for the lack of proteasomal degradation, but the molecular links between these pathways are poorly characterized.
Here we show that autophagy is enhanced by the silencing of genes encoding various proteasome subunits (α, β or regulatory) in larval fat body cells. Proteasome inactivation induces canonical autophagy, as it depends on core autophagy genes Atg1, Vps34, Atg9, Atg4 and Atg12. Large-scale accumulation of aggregates containing p62 and ubiquitinated proteins is observed in proteasome RNAi cells. Importantly, overexpressed Atg8a reporters are captured into the cytoplasmic aggregates, but these do not represent autophagosomes. Loss of p62 does not block autophagy upregulation upon proteasome impairment, suggesting that compensatory autophagy is not simply due to the buildup of excess cargo. One of the best characterized substrates of UPS is the α subunit of hypoxia-inducible transcription factor 1 (HIF-1α), which is continuously degraded by the proteasome during normoxic conditions. Hypoxia is a known trigger of autophagy in mammalian cells, and we show that genetic activation of hypoxia signaling also induces autophagy in Drosophila. Moreover, we find that proteasome inactivation-induced autophagy requires sima, the Drosophila ortholog of HIF-1α.
We have characterized proteasome inactivation- and hypoxia signaling-induced autophagy in the commonly used larval Drosophila fat body model. Activation of both autophagy and hypoxia signaling was implicated in various cancers, and mutations affecting genes encoding UPS enzymes have recently been suggested to cause renal cancer. Our studies identify a novel genetic link that may play an important role in that context, as HIF-1α/sima may contribute to upregulation of autophagy by impaired proteasomal activity.
PMCID: PMC3700814  PMID: 23800266
Autophagy; Drosophila; HIF-1α/sima; Hypoxia; p62/Ref2P; Proteasome
22.  Autophagy and Apoptosis Act as Partners to Induce Germ Cell Death after Heat Stress in Mice 
PLoS ONE  2012;7(7):e41412.
Testicular heating suppresses spermatogenesis which is marked by germ cell loss via apoptotic pathways. Recently, it is reported that autophagy also can be induced by heat treatment in somatic cells. In this study, the status of autophagy in germ cells after heat treatment, as well as the partnership between autophagy and apoptosis in these cells was investigated. The results demonstrated that besides initiating apoptotic pathways, heat also induced autophagic pathways in germ cells. Exposure of germ cells to hyperthermia resulted in several specific features of the autophagic process, including autophagosome formation and the conversion of LC3-I to LC3-II. Furthermore, the ubiquitin-like protein conjugation system was implicated as being likely responsible for heat-induced autophagy in germ cells since all genes involving this system were found to be expressed in the testes. In addition, the upstream protein in this system, Atg7 (Autophagy-related gene 7), was found to be expressed in all types of spermatogenic cells, and its expression level was positively correlated with the level of autophagy in germ cells. As a result, Atg7 was selected as the investigative target to further analyze the role of autophagy in heat-induced germ cell death. It was shown that down expression of Atg7 protein resulted in the notable decrease in the level of autophagy in heat-treated germ cells, and this down-regulation of autophagy caused by Atg7 knockdown further reduced the apoptotic rate of germ cells. These results suggest that autophagy plays a positive role in the process of germ cell apoptosis after heat treatment. In conclusion, this study demonstrates that heat triggers autophagy and apoptosis in germ cells. These two mechanisms might act as partners, not antagonist, to induce cell death and lead to eventual destruction of spermatogenesis.
PMCID: PMC3405141  PMID: 22848486
23.  Function of the Dictyostelium discoideum Atg1 Kinase during Autophagy and Development†  
Eukaryotic Cell  2006;5(10):1797-1806.
When starved, the amoebae of Dictyostelium discoideum initiate a developmental process that results in the formation of fruiting bodies in which stalks support balls of spores. The nutrients and energy necessary for development are provided by autophagy. Atg1 is a protein kinase that regulates the induction of autophagy in the budding yeast Saccharomyces cerevisiae. In addition to a conserved kinase domain, Dictyostelium Atg1 has a C-terminal region that has significant homology to the Caenorhabditis elegans and mammalian Atg1 homologues but not to the budding yeast Atg1. We investigated the function of the kinase and conserved C-terminal domains of D. discoideum Atg1 (DdAtg1) and showed that these domains are essential for autophagy and development. Kinase-negative DdAtg1 acts in a dominant-negative fashion, resulting in a mutant phenotype when expressed in the wild-type cells. Green fluorescent protein-tagged kinase-negative DdAtg1 colocalizes with red fluorescent protein (RFP)-tagged DdAtg8, a marker of preautophagosomal structures and autophagosomes. The conserved C-terminal region is essential for localization of kinase-negative DdAtg1 to autophagosomes labeled with RFP-tagged Dictyostelium Atg8. The dominant-negative effect of the kinase-defective mutant also depends on the C-terminal domain. In cells expressing dominant-negative DdAtg1, autophagosomes are formed and accumulate but seem not to be functional. By using a temperature-sensitive DdAtg1, we showed that DdAtg1 is required throughout development; development halts when the cells are shifted to the restrictive temperature, but resumes when cells are returned to the permissive temperature.
PMCID: PMC1595346  PMID: 17031001
24.  MIR106B and MIR93 Prevent Removal of Bacteria from Epithelial Cells by Disrupting ATG16L1-Mediated Autophagy 
Gastroenterology  2013;146(1):10.1053/j.gastro.2013.09.006.
Variants in genes that regulate autophagy have been associated with Crohn’s disease (CD). Defects in autophagy-mediated removal of pathogenic microbes could contribute to pathogenesis of CD. We investigated the role of the micro-RNAs (miRs) MIR106B and MIR93 in induction of autophagy and bacterial clearance in human cell lines, and the correlation between MIR106B and autophagy-related gene 16L1 (ATG16L1) expression in tissues from patients with CD.
We studied the ability of MIR106B and MIR93 to regulate ATG transcripts in human cancer cell lines (HCT116, SW480, HeLa, and U2OS) using luciferase report assays and bioinformatics analyses; MIR106B and MIR93 mimics and antagonists were transfected into cells to modify levels of miRs. Cells were infected with LF82, a CD-associated adherent-invasive strain of Escherichia coli, and monitored by confocal microscopy and for colony-forming units. Colon tissues from 41 healthy individuals (controls), 22 with active CD, 16 with inactive CD, and 7 with chronic inflammation were assessed for levels of MIR106B and ATG16L1 by in situ hybridization and immunohistochemistry.
Silencing Dicer 1, an essential processor of miRs, increased levels of ATG protein and formation of autophagosomes in cells, indicating that miRs regulate autophagy. Luciferase reporter assays indicated that MIR106B and MIR93 targeted ATG16L1 mRNA. MIR106B and MIR93 reduced levels of ATG16L1 and autophagy; these increased following expression of ectopic ATG16L1. In contrast, MIR106B and MIR93 antagonists increased formation of autophagosomes. Levels of MIR106B were increased in intestinal epithelia from patients with active CD, whereas levels of ATG16L1 were reduced, compared with controls. Levels of CMYC were also increased in intestinal epithelia of patients with active CD, compared with controls. These alterations could impair removal of CD-associated bacteria by autophagy.
In human cell lines, MIR106B and MIR93 reduce levels of ATG16L1 and autophagy, and prevent autophagy-dependent eradication of intracellular bacteria. This process also appears to be altered in colon tissues from patients with active CD.
PMCID: PMC3870037  PMID: 24036151
inflammatory bowel disease; microRNA; cell biology; infection
25.  Identification of Atg8 Isoform in Encysting Acanthamoeba 
Autophagy-related protein 8 (Atg8) is an essential component of autophagy formation and encystment of cyst-forming parasites, and some protozoa, such as, Acanthamoeba, Entamoeba, and Dictyostelium, have been reported to possess a type of Atg8. In this study, an isoform of Atg8 was identified and characterized in Acanthamoeba castellanii (AcAtg8b). AcAtg8b protein was found to encode 132 amino acids and to be longer than AcAtg8 protein, which encoded 117 amino acids. Real-time PCR analysis showed high expression levels of AcAtg8b and AcAtg8 during encystation. Fluorescence microscopy demonstrated that AcAtg8b is involved in the formation of the autophagosomal membrane. Chemically synthesized siRNA against AcAtg8b reduced the encystation efficiency of Acanthamoeba, confirming that AcAtg8b, like AcAtg8, is an essential component of cyst formation in Acanthamoeba. Our findings suggest that Acanthamoeba has doubled the number of Atg8 gene copies to ensure the successful encystation for survival when 1 copy is lost. These 2 types of Atg8 identified in Acanthamoeba provide important information regarding autophagy formation, encystation mechanism, and survival of primitive, cyst-forming protozoan parasites.
PMCID: PMC3857495  PMID: 24327773
Acanthamoeba castellanii; encystation; autophagy protein 8; isoform

Results 1-25 (1025537)