PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1135827)

Clipboard (0)
None

Related Articles

1.  Mesenchymal Stromal Cells Derived from the Bone Marrow of Acute Lymphoblastic Leukemia Patients Show Altered BMP4 Production: Correlations with the Course of Disease 
PLoS ONE  2014;9(1):e84496.
The relevance of tumor microenvironment for the development and progression of tumor cells in hematological malignancies has been extensively reported. Identification of factors involved in the information exchange between the malignant cells and the bone marrow mesenchymal stem cells (BM-MSCs) and the knowledge on their functioning may provide important information to eliminate leukemic cells from protective BM niches. We evaluated changes in BM-MSCs obtained from children with acute lymphoblastic leukemia (ALL) at different times in the course of disease. Whereas ALL-MSCs did not exhibit phenotypic changes compared to BM-derived MSCs isolated from healthy donors, they exhibited increased adipogenic capacity. In addition, the viability of healthy CD34+ hematopoietic progenitors was significantly reduced when co-cultured with ALL-MSCs. ALL-MSCs grow less efficiently, although gradually recover normal growth with treatment. Accordingly, proliferation is particularly low in MSCs obtained at diagnosis and in the first days of treatment (+15 days), recovering to control levels after 35 days of treatment. Correlating these results with bone morphogenetic protein 4 (BMP4) production, a molecule demonstrated to affect MSC biology, we found higher production of BMP4 in ALL-MSCs derived from patients over the course of disease but not in those free of leukemia. However, no significant differences in the expression of different members of the BMP4 signaling pathway were observed. Furthermore, an inverse correlation between high levels of BMP4 production in the cultures and MSC proliferation was found, as observed in MSCs derived from patients at diagnosis that produce high BMP4 levels. In addition, co-culturing ALL-MSC with the REH leukemia cell line, but not CD34+ hematopoietic progenitors, powerfully enhanced BMP4 production, suggesting an intimate crosstalk among ALL-MSCs isolated from BM colonized by ALL cells that presumably also occurs in situ conditions. Our data may support the participation of BMP4 in BM niche, but the mechanism remains to be elucidated.
doi:10.1371/journal.pone.0084496
PMCID: PMC3882230  PMID: 24400095
2.  Prevention of LPS-Induced Acute Lung Injury in Mice by Mesenchymal Stem Cells Overexpressing Angiopoietin 1 
PLoS Medicine  2007;4(9):e269.
Background
The acute respiratory distress syndrome (ARDS), a clinical complication of severe acute lung injury (ALI) in humans, is a leading cause of morbidity and mortality in critically ill patients. ALI is characterized by disruption of the lung alveolar–capillary membrane barrier and resultant pulmonary edema associated with a proteinaceous alveolar exudate. Current specific treatment strategies for ALI/ARDS are lacking. We hypothesized that mesenchymal stem cells (MSCs), with or without transfection with the vasculoprotective gene angiopoietin 1 (ANGPT1) would have beneficial effects in experimental ALI in mice.
Methods and Findings
Syngeneic MSCs with or without transfection with plasmid containing the human ANGPT1 gene (pANGPT1) were delivered through the right jugular vein of mice 30 min after intratracheal instillation of lipopolysaccharide (LPS) to induce lung injury. Administration of MSCs significantly reduced LPS-induced pulmonary inflammation, as reflected by reductions in total cell and neutrophil counts in bronchoalveolar lavage (BAL) fluid (53%, 95% confidence interval [CI] 7%–101%; and 60%, CI 4%–116%, respectively) as well as reducing levels of proinflammatory cytokines in both BAL fluid and lung parenchymal homogenates. Furthermore, administration of MSCs transfected with pANGPT1 resulted in nearly complete reversal of LPS-induced increases in lung permeability as assessed by reductions in IgM and albumin levels in BAL (96%, CI 6%–185%; and 74%, CI 23%–126%, respectively). Fluorescently tagged MSCs were detected in the lung tissues by confocal microscopy and flow cytometry in both naïve and LPS-injured animals up to 3 d.
Conclusions
Treatment with MSCs alone significantly reduced LPS-induced acute pulmonary inflammation in mice, while administration of pANGPT1-transfected MSCs resulted in a further improvement in both alveolar inflammation and permeability. These results suggest a potential role for cell-based ANGPT1 gene therapy to treat clinical ALI/ARDS.
Using a mouse model of acute respiratory distress syndrome, Duncan Stewart and colleagues report that rescue with mesenchymal stem cells expressing human angiopoietin 1 can avert lung injury from lipopolysaccharide.
Editors' Summary
Background.
Critically ill people who have had an injury to their lungs, for example through pneumonia, trauma, or an immune response to infection, may end up developing a serious complication in the lung termed acute respiratory distress syndrome (ARDS). In ARDS, inflammation develops in the lung, and fluid builds up in the alveoli (the air sacs resembling “bunches of grapes” at the ends of the network of tubes in the lung). This buildup of fluid prevents oxygen from being carried efficiently from air into the blood; the individual consequently experiences problems breathing and can develop further serious complications, which contribute significantly to the burden of illness among people in intensive care units. The death rate among individuals who do develop ARDS is very high, upward of 30%. Normally, individuals with ARDS are given extra oxygen, and may need a machine to help them breathe; treatments also focus on addressing the underlying causes in each particular patient. However, currently there are very few specific treatments that address ARDS itself.
Why Was This Study Done?
The researchers here wanted to work toward new treatment options for individuals with ARDS. One possible approach involves cells known as mesenchymal stem cells (MSCs). These cells are typically found in the bone marrow and have a property shared by very few other cell types in the body; they are able to carry on dividing and renewing themselves, and can eventually develop into many other types of cell. The researchers already knew that MSCs could become incorporated into injured lungs in mice and develop there into the tissue layers lining the lung. Some interesting work had also been done on a protein called angiopoeitin 1 (ANGPT1), which seemed to play a role in protecting against inflammation in blood vessels. Therefore, there was a strong rationale for carrying out experiments in mice to see if MSCs engineered to produce the ANGPT1 protein might “rescue” lung injury in mice. These experiments would be an initial step toward developing possible new treatments for humans with ARDS.
What Did the Researchers Do and Find?
The researchers used a mouse model to mimic the human ARDS condition. This involved injecting the windpipe of experimental mice with lipopolysaccharide (a substance normally found on the outer surface of bacteria that brings about an immune reaction in the lung). After 30 minutes, the mice were then injected with either salt solution (as a control), the MSCs, or MSCs producing the ANGPT1 protein. The researchers then looked at markers of lung inflammation, the appearance of the lungs under a microscope, and whether the injected MSCs had become incorporated into the lung tissue.
The lipopolysaccharide brought about a large increase in the number of inflammatory cells in the lung fluid, which was reduced in the mice given MSCs. Furthermore, in mice given the MSCs producing ANGPT1 protein, the number of inflammatory cells was reduced to a level similar to that of mice that had not been given lipopolysaccharide. When the researchers looked at the appearance under the microscope of lungs from mice that had been given lipopolysaccharide, they saw signs of inflammation and fluid coming out into the lung air spaces. These signs were reduced among both mice treated with MSCs and those treated with MSCs producing ANGPT1. The researchers also measured the “leakiness” of the lung tissues in lipopolysaccharide-treated mice; MSCs seemed to reduce the leakiness to some extent, and the lungs of mice treated with MSCs producing ANGPT1 were no more leaky than those of mice that had never been injected with lipopolysaccharide. Finally, the MSCs were seen to be incorporated into lung tissue by three days after injection, but after that were lost from the lung.
What Do These Findings Mean?
Previous research done by the same group had shown that fibroblasts producing ANGPT1 could prevent lung injury in rats later given lipopolysaccharide. The experiments reported here go a step further than this, and suggest that MSCs producing ANGPT1 can “rescue” the condition of mouse lungs that had already been given lipopolysaccharide. In addition, treatment with MSCs alone also produced beneficial effects. This opens up a possible new treatment strategy for ARDS in humans. However, it should be emphasized that the animal model used here is not a precise parallel of ARDS in humans, and that more research remains to be done before human studies of this sort could be considered.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040269.
Medline Plus entry on acute respiratory distress syndrome, providing basic information about what ARDS is, its effects, and how it is currently managed
ARDS Network from the US National Heart, Lung, and Blood Institute of the National Institutes of Health; the site provides frequently asked questions about ARDS as well as a list of clinical trials conducted by the network
Information about stem cells from the US National Institutes of Health, including information about the potential uses of stem cells
Wikipedia page about mesenchymal stem cells (note: Wikipedia is an internet encyclopedia anyone can edit)
doi:10.1371/journal.pmed.0040269
PMCID: PMC1961632  PMID: 17803352
3.  Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia 
PLoS ONE  2013;8(11):e76989.
Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment.
doi:10.1371/journal.pone.0076989
PMCID: PMC3820675  PMID: 24244271
4.  Loss of Let-7 MicroRNA Upregulates IL-6 in Bone Marrow-Derived Mesenchymal Stem Cells Triggering a Reactive Stromal Response to Prostate Cancer 
PLoS ONE  2013;8(8):e71637.
Bone marrow-derived mesenchymal stem cells (MSCs) are able to migrate to tumors, where they promote tumorigenesis and cancer metastasis. However, the molecular phenotype of the recruited MSCs at the tumor microenvironment and the genetic programs underlying their role in cancer progression remains largely unknown. By using a three-dimensional rotary wall vessel coculture system in which human MSCs were grown alone or in close contact with LNCaP, C4-2 or PC3 prostate cancer cell lines, we established in vitro matched pairs of normal and cancer-associated MSC derivatives to study the stromal response of MSCs to prostate cancer. We observed that prostate cancer-associated MSCs acquired a higher potential for adipogenic differentiation and exhibited a stronger ability to promote prostate cancer cell migration and invasion compared with normal MSCs both in vitro and in experimental animal models. The enhanced adipogenesis and the pro-metastatic properties were conferred by the high levels of IL-6 secretion by cancer-associated MSCs and were reversible by functionally inhibiting of IL-6. We also found that IL-6 is a direct target gene for the let-7 microRNA, which was downregulated in cancer-associated MSCs. The overexpression of let-7 via the transfection of let-7 precursors decreased IL-6 expression and repressed the adipogenic potential and metastasis-promoting activity of cancer-associated MSCs, which was consistent with the inhibition of IL-6 3′UTR luciferase activity. Conversely, the treatment of normal MSCs with let-7 inhibitors resulted in effects similar to those seen with IL-6. Taken together, our data demonstrated that MSCs co-evolve with prostate cancer cells in the tumor microenvironment, and the downregulation of let-7 by cancer-associated MSCs upregulates IL-6 expression. This upregulation triggers adipogenesis and facilitates prostate cancer progression. These findings not only provide key insights into the molecular basis of tumor-stroma interactions but also pave the way for new treatments for metastatic prostate cancer.
doi:10.1371/journal.pone.0071637
PMCID: PMC3747243  PMID: 23977098
5.  Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene 
The Journal of Experimental Medicine  2009;206(13):3131-3141.
MLL-AF4 fusion is a hallmark genetic abnormality in infant B-acute lymphoblastic leukemia (B-ALL) known to arise in utero. The cellular origin of leukemic fusion genes during human development is difficult to ascertain. The bone marrow (BM) microenvironment plays an important role in the pathogenesis of several hematological malignances. BM mesenchymal stem cells (BM-MSC) from 38 children diagnosed with cytogenetically different acute leukemias were screened for leukemic fusion genes. Fusion genes were absent in BM-MSCs of childhood leukemias carrying TEL-AML1, BCR-ABL, AML1-ETO, MLL-AF9, MLL-AF10, MLL-ENL or hyperdiploidy. However, MLL-AF4 was detected and expressed in BM-MSCs from all cases of MLL-AF4+ B-ALL. Unlike leukemic blasts, MLL-AF4+ BM-MSCs did not display monoclonal Ig gene rearrangements. Endogenous or ectopic expression of MLL-AF4 exerted no effect on MSC culture homeostasis. These findings suggest that MSCs may be in part tumor-related, highlighting an unrecognized role of the BM milieu on the pathogenesis of MLL-AF4+ B-ALL. MLL-AF4 itself is not sufficient for MSC transformation and the expression of MLL-AF4 in MSCs is compatible with a mesenchymal phenotype, suggesting a differential impact in the hematopoietic system and mesenchyme. The absence of monoclonal rearrangements in MLL-AF4+ BM-MSCs precludes the possibility of cellular plasticity or de-differentiation of B-ALL blasts and suggests that MLL-AF4 might arise in a population of prehematopoietic precursors.
doi:10.1084/jem.20091050
PMCID: PMC2806455  PMID: 19995953
6.  Study of the Quantitative, Functional, Cytogenetic, and Immunoregulatory Properties of Bone Marrow Mesenchymal Stem Cells in Patients with B-Cell Chronic Lymphocytic Leukemia 
Stem Cells and Development  2012;22(9):1329-1341.
The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.
doi:10.1089/scd.2012.0255
PMCID: PMC3629855  PMID: 23249221
7.  A Prospective Study of Bone Marrow Hematopoietic and Mesenchymal Stem Cells in Type 1 Gaucher Disease Patients 
PLoS ONE  2013;8(7):e69293.
Gaucher disease (GD) is an autosomal recessive disorder characterized by lysosomal glucocerebrosidase (GBA) deficiency leading to hematological and skeletal manifestations. Mechanisms underlying these symptoms have not yet been elucidated. In vivo, bone marrow (BM) mesenchymal stem cells (MSCs) have important role in the regulation of bone mass and in the support of hematopoiesis, thus representing potential candidate that could contribute to the disease. GBA deficiency may also directly impair hematopoietic stem/progenitors cells (HSPCs) intrinsic function and induce hematological defect. In order to evaluate the role of BM stem cells in GD pathophysiology, we prospectively analyzed BM-MSCs and HSPCs properties in a series of 10 patients with type 1 GD. GBA activity was decreased in all tested cell subtypes. GD-MSCs had an impaired growth potential, morphological and cell cycle abnormalities, decreased capacities to differentiate into osteoblasts. Moreover, GD-MSCs secreted soluble factors that stimulated osteoclasts resorbing activities. In vitro and in vivo primitive and mature hematopoiesis were similar between patients and controls. However, GD-MSCs had a lower hematopoietic supportive capacity than those from healthy donors. These data suggest that BM microenvironment is altered in GD and that MSCs are key components of the manifestations observed in GD.
doi:10.1371/journal.pone.0069293
PMCID: PMC3723887  PMID: 23935976
8.  Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production 
The Journal of Clinical Investigation  2011;121(8):3206-3219.
Accumulating evidence suggests that mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment; however, controversy exists regarding their role in solid tumors. In this study, we identified and confirmed the presence of carcinoma-associated MSCs (CA-MSCs) in the majority of human ovarian tumor samples that we analyzed. These CA-MSCs had a normal morphologic appearance, a normal karyotype, and were nontumorigenic. CA-MSCs were multipotent with capacity for differentiating into adipose, cartilage, and bone. When combined with tumor cells in vivo, CA-MSCs promoted tumor growth more effectively than did control MSCs. In vitro and in vivo studies suggested that CA-MSCs promoted tumor growth by increasing the number of cancer stem cells. Although CA-MSCs expressed traditional MSCs markers, they had an expression profile distinct from that of MSCs from healthy individuals, including increased expression of BMP2, BMP4, and BMP6. Importantly, BMP2 treatment in vitro mimicked the effects of CA-MSCs on cancer stem cells, while inhibiting BMP signaling in vitro and in vivo partly abrogated MSC-promoted tumor growth. Taken together, our data suggest that MSCs in the ovarian tumor microenvironment have an expression profile that promotes tumorigenesis and that BMP inhibition may be an effective therapeutic approach for ovarian cancer.
doi:10.1172/JCI45273
PMCID: PMC3148732  PMID: 21737876
9.  In vitro biosafety profile evaluation of multipotent mesenchymal stem cells derived from the bone marrow of sarcoma patients 
Background
In osteosarcoma (OS) and most Ewing sarcoma (EWS) patients, the primary tumor originates in the bone. Although tumor resection surgery is commonly used to treat these diseases, it frequently leaves massive bone defects that are particularly difficult to be treated. Due to the therapeutic potential of mesenchymal stem cells (MSCs), OS and EWS patients could benefit from an autologous MSCs-based bone reconstruction. However, safety concerns regarding the in vitro expansion of bone marrow-derived MSCs have been raised. To investigate the possible oncogenic potential of MSCs from OS or EWS patients (MSC-SAR) after expansion, this study focused on a biosafety assessment of MSC-SAR obtained after short- and long-term cultivation compared with MSCs from healthy donors (MSC-CTRL).
Methods
We initially characterized the morphology, immunophenotype, and differentiation multipotency of isolated MSC-SAR. MSC-SAR and MSC-CTRL were subsequently expanded under identical culture conditions. Cells at the early (P3/P4) and late (P10) passages were collected for the in vitro analyses including: sequencing of genes frequently mutated in OS and EWS, evaluation of telomerase activity, assessment of the gene expression profile and activity of major cancer pathways, cytogenetic analysis on synchronous MSCs, and molecular karyotyping using a comparative genomic hybridization (CGH) array.
Results
MSC-SAR displayed comparable morphology, immunophenotype, proliferation rate, differentiation potential, and telomerase activity to MSC-CTRL. Both cell types displayed signs of senescence in the late stages of culture with no relevant changes in cancer gene expression. However, cytogenetic analysis detected chromosomal anomalies in the early and late stages of MSC-SAR and MSC-CTRL after culture.
Conclusions
Our results demonstrated that the in vitro expansion of MSCs does not influence or favor malignant transformation since MSC-SAR were not more prone than MSC-CTRL to deleterious changes during culture. However, the presence of chromosomal aberrations supports rigorous phenotypic, functional and genetic evaluation of the biosafety of MSCs, which is important for clinical applications.
doi:10.1186/1479-5876-12-95
PMCID: PMC4022272  PMID: 24716831
Ewing sarcoma (EWS); Mesenchymal stem cells (MSCs); Osteosarcoma (OS); Tissue regeneration; Tumorigenic transformation
10.  Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells 
Stem Cells and Development  2012;21(17):3187-3196.
Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines.
doi:10.1089/scd.2012.0084
PMCID: PMC3495125  PMID: 22471939
11.  Recovery of neurological function of ischemic stroke by application of conditioned medium of bone marrow mesenchymal stem cells derived from normal and cerebral ischemia rats 
Background
Several lines of evidence have demonstrated that bone marrow-derived mesenchymal stem cells (BM-MSC) release bioactive factors and provide neuroprotection for CNS injury. However, it remains elusive whether BM-MSC derived from healthy donors or stroke patients provides equal therapeutic potential. The present work aims to characterize BM-MSC prepared from normal healthy rats (NormBM-MSC) and cerebral ischemia rats (IschBM-MSC), and examine the effects of their conditioned medium (Cm) on ischemic stroke animal model.
Results
Isolated NormBM-MSC or IschBM-MSC formed fibroblastic like morphology and expressed CD29, CD90 and CD44 but failed to express the hematopoietic marker CD34. The number of colony formation of BM-MSC was more abundant in IschBM-MSC than in NormBM-MSC. This is in contrast to the amount of Ficoll-fractionated mononuclear cells from normal donor and ischemic rats. The effect of cm of BM-MSC was further examined in cultures and in middle cerebral artery occlusion (MCAo) animal model. Both NormBM-MSC Cm and IschBM-MSC Cm effectively increased neuronal connection and survival in mixed neuron-glial cultures. In vivo, intravenous infusion of NormBM-MSC Cm and IschBM-MSC Cm after stroke onset remarkably improved functional recovery. Furthermore, NormBM-MSC Cm and IschBM-MSC Cm increased neurogenesis and attenuated microglia/ macrophage infiltration in MCAo rat brains.
Conclusions
Our data suggest equal effectiveness of BM-MSC Cm derived from ischemic animals or from a normal population. Our results thus revealed the potential of BM-MSC Cm on treatment of ischemic stroke.
doi:10.1186/1423-0127-21-5
PMCID: PMC3922747  PMID: 24447306
Mesenchymal stem cells; Conditioned medium; Neuronal cultures; Ischemic stroke; Neuroprotection; Cell surface markers
12.  Prostaglandin E2 As an Inhibitory Modulator of Fibrogenesis in Human Lung Allografts 
Rationale: Donor mesenchymal stromal/stem cell (MSC) expansion and fibrotic differentiation is associated with development of bronchiolitis obliterans syndrome (BOS) in human lung allografts. However, the regulators of fibrotic differentiation of these resident mesenchymal cells are not well understood.
Objectives: This study examines the role of endogenous and exogenous prostaglandin (PG)E2 as a modulator of fibrotic differentiation of human lung allograft-derived MSCs.
Methods: Effect of PGE2 on proliferation, collagen secretion, and α-smooth muscle actin (α-SMA) expression was assessed in lung-resident MSCs (LR-MSCs) derived from patients with and without BOS. The response pathway involved was elucidated by use of specific agonists and antagonists.
Measurement and Main Results: PGE2 treatment of LR-MSCs derived from normal lung allografts significantly inhibited their proliferation, collagen secretion, and α-SMA expression. On the basis of pharmacologic and small-interfering RNA approaches, a PGE2/E prostanoid (EP)2/adenylate cyclase pathway was implicated in these suppressive effects. Stimulation of endogenous PGE2 secretion by IL-1β was associated with amelioration of their myofibroblast differentiation in vitro, whereas its inhibition by indomethacin augmented α-SMA expression. LR-MSCs from patients with BOS secreted significantly less PGE2 than non-BOS LR-MSCs. Furthermore, BOS LR-MSCs were found to be defective in their ability to induce cyclooxygenase-2, and therefore unable to up-regulate PGE2 synthesis in response to IL-1β. BOS LR-MSCs also demonstrated resistance to the inhibitory actions of PGE2 in association with a reduction in the EP2/EP1 ratio.
Conclusions: These data identify the PGE2 axis as an important autocrine–paracrine brake on fibrotic differentiation of LR-MSCs, a failure of which is associated with BOS.
doi:10.1164/rccm.201105-0834OC
PMCID: PMC3262036  PMID: 21940790
mesenchymal stem cell; bronchiolitis obliterans syndrome; lung transplant; prostaglandin E2
13.  Co-transplantation with mesenchymal stem cells expressing a SDF-1/HOXB4 fusion protein markedly improves hematopoietic stem cell engraftment and hematogenesis in irradiated mice 
Introduction: Mesenchymal stem cells (MSCs) contribute to the engraftment of transplanted hematopoietic stem cells (HSCs). MSCs also accelerate hematological recovery by secreting SDF-1 and enabling HSCs to enter the bone marrow (BM) via the SDF-1/CXCR4 axis. HOXB4 has been shown to stimulate HSC self-renewal. In this study, we examined whether SDF-1 and HOXB4 expression in MSCs co-transplanted with HSCs could synergistically improve hematopoietic recovery in irradiated mice. Methods: Using recombinant adenoviruses, we generated genetically modified BM-MSCs that expressed SDF-1, HOXB4, and an SDF-1/HOXB4 fusion gene. We then co-transplanted these modified MSCs with HSCs and investigated blood cell counts, BM cellularity, degree of human HSC engraftment, and survival rate in irradiated mice. Results: We found that co-culturing the SDF-1/HOXB4 fusion gene-modified MSCs (SDF-1/HOXB4-MSCs) and human umbilical cord blood CD34+ cells significantly improved HSC cell expansion in vitro. More importantly, co-transplantation of CD34+ cells and SDF-1/HOXB4-MSCs markedly increased the hematopoietic potential of irradiated mice as evidenced by the rapid recovery of WBC, PLT and HGB levels in peripheral blood and of BM cellularity. Co-transplantation also markedly improved engraftment of human CD45+ cells in mouse BM. Conclusions: Our study demonstrates that SDF-1/HOXB4-MSCs markedly accelerate hematopoietic recovery and significantly improve survival among mice treated with a lethal dose of irradiation. Therefore, SDF-1/HOXB4-MSCs could have therapeutic value by improving the efficacy of clinical transplantations in patients with defective hematopoiesis.
PMCID: PMC4297337  PMID: 25628780
Mesenchymal stem cells; hematopoietic stem cells; SDF-1 gene; HOXB4 gene; irradiation; hematopoietic reconstitution; NOD/SCID mice
14.  p190-B RhoGAP regulates the functional composition of the mesenchymal microenvironment 
Leukemia  2013;27(11):2209-2219.
Hematopoiesis is regulated by components of the microenvironment, so-called niche. Here, we show that p190-B GTPase Activating Protein (p190-B) deletion in mice causes hematopoietic failure during ontogeny, in p190-B−/− fetal liver and bones, and in p190-B+/− adult bones and spleen. These defects are non-cell autonomous, since we previously showed that transplantation of p190-B−/− hematopoietic cells into wild-type hosts leads to normal hematopoiesis. Coculture of mesenchymal stem/progenitor cells (MSC) and wild-type bone marrow cells reveals that p190-B−/− MSCs are dysfunctional in supporting hematopoiesis due to impaired Wnt signaling. Furthermore, p190-B loss causes alteration in bone marrow niche composition, including abnormal CFU-fibroblast, CFU-adipocyte and CFU-osteoblast numbers. This is due to altered MSC lineage fate specification to osteoblast and adipocyte lineages. Thus, p190-B organizes a functional mesenchymal/microenvironment for normal hematopoiesis during development.
doi:10.1038/leu.2013.103
PMCID: PMC3919554  PMID: 23563238
mesenchymal stem cell; p190-B RhoGAP; hematopoiesis; microenvironment; Wnt3a
15.  Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential 
Vascular Cell  2011;3:5.
Background
Mesenchymal stem cells (MSCs) are multipotent stem cells able to differentiate into different cell lineages. However, MSCs represent a subpopulation of a more complex cell composition of stroma cells contained in mesenchymal tissue. Due to a lack of specific markers, it is difficult to distinguish MSCs from other more mature stromal cells such as fibroblasts, which, conversely, are abundant in mesenchymal tissue. In order to find more distinguishing features between MSCs and fibroblasts, we studied the phenotypic and functional features of human adipose-derived MSCs (AD-MSCs) side by side with normal human dermal fibroblasts (HNDFs) in vitro
Methods
AD-MSCs and HNDFs were cultured, expanded and phenotypically characterized by flow cytometry (FC). Immunofluorescence was used to investigate cell differentiation. ELISA assay was used to quantify angiogenic factors and chemokines release. Cultures of endothelial cells (ECs) and a monocyte cell line, U937, were used to test angiogenic and anti-inflammatory properties.
Results
Cultured AD-MSCs and HNDFs display similar morphological appearance, growth rate, and phenotypic profile. They both expressed typical mesenchymal markers-CD90, CD29, CD44, CD105 and to a minor extent, the adhesion molecules CD54, CD56, CD106 and CD166. They were negative for the stem cell markers CD34, CD146, CD133, CD117. Only aldehyde dehydrogenase (ALDH) was expressed. Neither AD-MSCs nor HNDFs differed in their multi-lineage differentiation capacity; they both differentiated into osteoblast, adipocyte, and also into cardiomyocyte-like cells. In contrast, AD-MSCs, but not HNDFs, displayed strong angiogenic and anti-inflammatory activity. AD-MSCs released significant amounts of VEGF, HGF and Angiopoietins and their conditioned medium (CM) stimulated ECs proliferation and tube formations. In addition, CM-derived AD-MSCs (AD-MSCs-CM) inhibited adhesion molecules expression on U937 and release of RANTES and MCP-1. Finally, after priming with TNFα, AD-MSCs enhanced their anti-inflammatory potential; while HNDFs acquired pro-inflammatory activity.
Conclusions
AD-MSCs cannot be distinguished from HNDFs in vitro by evaluating their phenotypic profile or differentiation potential, but only through the analysis of their anti-inflammatory and angiogenic properties. These results underline the importance of evaluating the angiogenic and anti-inflammatory features of MSCs preparation. Their priming with inflammatory cytokines prior to transplantation may improve their efficacy in cell-based therapies for tissue regeneration.
doi:10.1186/2045-824X-3-5
PMCID: PMC3044104  PMID: 21349162
16.  The Stromal Activity of Mesenchymal Stromal Cells 
Summary
The mechanism that regulates self-renewal and differentiation of hematopoietic stem cells (HSC) is a central question in stem cell biology that might ultimately lead to reliable protocols for in vitro expansion of HSC. Cellular fate is governed by cell-cell interaction with the microenvironment in the bone marrow, the stem cell niche. Mesenchymal stromal cells (MSC) are precursors of the cellular components, and they secrete extracellular matrix proteins of the bone marrow stroma. Therefore, MSC feeder layer might provide a suitable in vitro model system for the stem cell niche. In vitro assays demonstrate that MSC maintain the stem cell function of HSC and that MSC from bone marrow have a higher hematopoiesis supportive activity than MSC from adipose tissue. Co-cultivation with MSC might pave the way for expansion of long-term repopulating HSC, and various clinical trials indicate that co-transplantation of HSC and MSC might enhance engraftment. Thus, MSC are promising tools to elucidate the underlying mechanism of the cellular microenvironment. The large variety of preparative protocols for isolation and cultivation of MSC affects their stromal activity. Standardized isolation methods and molecular characterization of MSC are of utmost importance for reproducible isolation of hematopoiesis supportive stromal cells and for their potential clinical application.
doi:10.1159/000128956
PMCID: PMC3083286  PMID: 21547116
Mesenchymal stem cell; Culture conditions; Microenvironment; Differentiation; Hematopoietic stem cells; Cell-cell interaction
17.  Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibit, But Adipose Tissue-Derived Mesenchymal Stem Cells Promote, Glioblastoma Multiforme Proliferation 
Stem Cells and Development  2012;22(9):1370-1386.
Mesenchymal stem cells (MSCs) possess self-renewal and multipotential differentiation abilities, and they are thought to be one of the most reliable stem cell sources for a variety of cell therapies. Recently, cell therapy using MSCs has been studied as a novel therapeutic approach for cancers that show refractory progress and poor prognosis. MSCs from different tissues have different properties. However, the effect of different MSC properties on their application in anticancer therapies has not been thoroughly investigated. In this study, to characterize the anticancer therapeutic application of MSCs from different sources, we established two different kinds of human MSCs: umbilical cord blood-derived MSCs (UCB-MSCs) and adipose-tissue-derived MSCs (AT-MSCs). We used these MSCs in a coculture assay with primary glioblastoma multiforme (GBM) cells to analyze how MSCs from different sources can inhibit GBM growth. We found that UCB-MSCs inhibited GBM growth and caused apoptosis, but AT-MSCs promoted GBM growth. Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling assay clearly demonstrated that UCB-MSCs promoted apoptosis of GBM via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL was expressed more highly by UCB-MSCs than by AT-MSCs. Higher mRNA expression levels of angiogenic factors (vascular endothelial growth factor, angiopoietin 1, platelet-derived growth factor, and insulin-like growth factor) and stromal-derived factor-1 (SDF-1/CXCL12) were observed in AT-MSCs, and highly vascularized tumors were developed when AT-MSCs and GBM were cotransplanted. Importantly, CXCL12 inhibited TRAIL activation of the apoptotic pathway in GBM, suggesting that AT-MSCs may support GBM development in vivo by at least two distinct mechanisms—promoting angiogenesis and inhibiting apoptosis. The opposite effects of AT-MSCs and UCB-MSCs on GBM clearly demonstrate that differences must be considered when choosing a stem cell source for safety in clinical application.
doi:10.1089/scd.2012.0486
PMCID: PMC3696928  PMID: 23231075
18.  Differential Gene Expression Profile Associated with the Abnormality of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia 
PLoS ONE  2012;7(11):e47764.
Aplastic anemia (AA) is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs) and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs). In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.
doi:10.1371/journal.pone.0047764
PMCID: PMC3489901  PMID: 23144828
19.  Sox2 Suppression by miR-21 Governs Human Mesenchymal Stem Cell Properties 
The miRNA profile of mesenchymal stem cells (MSCs) derived from amniotic fluid, bone marrow (BM), and umbilical cord blood was analyzed. Initially, 67 different miRNAs were identified that were expressed in all three types of MSCs but at different levels, depending on the source. A more detailed analysis revealed that miR-21 was expressed at higher levels in RS-AF-MSCs and BM-MSCs compared with SS-AF-MSCs. Findings suggest that miR-21 might function by regulating Sox2 expression in human MSCs and might also act as a key molecule determining MSC proliferation and differentiation.
MicroRNAs (miRNAs) have recently been shown to act as regulatory signals for maintaining stemness and for determining the fate of adult and fetal stem cells, such as human mesenchymal stem cells (hMSCs). hMSCs constitute a population of multipotent stem cells that can be expanded easily in culture and are able to differentiate into many lineages. We have isolated two subpopulations of fetal mesenchymal stem cells (MSCs) from amniotic fluid (AF) known as spindle-shaped (SS) and round-shaped (RS) cells and characterized them on the basis of their phenotypes, pluripotency, proliferation rates, and differentiation potentials. In this study, we analyzed the miRNA profile of MSCs derived from AF, bone marrow (BM), and umbilical cord blood (UCB). We initially identified 67 different miRNAs that were expressed in all three types of MSCs but at different levels, depending on the source. A more detailed analysis revealed that miR-21 was expressed at higher levels in RS-AF-MSCs and BM-MSCs compared with SS-AF-MSCs. We further demonstrated for the first time a direct interaction between miR-21 and the pluripotency marker Sox2. The induction of miR-21 strongly inhibited Sox2 expression in SS-AF-MSCs, resulting in reduced clonogenic and proliferative potential and cell cycle arrest. Strikingly, the opposite effect was observed upon miR-21 inhibition in RS-AF-MSCs and BM-MSCs, which led to an enhanced proliferation rate. Finally, miR-21 induction accelerated osteogenesis and impaired adipogenesis and chondrogenesis in SS-AF-MSCs. Therefore, these findings suggest that miR-21 might specifically function by regulating Sox2 expression in human MSCs and might also act as a key molecule determining MSC proliferation and differentiation.
doi:10.5966/sctm.2013-0081
PMCID: PMC3902287  PMID: 24307698
Amniotic fluid mesenchymal stem cells; Bone marrow mesenchymal stem cells; Umbilical cord blood mesenchymal stem cells; miR-21; Sox2; Cell cycle
20.  The research on the immuno-modulatory defect of Mesenchymal Stem Cell from Chronic Myeloid Leukemia patients 
Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. While the hematopoietic stem cell (HSC) origin of CML was first suggested over 30 years ago, recently CML-initiating cells beyond HSCs are also being investigated. We have previously isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph+) patients with hemangioblast property. Here, we showed that CML patient-derived Flk1+CD31-CD34-MSCs had normal morphology, phenotype and karyotype but appeared impaired in immuno-modulatory function. The capacity of patient Flk1+CD31-CD34- MSCs to inhibit T lymphocyte activation and proliferation was impaired in vitro. CML patient-derived MSCs have impaired immuno-modulatory functions, suggesting that the dysregulation of hematopoiesis and immune response may originate from MSCs rather than HSCs. MSCs might be a potential target for developing efficacious cures for CML.
doi:10.1186/1756-9966-30-47
PMCID: PMC3095541  PMID: 21535879
21.  A Review of Stem Cell Translation and Potential Confounds by Cancer Stem Cells 
Stem Cells International  2013;2013:241048.
Mesenchymal stem cells (MSCs) are multipotent cells found in both fetal and adult tissues. MSCs show promise for cellular therapy for several disorders such as those associated with inflammation. In adults, MSCs primarily reside in the bone marrow (BM) and adipose tissues. In BM, MSCs are found at low frequency around blood vessels and trabecula. MSCs are attractive candidates for regenerative medicine given their ease in harvesting and expansion and their unique ability to bypass the immune system in an allogeneic host. Additionally, MSCs exert pathotropism by their ability to migrate to diseased regions. Despite the “attractive” properties of MSCs, their translation to patients requires indepth research. “Off-the-shelf” MSCs are proposed for use in an allogeneic host. Thus, the transplanted MSCs, when placed in a foreign host, could receive cue from the microenvironment for cellular transformation. An important problem with the use of MSCs involves their ability to facilitate the support of breast and other cancers as carcinoma-associated fibroblasts. MSCs could show distinct effect on each subset of cancer cells. This could lead to untoward effect during MSC therapy since the MSCs would be able to interact with undiagnosed cancer cells, which might be in a dormant state. Based on these arguments, further preclinical research is needed to ensure patient safety with MSC therapy. Here, we discuss the basic biology of MSCs, discuss current applications, and provide evidence why it is important to understand MSC biology in the context of diseased microenvironment for safe application.
doi:10.1155/2013/241048
PMCID: PMC3872439  PMID: 24385986
22.  Reciprocal interactions of mouse bone marrow-derived mesenchymal stem cells and BV2 microglia after lipopolysaccharide stimulation 
Introduction
Mesenchymal stem cells (MSCs) are immunosuppressive, but we lack an understanding of how these adult stem cells are in turn affected by immune cells and the surrounding tissue environment. As MSCs have stromal functions and exhibit great plasticity, the influence of an inflamed microenvironment on their responses is important to determine. MSCs downregulate microglial inflammatory responses, and here we describe the mutual effects of coculturing mouse bone marrow MSCs with BV2 microglia in a lipopolysaccharide (LPS) inflammatory paradigm.
Methods
Mouse MSCs were cultured from femoral and tibial bone marrow aspirates and characterized. MSCs were cocultured with BV2 microglia at four seeding-density ratios (1:0.2, 1:0.1, 1:0.02, and 1:0.01 (BV2/MSC)), and stimulated with 1 μg/ml LPS. In certain assays, MSCs were separated from BV2 cells with a cell-culture insert to determine the influence of soluble factors on downstream responses. Inflammatory mediators including nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and chemokine (C-C motif) ligand 2 (CCL2) were measured in cocultures, and MSC and BV2 chemotactic ability determined by migration assays.
Results
We demonstrated MSCs to increase expression of NO and IL-6 and decrease TNF-α in LPS-treated cocultures. These effects are differentially mediated by soluble factors and cell-to-cell contact. In response to an LPS stimulus, MSCs display distinct behaviors, including expressing IL-6 and very high levels of the chemokine CCL2. Microglia increase their migration almost fourfold in the presence of LPS, and interestingly, MSCs provide an equal impetus for microglia locomotion. MSCs do not migrate toward LPS but migrate toward microglia, with their chemotaxis increasing when microglia are activated. Similarly, MSCs do not produce NO when exposed to LPS, but secrete large amounts when exposed to soluble factors from activated microglia. This demonstrates that certain phenotypic changes of MSCs are governed by inflammatory microglia, and not by the inflammatory stimulus. Nonetheless, LPS appears to "prime" the NO-secretory effects of MSCs, as prior treatment with LPS triggers a bigger NO response from MSCs after exposure to microglial soluble factors.
Conclusions
These effects demonstrate the multifaceted and reciprocal interactions of MSCs and microglia within an inflammatory milieu.
doi:10.1186/scrt160
PMCID: PMC3706938  PMID: 23356521
23.  The roles of mesenchymal stem cells in tumor inflammatory microenvironment 
Tumor behavior is not entirely determined by tumor cells. Studies have demonstrated that a variety of non-tumor cells in the tumor microenvironment affect tumor behavior; thus, a new focus of cancer research has been the development of novel cancer treatment ideas and therapeutic targets based on the effects of these cells. Mesenchymal stem cells (MSCs) are an important component of the tumor microenvironment; however, previous studies have produced controversial results regarding whether MSCs promote or inhibit tumor growth and progression. In particular, Naïve MSCs and tumor-derived MSCs (T-MSCs) have different functions. Naïve MSCs could exert bidirectional effects on tumors because these cells can both promote and inhibit tumor progression while T-MSCs promote tumor progression due to influences from the tumor itself and from the inflammatory tumor microenvironment. As an unhealed wound, tumor produces a continuous source of inflammatory mediators and causes aggregation of numerous inflammatory cells, which constitute an inflammatory microenvironment. Inflammatory factors can induce homing of circulating MSCs and MSCs in adjacent tissues into tumors, which are then being “educated” by the tumor microenvironment to support tumor growth. T-MSCs could recruit more immune cells into the tumor microenvironment, increase the proportion of cancer stem cells and promote tumor angiogenesis, further supporting tumor progression. However, as plasticity is a fundamental feature of MSCs, MSCs can also inhibit tumors by activating various MSC-based signaling pathways. Studies of the mechanisms by which interactions among tumors, MSCs, and the inflammatory microenvironment occur and methods to disrupt these interactions will likely reveal new targets for cancer therapy.
doi:10.1186/1756-8722-7-14
PMCID: PMC3943443  PMID: 24502410
Mesenchymal stem cell; Tumor; Inflammatory microenvironment
24.  Small Molecule Mesengenic Induction of Human Induced Pluripotent Stem Cells to Generate Mesenchymal Stem/Stromal Cells 
The translational potential of mesenchymal stem/stromal cells (MSCs) is limited by their rarity in somatic organs, heterogeneity, and need for harvest by invasive procedures. Induced pluripotent stem cells (iPSCs) could be an advantageous source of MSCs, but attempts to derive MSCs from pluripotent cells have required cumbersome or untranslatable techniques, such as coculture, physical manipulation, sorting, or viral transduction. We devised a single-step method to direct mesengenic differentiation of human embryonic stem cells (ESCs) and iPSCs using a small molecule inhibitor. First, epithelial-like monolayer cells were generated by culturing ESCs/iPSCs in serum-free medium containing the transforming growth factor-β pathway inhibitor SB431542. After 10 days, iPSCs showed upregulation of mesodermal genes (MSX2, NCAM, HOXA2) and downregulation of pluripotency genes (OCT4, LEFTY1/2). Differentiation was then completed by transferring cells into conventional MSC medium. The resultant development of MSC-like morphology was associated with increased expression of genes, reflecting epithelial-to-mesenchymal transition. Both ESC- and iPSC-derived MSCs exhibited a typical MSC immunophenotype, expressed high levels of vimentin and N-cadherin, and lacked expression of pluripotency markers at the protein level. Robust osteogenic and chondrogenic differentiation was induced in vitro in ES-MSCs and iPS-MSCs, whereas adipogenic differentiation was limited, as reported for primitive fetal MSCs and ES-MSCs derived by other methods. We conclude that treatment with SB431542 in two-dimensional cultures followed by culture-induced epithelial-to-mesenchymal transition leads to rapid and uniform MSC conversion of human pluripotent cells without the need for embryoid body formation or feeder cell coculture, providing a robust, clinically applicable, and efficient system for generating MSCs from human iPSCs.
doi:10.5966/sctm.2011-0022
PMCID: PMC3659681  PMID: 23197756
Mesenchymal stem cells; Pluripotent stem cells; Differentiation; Induced pluripotent stem cells; Embryonic stem cells
25.  The Different Immunoregulatory Functions of Mesenchymal Stem Cells in Patients with Low-Risk or High-Risk Myelodysplastic Syndromes 
PLoS ONE  2012;7(9):e45675.
Myelodysplastic syndrome (MDS) are a group of progressive, clonal, neoplastic bone marrow disorders characterized by hematopoietic stem cell dysregulation and abnormalities in the immune system. Mesenchymal stem cells (MSC) have gained further interests after the demonstration of an immunoregulatory role. Nevertheless, the immunoregulatory function of MDS bone marrow derived MSC (MDS-MSC) remains poorly defined. In addition, it is not clear whether there are differences in the regulatory functions between low-risk and high-risk MDS-MSC. In this study, we obtain and expand MSC from bone marrow of patients with MDS. Our results show that there are significant differences in the immunoregulatory functions between low-risk and high-risk MDS-MSC. Compare to low-risk MDS-MSC, high-risk MDS-MSC is associated with the presence of increased TGF-β1, higher apoptosis, higher immunosuppressive rate and a poor ability of hematopoietic support. In addition, our results find that there are great differences in the CD4+CD25+Foxp3+Tregs inducible rate between high-risk MDS-MSC and low-risk MDS-MSC. Compared to high-risk MDS-MSC, the inducible rate of CD4+CD25+Foxp3+Tregs of low-risk MDS-MSC is lower. At last, we find that MDS-MSC derived TGF-β1 is largely responsible for the increase in CD4+CD25+Foxp3+Tregs based on knockdown studies. These results elucidate the different immunoregulatory role of MSC in low-risk and high-risk MDS, which may be important for understand the pathogenesis of MDS and the development of novel immunomodulatory strategies for the treatment of MDS.
doi:10.1371/journal.pone.0045675
PMCID: PMC3448671  PMID: 23029178

Results 1-25 (1135827)