Search tips
Search criteria

Results 1-25 (1000170)

Clipboard (0)

Related Articles

1.  BIM Mediates EGFR Tyrosine Kinase Inhibitor-Induced Apoptosis in Lung Cancers with Oncogenic EGFR Mutations  
PLoS Medicine  2007;4(10):e315.
Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.
Methods and Findings
To study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.
Our results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.
Susumu Kobayashi and colleagues provide evidence that the polypeptide BIM is involved in tyrosine kinase inhibitor (TKI)-induced apoptosis in sensitiveEGFR-mutant cells and suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.
Editors' Summary
Most cases of lung cancer—the leading cause of cancer deaths worldwide—are “non-small cell lung cancer” (NSCLC). Many patients with NSCLC die within a year of their diagnosis, but recently, “targeted” therapies have increased the life expectancy of some of them. Like all cancers, NSCLC occurs when cells begin to divide uncontrollably because of changes (mutations) in their genes. Targeted therapies specifically attack these changes and, unlike standard chemotherapy drugs, kill cancer cells without damaging normal cells. The targeted drugs used to treat NSCLC are gefitinib and erlotinib, two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). In normal cells, messenger proteins bind to EGFR and activate its tyrosine kinase, an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These “phosphorylated” proteins then tell the cell to divide. In some NSCLCs, EGFR drives uncontrolled cell division because its tyrosine kinase is mutated and the cancer becomes dependent on or “addicted” to EGFR signaling for its survival. TKI treatment can dramatically shrink this subset of NSCLCs, most of which lack a specific part of EGFR (the gene that encodes EGFR) or have the amino acid leucine instead of arginine at position 858 (an L858R mutation) of EGFR.
Why Was This Study Done?
TKI-sensitive NSCLCs eventually become resistant to TKIs because they acquire additional (secondary) mutations. In half of these TKI-resistant tumors, the additional mutation is replacement of threonine by methionine at position 790 (T790M) in EGFR. However, the mutations responsible for the remaining cases of TKI resistance are not known. In addition, little is known about how TKIs induce cell death other than that they induce a type of cell death called apoptosis. A better understanding of how TKIs kill tumor cells and how secondary mutations block their effects could reveal ways to enhance their action and improve the outcome for patients with NSCLC. In this study, the researchers have studied the mechanism of TKI-induced cell death and of resistance to TKIs.
What Did the Researchers Do and Find?
The researchers first measured the ability of gefitinib to cause apoptosis (genetically programmed cell death) in NSCLC cell lines (tumor cells adapted to grow indefinitely in dishes) that had the EGFR deletion, the L858R mutation, or normal EGFR. Gefitinib caused apoptosis only in cell lines with altered EGFR. Then they asked whether a proapoptotic protein called BIM (a member of the BCL2 family of pro- and antiapoptotic proteins) is involved in TKI-induced cell death—BIM is known to be involved in this process in leukemia (blood cancer) cells. Gefitinib treatment increased the expression of BIM in TKI-sensitive NSCLC cell lines and reduced the phosphorylation of BIM (which makes BIM more active). By contrast, blocking BIM expression using a technique called RNA interference reduced TKI-induced apoptosis in TKI-sensitive NSCLC cells. Furthermore, introduction of the T790M resistance mutation into these cells blocked gefitinib-induced up-regulation of BIM and apoptosis. Finally, the researchers identified a new TKI resistance mutation (L747S, substitution of serine for leucine at position 747) in a patient whose TKI-sensitive NSCLC had become resistant to gefitinib, and showed that this resistance mutation also reduced TKI-induced apoptosis in cells growing in dishes by interfering with BIM up-regulation.
What Do These Findings Mean?
These findings (and those reported by Gong et al. and Cragg et al.) show that BIM is required for TKI-induced apoptosis in EGFR mutant NSCLC cells. They also show that mutations that make TKI-sensitive cells resistant to these drugs reduce TKI-induced apoptosis by preventing the upregulation of BIM. These results were obtained by examining the behavior of established cell lines growing in dishes and need to be confirmed in cells freshly isolated from tumors and in tumors themselves. However, they suggest that the efficacy of TKIs could be increased by finding ways to increase BIM expression or to activate other proteins involved in apoptosis Such approaches might be particularly beneficial for patients with NSCLC whose initially TKI-sensitive tumors have acquired mutations that make them resistant to TKIs.
Additional Information.
Please access these Web sites via the online version of this summary at
Ingo Mellinghoff discusses this paper and two related ones in a perspective article
US National Cancer Institute information for patients and professionals on lung cancer (in English and Spanish)
Information for patients from Cancer Research UK on lung cancer, including information on treatment with TKIs
CancerQuest information on all aspects of cancer from Emory University (in several languages)
Wikipedia pages on apoptosis, epidermal growth factor receptor, and BCL2 proteins (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Information for patients from Cancerbackup on erlotinib and gefitinib
PMCID: PMC2043012  PMID: 17973572
2.  Treatments for chronic myeloid leukemia: a qualitative systematic review 
Chronic myeloid leukemia (CML) is a myeloproliferative disorder of blood stem cells. The tyrosine kinase inhibitor (TKI) imatinib was the first targeted therapy licensed for patients with chronic-phase CML, and its introduction was associated with substantial improvements in response and survival compared with previous therapies. Clinical trial data are now available for the second-generation TKIs (nilotinib, dasatinib, and bosutinib) in the first-, second-, and third-line settings. A qualitative systematic review was conducted to qualitatively compare the clinical effectiveness, safety, and effect on quality of life of TKIs for the management of chronic-, accelerated-, or blast-phase CML patients.
Included studies were identified through a search of electronic databases in September 2011, relevant conference proceedings and the grey literature.
In the first-line setting, the long-term efficacy (up to 8 years) of imatinib has been confirmed in a single randomized controlled trial (International Randomized Study of Interferon [IRIS]). All second-generation TKIs reported lower rates of transformation, and comparable or superior complete cytogenetic response (CCyR), major molecular response (MMR), and complete molecular response rates compared with imatinib by 2-year follow-up. Each of the second-generation TKIs was associated with a distinct adverse-event profile. Bosutinib was the only second-generation TKI to report quality-of-life data (no significant difference compared with imatinib treatment). Data in the second- and third-line setting confirmed the efficacy of the second-generation TKIs in either imatinib-resistant or -intolerant patients, as measured by CCyR and MMR rates.
Data from first-line randomized controlled trials reporting up to 2-year follow-up indicate superior response rates of the second-generation TKIs compared with imatinib. Current evidence from single-arm studies in the second-line setting confirm that nilotinib, dasatinib, and bosutinib are valuable treatment options for the significant subgroup of patients who are intolerant or resistant to imatinib treatment.
PMCID: PMC3419508  PMID: 22915985
chronic myeloid leukemia; imatinib; nilotinib; dasatinib; bosutinib
3.  The development of dasatinib as a treatment for chronic myeloid leukemia (CML): from initial studies to application in newly diagnosed patients 
Dasatinib is a dual Abl/Src tyrosine kinase inhibitor (TKI) designed as a prototypic short-acting BCR–ABL-targeted TKI that inhibits BCR–ABL with greater potency compared with imatinib, nilotinib, bosutinib, and ponatinib and has been shown to have potential immunomodulatory effects. Dasatinib is approved for the treatment of all phases of chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to prior imatinib treatment and first-line treatment for CML in chronic phase. In this article, the development of dasatinib as a treatment for patients with CML is reviewed.
This is a review of the relevant literature regarding dasatinib development in CML (2003–2013).
Dasatinib demonstrates efficacy against most BCR–ABL mutations arising during imatinib therapy and is effective in treating patients with imatinib resistance due to other mechanisms. Randomized trial data show that first-line dasatinib provides superior responses compared with imatinib and enables patients to achieve early, deep responses correlated with improved longer-term outcomes. Dasatinib has a generally acceptable safety profile, with most adverse events (AEs) proving manageable and reversible. Cytopenias are commonly observed with dasatinib, and some nonhematologic AEs including pleural effusion have been consistently reported.
Dasatinib is an effective treatment option for patients with CML.
PMCID: PMC3825579  PMID: 23942795
Dasatinib; Chronic myeloid leukemia; First-line treatment; Second-line treatment; Side effects; Early response
4.  Cumulative clinical experience from a decade of use: imatinib as first-line treatment of chronic myeloid leukemia 
Journal of Blood Medicine  2012;3:139-150.
Chronic myeloid leukemia (CML) is a malignant disease that originates in the bone marrow and is designated by the presence of the Philadelphia (Ph+) chromosome, a translocation between chromosomes 9 and 22. Targeted therapy against CML commenced with the development of small-molecule tyrosine kinase inhibitors (TKIs) exerting their effect against the oncogenic breakpoint cluster region (BCR)-ABL fusion protein. Imatinib emerged as the first successful example of a TKI used for the treatment of chronic-phase CML patients and resulted in significant improvements in response rate and overall survival compared with previous treatments. However, a significant portion of patients failed to respond to the therapy and developed resistance against imatinib. Second-generation TKIs nilotinib and dasatinib were to have higher efficiency in clinical trials in imatinib- resistant or intolerant CML patients compared with imatinib. Identification of novel strategies such as dose escalation, drug combination therapy, and use of novel BCR-ABL inhibitors may eventually overcome resistance against BCR-ABL TKIs. This article reviews the history of CML, including the treatment strategies used prediscovery of TKIs and the preclinical and clinical data obtained after the use of imatinib, and the second-generation TKIs developed for the treatment of CML.
PMCID: PMC3503471  PMID: 23180974
drug resistance; tyrosine kinase inhibitors; chronic myeloid leukemia; imatinib; BCR/ABL
5.  Patient preferences for stopping tyrosine kinase inhibitors in chronic myeloid leukemia 
Current Oncology  2014;21(2):e241-e249.
We used an interview-assisted survey of patients with chronic myeloid leukemia (cml) at a single tertiary care centre to explore patient reactions to and preferences for, and the risk-acceptability of, stopping tyrosine kinase inhibitor (tki) treatment.
The study included patients with confirmed cml currently being treated with a tki. The survey was conducted by structured interview using a standard form. Patient preferences were explored in a case-based scenario using 0%–100% visual analog scales and 5-point Likert scales. Data were analyzed using proportions for dichotomous variables and medians and interquartile ranges for continuous variables.
Of 63 patients approached, 56 completed the survey. Participant responses suggest that the idea of stopping tki use is appealing to many patients if there is a chance of long-term stable disease and a high probability of response upon restarting a tki. Participants were more likely to stop their tki as the risk of relapse decreased. Participants reported loss of disease control and failure of disease to respond to treatment as important concerns if they chose to stop their tki.
Given the current 60% estimated rate of relapse after discontinuation of tki therapy, most patients with cml chose to continue with tki. However, at the lower relapse rates reported with second-generation tkis, participants were more undecided, demonstrating a basic understanding of risk. Contrary to our hypothesis, neither compliance nor occurrence of side effects significantly affected patient willingness to stop their tki.
PMCID: PMC3997457  PMID: 24764709
Chronic myeloid leukemia; tyrosine kinase inhibitors; patient preference
6.  Potential of ponatinib to treat chronic myeloid leukemia and acute lymphoblastic leukemia 
OncoTargets and therapy  2013;6:1111-1118.
Development of BCR-ABL tyrosine kinase inhibitors (TKIs) have improved outcomes for patients diagnosed with chronic myeloid leukemia and Philadelphia chromosome positive acute lymphoblastic leukemia. However, resistance or intolerance to these TKIs still leaves some patients without many treatment options. One point mutation in particular, the T315I mutation, has been shown to be resistant to first and second generation TKIs. The third generation TKI, ponatinib, may provide an option for these patients. Ponatinib (Iclusig®), an orally available, pan-tyrosine kinase inhibitor has a unique binding mechanism allowing inhibition of BCR-ABL kinases, including those with the T315I point mutation. A Phase II study evaluated ponatinib in patients who were resistant or intolerant to nilotinib or dasatinib or patients who had the T315I mutation. In the Phase II study, ponatinib produced a major cytogenetic response in 54% of chronic phase chronic myeloid leukemia patients. It further achieved major hematologic response in 52% of patients in the accelerated phase, 31% of patients in the blast phase, and 41% of Philadelphia chromosome positive acute lymphoblastic leukemia patients. Ponatinib also showed efficacy in patients with the T315I mutation. Serious adverse events included arterial thrombosis, hepatotoxicity, cardiovascular risks, pancreatitis, hemorrhage, fluid retention, myelosuppression, rash, abdominal pain, and embryo–fetal toxicity. Due to the risk of these adverse events and potential drug interactions, the use of ponatinib must be carefully weighed against the benefits in treating patients who have limited treatment options.
PMCID: PMC3754816  PMID: 23986642
BCR-ABL; tyrosine kinase inhibitor; TKI; T315I; Philadelphia chromosome
7.  Evolution of Therapies for Chronic Myelogenous Leukemia 
Cancer journal (Sudbury, Mass.)  2011;17(6):465-476.
The clinical outcome for patients with chronic myeloid leukemia (CML) has changed dramatically in the past 15 years. This has been due to the development of tyrosine kinase inhibitors (TKI), compounds which inhibit the activity of the oncogenic BCR-ABL1 protein. Imatinib was the first TKI developed for CML, and it led to high rates of complete cytogenetic responses and improved survival for patients with this disease. However, about 35% of patients in chronic phase treated with imatinib will develop resistance or intolerance to this drug. The recognition of the problem of imatinib failure led to the design of 2nd-generation TKI (dasatinib, nilotinib and bosutinib). These drugs are highly active in the scenario of imatinib resistance or intolerance. More recently, both nilotinib and dasatinib were approved for frontline use in patients with chronic phase CML. Ponatinib represents the last generation of TKI, and this drug has been developed with the aim of targeting a specific BCR-ABL1 mutation (T315I) which arises in the setting of prolonged TKI therapy and leads to resistance to all commercially available TKI. Parallel to the development of specific drugs for treating CML, major advances were made in the field of disease monitoring and standardization of response criteria. In this review we summarize how therapy with TKI for CML has evolved over the last decade.
PMCID: PMC3243359  PMID: 22157290
Chronic Myelogenous Leukemia; BCR-ABL1; Tyrosine Kinase Inhibitors; Imatinib; Dasatinib; Nilotinib; Bosutinib; Ponatinib
8.  BCR-ABL mutation testing to predict response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia 
PLoS Currents  2010;2:RRN1204.
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukemia (CML). Although randomized evidence demonstrates that imatinib (a commercially available TKI) prolongs event–free survival in patients with CML, some patients develop imatinib intolerance or resistance. In addition, imatinib is less effective in patients who have progressed to more advanced disease stages, such as accelerated phase and blastic phase CML. For these reasons, 2nd generation TKIs that can inhibit the BCR-ABL protein more effectively or target additional disease mechanisms have been developed. Two such drugs have also been approved for clinical use by the FDA, nilotinib and dasatinib. Resistance to TKI treatment is thought to be mediated through various mechanisms, the most common of which is BCR-ABL1 mutations. Testing for mutations in BCR-ABL1 may predict lack of response to imatinib or may inform the choice between alternative TKIs.
PMCID: PMC3001986  PMID: 21188137
9.  BCR-ABL mutation testing to predict response to tyrosine kinase inhibitors in patients with chronic myeloid leukemia 
PLoS Currents  2011;2:RRN1204.
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukemia (CML). Although randomized evidence demonstrates that imatinib (a commercially available TKI) prolongs event–free survival in patients with CML, some patients develop imatinib intolerance or resistance. In addition, imatinib is less effective in patients who have progressed to more advanced disease stages, such as accelerated phase and blastic phase CML. For these reasons, 2nd generation TKIs that can inhibit the BCR-ABL protein more effectively or target additional disease mechanisms have been developed. Two such drugs have also been approved for clinical use by the FDA, nilotinib and dasatinib. Resistance to TKI treatment is thought to be mediated through various mechanisms, the most common of which is BCR-ABL1 mutations. Testing for mutations in BCR-ABL1 may predict lack of response to imatinib or may inform the choice between alternative TKIs.
PMCID: PMC3001986  PMID: 21188137
10.  Monitoring the Response to Tyrosine Kinase Inhibitor (TKI) Treatment in Chronic Myeloid Leukemia (CML) 
The aim of oral tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is to get ideal hematological, cytogenetic, molecular responses at the critical time points. The depth of the response obtained with TKI and the time to achieve this response are both important in predicting the prognosis in patients with CML. The high efficacy of the TKI treatment of CML has prompted the need for accurate methods to monitor response at levels below the landmark of CCyR. Quantification of BCR-ABL transcripts has proven to be the most sensitive method available and has shown prognostic impact with regard to progression-free survival. European LeukemiaNet (ELN) molecular program harmonized the reporting of results according to the IS (International harmonization of Scale) in Europe. The aim of this review is to outline monitoring the response to optimal TKI treatment based on the ELN CML 2013 recommendations from the clinical point of view as a physician. Careful cytogenetic and molecular monitoring could help to select the most convenient TKI drug and to optimize TKI treatment. Excessive monitoring may have an economic cost, but failure to optimize TKI treatment may result in CML disease acceleration and death.
PMCID: PMC3894837  PMID: 24455118
11.  Everolimus in metastatic renal cell carcinoma patients intolerant to previous VEGFr-TKI therapy: a RECORD-1 subgroup analysis 
British Journal of Cancer  2012;106(9):1475-1480.
A relevant percentage of patients with metastatic renal cell carcinoma develop intolerance to vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFr-TKIs) and require careful selection of subsequent treatment. This retrospective analysis evaluated the safety and efficacy of everolimus in patients enrolled in the phase-III RECORD-1 trial who discontinued previous VEGFr-TKI therapy because of toxicity.
Patients with an adverse event (AE) as their primary reason for discontinuation of previous VEGFr-TKI therapy were included. Median progression-free survival (PFS) for VEGFr-TKI-intolerant patients in each arm was estimated using the Kaplan–Meier method, and effect on PFS (hazard ratio (HR)) was calculated using the Cox proportional hazard model.
In VEGFr-TKI-intolerant patients (n=58, 14%), median PFS was 5.4 months with everolimus and 1.9 months with placebo (HR: 0.32; P=0.004). In sunitinib-intolerant patients (n=26), median PFS was 5.1 months with everolimus and 2.8 months with placebo (HR: 0.28; P=0.033). Grade 3/4 AEs reported with everolimus in VEGFr-TKI-intolerant patients included infections (16%), fatigue (7%) and stomatitis (4%). The toxicity profile of everolimus was similar in the VEGFr-TKI-intolerant and overall study populations.
Everolimus is well tolerated and efficacious with no increased toxicity in patients intolerant to VEGFr-TKI therapy.
PMCID: PMC3341863  PMID: 22441644
intolerance; kidney cancer; mTOR inhibitor; RAD001; VEGF-targeted therapy
12.  Induction of BIM Is Essential for Apoptosis Triggered by EGFR Kinase Inhibitors in Mutant EGFR-Dependent Lung Adenocarcinomas 
PLoS Medicine  2007;4(10):e294.
Mutations in the epidermal growth factor receptor (EGFR) gene are associated with increased sensitivity of lung cancers to kinase inhibitors like erlotinib. Mechanisms of cell death that occur after kinase inhibition in these oncogene-dependent tumors have not been well delineated. We sought to improve understanding of this process in order to provide insight into mechanisms of sensitivity and/or resistance to tyrosine kinase inhibitors and to uncover new targets for therapy.
Methods and Findings
Using a panel of human lung cancer cell lines that harbor EGFR mutations and a variety of biochemical, molecular, and cellular techniques, we show that EGFR kinase inhibition in drug-sensitive cells provokes apoptosis via the intrinsic pathway of caspase activation. The process requires induction of the proapoptotic BH3-only BCL2 family member BIM (i.e., BCL2-like 11, or BCL2L11); erlotinib dramatically induces BIM levels in sensitive but not in resistant cell lines, and knockdown of BIM expression by RNA interference virtually eliminates drug-induced cell killing in vitro. BIM status is regulated at both transcriptional and posttranscriptional levels and is influenced by the extracellular signal-regulated kinase (ERK) signaling cascade downstream of EGFR. Consistent with these findings, lung tumors and xenografts from mice bearing mutant EGFR-dependent lung adenocarcinomas display increased concentrations of Bim after erlotinib treatment. Moreover, an inhibitor of antiapoptotic proteins, ABT-737, enhances erlotinib-induced cell death in vitro.
In drug-sensitive EGFR mutant lung cancer cells, induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors. This finding implies that the intrinsic pathway of caspase activation may influence sensitivity and/or resistance of EGFR mutant lung tumor cells to EGFR kinase inhibition. Manipulation of the intrinsic pathway could be a therapeutic strategy to enhance further the clinical outcomes of patients with EGFR mutant lung tumors.
Using a panel of human drug-sensitive EGFR mutant lung cancer cells, William Pao and colleagues show that induction of BIM, a member of the BCL2 family, is essential for apoptosis triggered by EGFR kinase inhibitors.
Editors' Summary
Lung cancer, a common type of cancer, has a very low cure rate. Like all cancers, it occurs when cells begin to divide uncontrollably because of changes (mutations) in their genes. Chemotherapy drugs kill these rapidly dividing cells but, because some normal tissues are sensitive to these agents, it is hard to destroy the cancer without causing serious side effects. Recently, “targeted” therapies have brought new hope to some patients with cancer. These therapies attack the changes in cancer cells that allow them to divide uncontrollably but leave normal cells unscathed. One of the first molecules for which a targeted therapy was developed was the epidermal growth factor receptor (EGFR). In normal cells, messenger proteins bind to EGFR and activate its “tyrosine kinase,” an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These proteins then tell the cell to divide. Alterations to this signaling system drive uncontrolled cell division in some cancers so blocking the EGFR signaling pathway should stop these cancers growing. Indeed, some lung cancers with mutations in the tyrosine kinase of EGFR shrink dramatically when treated with gefitinib or erlotinib, two tyrosine kinase inhibitors (TKIs).
Why Was This Study Done?
TKI-sensitive lung cancers shrink when treated with TKIs because of drug-induced cell death, but what are the molecular mechanisms underlying this death? A better understanding of how TKIs kill cancer cells might provide new insights into why not all cancer cells with mutations in EGFR (the gene from which EGFR is made) are sensitive to TKIs. It might also uncover new targets for therapy. TKIs do not completely kill lung cancers, but if the mechanism of TKI-induced cell death were understood, it might be possible to enhance their effects. In this study, the researchers have investigated how cell death occurs after kinase inhibition in a panel of human lung cancer cell lines (cells isolated from human tumors that grow indefinitely in dishes) that carry EGFR mutations.
What Did the Researchers Do and Find?
The researchers show, first, that erlotinib induces a type of cell death called apoptosis in erlotinib-sensitive cell lines but not in resistant cell lines. Apoptosis can be activated by two major pathways. In this instance, the researchers report, the so-called “intrinsic” pathway activates apoptosis. This pathway is stimulated by proapoptotic members of the BCL2 family of proteins and is blocked by antiapoptotic members, so the researchers examined the effect of erlotinib treatment on the expression of BCL2 family members in the EGFR mutant cell lines. Erlotinib treatment increased the expression of the proapoptotic protein BIM in sensitive but not in resistant cell lines. It also removed phosphate groups from BIM—dephosphorylated BIM is a more potent proapoptotic protein. Conversely, blocking BIM expression using a technique called RNA interference virtually eliminated the ability of erlotinib to kill EGFR mutant cell lines. The researchers also report that erlotinib treatment increased BIM expression in erlotinib-sensitive lung tumors growing in mice and that an inhibitor of the anti-apoptotic protein BCL2 enhanced erlotinib-induced death in drug-sensitive cells growing in dishes.
What Do These Findings Mean?
These findings indicate that BIM activity is essential for the apoptosis triggered by TKIs in drug-sensitive lung cancer cells that carry EGFR mutations, and that treatment of these cells with TKIs induces both the expression and dephosphorylation of BIM. The finding that the intrinsic pathway of apoptosis activation is involved in TKI-induced cell death suggests that changes in this pathway (possibly mutations in some of its components) might influence the sensitivity of EGFR mutant lung cancers to TKIs. Finally, these findings suggest that giving drugs that affect the intrinsic pathway of apoptosis activation at the same time as TKIs might further improve the clinical outcome for patients with EGFR mutant tumors. Such combinations will have to be tested in clinical trials before being used routinely.
Additional Information.
Please access these Web sites via the online version of this summary at
US National Cancer Institute information for patients and professionals on lung cancer (in English and Spanish)
Information for patients from Cancer Research UK on lung cancer including information on treatment with TKIs
Wikipedia pages on apoptosis, epidermal growth factor receptor, and BCL-2 proteins (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Information for patients from Cancerbackup on erlotinib and gefitinib
PMCID: PMC2001209  PMID: 17927446
13.  Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia? 
Hematology Reports  2011;3(3):e29.
The outcome and quality of life of chronic myeloid leukemia (CML) patients has remarkably changed with the treatment of tyrosine kinase inhibitors (TKIs). Currently, hematopoietic stem cell transplantation (HSCT) is considered mainly as a third line salvage therapy in cases of TKIs resistance or intolerance. Here we describe a patient with chronic phase CML who developed both resistance and late occurrence of s severe thrombo-cytopenia on first and second generation TKIs and eventually underwent HSCT. Although the mechanism of the myelosuppression is not fully understood, we showed for the first time the development of dose dependent platelet antibodies in the presence of TKIs, suggesting the possibility of TKIs induced thrombocytopenia. Our case emphasizes that late development of severe myelosuppression during imatinib treatment is probably an important indication for consideration of early HSCT.
PMCID: PMC3269798  PMID: 22593820
chronic myeloid leukemia; tyrosine kinase inhibitor; thrombocytopenia; HSCT.
14.  Inhibition of PI3K/mTOR Overcomes Nilotinib Resistance in BCR-ABL1 Positive Leukemia Cells through Translational Down-Regulation of MDM2 
PLoS ONE  2013;8(12):e83510.
Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia.
PMCID: PMC3859659  PMID: 24349524
15.  Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: or at
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis
The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa®) or erlotinib (Tarceva®) in patients with advanced non-small cell lung cancer (NSCLC).
Clinical Need: Target Population and Condition
With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer deaths in Ontario. Those with unresectable or advanced disease are commonly treated with concurrent chemoradiation or platinum-based combination chemotherapy. Although response rates to cytotoxic chemotherapy for advanced NSCLC are approximately 30 to 40%, all patients eventually develop resistance and have a median survival of only 8 to 10 months. Treatment for refractory or relapsed disease includes single-agent treatment with docetaxel, pemetrexed or EGFR-targeting TKIs (gefitinib, erlotinib). TKIs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at the tyrosine kinase (TK) domain, thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Gefitinib and erlotinib have been shown to be either non-inferior or superior to chemotherapy in the first- or second-line setting (gefitinib), or superior to placebo in the second- or third-line setting (erlotinib).
Certain patient characteristics (adenocarcinoma, non-smoking history, Asian ethnicity, female gender) predict for better survival benefit and response to therapy with TKIs. In addition, the current body of evidence shows that somatic mutations in the EGFR gene are the most robust biomarkers for EGFR-targeting therapy selection. Drugs used in this therapy, however, can be costly, up to C$ 2000 to C$ 3000 per month, and they have only approximately a 10% chance of benefiting unselected patients. For these reasons, the predictive value of EGFR mutation testing for TKIs in patients with advanced NSCLC needs to be determined.
The Technology: EGFR mutation testing
The EGFR gene sequencing by polymerase chain reaction (PCR) assays is the most widely used method for EGFR mutation testing. PCR assays can be performed at pathology laboratories across Ontario. According to experts in the province, sequencing is not currently done in Ontario due to lack of adequate measurement sensitivity. A variety of new methods have been introduced to increase the measurement sensitivity of the mutation assay. Some technologies such as single-stranded conformational polymorphism, denaturing high-performance liquid chromatography, and high-resolution melting analysis have the advantage of facilitating rapid mutation screening of large numbers of samples with high measurement sensitivity but require direct sequencing to confirm the identity of the detected mutations. Other techniques have been developed for the simple, but highly sensitive detection of specific EGFR mutations, such as the amplification refractory mutations system (ARMS) and the peptide nucleic acid-locked PCR clamping. Others selectively digest wild-type DNA templates with restriction endonucleases to enrich mutant alleles by PCR. Experts in the province of Ontario have commented that currently PCR fragment analysis for deletion and point mutation conducts in Ontario, with measurement sensitivity of 1% to 5%.
Research Questions
In patients with locally-advanced or metastatic NSCLC, what is the clinical effectiveness of EGFR mutation testing for prediction of response to treatment with TKIs (gefitinib, erlotinib) in terms of progression-free survival (PFS), objective response rates (ORR), overall survival (OS), and quality of life (QoL)?
What is the impact of EGFR mutation testing on overall clinical decision-making for patients with advanced or metastatic NSCLC?
What is the cost-effectiveness of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the first-line setting?
What is the budget impact of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the second- or third-line setting?
A literature search was performed on March 9, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, Wiley Cochrane, CINAHL, Centre for Reviews and Dissemination/International Agency for Health Technology Assessment for studies published from January 1, 2004 until February 28, 2010 using the following terms:
Non-Small-Cell Lung Carcinoma
Epidermal Growth Factor Receptor
An automatic literature update program also extracted all papers published from February 2010 until August 2010. Abstracts were reviewed by a single reviewer and for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, and then a group of epidemiologists, until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
The inclusion criteria were as follows:
Population: patients with locally advanced or metastatic NSCLC (stage IIIB or IV)
Procedure: EGFR mutation testing before treatment with gefitinib or erlotinib
Language: publication in English
Published health technology assessments, guidelines, and peer-reviewed literature (abstracts, full text, conference abstract)
Outcomes: progression-free survival (PFS), Objective response rate (ORR), overall survival (OS), quality of life (QoL).
The exclusion criteria were as follows:
Studies lacking outcomes specific to those of interest
Studies focused on erlotinib maintenance therapy
Studies focused on gefitinib or erlotinib use in combination with cytotoxic agents or any other drug
Grey literature, where relevant, was also reviewed.
Outcomes of Interest
ORR determined by means of the Response Evaluation Criteria in Solid Tumours (RECIST)
Quality of Evidence
The quality of the Phase II trials and observational studies was based on the method of subject recruitment and sampling, possibility of selection bias, and generalizability to the source population. The overall quality of evidence was assessed as high, moderate, low or very low according to the GRADE Working Group criteria.
Summary of Findings
Since the last published health technology assessment by Blue Cross Blue Shield Association in 2007 there have been a number of phase III trials which provide evidence of predictive value of EGFR mutation testing in patients who were treated with gefitinib compared to chemotherapy in the first- or second-line setting. The Iressa Pan Asian Study (IPASS) trial showed the superiority of gefitinib in terms of PFS in patients with EGFR mutations versus patients with wild-type EGFR (Hazard ratio [HR], 0.48, 95%CI; 0.36-0.64 versus HR, 2.85; 95%CI, 2.05-3.98). Moreover, there was a statistically significant increased ORR in patients who received gefitinib and had EGFR mutations compared to patients with wild-type EGFR (71% versus 1%). The First-SIGNAL trial in patients with similar clinical characteristics as IPASS as well as the NEJ002 and WJTOG3405 trials that included only patients with EGFR mutations, provide confirmation that gefitinib is superior to chemotherapy in terms of improved PFS or higher ORR in patients with EGFR mutations. The INTEREST trial further indicated that patients with EGFR mutations had prolonged PFS and higher ORR when treated with gefitinib compared with docetaxel.
In contrast, there is still a paucity of strong evidence regarding the predictive value of EGFR mutation testing for response to erlotinib in the second- or third-line setting. The BR.21 trial randomized 731 patients with NSCLC who were refractory or intolerant to prior first- or second-line chemotherapy to receive erlotinib or placebo. While the HR of 0.61 (95%CI, 0.51-0.74) favored erlotinib in the overall population, this was not a significant in the subsequent retrospective subgroup analysis. A retrospective evaluation of 116 of the BR.21 tumor samples demonstrated that patients with EGFR mutations had significantly higher ORRs when treated with erlotinib compared with placebo (27% versus 7%; P=0.03). However, erlotinib did not confer a significant survival benefit compared with placebo in patients with EGFR mutations (HR, 0.55; 95%CI, 0.25-1.19) versus wild-type (HR, 0.74; 95%CI, 0.52-1.05). The interaction between EGFR mutation status and erlotinib use was not significant (P=0.47). The lack of significance could be attributable to a type II error since there was a low sample size that was available for subgroup analysis.
A series of phase II studies have examined the clinical effectiveness of erlotinib in patients known to have EGFR mutations. Evidence from these studies has consistently shown that erlotinib yields a very high ORR (typically 70% vs. 4%) and a prolonged PFS (9 months vs. 2 months) in patients with EGFR mutations compared with patients with wild-type EGFR. Although having a prolonged PFS and higher respond in EGFR mutated patients might be due to a better prognostic profile regardless of the treatment received. In the absence of a comparative treatment or placebo control group, it is difficult to determine if the observed differences in survival benefit in patients with EGFR mutation is attributed to prognostic or predictive value of EGFR mutation status.
Based on moderate quality of evidence, patients with locally advanced or metastatic NSCLC with adenocarcinoma histology being treated with gefitinib in the first-line setting are highly likely to benefit from gefitinib if they have EGFR mutations compared to those with wild-type EGFR. This advantage is reflected in improved PFS, ORR and QoL in patients with EGFR mutation who are being treated with gefitinib relative to patients treated with chemotherapy.
Based on low quality of evidence, in patients with locally advanced or metastatic NSCLC who are being treated with erlotinib, the identification of EGFR mutation status selects those who are most likely to benefit from erlotinib relative to patients treated with placebo in the second or third-line setting.
PMCID: PMC3377519  PMID: 23074402
16.  BCR-ABL1-independent PI3Kinase activation causing imatinib-resistance 
The BCR-ABL1 translocation occurs in chronic myeloid leukemia (CML) and in 25% of cases with acute lymphoblastic leukemia (ALL). The advent of tyrosine kinase inhibitors (TKI) has fundamentally changed the treatment of CML. However, TKI are not equally effective for treating ALL. Furthermore, de novo or secondary TKI-resistance is a significant problem in CML. We screened a panel of BCR-ABL1 positive ALL and CML cell lines to find models for imatinib-resistance.
Five of 19 BCR-ABL1 positive cell lines were resistant to imatinib-induced apoptosis (KCL-22, MHH-TALL1, NALM-1, SD-1, SUP-B15). None of the resistant cell lines carried mutations in the kinase domain of BCR-ABL1 and all showed resistance to second generation TKI, nilotinib or dasatinib. STAT5, ERK1/2 and the ribosomal S6 protein (RPS6) are BCR-ABL1 downstream effectors, and all three proteins are dephosphorylated by imatinib in sensitive cell lines. TKI-resistant phosphorylation of RPS6, but responsiveness as regards JAK/STAT5 and ERK1/2 signalling were characteristic for resistant cell lines. PI3K pathway inhibitors effected dephosphorylation of RPS6 in imatinib-resistant cell lines suggesting that an oncogene other than BCR-ABL1 might be responsible for activation of the PI3K/AKT1/mTOR pathway, which would explain the TKI resistance of these cells. We show that the TKI-resistant cell line KCL-22 carries a PI3Kα E545G mutation, a site critical for the constitutive activation of the PI3K/AKT1 pathway. Apoptosis in TKI-resistant cells could be induced by inhibition of AKT1, but not of mTOR.
We introduce five Philadelphia-chromosome positive cell lines as TKI-resistance models. None of these cell lines carries mutations in the kinase domain of BCR-ABL1 or other molecular aberrations previously indicted in the context of imatinib-resistance. These cell lines are unique as they dephosphorylate ERK1/2 and STAT5 after treatment with imatinib, while PI3K/AKT1/mTOR activity remains unaffected. Inhibition of AKT1 leads to apoptosis in the imatinib-resistant cell lines. In conclusion, Ph+ cell lines show a form of imatinib-resistance attributable to constitutive activation of the PI3K/AKT1 pathway. Mutations in PIK3CA, as observed in cell line KCL-22, or PI3K activating oncogenes may undelie TKI-resistance in these cell lines.
PMCID: PMC3041785  PMID: 21299849
17.  Variable Behavior of iPSCs Derived from CML Patients for Response to TKI and Hematopoietic Differentiation 
PLoS ONE  2013;8(8):e71596.
Chronic myeloid leukemia disease (CML) found effective therapy by treating patients with tyrosine kinase inhibitors (TKI), which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs) can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs) derived from CD34+ blood cells isolated from CML patients (CML-iPSCs) as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.
PMCID: PMC3751925  PMID: 24058405
18.  Nilotinib: a Novel, Selective Tyrosine Kinase Inhibitor 
Seminars in oncology  2011;38(0 1):S3-S9.
The development of tyrosine kinase inhibitors (TKIs) for the treatment of chronic myelogenous leukemia (CML) was based on the discovery that CML stem and progenitor cells overexpress the abnormal fusion protein kinase BCR-ABL. The prototype TKI, imatinib, selectively inhibits BCR-ABL, as well as several other kinases, including DDR, KIT, PDGFR, and CSF-1R. Although the management of CML improved dramatically with the introduction of imatinib, not all patients benefit from treatment because of resistance or intolerance. Consequently, research efforts have focused on developing more potent TKIs with the ability to circumvent imatinib resistance. Nilotinib, a second-generation oral TKI, was rationally designed based on the crystal structure of imatinib to be highly active against a wide range of imatinib-resistant BCR-ABL mutants and is approved for the treatment of newly diagnosed or imatinib-resistant or -intolerant CML, and has shown superiority over imatinib in first-line in newly diagnosed CML. Furthermore, the activity of nilotinib against KIT and PDGFRα has led to its evaluation in advanced gastrointestinal stromal tumors (GIST). The purpose of this review is to describe the development of nilotinib, providing a structural explanation for the differential activity of nilotinib and imatinib in GIST. Activity of nilotinib against KIT and PDGFR and emerging evidence of differences in cellular uptake between nilotinib and imatinib are discussed.
PMCID: PMC4004101  PMID: 21419934
Nilotinib; AMN107; fusion proteins; BCR-ABL; stem cell factor receptor; receptors; platelet-derived growth factor; gastrointestinal stromal tumors; drug resistance
19.  Therapy of Chronic Myeloid Leukemia: Twilight of the Imatinib Era? 
ISRN Oncology  2014;2014:596483.
Chronic myeloid leukemia (CML) results from the clonal expansion of pluripotent hematopoietic stem cells containing the active BCR/ABL fusion gene produced by a reciprocal translocation of the ABL1 gene to the BCR gene. The BCR/ABL protein displays a constitutive tyrosine kinase activity and confers on leukemic cells growth and proliferation advantage and resistance to apoptosis. Introduction of imatinib (IM) and other tyrosine kinase inhibitors (TKIs) has radically improved the outcome of patients with CML and some other diseases with BCR/ABL expression. However, a fraction of CML patients presents with resistance to this drug. Regardless of clinical profits of IM, there are several drawbacks associated with its use, including lack of eradication of the malignant clone and increasing relapse rate resulting from long-term therapy, resistance, and intolerance. Second and third generations of TKIs have been developed to break IM resistance. Clinical studies revealed that the introduction of second-generation TKIs has improved the overall survival of CML patients; however, some with specific mutations such as T315I remain resistant. Second-generation TKIs may completely replace imatinib in perspective CML therapy, and addition of third-generation inhibitors may overcome resistance induced by every form of point mutations.
PMCID: PMC3929284  PMID: 24634785
20.  The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib 
Tyrosine kinase inhibitors (TKIs) like dasatinib and nilotinib are indicated as second-line treatment for chronic myeloid leukemia resistant or intolerant to the current first-line TKI imatinib. These are agents are well tolerated, but potent and as such should be monitored for potentially serious side-effects like fluid retention and pleural effusions. Here we present key clinical trial data and safety considerations for all FDA approved TKIs in context for effective management of fluid retention and pleural effusions. Altering the dasatinib regimen from 70 mg twice daily to 100 mg daily reduces the risk of pleural effusion for patients taking dasatinib. Should pleural effusion develop, dasatinib should be interrupted until the condition resolves. Patients with a history of pleural effusion risk factors should be monitored closely while taking dasatinib. Patients receiving imatinib and nilotinib are not without risk of fluid retention. All patients should also be educated to recognize and report key symptoms of fluid retention or pleural effusion. Pleural effusions are generally managed by dose interruption/reduction and other supportive measures in patients with chronic myeloid leukemia receiving dasatinib therapy.
PMCID: PMC2785832  PMID: 19909541
21.  Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy 
World Journal of Stem Cells  2012;4(6):44-52.
Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph+). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph+ ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph+ leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph+ ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph+ ALL.
PMCID: PMC3443711  PMID: 22993661
Acute lymphoblastic leukemia; Philadelphia chromosome; Tyrosine kinase inhibitors; Leukemia stem cells; Prognosis
22.  P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia 
Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them.
PMCID: PMC2567340  PMID: 18828913
23.  Threshold levels of ABL tyrosine kinase inhibitors retained in chronic myeloid leukemia cells define commitment to apoptosis 
Cancer research  2013;73(11):3356-3370.
The imatinib paradigm in chronic myeloid leukemia (CML) established continuous BCR-ABL inhibition as a design principle for ABL tyrosine kinase inhibitors (TKIs). However, clinical responses seen in patients treated with the ABL TKI dasatinib despite its much shorter plasma half-life and the apparent rapid restoration of BCR-ABL signaling activity following once-daily dosing suggested acute, potent inhibition of kinase activity may be sufficient to irrevocably commit CML cells to apoptosis. To determine the specific requirements for ABL TKI-induced CML cell death for a panel of clinically important ABL TKIs (imatinib, nilotinib, dasatinib, ponatinib, and DCC-2036), we interrogated response of CML cell lines and primary CML cells following acute drug exposure using intracellular FACS and immunoblot analyses of BCR-ABL signaling, apoptosis measurements, liquid chromatography/tandem mass spectrometry of intracellular drug levels, and biochemical TKI dissociation studies. Importantly, significant intracellular TKI stores were detected following drug washout, levels of which tracked with onset of apoptosis and incomplete return of BCR-ABL signaling, particularly pSTAT5, to baseline. Among TKIs tested, ponatinib demonstrated the most robust capacity for apoptotic commitment showing sustained suppression of BCR-ABL signaling even at low intracellular levels following extensive washout, consistent with high-affinity binding and slow dissociation from ABL kinase. Together, our findings suggest commitment of CML cells to apoptosis requires protracted incomplete restoration of BCR-ABL signaling mediated by intracellular retention of TKIs above a quantifiable threshold. These studies refine our understanding of apoptotic commitment in CML cells and highlight parameters important to design of therapeutic kinase inhibitors for CML and other malignancies.
PMCID: PMC3674150  PMID: 23576564
24.  Interpretation of cytogenetic and molecular results in patients treated for CML 
Blood reviews  2011;25(3):139-146.
The International Randomized Study of Interferon vs. STI571 (IRIS) trial that investigated the use of the tyrosine kinase inhibitor (TKI) imatinib (versus interferon) changed the treatment and outcome of chronic myeloid leukemia (CML). Long-term follow-up of IRIS patients has defined response parameters and methods of tracking residual disease with cytogenetic testing of bone marrow metaphases and molecular monitoring of BCR-ABL transcripts using quantitative reverse-transcriptase polymerase chain reaction. Cytogenetic and molecular responses are now considered useful surrogates for long-term outcome. Early and robust response to imatinib predicts positive long-term outcomes. However, 15–25% of patients fail initial treatment or become intolerant of imatinib and need increased doses or alternate treatment. Second-line treatment with the second-generation TKIs nilotinib and dasatinib have resulted in favorable rates of progression-free survival (PFS) and overall survival. Data from the ENESTnd (nilotinib) and DASISION (dasatinib) trials in newly diagnosed chronic-phase CML patients demonstrated more robust and rapid complete cytogenetic (77–80%) and major molecular responses (43–46%) at 12 months compared with imatinib (65–66% and 22–28%). The relationship between a complete cytogenetic response at 12 months and long-term PFS supports a role for second-generation TKIs as first-line treatment of newly diagnosed chronic-phase CML.
PMCID: PMC3071443  PMID: 21419537
Chronic myeloid leukemia; cytogenetic response; molecular response; dasatinib; nilotinib; imatinib
25.  BCL6 enables Ph+ acute lymphoblastic leukemia cells to survive BCR-ABL1 kinase inhibition 
Nature  2011;473(7347):384-388.
Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL11 and other oncogenic tyrosine kinases2,3. Recent efforts focused on the development of more potent TKI that also inhibit mutant tyrosine kinases4,5. However, even effective TKI typically fail to eradicate leukemia-initiating cells6–8, which often cause recurrence of leukemia after initially successful treatment. Here we report on the discovery of a novel mechanism of drug-resistance, which is based on protective feedback signaling of leukemia cells in response to TKI-treatment. We identified BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukemia-initiating subclones.
BCL6 is a known proto-oncogene that is often translocated in diffuse large B cell lymphoma (DLBCL)9. In response to TKI-treatment, BCR-ABL1 acute lymphoblastic leukemia (ALL) cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in DLBCL (Fig. 1a). Upregulation of BCL6 in response to TKI-treatment represents a novel defense mechanism, which enables leukemia cells to survive TKI-treatment: Previous work suggested that TKI-mediated cell death is largely p53-independent. Here we demonstrate that BCL6 upregulation upon TKI-treatment leads to transcriptional inactivation of the p53 pathway. BCL6-deficient leukemia cells fail to inactivate p53 and are particularly sensitive to TKI-treatment. BCL6−/− leukemia cells are poised to undergo cellular senescence and fail to initiate leukemia in serial transplant recipients. A combination of TKI-treatment and a novel BCL6 peptide inhibitor markedly increased survival of NOD/SCID mice xenografted with patient-derived BCR-ABL1 ALL cells. We propose that dual targeting of oncogenic tyrosine kinases and BCL6-dependent feedback (Supplementary Fig. 1) represents a novel strategy to eradicate drug-resistant and leukemia-initiating subclones in tyrosine kinase-driven leukemia.
PMCID: PMC3597744  PMID: 21593872

Results 1-25 (1000170)