PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (861767)

Clipboard (0)
None

Related Articles

1.  Conjunctival FOXP3 Expression in Trachoma: Do Regulatory T Cells Have a Role in Human Ocular Chlamydia trachomatis Infection? 
PLoS Medicine  2006;3(8):e266.
Background
Trachoma, caused by ocular infection with Chlamydia trachomatis, remains the leading infectious cause of blindness and in 2002 was responsible for 3.6% of total global blindness. Although transmission can be successfully interrupted using antibiotics and improvements in public and personal hygiene, the long-term success of the control programmes advocated by the World Health Organization are still uncertain. For the complete control and prevention of trachoma, a vaccine would be highly desirable. Currently there are no licensed vaccines for trachoma, and no human vaccine trials have been conducted since the 1960s. A barrier to new attempts to design and introduce a vaccine is the identification of immunologic correlates of protective immunity or immunopathology. We studied important correlates of the immune response in a trachoma-endemic population in order to improve our knowledge of this disease. This is essential for the successful development of a vaccine against both ocular and genital C. trachomatis infection.
Methods and Findings
We used quantitative real-time PCR for C. trachomatis 16S rRNA to identify conjunctival infection. The expression of IFN-γ, IDO, IL-10, and FOXP3 mRNA transcripts was measured. We evaluated the role of immune effector and regulatory responses in the control of chlamydial infection and in the resolution of clinical signs of trachoma in endemic communities in Gambia. All host transcripts examined were detectable even in normal conjunctiva. The levels of these transcripts were increased, compared to normal uninfected conjunctiva, when infection was detected, with or without clinical disease signs. Interestingly, when clinical disease signs were present in the absence of infection, the expression of a regulatory T cell transcription factor, FOXP3, remained elevated.
Conclusions
There is evidence of an increase in the magnitude of the local anti-chlamydial cytokine immune responses with age. This increase is coupled to a decline in the prevalence of infection and active trachoma, suggesting that effective adaptive immunity is acquired over a number of years. The anti-chlamydial and inflammatory immune response at the conjunctival surface, which may control chlamydial replication, is closely matched by counter inflammatory or regulatory IL-10 expression. Differences in the level of FOXP3 expression in the conjunctiva may indicate a role for regulatory T cells in the resolution of the conjunctival immune response, which is important in protection from immunopathology. However, the expression of cytokines that control chlamydial replication and those that regulate the conjunctival immune response is not simply juxtaposed; the interaction between the infection and the clinical disease process is therefore more complex.
The immune response in a trachoma-endemic population showed an increase in local anti-chlamydial cytokine responses with age, associated with a decline in the prevalence of infection and active trachoma.
Editors' Summary
Background.
Trachoma is the leading infectious cause of blindness worldwide. Six million people—most of whom live in crowded, unhygienic conditions with limited water supplies—are blind because of repeated eye infections with Chlamydia trachomatis. This bacterium passes easily from person to person on hands or clothing and is also spread by flies. Successive infections starting in childhood cause progressive scarring of the inside of the eyelid. Eventually, the eyelashes turn inwards and rub painfully over the front of the eye (the cornea). This causes corneal scarring, loss of corneal transparency, and, finally, irreversible loss of sight, usually in adulthood. C. trachomatis infections can be prevented by improving personal hygiene and by reducing fly breeding sites, and they can be treated with antibiotics. In addition, early scarring of the eyelid and turned-in eyelashes can be treated surgically.
Why Was This Study Done?
Through the above interventions, the World Health Organization hopes to eliminate trachoma by 2020, but a vaccine might also be necessary. To develop a vaccine, the human immune response to C. trachomatis needs to be better understood. As with other diseases, the immune response to C. trachomatis includes a pro-inflammatory side, which activates immune cells to attack the bacteria, and a regulatory side, which keeps the pro-inflammatory responses in check. The balance between these two sides is not perfect, however. Although the immune response deals with C. trachomatis infections efficiently, it also causes some of the tissue damage that leads to scarring and loss of sight. In this study, the researchers have investigated the human immune response to C. trachomatis to provide immunological information that might help vaccine development.
What Did the Researchers Do and Find?
The researchers examined school children living in Gambia, where trachoma is very common, for clinical signs of active trachoma (for example, red or swollen eyelids). To find out which children were infected with C. trachomatis, the researchers collected a few cells from the surface of their eyes and looked for a ribonucleic acid (RNA) molecule that is only made by C. trachomatis. The researchers also looked in these samples for human messenger RNA (mRNA) molecules that are made during pro-inflammatory and regulatory immune responses.
The children formed four groups based on infection with C. trachomatis and clinical signs. Some children—particularly the older ones—were uninfected and had no clinical signs. Others were infected but showed no clinical signs—these children were incubating the bacteria. Some were infected and had clinical disease; these children had the highest bacterial loads. Finally, children recovering from an infection carried no bacteria but still had some clinical signs.
The researchers detected different types of immune response in each of these groups. Children incubating the bacteria had a strong pro-inflammatory response—their immune systems were trying to fight off infection. The pro-inflammatory response was even stronger in the infected children with clinical signs, but now the regulatory response had also increased, presumably to limit inflammation. In children in the recovery phase, only regulatory immune cells, which were making an mRNA from a gene called FOXP3, remained active.
What Do These Findings Mean?
The relative rarity of infections and active disease in older children together with indications of a more active immune response to infection indicates that protective immunity to C. trachomatis is acquired through repeated exposure to it. This bodes well for the development of a vaccine, which would speed up the acquisition of this natural immunity. Furthermore, the new information about immune responses at different stages of infection with C. trachomatis should help in vaccine design. The findings need to be confirmed by tracking immune responses in individual children during episodes of infection, but could then be used to help design vaccines that produce good protective immunity against C. trachomatis without causing too much collateral tissue damage. The current results suggest, for example, that regulatory immune cells are important in limiting the inflammatory response, so vaccine developers may need to ensure that their vaccines stimulate the production of this sort of cell as well as of the pro-inflammatory cells needed to clear the infection.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030266.
• NHS Direct Online patient information on trachoma
• World Health Organization information on trachoma and its elimination
• US Centers for Disease Control and Prevention general information on trachoma
• MedlinePlus encyclopedia entry on trachoma
doi:10.1371/journal.pmed.0030266
PMCID: PMC1526769  PMID: 16881731
2.  Optimizing the Dose of Pre-Pandemic Influenza Vaccines to Reduce the Infection Attack Rate 
PLoS Medicine  2007;4(6):e218.
Background
The recent spread of avian influenza in wild birds and poultry may be a precursor to the emergence of a 1918-like human pandemic. Therefore, stockpiles of human pre-pandemic vaccine (targeted at avian strains) are being considered. For many countries, the principal constraint for these vaccine stockpiles will be the total mass of antigen maintained. We tested the hypothesis that lower individual doses (i.e., less than the recommended dose for maximum protection) may provide substantial extra community-level benefits because they would permit wider vaccine coverage for a given total size of antigen stockpile.
Methods and Findings
We used a mathematical model to predict infection attack rates under different policies. The model incorporated both an individual's response to vaccination at different doses and the process of person-to-person transmission of pandemic influenza. We found that substantial reductions in the attack rate are likely if vaccines are given to more people at lower doses. These results are applicable to all three vaccine candidates for which data are available. As a guide to the magnitude of the effect, we simulated epidemics based on historical studies of immunogenicity. For example, for one of the vaccines for which data are available, the attack rate would drop from 67.6% to 58.7% if 160 out of the total US population of 300 million were given an optimal dose rather than 20 out of 300 million given the maximally protective dose (as promulgated in the US National Pandemic Preparedness Plan). Our results are conservative with respect to a number of alternative assumptions about the precise nature of vaccine protection. We also considered a model variant that includes a single high-risk subgroup representing children. For smaller stockpile sizes that allow vaccine to be offered only to the high-risk group at the optimal dose, the predicted benefits of using the homogenous model formed a lower bound in the presence of a risk group, even when the high-risk group was twice as infective and twice as susceptible.
Conclusions
In addition to individual-level protection (i.e., vaccine efficacy), the population-level implications of pre-pandemic vaccine programs should be considered when deciding on stockpile size and dose. Our results suggest that a lower vaccine dose may be justified in order to increase population coverage, thereby reducing the infection attack rate overall.
Steven Riley and colleagues examine the potential benefits of "stretching" a limited supply of vaccine and suggest that substantial reductions in the attack rate are possible if vaccines are given to more people at lower doses.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a viral infection of the nose, throat, and airways. Most recover quickly, but the disease can be deadly. In the US, seasonal influenza outbreaks (epidemics) cause 36,000 excess deaths annually. And now there are fears that an avian (bird) influenza virus might trigger a human influenza pandemic—a global epidemic that could kill millions. Seasonal epidemics occur because flu viruses continually make small changes to their hemagglutinin and neuraminidase molecules, the viral proteins (antigens) that the immune system recognizes. Because of this “antigenic drift,” an immune system response (which can be induced by catching flu or by vaccination with disabled circulating influenza strains) that combats flu one year may provide only partial protection the next year. “Antigenic shift” (large changes in flu antigens) can cause pandemics because communities have no immunity to the changed virus.
Why Was This Study Done?
Although avian influenza virus, which contains a hemagglutinin type that differs from currently circulating human flu viruses, has caused a few cases of human influenza, it has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, which will probably involve further small antigenic changes, it could kill millions of people before scientists can develop an effective vaccine against it. To provide some interim protection, many countries are preparing stockpiles of “pre-pandemic” vaccines targeted against the avian virus. The US, for example, plans to store enough pre-pandemic vaccine to provide maximum protection to 20 million people (including key health workers) out of its population of 300 million. But, given a limited stockpile of pre-pandemic vaccine, might giving more people a lower dose of vaccine, which might reduce the number of people susceptible to infection and induce herd immunity by preventing efficient transmission of the flu virus, be a better way to limit the spread of pandemic influenza? In this study, the researchers have used mathematical modeling to investigate this question.
What Did the Researchers Do and Find?
To predict the infection rates associated with different vaccination policies, the researchers developed a mathematical model that incorporates data on human immune responses induced with three experimental vaccines against the avian virus and historical data on the person–person transmission of previous pandemic influenza viruses. For all the vaccines, the model predicts that giving more people a low dose of the vaccine would limit the spread of influenza better than giving fewer people the high dose needed for full individual protection. For example, the researchers estimate that dividing the planned US stockpile of one experimental vaccine equally between 160 million people instead of giving it at the fully protective dose to 20 million people might avert about 27 million influenza cases in less than year. However, giving the maximally protective dose to the 9 million US health-care workers and using the remaining vaccine at a lower dose to optimize protection within the general population might avert only 14 million infections.
What Do These Findings Mean?
These findings suggest that, given a limited stockpile of pre-pandemic vaccine, increasing the population coverage of vaccination by using low doses of vaccine might reduce the overall influenza infection rate more effectively than vaccinating fewer people with fully protective doses of vaccine. However, because the researchers' model includes many assumptions, it can only give an indication of how different strategies might perform, not firm numbers for how many influenza cases each strategy is likely to avert. Before public-health officials use this or a similar model to help them decide the best way to use pre-pandemic vaccines to control a human influenza pandemic, they will need more information about the efficacy of these vaccines and about transmission rates of currently circulating viruses. They will also need to know whether pre-pandemic vaccines actually provide good protection against the pandemic virus, as assumed in this study, before they can recommend mass immunization with low doses of pre-pandemic vaccine, selective vaccination with high doses, or a mixed strategy.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040218.
US Centers for Disease Control and Prevention provide information on influenza and influenza vaccination for patients and health professionals (in English, Spanish, Filipino, Chinese, and Vietnamese)
The World Health Organization has a fact sheet on influenza and on the global response to avian influenza (in English, Spanish, French, Russian, Arabic, and Chinese)
The MedlinePlus online encyclopedia devotes a page to flu (in English and Spanish)
The UK Health Protection Agency information on avian, pandemic, and seasonal influenza
The US National Institute of Allergy and Infectious Diseases has a comprehensive feature called “focus on the flu”
doi:10.1371/journal.pmed.0040218
PMCID: PMC1892041  PMID: 17579511
3.  Mesenchymal stem cells as a novel vaccine platform 
Vaccines are the most efficient and cost-effective means of preventing infectious disease. However, traditional vaccine approaches have thus far failed to provide protection against human immunodeficiency virus (HIV), tuberculosis, malaria, and many other diseases. New approaches to vaccine development are needed to address some of these intractable problems. In this report, we review the literature identifying stimulatory effects of mesenchymal stem cells (MSC) on immune responses and explore the potential for MSC as a novel, universal vaccination platform. MSC are unique bone marrow-derived multipotent progenitor cells that are presently being exploited as gene therapy vectors for a variety of conditions, including cancer and autoimmune diseases. Although MSC are predominantly known for anti-inflammatory properties during allogeneic MSC transplant, there is evidence that MSC can actually promote adaptive immunity under certain settings. MSC have also demonstrated some success in anti-cancer therapeutic vaccines and anti-microbial prophylactic vaccines, as we report, for the first time, the ability of modified MSC to express and secrete a viral antigen that stimulates antigen-specific antibody production in vivo. We hypothesize that the unique properties of modified MSC may enable MSC to serve as an unconventional but innovative, vaccine platform. Such a platform would be capable of expressing hundreds of proteins, thereby generating a broad array of epitopes with correct post-translational processing, mimicking natural infection. By stimulating immunity to a combination of epitopes, it may be possible to develop prophylactic and even therapeutic vaccines to tackle major health problems including those of non-microbial and microbial origin, including cancer, or an infectious disease like HIV, where traditional vaccination approaches have failed.
doi:10.3389/fcimb.2012.00140
PMCID: PMC3499769  PMID: 23162801
MSC; vaccination; adaptive immunity; antibodies; antigen delivery
4.  Anti-Interferon Autoantibodies in Autoimmune Polyendocrinopathy Syndrome Type 1 
PLoS Medicine  2006;3(7):e289.
Background
The autoimmune regulator (AIRE) gene influences thymic self-tolerance induction. In autoimmune polyendocrinopathy syndrome type 1 (APS1; OMIM 240300), recessive AIRE mutations lead to autoimmunity targetting endocrine and other epithelial tissues, although chronic candidiasis usually appears first. Autoimmunity and chronic candidiasis can associate with thymomas as well. Patients with these tumours frequently also have high titre immunoglobulin G autoantibodies neutralising type I interferon (IFN)–α and IFN-ω, which are secreted signalling proteins of the cytokine superfamily involved in both innate and adaptive immunity.
Methods and Findings
We tested for serum autoantibodies to type I IFNs and other immunoregulatory cytokines using specific binding and neutralisation assays. Unexpectedly, in 60/60 Finnish and 16/16 Norwegian APS1 patients with both AIRE alleles mutated, we found high titre neutralising immunoglobulin G autoantibodies to most IFN-α subtypes and especially IFN-ω (60% homologous to IFN-α)—mostly in the earliest samples. We found lower titres against IFN-β (30% homologous to IFN-α) in 23% of patients; two-thirds of these (from Finland only) also had low titres against the distantly related “type III IFN” (IFN-λ1; alias interleukin-29). However, autoantibodies to the unrelated type II IFN, IFN-γ, and other immunoregulatory cytokines, such as interleukin-10 and interleukin-12, were much rarer and did not neutralise.
Neutralising titres against type I IFNs averaged even higher in patients with APS1 than in patients with thymomas. Anti–type I IFN autoantibodies preceded overt candidiasis (and several of the autoimmune disorders) in the informative patients, and persisted for decades thereafter. They were undetectable in unaffected heterozygous relatives of APS1 probands (except for low titres against IFN-λ1), in APS2 patients, and in isolated cases of the endocrine diseases most typical of APS1, so they appear to be APS1-specific.
Looking for potentially autoimmunising cell types, we found numerous IFN-α+ antigen-presenting cells—plus strong evidence of local IFN secretion—in the normal thymic medulla (where AIRE expression is strongest), and also in normal germinal centres, where it could perpetuate these autoantibody responses once initiated. IFN-α2 and IFN-α8 transcripts were also more abundant in antigen-presenting cells cultured from an APS1 patient's blood than from age-matched healthy controls.
Conclusions
These apparently spontaneous autoantibody responses to IFNs, particularly IFN-α and IFN-ω, segregate like a recessive trait; their high “penetrance” is especially remarkable for such a variable condition. Their apparent restriction to APS1 patients implies practical value in the clinic, e.g., in diagnosing unusual or prodromal AIRE-mutant patients with only single components of APS1, and possibly in prognosis if they prove to predict its onset. These autoantibody responses also raise numerous questions, e.g., about the rarity of other infections in APS1. Moreover, there must also be clues to autoimmunising mechanisms/cell types in the hierarchy of preferences for IFN-ω, IFN-α8, IFN-α2, and IFN-β and IFN-λ1.
Almost all of nearly 100 APS1 patients studied made large amounts of auto-antibodies that blocked the function of IFN-α and IFN-ω. The antibodies appeared early during development of the disease and may play a role in its etiology.
Editors' Summary
Background.
The human body is under constant attack by viruses, bacteria, fungi, and parasites, but the immune system usually prevents these pathogens from causing disease. To be effective, the immune system has to respond rapidly to foreign antigens (bits of protein specific to pathogens) while ignoring self-antigens. If tolerance to self-antigens breaks down, autoimmunity develops, often causing disease. There are many common autoimmune diseases—type I diabetes and multiple sclerosis, for example—but because these involve defects in many genes as well as environmental factors, the details of how autoimmunity develops remain unclear. Autoimmune polyendocrinopathy syndrome type 1 (APS1), however, is caused by defects in a single gene. Patients with this rare disease characteristically have defects (or mutations) in both copies of a gene called AIRE (for autoimmune regulator). In normal people, the protein product of this gene helps to establish tolerance to a subset of self-antigens. People carrying AIRE mutations make an autoimmune response against some of their own tissues, typically the endocrine (hormone-producing) tissues that control body metabolism. A major component of this autoimmune response are “autoantibodies” (antibodies are immune molecules that normally recognize and attack foreign substances, whereas autoantibodies are directed against the body's own molecules).
Why Was This Study Done?
For a diagnosis of APS1, a patient must have at least two of the following symptoms: recurrent, localized yeast infections (usually the first symptom of the disease to appear in early childhood), hypoparathyroidism (failure of the gland that controls calcium levels in the body), and Addison disease (failure of the steroid-producing adrenal glands, which help the body respond to stress). The researchers who did this study had previously noticed that these yeast infections and autoimmunity (usually against muscle) can also occur in patients with tumors of the thymus (thymomas). The thymus is the organ that generates immune cells called T cells. Generation of the T cell repertoire in the thymus involves selection of those T cells that recognize only foreign substances. T cells that can react against self-antigens are eliminated, and the AIRE gene is thought to be involved in this “education process.” Like those with APS1, patients with thymomas make autoantibodies not only against target organs (especially muscle in their case), but also against interferon alpha (IFN-α) and interferon omega (IFN-ω), two secreted immune regulators. The researchers wanted to know if patients with APS1 also make autoantibodies against interferons, because this could provide insights into how autoimmunity develops in APS1 and other autoimmune diseases.
What Did the Researchers Do and Find?
The researchers tested blood from nearly 100 APS1 patients for antibodies to IFN-α, IFN-ω, and other immunoregulatory cytokines. They found that almost all patients made large amounts of antibodies that blocked the function of IFN-α and IFN-ω; some also made lower amounts of antibodies against two related interferons, but none made blocking antibodies against unrelated interferons or other immune regulators. For many patients, serum samples were available at different times during their disease, which allowed the researchers to show that the antibodies appeared early in disease development, before the onset of yeast infections or damage to endocrine tissues, and their production continued for decades as the patient aged. Furthermore, only patients with APS1 made these antibodies—they were absent in patients with Addison disease alone, for example.
What Do These Findings Mean?
The discovery that autoantibodies to IFN-α and IFN-ω are made persistently in patients with APS1 suggests ways in which autoimmunity develops in these patients. These can now be investigated further both in patients and in animal models of the disease. The discovery also has practical implications. Measurement of these autoantibodies might help some APS1 patients by allowing earlier diagnosis—and prompter treatment—than in current practice. The levels of these autoantibodies might also help to predict the time course of APS1 in individual patients, although more studies will be needed to check this out. Finally, if future studies show that interferon autoantibodies are responsible for the patients' susceptibility to yeast infections (which seems plausible), treatment with IFN-γ, an interferon to which APS1 patients do not make autoantibodies, might provide an alternative way to deal with this problem.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030289.
• MedlinePlus pages on autoimmune diseases
• Online Mendelian Inheritance in Man page on APS1
• Links to patient information on APS1 from the Stanford Health Library
• Wikipedia page on autoendocrine polyendocrinopathy (note: Wikipedia is a free online encyclopedia that anyone can edit)
• Information on autoimmunity from the American Autoimmune Related Diseases Association
doi:10.1371/journal.pmed.0030289
PMCID: PMC1475653  PMID: 16784312
5.  Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets 
PLoS Medicine  2006;3(9):e360.
Background
Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.
Methods and Findings
Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.
Conclusions
The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.
Promising preclinical results on safety, immunogenicity, and efficacy against diverse H5N1 strains provide support for careful evaluation of live, attenuated H5N1 vaccines in clinical trials in humans.
Editors' Summary
Background.
Influenza A viruses are classified into subtypes according to two of the proteins from the virus surface, the hemagglutinin (HA) and neuraminidase (NA) proteins, each of which occurs naturally in several different versions. For example, the global epidemic (pandemic) of 1918–1919 was caused by an influenza virus containing subtype 1 hemagglutinin and subtype 1 neuraminidase (H1N1), the 1957–1958 pandemic involved an H2N2 virus, and the 1969 pandemic, H3N2. Since 1997, several serious outbreaks of H5N1 infection have occurred in poultry and in humans, raising concerns that H5N1 “bird flu” may cause the next human influenza pandemic. Although human-to-human transmission of H5N1 viruses appears limited, mortality rates in human outbreaks of the disease have been alarmingly high—approximately 50%. A protective vaccine against H5N1 influenza might not only benefit regions where transmission from poultry to humans occurs, but could conceivably avert global catastrophe in the event that H5N1 evolves such that human-to-human spread becomes more frequent.
Why Was This Study Done?
Several approaches are in progress to develop vaccines against H5N1 viruses. To date, the products that have been tested in humans have not been very effective in producing a strong immune response. To be optimal for human use, a vaccine would have to be very safe, remain stable in storage, and provide protection against influenza caused by naturally occurring H5N1 viruses that are not precisely identical to the ones used to make the vaccine. This study was done to develop a new H5N1 vaccine and to test it in animals.
What Did the Researchers Do and Find?
The researchers developed vaccines using three artificially constructed, weakened forms of the H5N1 influenza virus. The three vaccine viruses were constructed using flu virus proteins other than HA and NA from an artificially weakened (attenuated) strain of influenza. These were combined in laboratory-grown cells with HA and NA proteins from H5N1 viruses isolated from human cases during three different years: 2004, 2003, and 1997. They grew larger quantities of the resulting viruses in hen's eggs, and tested the vaccines in chickens, ferrets, and mice.
In tests of safety, the study found that, unlike the natural viruses from which they were derived, the vaccine strains did not cause death when injected into the bloodstream of chickens, and did not even cause infection when given through the birds' breathing passages. Similarly, while the natural viruses were lethal in mice at various doses, the vaccine strains did not cause death even at the highest dose. In ferrets, infection with the vaccine strains was limited to the upper respiratory tract, while the natural viruses spread to the lungs and other organs.
In tests of protection, all mice that had received any of the three vaccines survived following infection with any of the natural viruses (so-called viral challenge), while unvaccinated mice died following viral challenge. This occurred even though standard blood tests could not detect a strong immune responses following a single dose of vaccine. Challenge virus was detected in the lungs of the immunized mice, but at lower levels than in the unvaccinated mice. Mice given two doses of a vaccine showed stronger immunity on blood tests, and almost complete protection from respiratory infection following challenge. In addition, mice and ferrets that had received two doses of vaccine were protected against challenge with H5N1 strains from more recent outbreaks in Asia that differed substantially from the strains that were used for the vaccine.
What Do These Findings Mean?
This study shows that it is possible to create a live, attenuated vaccine based on a single H5N1 virus that can provide protection (in mice and ferrets, at least) against different H5N1 viruses that emerge years later. Attenuated influenza virus vaccines of this sort are unlikely to be useful to protect fowl because they do not infect or induce an immune response in chickens. However, while the safety and protection found in small animals are encouraging, it is not possible to know without human testing whether a vaccine that protects mice and ferrets will work in humans, or how this type of vaccine may compare with others being developed for use in humans against H5N1 influenza. Tests of one of the vaccines in human volunteers in carefully conducted clinical trials are currently under way.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030360.
WHO Influenza Pandemic Preparedness page
US Department of Health and Human Services Avian and Pandemic flu information site
Wikipedia entry on H5N1 (note: Wikipedia is a free Internet encyclopedia that anyone can edit)
CDC Avian Influenza Web page
doi:10.1371/journal.pmed.0030360
PMCID: PMC1564176  PMID: 16968127
6.  Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD) 
Executive Summary
In July 2010, the Medical Advisory Secretariat (MAS) began work on a Chronic Obstructive Pulmonary Disease (COPD) evidentiary framework, an evidence-based review of the literature surrounding treatment strategies for patients with COPD. This project emerged from a request by the Health System Strategy Division of the Ministry of Health and Long-Term Care that MAS provide them with an evidentiary platform on the effectiveness and cost-effectiveness of COPD interventions.
After an initial review of health technology assessments and systematic reviews of COPD literature, and consultation with experts, MAS identified the following topics for analysis: vaccinations (influenza and pneumococcal), smoking cessation, multidisciplinary care, pulmonary rehabilitation, long-term oxygen therapy, noninvasive positive pressure ventilation for acute and chronic respiratory failure, hospital-at-home for acute exacerbations of COPD, and telehealth (including telemonitoring and telephone support). Evidence-based analyses were prepared for each of these topics. For each technology, an economic analysis was also completed where appropriate. In addition, a review of the qualitative literature on patient, caregiver, and provider perspectives on living and dying with COPD was conducted, as were reviews of the qualitative literature on each of the technologies included in these analyses.
The Chronic Obstructive Pulmonary Disease Mega-Analysis series is made up of the following reports, which can be publicly accessed at the MAS website at: http://www.hqontario.ca/en/mas/mas_ohtas_mn.html.
Chronic Obstructive Pulmonary Disease (COPD) Evidentiary Framework
Influenza and Pneumococcal Vaccinations for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Smoking Cessation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Community-Based Multidisciplinary Care for Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Pulmonary Rehabilitation for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Long-term Oxygen Therapy for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Acute Respiratory Failure Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Noninvasive Positive Pressure Ventilation for Chronic Respiratory Failure Patients With Stable Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Hospital-at-Home Programs for Patients with Acute Exacerbations of Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Home Telehealth for Patients With Chronic Obstructive Pulmonary Disease (COPD): An Evidence-Based Analysis
Cost-Effectiveness of Interventions for Chronic Obstructive Pulmonary Disease Using an Ontario Policy Model
Experiences of Living and Dying With COPD: A Systematic Review and Synthesis of the Qualitative Empirical Literature
For more information on the qualitative review, please contact Mita Giacomini at: http://fhs.mcmaster.ca/ceb/faculty_member_giacomini.htm.
For more information on the economic analysis, please visit the PATH website: http://www.path-hta.ca/About-Us/Contact-Us.aspx.
The Toronto Health Economics and Technology Assessment (THETA) collaborative has produced an associated report on patient preference for mechanical ventilation. For more information, please visit the THETA website: http://theta.utoronto.ca/static/contact.
Objective
The objective of this analysis was to determine the effectiveness of the influenza vaccination and the pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) in reducing the incidence of influenza-related illness or pneumococcal pneumonia.
Clinical Need: Condition and Target Population
Influenza Disease
Influenza is a global threat. It is believed that the risk of a pandemic of influenza still exists. Three pandemics occurred in the 20th century which resulted in millions of deaths worldwide. The fourth pandemic of H1N1 influenza occurred in 2009 and affected countries in all continents.
Rates of serious illness due to influenza viruses are high among older people and patients with chronic conditions such as COPD. The influenza viruses spread from person to person through sneezing and coughing. Infected persons can transfer the virus even a day before their symptoms start. The incubation period is 1 to 4 days with a mean of 2 days. Symptoms of influenza infection include fever, shivering, dry cough, headache, runny or stuffy nose, muscle ache, and sore throat. Other symptoms such as nausea, vomiting, and diarrhea can occur.
Complications of influenza infection include viral pneumonia, secondary bacterial pneumonia, and other secondary bacterial infections such as bronchitis, sinusitis, and otitis media. In viral pneumonia, patients develop acute fever and dyspnea, and may further show signs and symptoms of hypoxia. The organisms involved in bacterial pneumonia are commonly identified as Staphylococcus aureus and Hemophilus influenza. The incidence of secondary bacterial pneumonia is most common in the elderly and those with underlying conditions such as congestive heart disease and chronic bronchitis.
Healthy people usually recover within one week but in very young or very old people and those with underlying medical conditions such as COPD, heart disease, diabetes, and cancer, influenza is associated with higher risks and may lead to hospitalization and in some cases death. The cause of hospitalization or death in many cases is viral pneumonia or secondary bacterial pneumonia. Influenza infection can lead to the exacerbation of COPD or an underlying heart disease.
Streptococcal Pneumonia
Streptococcus pneumoniae, also known as pneumococcus, is an encapsulated Gram-positive bacterium that often colonizes in the nasopharynx of healthy children and adults. Pneumococcus can be transmitted from person to person during close contact. The bacteria can cause illnesses such as otitis media and sinusitis, and may become more aggressive and affect other areas of the body such as the lungs, brain, joints, and blood stream. More severe infections caused by pneumococcus are pneumonia, bacterial sepsis, meningitis, peritonitis, arthritis, osteomyelitis, and in rare cases, endocarditis and pericarditis.
People with impaired immune systems are susceptible to pneumococcal infection. Young children, elderly people, patients with underlying medical conditions including chronic lung or heart disease, human immunodeficiency virus (HIV) infection, sickle cell disease, and people who have undergone a splenectomy are at a higher risk for acquiring pneumococcal pneumonia.
Technology
Influenza and Pneumococcal Vaccines
Trivalent Influenza Vaccines in Canada
In Canada, 5 trivalent influenza vaccines are currently authorized for use by injection. Four of these are formulated for intramuscular use and the fifth product (Intanza®) is formulated for intradermal use.
The 4 vaccines for intramuscular use are:
Fluviral (GlaxoSmithKline), split virus, inactivated vaccine, for use in adults and children ≥ 6 months;
Vaxigrip (Sanofi Pasteur), split virus inactivated vaccine, for use in adults and children ≥ 6 months;
Agriflu (Novartis), surface antigen inactivated vaccine, for use in adults and children ≥ 6 months; and
Influvac (Abbott), surface antigen inactivated vaccine, for use in persons ≥ 18 years of age.
FluMist is a live attenuated virus in the form of an intranasal spray for persons aged 2 to 59 years. Immunization with current available influenza vaccines is not recommended for infants less than 6 months of age.
Pneumococcal Vaccine
Pneumococcal polysaccharide vaccines were developed more than 50 years ago and have progressed from 2-valent vaccines to the current 23-valent vaccines to prevent diseases caused by 23 of the most common serotypes of S pneumoniae. Canada-wide estimates suggest that approximately 90% of cases of pneumococcal bacteremia and meningitis are caused by these 23 serotypes. Health Canada has issued licenses for 2 types of 23-valent vaccines to be injected intramuscularly or subcutaneously:
Pneumovax 23® (Merck & Co Inc. Whitehouse Station, NJ, USA), and
Pneumo 23® (Sanofi Pasteur SA, Lion, France) for persons 2 years of age and older.
Other types of pneumococcal vaccines licensed in Canada are for pediatric use. Pneumococcal polysaccharide vaccine is injected only once. A second dose is applied only in some conditions.
Research Questions
What is the effectiveness of the influenza vaccination and the pneumococcal vaccination compared with no vaccination in COPD patients?
What is the safety of these 2 vaccines in COPD patients?
What is the budget impact and cost-effectiveness of these 2 vaccines in COPD patients?
Research Methods
Literature search
Search Strategy
A literature search was performed on July 5, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2000 to July 5, 2010. The search was updated monthly through the AutoAlert function of the search up to January 31, 2011. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established. Data extraction was carried out by the author.
Inclusion Criteria
studies comparing clinical efficacy of the influenza vaccine or the pneumococcal vaccine with no vaccine or placebo;
randomized controlled trials published between January 1, 2000 and January 31, 2011;
studies including patients with COPD only;
studies investigating the efficacy of types of vaccines approved by Health Canada;
English language studies.
Exclusion Criteria
non-randomized controlled trials;
studies investigating vaccines for other diseases;
studies comparing different variations of vaccines;
studies in which patients received 2 or more types of vaccines;
studies comparing different routes of administering vaccines;
studies not reporting clinical efficacy of the vaccine or reporting immune response only;
studies investigating the efficacy of vaccines not approved by Health Canada.
Outcomes of Interest
Primary Outcomes
Influenza vaccination: Episodes of acute respiratory illness due to the influenza virus.
Pneumococcal vaccination: Time to the first episode of community-acquired pneumonia either due to pneumococcus or of unknown etiology.
Secondary Outcomes
rate of hospitalization and mechanical ventilation
mortality rate
adverse events
Quality of Evidence
The quality of each included study was assessed taking into consideration allocation concealment, randomization, blinding, power/sample size, withdrawals/dropouts, and intention-to-treat analyses. The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Efficacy of the Influenza Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The influenza vaccination was associated with significantly fewer episodes of influenza-related acute respiratory illness (ARI). The incidence density of influenza-related ARI was:
All patients: vaccine group: (total of 4 cases) = 6.8 episodes per 100 person-years; placebo group: (total of 17 cases) = 28.1 episodes per 100 person-years, (relative risk [RR], 0.2; 95% confidence interval [CI], 0.06−0.70; P = 0.005).
Patients with severe airflow obstruction (forced expiratory volume in 1 second [FEV1] < 50% predicted): vaccine group: (total of 1 case) = 4.6 episodes per 100 person-years; placebo group: (total of 7 cases) = 31.2 episodes per 100 person-years, (RR, 0.1; 95% CI, 0.003−1.1; P = 0.04).
Patients with moderate airflow obstruction (FEV1 50%−69% predicted): vaccine group: (total of 2 cases) = 13.2 episodes per 100 person-years; placebo group: (total of 4 cases) = 23.8 episodes per 100 person-years, (RR, 0.5; 95% CI, 0.05−3.8; P = 0.5).
Patients with mild airflow obstruction (FEV1 ≥ 70% predicted): vaccine group: (total of 1 case) = 4.5 episodes per 100 person-years; placebo group: (total of 6 cases) = 28.2 episodes per 100 person-years, (RR, 0.2; 95% CI, 0.003−1.3; P = 0.06).
The Kaplan-Meier survival analysis showed a significant difference between the vaccinated group and the placebo group regarding the probability of not acquiring influenza-related ARI (log-rank test P value = 0.003). Overall, the vaccine effectiveness was 76%. For categories of mild, moderate, or severe COPD the vaccine effectiveness was 84%, 45%, and 85% respectively.
With respect to hospitalization, fewer patients in the vaccine group compared with the placebo group were hospitalized due to influenza-related ARIs, although these differences were not statistically significant. The incidence density of influenza-related ARIs that required hospitalization was 3.4 episodes per 100 person-years in the vaccine group and 8.3 episodes per 100 person-years in the placebo group (RR, 0.4; 95% CI, 0.04−2.5; P = 0.3; log-rank test P value = 0.2). Also, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD.
Fewer patients in the vaccine group compared with the placebo group required mechanical ventilation due to influenza-related ARIs. However, these differences were not statistically significant. The incidence density of influenza-related ARIs that required mechanical ventilation was 0 episodes per 100 person-years in the vaccine group and 5 episodes per 100 person-years in the placebo group (RR, 0.0; 95% CI, 0−2.5; P = 0.1; log-rank test P value = 0.4). In addition, no statistically significant differences between the 2 groups were observed for the 3 categories of severity of COPD. The effectiveness of the influenza vaccine in preventing influenza-related ARIs and influenza-related hospitalization was not related to age, sex, severity of COPD, smoking status, or comorbid diseases.
safety
Overall, significantly more patients in the vaccine group than the placebo group experienced local adverse reactions (vaccine: 17 [27%], placebo: 4 [6%]; P = 0.002). Significantly more patients in the vaccine group than the placebo group experienced swelling (vaccine 4, placebo 0; P = 0.04) and itching (vaccine 4, placebo 0; P = 0.04). Systemic reactions included headache, myalgia, fever, and skin rash and there were no significant differences between the 2 groups for these reactions (vaccine: 47 [76%], placebo: 51 [81%], P = 0.5).
With respect to lung function, dyspneic symptoms, and exercise capacity, there were no significant differences between the 2 groups at 1 week and at 4 weeks in: FEV1, maximum inspiratory pressure at residual volume, oxygen saturation level of arterial blood, visual analogue scale for dyspneic symptoms, and the 6 Minute Walking Test for exercise capacity.
There was no significant difference between the 2 groups with regard to the probability of not acquiring total ARIs (influenza-related and/or non-influenza-related); (log-rank test P value = 0.6).
Summary of Efficacy of the Pneumococcal Vaccination in Immunocompetent Patients With COPD
Clinical Effectiveness
The Kaplan-Meier survival analysis showed no significant differences between the group receiving the penumoccocal vaccination and the control group for time to the first episode of community-acquired pneumonia due to pneumococcus or of unknown etiology (log-rank test 1.15; P = 0.28). Overall, vaccine efficacy was 24% (95% CI, −24 to 54; P = 0.33).
With respect to the incidence of pneumococcal pneumonia, the Kaplan-Meier survival analysis showed a significant difference between the 2 groups (vaccine: 0/298; control: 5/298; log-rank test 5.03; P = 0.03).
Hospital admission rates and median length of hospital stays were lower in the vaccine group, but the difference was not statistically significant. The mortality rate was not different between the 2 groups.
Subgroup Analysis
The Kaplan-Meier survival analysis showed significant differences between the vaccine and control groups for pneumonia due to pneumococcus and pneumonia of unknown etiology, and when data were analyzed according to subgroups of patients (age < 65 years, and severe airflow obstruction FEV1 < 40% predicted). The accumulated percentage of patients without pneumonia (due to pneumococcus and of unknown etiology) across time was significantly lower in the vaccine group than in the control group in patients younger than 65 years of age (log-rank test 6.68; P = 0.0097) and patients with a FEV1 less than 40% predicted (log-rank test 3.85; P = 0.0498).
Vaccine effectiveness was 76% (95% CI, 20−93; P = 0.01) for patients who were less than 65 years of age and −14% (95% CI, −107 to 38; P = 0.8) for those who were 65 years of age or older. Vaccine effectiveness for patients with a FEV1 less than 40% predicted and FEV1 greater than or equal to 40% predicted was 48% (95% CI, −7 to 80; P = 0.08) and −11% (95% CI, −132 to 47; P = 0.95), respectively. For patients who were less than 65 years of age (FEV1 < 40% predicted), vaccine effectiveness was 91% (95% CI, 35−99; P = 0.002).
Cox modelling showed that the effectiveness of the vaccine was dependent on the age of the patient. The vaccine was not effective in patients 65 years of age or older (hazard ratio, 1.53; 95% CI, 0.61−a2.17; P = 0.66) but it reduced the risk of acquiring pneumonia by 80% in patients less than 65 years of age (hazard ratio, 0.19; 95% CI, 0.06−0.66; P = 0.01).
safety
No patients reported any local or systemic adverse reactions to the vaccine.
PMCID: PMC3384373  PMID: 23074431
7.  Cross-Reactive Neuraminidase Antibodies Afford Partial Protection against H5N1 in Mice and Are Present in Unexposed Humans 
PLoS Medicine  2007;4(2):e59.
Background
A pandemic H5N1 influenza outbreak would be facilitated by an absence of immunity to the avian-derived virus in the human population. Although this condition is likely in regard to hemagglutinin-mediated immunity, the neuraminidase (NA) of H5N1 viruses (avN1) and of endemic human H1N1 viruses (huN1) are classified in the same serotype. We hypothesized that an immune response to huN1 could mediate cross-protection against H5N1 influenza virus infection.
Methods and Findings
Mice were immunized against the NA of a contemporary human H1N1 strain by DNA vaccination. They were challenged with recombinant A/Puerto Rico/8/34 (PR8) viruses bearing huN1 (PR8-huN1) or avN1 (PR8-avN1) or with H5N1 virus A/Vietnam/1203/04. Additional naïve mice were injected with sera from vaccinated mice prior to H5N1 challenge. Also, serum specimens from humans were analyzed for reactivity with avN1. Immunization elicited a serum IgG response to huN1 and robust protection against the homologous challenge virus. Immunized mice were partially protected from lethal challenge with H5N1 virus or recombinant PR8-avN1. Sera transferred from immunized mice to naïve animals conferred similar protection against H5N1 mortality. Analysis of human sera showed that antibodies able to inhibit the sialidase activity of avN1 exist in some individuals.
Conclusions
These data reveal that humoral immunity elicited by huN1 can partially protect against H5N1 infection in a mammalian host. Our results suggest that a portion of the human population could have some degree of resistance to H5N1 influenza, with the possibility that this could be induced or enhanced through immunization with seasonal influenza vaccines.
Humoral immunity against endemic human H1N1 influenza viruses can partially protect mice against H5N1 challenge, raising the possibility that a portion of the human population could have some degree of resistance against avian flu.
Editors' Summary
Background.
Every winter, millions of people catch influenza—a viral infection of the airways. Most recover quickly but influenza can kill infants, elderly people, and chronically ill individuals. To minimize these deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. Each year's vaccine contains disabled versions of the circulating strains of influenza A type H1N1 and H3N2 viruses, and of influenza B virus. The H and N refer to the major influenza A antigens (hemagglutinin and neuraminidase), and the numbers refer to the type of each antigen; different H1N1 and H3N2 virus strains contain small variations in their respective hemagglutinin and neuraminidase type. Vaccines provide protection against seasonal influenza outbreaks, but sometimes flu viruses emerge that contain major antigenic changes, such as a different hemagglutinin type. These viruses can start pandemics (global outbreaks) because populations have little immunity to them. Many scientists believe that avian (bird) H5N1 influenza virus (which has caused about 250 confirmed cases of human flu and 150 deaths) could trigger the next human pandemic.
Why Was This Study Done?
Avian influenza H5N1 virus has not started a human pandemic yet because it cannot move easily between people. If it acquires this property, it could kill millions before an effective vaccine could be developed, so researchers are looking for other ways to provide protection against avian H5N1. One possibility is that an immune response to the human type 1 neuraminidase (huN1) in circulating H1N1 influenza virus strains and vaccines could provide some protection against avian H5N1 influenza virus, which contains the closely related avian type 1 neuraminidase (avN1). In this study, the researchers have investigated this possibility in mice and in a small human study.
What Did the Researchers Do and Find?
The researchers immunized mice with DNA encoding the huN1 present in a circulating H1N1 virus. They then examined the immune response of the mice to this huN1 and to avN1 from an avian H5N1 virus isolated from a human patient (A/Vietnam/1203/04). Most of the mice made antibodies (proteins that recognize antigens) against huN1; a few also made detectable levels of antibodies against avN1. All the vaccinated mice survived infection with a man-made flu virus containing huN1, and half also survived infection with low doses of a man-made virus containing avN1 or A/Vietnam/1203/04. To test whether the antibodies made by the vaccinated mice were responsible for this partial protection, the researchers collected serum (the liquid part of blood that contains the antibodies) from them and injected it into unvaccinated mice. Again, about half of the mice survived infection with the H5N1 virus, which indicates that the huN1-induced immunity against H5N1 is largely mediated by antibodies. Finally, the researchers tested serum samples from 38 human volunteers for their ability to inhibit neuraminidase from an H1N1 virus and two H5N1 viruses (antibodies to neuraminidase reduce viral replication and disease severity by inhibiting neuraminidase activity). Most of the sera inhibited the enzyme from the H1N1 virus; and seven also inhibited the enzyme from both H5N1 viruses.
What Do These Findings Mean?
These findings indicate that a vaccine containing huN1 induces the production of antibodies in mice that partly protect them against H5N1 infection. In addition, the human study suggests that some people may have some degree of resistance to H5N1 influenza because of exposure to H1N1 viruses or routine influenza vaccination. These results, while intriguing, don't show that there is actual protection, but it seems well worth doing additional work to address this question. The researchers also suggest that many more people might have been infected already with H5N1 but their strong H1N1 immunity meant they had only mild symptoms, and this hypothesis also deserves further investigation. Overall, these findings raise the possibility that seasonal influenza vaccination may provide some protection against pandemic H5N1. It is worth discussing whether, even while further studies are underway, seasonal vaccination should be increased, especially in areas where H5N1 is present in birds.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040059.
A related PLoS Medicine Perspective article by Laura Gillim-Ross and Kanta Subbarao is available
US Centers for Disease Control and Prevention provides information about influenza for patients and professionals, including key facts about avian influenza and vaccination
US National Institute of Allergy and Infectious Disease has a feature on seasonal, avian and pandemic flu
World Health Organization has fact sheets on influenza and influenza vaccines, and information on avian influenza
UK Health Protection Agency provides information on seasonal, avian, and pandemic influenza
doi:10.1371/journal.pmed.0040059
PMCID: PMC1796909  PMID: 17298168
8.  A Comparative Analysis of Influenza Vaccination Programs 
PLoS Medicine  2006;3(10):e387.
Background
The threat of avian influenza and the 2004–2005 influenza vaccine supply shortage in the United States have sparked a debate about optimal vaccination strategies to reduce the burden of morbidity and mortality caused by the influenza virus.
Methods and Findings
We present a comparative analysis of two classes of suggested vaccination strategies: mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations. Applying the methods of contact network epidemiology to a model of disease transmission in a large urban population, we assume that vaccine supplies are limited and then evaluate the efficacy of these strategies across a wide range of viral transmission rates and for two different age-specific mortality distributions.
We find that the optimal strategy depends critically on the viral transmission level (reproductive rate) of the virus: morbidity-based strategies outperform mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. These results hold for a range of mortality rates reported for prior influenza epidemics and pandemics. Furthermore, we show that vaccination delays and multiple introductions of disease into the community have a more detrimental impact on morbidity-based strategies than mortality-based strategies.
Conclusions
If public health officials have reasonable estimates of the viral transmission rate and the frequency of new introductions into the community prior to an outbreak, then these methods can guide the design of optimal vaccination priorities. When such information is unreliable or not available, as is often the case, this study recommends mortality-based vaccination priorities.
A comparative analysis of two classes of suggested vaccination strategies, mortality-based strategies that target high-risk populations and morbidity-based strategies that target high-prevalence populations.
Editors' Summary
Background.
Influenza—a viral infection of the nose, throat, and airways that is transmitted in airborne droplets released by coughing or sneezing—is a serious public health threat. Most people recover quickly from influenza, but some individuals, especially infants, old people, and individuals with chronic health problems, can develop pneumonia and die. In the US, seasonal outbreaks (epidemics) of flu cause an estimated 36,000 excess deaths annually. And now there are fears that avian influenza might start a human pandemic—a global epidemic that could kill millions. Seasonal outbreaks of influenza occur because flu viruses continually change the viral proteins (antigens) to which the immune system responds. “Antigenic drift”—small changes in these proteins—means that an immune system response that combats flu one year may not provide complete protection the next winter. “Antigenic shift”—large antigen changes—can cause pandemics because communities have no immunity to the changed virus. Annual vaccination with vaccines based on the currently circulating viruses controls seasonal flu epidemics; to control a pandemic, vaccines based on the antigenically altered virus would have to be quickly developed.
Why Was This Study Done?
Most countries target vaccination efforts towards the people most at risk of dying from influenza, and to health-care workers who are likely come into contact with flu patients. But is this the best way to reduce the burden of illness (morbidity) and death (mortality) caused by influenza, particularly at the start of a pandemic, when vaccine would be limited? Old people and infants are much less likely to catch and spread influenza than school children, students, and employed adults, so could vaccination of these sections of the population—instead of those most at risk of death—be the best way to contain influenza outbreaks? In this study, the researchers used an analytical method called “contact network epidemiology” to compare two types of vaccination strategies: the currently favored mortality-based strategy, which targets high-risk individuals, and a morbidity-based strategy, which targets those segments of the community in which most influenza cases occur.
What Did the Researchers Do and Find?
Most models of disease transmission assume that each member of a community is equally likely to infect every other member. But a baby is unlikely to transmit flu to, for example, an unrelated, housebound elderly person. Contact network epidemiology takes the likely relationships between people into account when modeling disease transmission. Using information from Vancouver, British Columbia, Canada, on household size, age distribution, and occupations, and other factors such as school sizes, the researchers built a model population of a quarter of a million interconnected people. They then investigated how different vaccination strategies controlled the spread of influenza in this population. The optimal strategy depended on the level of viral transmissibility—the likelihood that an infectious person transmits influenza to a susceptible individual with whom he or she has contact. For moderately transmissible flu viruses, a morbidity-based vaccination strategy, in which the people most likely to catch the flu are vaccinated, was more effective at containing seasonal and pandemic outbreaks than a mortality-based strategy, in which the people most likely to die if they caught the flu are vaccinated. For highly transmissible strains, this situation was reversed. The level of transmissibility at which this reversal occurred depended on several factors, including whether vaccination was delayed and how many times influenza was introduced into the community.
What Do These Findings Mean?
The researchers tested their models by checking that they could replicate real influenza epidemics and pandemics, but, as with all mathematical models, they included many assumptions about influenza in their calculations, which may affect their results. Also, because the contact network used data from Vancouver, their results might not be applicable to other cities, or to nonurban areas. Nevertheless, their findings have important public health implications. When there are reasonable estimates of the viral transmission rate, and it is known how often influenza is being introduced into a community, contact network models could help public health officials choose between morbidity- and mortality-based vaccination strategies. When the viral transmission rate is unreliable or unavailable (for example, at the start of a pandemic), the best policy would be the currently preferred strategy of mortality-based vaccination. More generally, the use of contact network models should improve estimates of how infectious diseases spread through populations and indicate the best ways to control human epidemics and pandemics.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030387.
US Centers for Disease Control and Prevention information about influenza for patients and professionals, including key facts on vaccination
US National Institute of Allergy and Infectious Diseases feature on seasonal, avian, and pandemic influenza
World Health Organization fact sheet on influenza, with links to information on vaccination
UK Health Protection Agency information on seasonal, avian, and pandemic influenza
MedlinePlus entry on influenza
doi:10.1371/journal.pmed.0030387
PMCID: PMC1584413  PMID: 17020406
9.  Long-Term Clinical Protection from Falciparum Malaria Is Strongly Associated with IgG3 Antibodies to Merozoite Surface Protein 3 
PLoS Medicine  2007;4(11):e320.
Background
Surrogate markers of protective immunity to malaria in humans are needed to rationalize malaria vaccine discovery and development. In an effort to identify such markers, and thereby provide a clue to the complex equation malaria vaccine development is facing, we investigated the relationship between protection acquired through exposure in the field with naturally occurring immune responses (i.e., induced by the parasite) to molecules that are considered as valuable vaccine candidates.
Methods and Findings
We analyzed, under comparative conditions, the antibody responses of each of six isotypes to five leading malaria vaccine candidates in relation to protection acquired by exposure to natural challenges in 217 of the 247 inhabitants of the African village of Dielmo, Senegal (96 children and 121 older adolescents and adults). The status of susceptibility or resistance to malaria was determined by active case detection performed daily by medical doctors over 6 y from a unique follow-up study of this village. Of the 30 immune responses measured, only one, antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3), was strongly associated with clinical protection against malaria in all age groups, i.e., independently of age. This immunological parameter had a higher statistical significance than the sickle cell trait, the strongest factor of protection known against Plasmodium falciparum. A single determination of antibody was significantly associated with the clinical outcome over six consecutive years in children submitted to massive natural parasite challenges by mosquitoes (over three parasite inoculations per week). Finally, the target epitopes of these antibodies were found to be fully conserved.
Conclusions
Since anti-MSP3 IgG3 antibodies can naturally develop along with protection against P. falciparum infection in young children, our results provide the encouraging indication that these antibodies should be possible to elicit by vaccination early in life. Since these antibodies have been found to achieve parasite killing under in vitro and in vivo conditions, and since they can be readily elicited by immunisation in naïve volunteers, our immunoepidemiological findings support the further development of MSP3-based vaccine formulations.
Using data from malaria cases in Senegal, Pierre Druilhe and colleagues found that antibodies of the IgG3 isotype directed to merozoite surface protein 3 (MSP3) were strongly predictive of clinical outcome.
Editors' Summary
Background.
Malaria kills about one million people—mainly children—every year. Most of these deaths are caused by Plasmodium falciparum, a parasite transmitted to people through the bites of infected mosquitoes. In the human body, the parasites replicate in liver cells before changing into so-called “merozoites.” These infect red blood cells, where they replicate rapidly before bursting out and infecting more red blood cells. This massive increase in the number of parasites in the body causes a fever and can also damage vital organs. Although individuals can protect themselves against being bitten by mosquitoes, a vaccine is urgently needed to reduce the global burden of malaria. Vaccines help the immune system fight infectious diseases. When a disease-causing organism (pathogen) enters the human body, the immune system produces antibodies. These are proteins that recognize molecules (antigens) on the pathogen and that enlist other parts of the immune system to kill the invader. This process is often slow the first time around, so people can be ill for a while. However, the immune system “remembers” the experience and responds much quicker to subsequent attacks by the same pathogen. Vaccines, which contain antigens from pathogens, prepare the immune system so that it responds quickly and effectively to a pathogen's first attack.
Why Was This Study Done?
An effective vaccine against merozoites would limit the severity of malaria and prevent many deaths, but scientists do not know which of the antigens on merozoites stimulate a protective immune response. Each candidate therefore has to be tested in long, expensive field trials. Young children who live where malaria is endemic (i.e., always present) have frequent attacks of malaria but gradually develop natural immunity to the disease so that after the age 10 y, even though there are always parasites in their blood, they rarely become ill. If researchers knew which malaria antigens and which parts of the immune response are involved in natural immunity, they could use this information in vaccine design. In this study, the researchers have investigated which type of antibody (antibodies come in different varieties or “isotypes,” each of which does a slightly different job in the immune system) and which of five potential malaria antigens is associated with protection against clinical malaria.
What Did the Researchers Do and Find?
In 1990, the researchers started a unique study in Dielmo, Senegal, West Africa, a small village where malaria is transmission is very high all year round. For 7 y (although the initial analysis concentrated on data from the first two years) medical staff visited every villager daily to look for clinical signs of malaria. Diagnoses of malaria were checked by looking for parasites in blood samples. One year into the study, the researchers tested blood from each participant for antibodies that recognized the candidate malaria antigens. When they analyzed their data, they found that only one immune response—the production of antibodies of the IgG3 isotype directed against an antigen called merozoite surface protein 3 (MSP3)—was strongly associated with clinical protection against malaria in all age groups. The researchers also found that some of the children developed protection against malaria when they were very young. Furthermore, in children, production of anti-MSP3 IgG3 in 1991 was associated with protection against malaria for the next 6 y.
What Do These Findings Mean?
These findings show that the production of IgG3 antibodies that recognize MSP3 is strongly associated with the development of long-lasting natural protection against malaria. They also show that both protection and these antibodies can develop in very young children. Malaria transmission is unusually high in Dielmo, so these findings may not necessarily be relevant to regions where transmission is lower. In addition, although other research has shown that antibodies of this type can kill parasites in test tubes and in animals, it is possible that these antibodies are markers of, rather than causes of, protective immunity against malaria. Nevertheless, these findings support the continued development of MSP3-based vaccines, particularly since they suggest that early vaccination has the potential to protect infants against life-threatening attacks of malaria.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040320.
The MedlinePlus encyclopedia contains pages on malaria and on vaccination (in English and Spanish)
Information is available from the World Health Organization on malaria (in English, Spanish, French, Russian, Arabic, and Chinese)
The US Centers for Disease Control and Prevention provide information on malaria and on immune responses to malaria (in English and Spanish)
Information is available from the Malaria Vaccine Initiative on malaria and malaria vaccine development
doi:10.1371/journal.pmed.0040320
PMCID: PMC2071934  PMID: 18001147
10.  Removing the Age Restrictions for Rotavirus Vaccination: A Benefit-Risk Modeling Analysis 
PLoS Medicine  2012;9(10):e1001330.
A modeling analysis conducted by Manish Patel and colleagues predicts the possible number of rotavirus deaths prevented, and number of intussusception deaths caused, by use of an unrestricted rotavirus schedule in low- and middle-income countries.
Background
To minimize potential risk of intussusception, the World Health Organization (WHO) recommended in 2009 that rotavirus immunization should be initiated by age 15 weeks and completed before 32 weeks. These restrictions could adversely impact vaccination coverage and thereby its health impact, particularly in developing countries where delays in vaccination often occur.
Methods and Findings
We conducted a modeling study to estimate the number of rotavirus deaths prevented and the number of intussusception deaths caused by vaccination when administered on the restricted schedule versus an unrestricted schedule whereby rotavirus vaccine would be administered with DTP vaccine up to age 3 years. Countries were grouped on the basis of child mortality rates, using WHO data. Inputs were estimates of WHO rotavirus mortality by week of age from a recent study, intussusception mortality based on a literature review, predicted vaccination rates by week of age from USAID Demographic and Health Surveys, the United Nations Children's Fund (UNICEF) Multiple Indicator Cluster Surveys (MICS), and WHO-UNICEF 2010 country-specific coverage estimates, and published estimates of vaccine efficacy and vaccine-associated intussusception risk. On the basis of the error estimates and distributions for model inputs, we conducted 2,000 simulations to obtain median estimates of deaths averted and caused as well as the uncertainty ranges, defined as the 5th–95th percentile, to provide an indication of the uncertainty in the estimates.
We estimated that in low and low-middle income countries a restricted schedule would prevent 155,800 rotavirus deaths (5th–95th centiles, 83,300–217,700) while causing potentially 253 intussusception deaths (76–689). In contrast, vaccination without age restrictions would prevent 203,000 rotavirus deaths (102,000–281,500) while potentially causing 547 intussusception deaths (237–1,160). Thus, removing the age restrictions would avert an additional 47,200 rotavirus deaths (18,700–63,700) and cause an additional 294 (161–471) intussusception deaths, for an incremental benefit-risk ratio of 154 deaths averted for every death caused by vaccine. These extra deaths prevented under an unrestricted schedule reflect vaccination of an additional 21%–25% children, beyond the 63%–73% of the children who would be vaccinated under the restricted schedule. Importantly, these estimates err on the side of safety in that they assume high vaccine-associated risk of intussusception and do not account for potential herd immunity or non-fatal outcomes.
Conclusions
Our analysis suggests that in low- and middle-income countries the additional lives saved by removing age restrictions for rotavirus vaccination would far outnumber the potential excess vaccine-associated intussusception deaths.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Rotavirus causes severe diarrhea and vomiting. It is responsible for a large number of hospitalizations among young children in developed countries (an estimated 60,000 hospitalizations per year in the US in 2005, for example). In poor countries, rotavirus is a major cause of death in children under five. In 1998, the first rotavirus vaccine, called RotaShield, was approved in the US by the Food and Drug Administration. Shortly after the vaccine became widely used, doctors noticed a small increase in a problem called intussusception among the vaccinated infants. Intussusception is a rare type of bowel obstruction that occurs when the bowel telescopes in on itself. Prompt treatment of intussusception normally leads to full recovery, but some children with the condition need surgery, and when the disease is left untreated it can be fatal. Because intussusception is a serious condition and because very few children die from rotavirus infection in the United States, the US authorities stopped recommending vaccination with RotaShield in 1999. The manufacturer withdrew the vaccine from the market shortly thereafter.
Since then, two new vaccines (named Rotarix and RotaTeq) have been developed. Before they were approved in the US and elsewhere, they were extensively tested for any adverse side effects, especially intussusception. No increase in the risk for intussusception was found in these studies, and both are now approved and recommended for vaccination of infants around the world.
Why Was This Study Done?
Since 2006, hundreds of thousands of infants have been vaccinated with Rotarix or RotaTeq, with safety being closely monitored. Some countries have reported a small increase in intussusception (one to four additional cases per 100,000 vaccinated infants, compared with one per 2,000 of cases that occur in unvaccinated children). This increase is much lower than the one seen previously with RotaShield. In response to these findings, authorities in the US and other developed countries as well as the World Health Organization declared that the benefits of the vaccine outweigh the risks of the small number of additional intussusception cases in both developed and poor countries. However, because older infants have a higher risk of naturally occurring intussusception, they decided that the course of vaccination (three oral doses for Rotarix and two for RotaTeq) should be initiated before 15 weeks of age and completed before the age of 32 weeks. This is usually not a problem in countries with easy access to health facilities. However, in many poor countries where delays in infant vaccination are common, giving the vaccine only to very young children means that many others who could benefit from its protection will be excluded. In this study, the researchers examined the risks and benefits of rotavirus vaccination in poor countries where most of the rotavirus deaths occur. Specifically, they looked at the benefits and risks if the age restrictions were removed, with a particular emphasis on allowing infants to initiate rotavirus immunization even if they arrive after 15 weeks of age.
What Did the Researchers Do and Find?
The researchers used the most recent estimates for how well the vaccines protect children in Africa and Asia from becoming infected with rotavirus, how many deaths from rotavirus infection can be avoided by vaccination, how many additional cases of intussusception will likely occur in vaccinated children, and what proportion of children would be excluded from rotavirus vaccination because they are too old when they come to a health facility for their infant vaccination. They then estimated the number of rotavirus deaths prevented and the number of intussusception deaths caused by vaccination in two scenarios. The first one (the restricted scenario) corresponds to previous guidelines from WHO and others, in which rotavirus vaccination needs to be initiated before 15 weeks and the full series completed before 32 weeks. The second one (called the unrestricted scenario) allows rotavirus vaccination of children alongside current routinely administered vaccines up to three years of age, recognizing that most children receive their vaccination by 1 year of life.
The researchers estimated that removing the age restriction would prevent an additional 154 rotavirus deaths for each intussusception death caused by the vaccine. Under the unrestricted scenario, roughly a third more children would get vaccinated, which would prevent an additional approximately 47,000 death from rotavirus while causing approximately 300 additional intussusception deaths.
They also calculated some best- and worst-case scenarios. The worst-case scenario assumed a much higher risk of intussusception for children receiving their first dose after 15 weeks of life than what has been seen anywhere, and also that an additional 20% of children with intussusception would die from it than what was already assumed in their routine scenario (again, a higher number than seen in reality). In addition, it assumes a lower protection from rotavirus death for the vaccine than has been observed in children vaccinated so far. In this pessimistic case, the number of rotavirus deaths prevented was 24 for each intussusception death caused by the vaccine.
What Do These Findings Mean?
If one accepts that deaths caused by a vaccine are not fundamentally different from deaths caused by a failure to vaccinate, then these results show that the benefits of lifting the age restriction for rotavirus vaccine clearly outweigh the risks, at least when only examining mortality outcomes. The calculations are valid only for low-income countries in Africa and Asia where both vaccination delays and deaths from rotavirus are common. The risk-benefit ratio will be different elsewhere. There are also additional risks and benefits that are not included in the study's estimates. For example, early vaccination might be seen as less of an urgent priority when this vaccine can be had at a later date, leaving very young children more vulnerable. On the other hand, when many children in the community are vaccinated, even the unvaccinated children are less likely to get infected (what is known as “herd immunity”), something that has not been taken into account in the benefits here. The results of this study (and its limitations) were reviewed in April 2012 by WHO's Strategic Advisory Group of Experts. The group then recommended that, while early vaccination is still strongly encouraged, the age restriction on rotavirus vaccination should be removed in countries where delays in vaccination and rotavirus mortality are common so that more vulnerable children can be vaccinated and deaths from rotavirus averted.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001330.
The World Health Organization provides information on rotavirus
Wikipedia has information on rotavirus vaccine and intussusception (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The US Centers for Disease Control and Prevention rotavirus vaccination page includes a link to frequently asked questions
PATH Rotavirus Vaccine Access and Delivery has timely, useful updates on status of rotavirus vaccines globally
doi:10.1371/journal.pmed.1001330
PMCID: PMC3479108  PMID: 23109915
11.  Controlling Endemic Cholera with Oral Vaccines 
PLoS Medicine  2007;4(11):e336.
Background
Although advances in rehydration therapy have made cholera a treatable disease with low case-fatality in settings with appropriate medical care, cholera continues to impose considerable mortality in the world's most impoverished populations. Internationally licensed, killed whole-cell based oral cholera vaccines (OCVs) have been available for over a decade, but have not been used for the control of cholera. Recently, these vaccines were shown to confer significant levels of herd protection, suggesting that the protective potential of these vaccines has been underestimated and that these vaccines may be highly effective in cholera control when deployed in mass immunization programs. We used a large-scale stochastic simulation model to investigate the possibility of controlling endemic cholera with OCVs.
Methods and Findings
We construct a large-scale, stochastic cholera transmission model of Matlab, Bangladesh. We find that cholera transmission could be controlled in endemic areas with 50% coverage with OCVs. At this level of coverage, the model predicts that there would be an 89% (95% confidence interval [CI] 72%–98%) reduction in cholera cases among the unvaccinated, and a 93% (95% CI 82%–99%) reduction overall in the entire population. Even a more modest coverage of 30% would result in a 76% (95% CI 44%–95%) reduction in cholera incidence for the population area covered. For populations that have less natural immunity than the population of Matlab, 70% coverage would probably be necessary for cholera control, i.e., an annual incidence rate of ≤ 1 case per 1,000 people in the population.
Conclusions
Endemic cholera could be reduced to an annual incidence rate of ≤ 1 case per 1,000 people in endemic areas with biennial vaccination with OCVs if coverage could reach 50%–70% depending on the level of prior immunity in the population. These vaccination efforts could be targeted with careful use of ecological data.
Using data from Bangladesh, Ira Longini and colleagues develop a mathematical model predicting that oral vaccination of 50%-70% of the population could control cholera transmission in an endemic region.
Editors' Summary
Background.
Throughout history, there have been devastating outbreaks of cholera—a gut infection characterized by diarrhea and severe dehydration—around the world. These days, cholera is mainly confined to developing countries where it disrupts social structures, impedes economic development, and probably causes about 100,000 deaths a year. People get cholera, which is caused by a bacterium called Vibrio cholerae, by eating food or drinking water contaminated with feces (stools) from an infected person. Most infected people have no or mild symptoms but shed the bug in their feces for up to two weeks. Other people develop severe diarrhea, producing stools that look like water with flecks of rice in it. If untreated, patients with severe cholera can die from dehydration within hours of developing symptoms. The standard treatment for cholera is replacement of the fluids and salts lost through diarrhea by drinking an oral rehydration solution or, in the worst cases, by fluid replacement directly into a vein. Without this treatment, which is not always available in the developing countries where cholera is endemic (always present), one in every two people with severe symptoms die.
Why Was This Study Done?
The best way to control cholera is to ensure that everyone has access to safe water and good sanitation, but this is not possible in some poor countries, in refugee camps, or after natural disasters such as floods. Oral cholera vaccines (preparations given by mouth that stimulate the immune system to attack V. cholerae) are available but they are not 100% effective and the protection they provide wanes over time. Consequently, vaccination has not been adopted as a control measure for endemic cholera. Recently, however, researchers have suggested that oral cholera vaccines induce “herd immunity.” With a disease that passes between people, when most of the population is immune to it, it is unlikely that an infected person will come into contact with a susceptible person and pass the disease on. In effect, both vaccinated and unvaccinated people are protected from the disease. If cholera vaccines do induce herd immunity, then mass immunization might help to control endemic cholera. In this study, the researchers have used a mathematical model to investigate this possibility.
What Did the Researchers Do and Find?
The researchers built a large-scale model of cholera transmission using information about the population of Matlab, Bangladesh (a region where cholera is endemic), together with data on the biology of cholera and data from a large oral vaccine trial done in Matlab in the 1980s. They used this model to predict whether cholera would be controlled after vaccination of different proportions of the population. They found that cholera transmission would be controlled if half the population in the region was vaccinated. This level of vaccine coverage reduced the number of cholera cases among unvaccinated people by 89% and among the entire population by 93%. With only one-third of the population vaccinated, the number of cases of cholera still fell by three-fourths. The model also predicted that in areas where there is less natural immunity to cholera (the people in Matlab are constantly exposed to V. cholerae, so they have some immunity to the bug even without vaccination), 70% of the population would probably need to be vaccinated to control cholera.
What Do These Findings Mean?
These findings suggest that, because of herd immunity, vaccinating only half the population could control cholera transmission in endemic regions where there is a high level of natural immunity. Where there is less natural immunity, more of the population would need to be immunized. Although mass immunization of even 70% of a population should be achievable, for maximal protection against V. cholerae, two doses of the oral cholera vaccine need to be given a week apart followed by a booster every two years. In developing countries this regimen might not always be logistically feasible or affordable. Furthermore, because the accuracy of the model's predictions depends on the assumptions made to construct it and on the data incorporated into it, these findings need to be checked in field trials in other endemic areas. Nevertheless, these findings suggest that public-health officials should consider including mass vaccination in their efforts to control endemic cholera.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040336.
The MedlinePlus encyclopedia contains a page on cholera (in English and Spanish)
Information is available from the World Health Organization on cholera, including a fact sheet on the disease (in English, Spanish, French, Russian, Arabic, and Chinese)
The US Centers for Disease Control and Prevention provide information on cholera (in English, Spanish and Portuguese).
The UK National Health service provides simple information on vaccines and immunization, which includes an animation that explains herd immunity
doi:10.1371/journal.pmed.0040336
PMCID: PMC2082648  PMID: 18044983
12.  The Relationship between Anti-merozoite Antibodies and Incidence of Plasmodium falciparum Malaria: A Systematic Review and Meta-analysis 
PLoS Medicine  2010;7(1):e1000218.
A systematic review and meta-analysis examining the association between anti-merozoite antibody responses and incidence of Plasmodium falciparum malaria by Freya Fowkes and colleagues aids identification of antigens that confer protection from malaria.
Background
One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting.
Methods and Findings
We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-142 and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-119 (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%–68%] and 18% [4%–30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2FC27 0.82, 95% CI 0.62–1.08, p = 0.16 and MSP-23D7 0.92, 95% CI 0.75–1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological diversity between studies, was an important issue in the meta-analysis of IgG responses to merozoite antigens.
Conclusions
These findings are valuable for advancing vaccine development by providing evidence supporting merozoite antigens as targets of protective immunity in humans, and to help identify antigens that confer protection from malaria. Further prospective cohort studies that include a larger number of lead antigens and populations outside Africa are greatly needed to ensure generalizability of results. The reporting of results needs to be standardized to maximize comparability of studies. We therefore propose a set of guidelines to facilitate the uniform reporting of malaria immuno-epidemiology observational studies.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Plasmodium falciparum malaria, a mosquito-borne parasitic infection, kills about one million people every year. Around a week after an infected mosquito has bitten a person, “merozoites” (one of the life-stages of the parasite) infect the person's red blood cells where they replicate and then burst out and infect more red blood cells. Rapid replication of parasites can occur in the bloodstream, leading to massive numbers of parasites that can damage vital organs. Although individuals can lower their risk of becoming infected with malaria parasites by avoiding mosquito bites, a vaccine is urgently needed to reduce the global burden of malaria. When malaria parasites infect a person for the first time, the human immune system begins to produce antibodies, proteins that recognize molecules (antigens) on the parasite's surface and that act directly or cooperate with other parts of the immune system to kill malaria parasites. The production of these “naturally acquired” antibodies is initially slow so the individual can become ill when infected. However, because the immune system “remembers” how to make the antibodies, its response to subsequent infections is quicker. The levels of these antibodies also build up with each infection and become more effective at killing parasites. Vaccines, which contain malaria antigens, “prime” the immune system to respond rapidly to malaria infections and produce high concentrations of antibodies to prevent the infection from causing serious illness.
Why Was This Study Done?
A malaria vaccine that stimulates an efficient immune response against merozoites would limit the severity of malarial infections and prevent many deaths but no one knows which (if any) of the antigens on merozoites stimulate a protective immune response. Although many different types of antibodies are produced by the immune system, only some of these are effective in protecting against malaria. By investigating whether there is an association between naturally acquired antibodies, which recognize specific candidate antigens, and protection from malaria in populations living in areas where malaria is endemic (always present), vaccine developers can get an idea about which antigens to include in their vaccines. Although many of these “malaria immuno-epidemiological studies” have been undertaken, their results are somewhat conflicting. In this study, the researchers reanalyze these results by doing a systematic review (a study that uses predefined criteria to identify all the research on a specific topic) and a meta-analysis (a statistical method for combining the results of several studies). The researchers evaluated studies of the relationship between anti-merozoite antibodies and the incidence (the number of new cases of a disease in a population per year) of P. falciparum malaria in naturally exposed populations in different regions of the world.
What Did the Researchers Do and Find?
The researchers' search of the published literature yielded 33 studies in which the incidence of malaria had been recorded over time in groups of people in whom levels of antibodies to specific merozoite antigens had been measured. These studies measured antibodies at the start of the study and examined the subsequent risk of malaria over several months of follow-up (these are known as prospective cohort studies). All but five of the studies were performed in Africa, and very few merozoite antigens had been well-studied in different populations, or studied at all. Of note, very few studies had examined naturally acquired antibodies to some leading vaccine candidates (for example, only one study considered antibodies to MSP-142, a leading vaccine candidate). Conversely, the association between malaria incidence and antibodies to the antigen MSP-119, which has been included in only one candidate vaccine, was frequently studied. In their meta-analyses, the researchers found that among people with antibodies to the merozoite antigens MSP-3 (C-terminal region) and MSP-119, the risk of developing P. falciparum malaria was reduced by 54% and 18%, respectively, compared to people without antibodies to these antigens. There was also some evidence of a reduced risk of malaria for people with antibodies to AMA1 and GLURP. For other merozoite antigens, MSP1 (N-terminal region) and MSP2, there was either weak or no evidence for a protective effect of naturally acquired antibodies.
What Do These Findings Mean?
These findings suggest that merozoite antigens are important targets of protective immunity in people who are naturally exposed to malaria and also suggest which of these antigens might be included in vaccines. However, the findings are limited by the small number of studies identified by the researchers and additional prospective cohort studies are clearly needed to guide vaccine development. These studies will need to include a larger number of lead antigens and populations outside Africa to ensure their generalizability, note the researchers. Furthermore, efforts will need to be made to ensure greater consistency between studies to improve the ability to compare results between different studies, which was a challenge in performing this study. To this end, the researchers propose a set of guidelines that, if followed, should make it easier to compare the results of different malaria immune-epidemiology studies in the future and thus lead to better identification of candidate vaccine antigens.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000218.
Information is available from the World Health Organization on malaria (in several languages) and on the development of malaria vaccines
The US Centers for Disease Control and Prevention provides information on malaria (in English and Spanish)
Information is available from the Wellcome Trust on all aspects of malaria, including vaccine development
The Malaria Vaccine Initiative provides information on the development of malaria vaccines and on ongoing trials
MedlinePlus provides links to additional information on malaria (in English and Spanish)
doi:10.1371/journal.pmed.1000218
PMCID: PMC2808214  PMID: 20098724
13.  Dynamics of Polymorphism in a Malaria Vaccine Antigen at a Vaccine-Testing Site in Mali 
PLoS Medicine  2007;4(3):e93.
Background
Malaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-119) derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection.
Methods and Findings
Using pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-119 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-119 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-119 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-119 haplotypes QKSNGL and EKSNGL, respectively) were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%–49%) and 36% (95% CI 34%–39%), respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%–18%). Multiplicity of infection based on MSP-119 was higher at the beginning of the transmission season and in the oldest individuals (aged ≥11 y). Three MSP-119 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-119 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701) as being particularly important in determining allele specificity of anti-MSP-119 immunity.
Conclusions
Parasites with MSP-119 haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial site. If immunity elicited by an MSP-1-based vaccine is allele-specific, a vaccine based on either the FVO or FUP strain might have better initial efficacy at this site. This study, to our knowledge the largest of its kind to date, provides molecular information needed to interpret population responses to MSP-1-based vaccines and suggests that certain MSP-119 polymorphisms may be relevant to cross-protective immunity.
Christopher Plowe and colleagues surveyed local malaria parasites for genetic diversity in MSP-1, a candidate vaccine antigen. These data are needed to interpret population responses to MSP-1-based vaccines during trials planned at this site.
Editors' Summary
Background.
Malaria, a tropical parasitic disease, kills about one million people—mainly children—every year. Most of these deaths are caused by Plasmodium falciparum, which is transmitted to humans through the bites of infected mosquitoes. These insects inject a form of the parasite known as sporozoites into people that replicates inside liver cells without causing symptoms. Four to five days later, merozoites (another form of the parasite) are released from the liver cells and invade red blood cells. Here, they replicate 10-fold before bursting out and infecting other red blood cells. This massive increase in parasite burden causes malaria's flu-like symptoms. If untreated, it also causes anemia (a red blood cell deficit) and damages the brain and other organs where parasitized red blood cells sequester. Malaria can be treated with antimalarial drugs and partly prevented by reducing the chances of being bitten by an infected mosquito. In addition, researchers are developing vaccines designed to reduce the global burden of malaria. These contain individual malaria antigens (proteins from the parasite that stimulate an immune response) that should, when injected into people, prime the immune system so that it can rapidly control malaria infections.
Why Was This Study Done?
The development of an effective malaria vaccine is not easy, in part because people can be simultaneously infected with several parasite strains. These often carry different variants (alleles) of the genes encoding antigens, which means that the actual parasite proteins might differ from the ones used for vaccination. If this is the case, the immune response generated by the vaccine might be less effective or even ineffective. An ideal vaccine would therefore stimulate an immune response that recognizes all these strain-specific antigens. However, little is known about their distribution in parasite populations in malarial regions, or about how this distribution changes over time (its dynamics). This information is needed to aid vaccine design and development. In this study, the researchers have investigated the distribution and dynamics of genetic variants of a merozoite antigen called MSP-119, which is included in a vaccine currently being tested in Mali, West Africa. Although most of the MSP-119 sequence is conserved, it contains six strain-specific polymorphisms (genetic variations); the candidate vaccine contains MSP-119 from the 3D7 strain of P. falciparum.
What Did the Researchers Do and Find?
The researchers used rapid DNA sequencing (pyrosequencing) to examine the MSP-119 sequence in more than 1,300 malaria infections in 100 Malian children. They compared the frequencies of 14 MSP-119 haplotypes (sets of polymorphisms at the six variant sites) over three years, in three age groups, and in consecutive infections within individuals. They found that the frequency of individual MSP-119 haplotypes fluctuated in their study population but that those found in P. falciparum FVO and FUP strains were always the commonest, each being present in about 40% of the infections. By contrast, the P. falciparum 3D7 MSP-119 haplotype was present in only 16% of the infections. They also found that mixed infections were more common at the start of each malaria season and in older individuals. In addition, individuals who were infected repeatedly by parasites from different strains (with different MSP-119 variants) seemed to get sick with malaria more often than those infected multiple times by the same strain. The differences might, therefore, be important in determining the specificity of the immune response to MSP-119.
What Do These Findings Mean?
These findings indicate that most parasites that cause malaria at the Malian test site for the malaria vaccine that contains 3D7-specific MSP-119 have a different form of MSP-119. Although early results from field trials suggest that the 3D7-derived vaccine provides some protection against the more common FVO and FUP strains, the immunity stimulated by the vaccine might be mainly allele specific. If this turns out to be the case, these results suggest that a FVO- or FUP-derived vaccine might be more effective in Mali than the 3D7-derived vaccine, though not necessarily elsewhere. More generally, these results show the importance of determining the genetics of pathogen populations before starting vaccine trials. Without this information, a vaccine's ability to prevent infections with specific parasite strains cannot be determined accurately and potentially useful vaccines might be abandoned if they are tested in inappropriate populations. Importantly, baseline information of this sort will also allow vaccine developers to detect any vaccine-induced changes in the pathogen population that might affect the long-term efficacy of their vaccines.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040093.
A related PLoS Medicine Perspective by Colin Sutherland discusses variation in malaria antigens as a challenge in vaccine development
The malaria program of the University of Maryland Center for Vaccine Development performs research on many aspects of malaria
Information on malaria and the development of vaccines is available from the Malaria Vaccine Initiative
The World Health Organization provides links to general information on malaria plus some specific information on malaria vaccine development
MedlinePlus encyclopedia has entries on malaria and on vaccination
US Centers for Disease Control and Prevention provides information for patients and professionals on malaria
US National Institute of Allergy and Infectious Diseases has information on malaria, including research into vaccines
doi:10.1371/journal.pmed.0040093
PMCID: PMC1820605  PMID: 17355170
14.  The Evolutionary Consequences of Blood-Stage Vaccination on the Rodent Malaria Plasmodium chabaudi 
PLoS Biology  2012;10(7):e1001368.
A candidate malaria vaccine promoted the evolution of more virulent malaria parasites in mice.
Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.
Author Summary
Vaccination can drive the evolution of pathogens. Most obviously, molecules targeted by vaccine-induced immunity can change. Such evolution makes vaccines less effective. A different possibility is that more virulent pathogens are favored in vaccinated hosts. In that case, vaccination would create pathogens that cause more harm to unvaccinated individuals. To test this idea, we studied a rodent malaria parasite in laboratory mice immunized with a component of malaria vaccines currently in human trials. We found that a more virulent parasite clone was less well controlled by vaccine-induced immunity than was its less virulent ancestor. We then passaged parasites through sham- or vaccinated mice to study how the parasites might evolve after multiple rounds of infection of mouse hosts. The parasite molecule targeted by the vaccine did not change during this process. Instead, the parasites became more virulent if they evolved in vaccinated hosts. Our data suggest that some vaccines can drive the evolution of more virulent parasites.
doi:10.1371/journal.pbio.1001368
PMCID: PMC3409122  PMID: 22870063
15.  Interleukin-1 Stimulates β-Cell Necrosis and Release of the Immunological Adjuvant HMGB1 
PLoS Medicine  2005;3(2):e17.
Background
There are at least two phases of β-cell death during the development of autoimmune diabetes: an initiation event that results in the release of β-cell-specific antigens, and a second, antigen-driven event in which β-cell death is mediated by the actions of T lymphocytes. In this report, the mechanisms by which the macrophage-derived cytokine interleukin (IL)-1 induces β-cell death are examined. IL-1, known to inhibit glucose-induced insulin secretion by stimulating inducible nitric oxide synthase expression and increased production of nitric oxide by β-cells, also induces β-cell death.
Methods and Findings
To ascertain the mechanisms of cell death, the effects of IL-1 and known activators of apoptosis on β-cell viability were examined. While IL-1 stimulates β-cell DNA damage, this cytokine fails to activate caspase-3 or to induce phosphatidylserine (PS) externalization; however, apoptosis inducers activate caspase-3 and the externalization of PS on β-cells. In contrast, IL-1 stimulates the release of the immunological adjuvant high mobility group box 1 protein (HMGB1; a biochemical maker of necrosis) in a nitric oxide-dependent manner, while apoptosis inducers fail to stimulate HMGB1 release. The release of HMGB1 by β-cells treated with IL-1 is not sensitive to caspase-3 inhibition, while inhibition of this caspase attenuates β-cell death in response to known inducers of apoptosis.
Patient Summary
Background
Type 1 diabetes (also called autoimmune diabetes or juvenile diabetes) is an autoimmune disease. For unknown reasons, at some point in childhood or adolescence, the body's own immune system starts attacking and destroying the insulin-producing islet cells in the pancreas. Once the majority of islet cells are destroyed, patients can no longer produce insulin to regulate their blood sugar and must depend on strict diets and insulin injections. Scientists are trying to understand the early events during the development of the disease. There are two fundamentally different kinds of cell death in cells of higher animals and humans, called apoptosis and necrosis. Apoptosis (also called programmed cell death) is an organized, clean way in which cells die without spilling their contents and without causing an inflammatory immune response. They are simply gobbled up by other cells that serve as the body's garbage collectors. Necrosis, on the other hand, is a more messy process and one that does activate the immune system and cause local inflammation.
Why Was This Study Done?
The scientists who did this study are interested in the early stages of islet cell death. Specifically, they wanted to know whether islet cells during the early events of autoimmune diabetes die via apoptosis or necrosis. Earlier experiments to address this question had yielded no clear-cut results.
What Did the Researchers Do and Find?
All the experiments for this study were done in cultured cells in the laboratory. For the most part, the researchers used rodent islet cells, and then they confirmed the crucial finding in human islet cells. They grew the cells under conditions that resembled, to the best of their knowledge, the early stages of diabetes, which caused some of the cells to die. They then did a variety of tests to see whether that cell death was through apoptosis or necrosis, and the results showed that the latter was the case. They also identified some of the key factors involved in promoting and executing the necrosis process.
What Does This Mean?
One must always be careful to extrapolate from laboratory results like these. With this caveat, the results suggest that early in the development of diabetes cells die by necrosis, and they point to some of the key factors involved. These are important results that will inform future studies toward the goal of understanding autoimmune diabetes well enough to prevent or stop its development.
Where Can I Find More Information Online?
The following Web sites provide information on autoimmune diabetes.
MedlinePlus pages on type 1 diabetes:
http://www.nlm.nih.gov/medlineplus/ency/article/000305.htm
Web site of the Juvenile Diabetes Research Foundation:
http://www.jdrf.org/index.cfm?page_id=101982
Pages on type 1 diabetes from the Canadian Diabetes Association:
http://www.diabetes.ca/Section_About/type1.asp
Type 1 diabetes pages from the UK National Institute for Health and Clinical Excellence:
http://www.nice.org.uk/page.aspx?o=213575
UK National Diabetes Information Clearinghouse:
http://diabetes.niddk.nih.gov/index.htm
American Diabetes Association Web site:
http://www.diabetes.org
Conclusions
These findings indicate that IL-1 induces β-cell necrosis and support the hypothesis that macrophage-derived cytokines may participate in the initial stages of diabetes development by inducing β-cell death by a mechanism that promotes antigen release (necrosis) and islet inflammation (HMGB1 release).
Results from rodent and human cells suggest that necrosis of β-cells plays a role in the early stages of type 1 diabetes.
doi:10.1371/journal.pmed.0030017
PMCID: PMC1316065  PMID: 16354107
16.  Accelerating Policy Decisions to Adopt Haemophilus influenzae Type b Vaccine: A Global, Multivariable Analysis 
PLoS Medicine  2010;7(3):e1000249.
Jessica Shearer and colleagues analyze data from 147 countries to identify factors that influence the time taken to introduce routine vaccination against Haemophilus influenzae type b (Hib).
Background
Adoption of new and underutilized vaccines by national immunization programs is an essential step towards reducing child mortality. Policy decisions to adopt new vaccines in high mortality countries often lag behind decisions in high-income countries. Using the case of Haemophilus influenzae type b (Hib) vaccine, this paper endeavors to explain these delays through the analysis of country-level economic, epidemiological, programmatic and policy-related factors, as well as the role of the Global Alliance for Vaccines and Immunisation (GAVI Alliance).
Methods and Findings
Data for 147 countries from 1990 to 2007 were analyzed in accelerated failure time models to identify factors that are associated with the time to decision to adopt Hib vaccine. In multivariable models that control for Gross National Income, region, and burden of Hib disease, the receipt of GAVI support speeded the time to decision by a factor of 0.37 (95% CI 0.18–0.76), or 63%. The presence of two or more neighboring country adopters accelerated decisions to adopt by a factor of 0.50 (95% CI 0.33–0.75). For each 1% increase in vaccine price, decisions to adopt are delayed by a factor of 1.02 (95% CI 1.00–1.04). Global recommendations and local studies were not associated with time to decision.
Conclusions
This study substantiates previous findings related to vaccine price and presents new evidence to suggest that GAVI eligibility is associated with accelerated decisions to adopt Hib vaccine. The influence of neighboring country decisions was also highly significant, suggesting that approaches to support the adoption of new vaccines should consider supply- and demand-side factors.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, immunization averts more than 2 million deaths by preparing people's immune systems to recognize and attack disease-causing organisms (pathogens) rapidly and effectively. Although the immune system is designed to protect the human body against infections, the first time a person is exposed to a pathogen (usually during early childhood) their immune system can take some time to respond. As a result, they can become seriously ill or even die. However, the immune system “learns” from the experience and when the pathogen is encountered again, the immune system swings into action much more quickly. Immunization or vaccination is a safe way to make individuals resistant to infectious diseases. It works by exposing them to weakened or dead pathogens or to pathogen molecules (antigens) that the immune system recognizes as foreign. Widespread, routine immunization of children is, therefore, an essential component of national and global strategies to reduce childhood illnesses and deaths.
Why Was This Study Done?
Although many factors affect the uptake of immunization (in particular, vaccine prices), national policy decisions to adopt new vaccines are an essential step toward improving coverage. Unfortunately, these decisions are often delayed in developing countries. Thus, although many industrialized countries have routinely immunized their children with the highly effective Haemophilus influenza type b (Hib) conjugate vaccine since it became available in the early 1990s, only 13 low-income countries were using the vaccine in 2004. Hib bacteria, which cause pneumonia (lung infection) and meningitis (brain inflammation), kill about 370,000 unvaccinated young children every year. In this study, the researchers try to explain delays in the adoption of routine Hib vaccination in developing countries by analyzing the associations between Hib vaccination and factors such as national economic status, local Hib burden, and eligibility for support from the Global Alliance for Vaccines and Immunisation (GAVI Alliance; a public–private partnership that offers financial, technical, and health systems support for the introduction of national immunization programs to developing countries that meet certain eligibility criteria).
What Did the Researchers Do and Find?
The researchers used a statistical approach called accelerated failure time analysis to analyze data collected in 147 countries between 1990 and 2007 on vaccine costs, Hib disease incidence, GAVI eligibility, and other factors that could influence decision-makers' perceptions of the costs and benefits of Hib vaccination. After allowing for gross national income, region, and burden of Hib disease, the researchers identified several factors that influenced the time between the availability of a Hib conjugate vaccine in a country and a decision being made to introduce routine Hib vaccination. The receipt of GAVI support speeded the decision to adopt vaccination by 63%, for example, and sharing borders with two or more countries that had adopted the vaccine speeded the decision by 50%. By contrast, for each 1% increase in vaccine costs, the time to decision to adopt vaccination was delayed by 2%. The 1998 and 2006 World Health Organization recommendations on routine Hib vaccination and the existence of local studies on Hib disease had no influence on the time to decision.
What Do These Findings Mean?
These findings confirm previous studies that showed that increases in the price of Hib vaccine increase the time to adoption. In addition, they suggest that GAVI eligibility accelerates decisions to adopt this vaccine and show that the decisions made by neighboring countries are important, which suggests that policy diffusion may occur. Thus, in the case of adoption of the Hib vaccine, both supply-side and demand-side factors seem to be important. Its is relevant to note that during writing of the article, JCS, MLS, MRR, APB, and RAH were employed by the Hib Initiative, which was funded by the GAVI Alliance. The findings do not necessarily represent the views, policies or decisions of the Hib Initiative or the GAVI Alliance. Importantly, these findings are explanatory, not predictive, so they cannot be applied directly to new vaccines to improve their rate of adoption. Nevertheless, these findings highlight the potential importance of setting up formal and informal networks to facilitate policy diffusion and suggest that long-term price and supply certainty might be factors that could help to accelerate national decisions to adopt new and/or underutilized vaccines and other public-health technologies.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000249.
The World Health Organization provides information on immunization and on Haemophilus influenza type b (in several languages)
The GAVI Alliance Web site describes the work of this public–private partnership and provides details of developing countries eligible for Hib vaccination support
The Hib Initiative aims to reduce the risk of childhood death and disability through sustained use of Hib vaccine
MedlinePlus provides links to further resources on immunization and information on the Haemophilus influenzae type b vaccine (in English and Spanish)
doi:10.1371/journal.pmed.1000249
PMCID: PMC2838745  PMID: 20305714
17.  Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response 
Background
Given the considerable toxicity and modest benefit of adjuvant chemotherapy for non-small cell lung cancer (NSCLC), there is clearly a need for new treatment modalities in the adjuvant setting. Active specific immunotherapy may represent such an option. However, clinical responses have been rare so far. Manipulating the host by inducing lymphopenia before vaccination resulted in a magnification of the immune response in the preclinical setting. To evaluate feasibility and safety of an irradiated, autologous tumor cell vaccine given following induction of lymphopenia by chemotherapy and reinfusion of autologous peripheral blood mononuclear cells (PBMC), we are currently conducting a pilot-phase I clinical trial in patients with NSCLC following surgical resection. This paper reports on the first clinical experience and evidence of an immune response in patients suffering from NSCLC.
Methods
NSCLC patients stages I-IIIA are recruited. Vaccines are generated from their resected lung specimens. Patients undergo leukapheresis to harvest their PBMC prior to or following the surgical procedure. Furthermore, patients receive preparative chemotherapy (cyclophosphamide 350 mg/m2 and fludarabine 20 mg/m2 on 3 consecutive days) for induction of lymphopenia followed by reconstitution with their autologous PBMC. Vaccines are administered intradermally on day 1 following reconstitution and every two weeks for a total of up to five vaccinations. Granulocyte-macrophage-colony-stimulating-factor (GM-CSF) is given continuously (at a rate of 50 μg/24 h) at the site of vaccination via minipump for six consecutive days after each vaccination.
Results
To date, vaccines were successfully manufactured for 4 of 4 patients. The most common toxicities were local injection-site reactions and mild constitutional symptoms. Immune responses to chemotherapy, reconstitution and vaccination are measured by vaccine site and delayed type hypersensitivity (DTH) skin reactions. One patient developed positive DTH skin tests so far. Immunohistochemical assessment of punch biopsies taken at the local vaccine site reaction revealed a dense lymphocyte infiltrate. Further immunohistochemical differentiation showed that CD1a+ cells had been attracted to the vaccine site as well as predominantly CD4+ lymphocytes. The 3-day combination chemotherapy consisting of cyclophosphamide and fludarabine induced a profound lymphopenia in all patients. Sequential FACS analysis revealed that different T cell subsets (CD4, CD8, CD4CD25) as well as granulocytes, B cells and NK cells were significantly reduced. Here, we report on clinical safety and feasibility of this vaccination approach during lymphoid recovery and demonstrate a patient example.
Conclusion
Thus far, all vaccines were well tolerated. The overall trial design seems safe and feasible. Vaccine site reactions associated with infusion of GM-CSF via mini-pump are consistent with the postulated mechanism of action. More detailed immune-monitoring is required to evaluate a potential systemic immune response. Further studies to exploit homeostasis-driven T cell proliferation for the induction of a specific anti-tumor immune response in this clinical setting are warranted.
doi:10.1186/1479-5876-5-43
PMCID: PMC2020458  PMID: 17868452
18.  The Effects of Influenza Vaccination of Health Care Workers in Nursing Homes: Insights from a Mathematical Model 
PLoS Medicine  2008;5(10):e200.
Background
Annual influenza vaccination of institutional health care workers (HCWs) is advised in most Western countries, but adherence to this recommendation is generally low. Although protective effects of this intervention for nursing home patients have been demonstrated in some clinical trials, the exact relationship between increased vaccine uptake among HCWs and protection of patients remains unknown owing to variations between study designs, settings, intensity of influenza seasons, and failure to control all effect modifiers. Therefore, we use a mathematical model to estimate the effects of HCW vaccination in different scenarios and to identify a herd immunity threshold in a nursing home department.
Methods and Findings
We use a stochastic individual-based model with discrete time intervals to simulate influenza virus transmission in a 30-bed long-term care nursing home department. We simulate different levels of HCW vaccine uptake and study the effect on influenza virus attack rates among patients for different institutional and seasonal scenarios. Our model reveals a robust linear relationship between the number of HCWs vaccinated and the expected number of influenza virus infections among patients. In a realistic scenario, approximately 60% of influenza virus infections among patients can be prevented when the HCW vaccination rate increases from 0 to 1. A threshold for herd immunity is not detected. Due to stochastic variations, the differences in patient attack rates between departments are high and large outbreaks can occur for every level of HCW vaccine uptake.
Conclusions
The absence of herd immunity in nursing homes implies that vaccination of every additional HCW protects an additional fraction of patients. Because of large stochastic variations, results of small-sized clinical trials on the effects of HCW vaccination should be interpreted with great care. Moreover, the large variations in attack rates should be taken into account when designing future studies.
Using a mathematical model to simulate influenza transmission in nursing homes, Carline van den Dool and colleagues find that each additional staff member vaccinated further reduces the risk to patients.
Editors' Summary
Background.
Every winter, millions of people catch influenza, a contagious viral disease of the nose, throat, and airways. Most people recover completely from influenza within a week or two but some develop life-threatening complications such as bacterial pneumonia. As a result, influenza outbreaks kill about half a million people—mainly infants, elderly people, and chronically ill individuals—each year. To minimize influenza-related deaths, the World Health Organization recommends that vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins (antigens) that the immune system recognizes. This means that an immune response produced one year provides only partial protection against influenza the next year. To provide maximum protection against influenza, each year's vaccine contains disabled versions of the major circulating strains of influenza viruses.
Why Was This Study Done?
Most Western countries also recommend annual flu vaccination for health care workers (HCWs) in hospitals and other institutions to reduce the transmission of influenza to vulnerable patients. However, many HCWs don't get a regular flu shot, so should efforts be made to increase their rate of vaccine uptake? To answer this question, public-health experts need to know more about the relationship between vaccine uptake among HCWs and patient protection. In particular, they need to know whether a high rate of vaccine uptake by HCWs will provide “herd immunity.” Herd immunity occurs because, when a sufficient fraction of a population is immune to a disease that passes from person to person, infected people rarely come into contact with susceptible people, which means that both vaccinated and unvaccinated people are protected from the disease. In this study, the researchers develop a mathematical model to investigate the relationship between vaccine uptake among HCWs and patient protection in a nursing home department.
What Did the Researchers Do and Find?
To predict influenza virus attack rates (the number of patient infections divided by the number of patients in a nursing home department during an influenza season) at different levels of HCW vaccine uptake, the researchers develop a stochastic transmission model to simulate epidemics on a computer. This model predicts that as the HCW vaccination rate increases from 0 (no HCWs vaccinated) to 1 (all the HCWs vaccinated), the expected average influenza virus attack rate decreases at a constant rate. In the researchers' baseline scenario—a nursing home department with 30 beds where patients come into contact with other patients, HCWs, and visitors—the model predicts that about 60% of the patients who would have been infected if no HCWs had been vaccinated are protected when all the HCWs are vaccinated, and that seven HCWs would have to be vaccinated to protect one patient. This last figure does not change with increasing vaccine uptake, which indicates that there is no level of HCW vaccination that completely stops the spread of influenza among the patients; that is, there is no herd immunity. Finally, the researchers show that large influenza outbreaks can happen by chance at every level of HCW vaccine uptake.
What Do These Findings Mean?
As with all mathematical models, the accuracy of these predictions may depend on the specific assumptions built into the model. Therefore the researchers verified that their findings hold for a wide range of plausible assumptions. These findings have two important practical implications. First, the direct relationship between HCW vaccination and patient protection and the lack of any herd immunity suggest that any increase in HCW vaccine uptake will be beneficial to patients in nursing homes. That is, increasing the HCW vaccination rate from 80% to 90% is likely to be as important as increasing it from 10% to 20%. Second, even 100% HCW vaccination cannot guarantee that influenza outbreaks will not occasionally occur in nursing homes. Because of the large variation in attack rates, the results of small clinical trials on the effects of HCW vaccination may be inaccurate and future studies will need to be very large if they are to provide reliable estimates of the amount of protection that HCW vaccination provides to vulnerable patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050200.
Read the related PLoSMedicine Perspective by Cécile Viboud and Mark Miller
A related PLoSMedicine Research Article by Jeffrey Kwong and colleagues is also available
The World Health Organization provides information on influenza and on influenza vaccines (in several languages)
The US Centers for Disease Control and Prevention provide information for patients and professionals on all aspects of influenza (in English and Spanish)
The UK Health Protection Agency also provides information on influenza
MedlinePlus provides a list of links to other information about influenza (in English and Spanish)
The UK National Health Service provides information about herd immunity, including a simple explanatory animation
The European Centre for Disease Prevention and Control provides an overview on the types of influenza
doi:10.1371/journal.pmed.0050200
PMCID: PMC2573905  PMID: 18959470
19.  Prophylactic and Therapeutic Efficacy of Human Monoclonal Antibodies against H5N1 Influenza 
PLoS Medicine  2007;4(5):e178.
Background
New prophylactic and therapeutic strategies to combat human infections with highly pathogenic avian influenza (HPAI) H5N1 viruses are needed. We generated neutralizing anti-H5N1 human monoclonal antibodies (mAbs) and tested their efficacy for prophylaxis and therapy in a murine model of infection.
Methods and Findings
Using Epstein-Barr virus we immortalized memory B cells from Vietnamese adults who had recovered from infections with HPAI H5N1 viruses. Supernatants from B cell lines were screened in a virus neutralization assay. B cell lines secreting neutralizing antibodies were cloned and the mAbs purified. The cross-reactivity of these antibodies for different strains of H5N1 was tested in vitro by neutralization assays, and their prophylactic and therapeutic efficacy in vivo was tested in mice. In vitro, mAbs FLA3.14 and FLD20.19 neutralized both Clade I and Clade II H5N1 viruses, whilst FLA5.10 and FLD21.140 neutralized Clade I viruses only. In vivo, FLA3.14 and FLA5.10 conferred protection from lethality in mice challenged with A/Vietnam/1203/04 (H5N1) in a dose-dependent manner. mAb prophylaxis provided a statistically significant reduction in pulmonary virus titer, reduced associated inflammation in the lungs, and restricted extrapulmonary dissemination of the virus. Therapeutic doses of FLA3.14, FLA5.10, FLD20.19, and FLD21.140 provided robust protection from lethality at least up to 72 h postinfection with A/Vietnam/1203/04 (H5N1). mAbs FLA3.14, FLD21.140 and FLD20.19, but not FLA5.10, were also therapeutically active in vivo against the Clade II virus A/Indonesia/5/2005 (H5N1).
Conclusions
These studies provide proof of concept that fully human mAbs with neutralizing activity can be rapidly generated from the peripheral blood of convalescent patients and that these mAbs are effective for the prevention and treatment of H5N1 infection in a mouse model. A panel of neutralizing, cross-reactive mAbs might be useful for prophylaxis or adjunctive treatment of human cases of H5N1 influenza.
Cameron Simmons and colleagues provide proof of concept that human monoclonal antibodies with neutralizing activity can be rapidly generated from peripheral blood of convalescent patients and are effective in preventing and treating H5N1 infection in a mouse model.
Editors' Summary
Background.
Every year, millions of people catch influenza, a viral disease of the nose, throat, and airways. Although most recover, influenza outbreaks (epidemics) kill about half a million people annually. Epidemics occur because small but frequent changes in the viral proteins (antigens) to which the immune system responds mean that an immune response produced one year provides only partial protection against influenza the next year. Human flu viruses also occasionally appear that contain major antigenic changes. People have little or no immunity to such viruses (which often originate in animals or birds), so these viruses can start deadly pandemics—global epidemics. The Spanish flu pandemic in 1918/9, Asian flu in 1957, and Hong Kong flu in 1968 all killed millions. Experts believe that another pandemic is overdue and may be triggered by the avian H5N1 influenza virus—the name indicates that this bird virus carries type 5 hemagglutinin and type 1 neuraminidase, the two major flu antigens. H5N1, which rapidly kills infected birds, is now present in flocks around the world and, since 1997, it has caused 258 cases of human flu and 153 deaths. People have caught H5N1 through close contact with infected birds but, luckily, H5N1 rarely passes between people.
Why Was This Study Done?
H5N1 might acquire the ability to move between people and start a human influenza pandemic at any time. Some of the H5N1 viruses are resistant to the antiviral drugs used to treat flu and there will inevitably be a lag of some months between the emergence of a human pandemic H5N1 strain and the bulk production of a vaccine effective against it. Thus, new preventative and therapeutic strategies are needed to combat human infections with H5N1. One possibility is passive immunotherapy—treating people with antibodies (proteins that recognize antigens) that can stop H5N1 from infecting cells (so-called neutralizing antibodies). In this study, the researchers have generated neutralizing human monoclonal antibodies (laboratory-produced preparations that contain one type of human antibody) and tested their ability to halt viral growth in mice infected with H5N1.
What Did the Researchers Do and Find?
Patients who have survived infection with H5N1 make neutralizing antibodies, so the researchers isolated and immortalized the immune cells making these antibodies from the patients' blood. They grew up each cell separately and purified the antibody that the cells made. These monoclonal antibodies were then tested for their ability to neutralize H5N1 and other flu viruses in the laboratory. The researchers identified several that neutralized the H5N1 strain with which the patients were originally infected and chose two for further study. In the test tube, the four antibodies neutralized closely related H5N1 viruses and an H5N1 virus from a different lineage (clade) that has also caused human disease, in addition to the original H5N1 virus, although with different efficacies. In mice, the antibodies provided protection from infection with the original virus when given a day before or one to three days after infection. Three antibodies also partly protected the mice against H5N1 from a different clade. Finally, the researchers showed that the antibodies protected mice by limiting viral replication, by lessening the deleterious effects of the virus in the lungs, and by stopping viral spread out of the lungs.
What Do These Findings Mean?
These results indicate that passive immunotherapy with human monoclonal antibodies could help to combat avian H5N1 if (or when) it starts a human pandemic. Passive immunotherapy is already used to prevent infections with several other viruses. In addition, a crude form of the approach—early treatment of patients with plasma (the liquid portion of blood) from convalescent patients—halved the death rate during the Spanish flu pandemic. Large amounts of pure monoclonal antibodies can be relatively easily made for clinical use, and this study indicates that some monoclonal antibodies neutralize H5N1 viruses from different clades. The researchers sound a note of caution, however: Before passive immunotherapy can help to halt an H5N1 pandemic, they warn, the monoclonal antibodies will have to be tested to see whether they can neutralize not only all the currently circulating H5N1 viruses but also any emerging pandemic versions, which might be antigenically distinct.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040178.
US Centers for Disease Control and Prevention information about influenza for patients and professionals including key facts about avian influenza
US National Institute of Allergy and Infectious Disease feature on seasonal, avian, and pandemic flu
World Health Organization factsheet on influenza and information on avian influenza, including latest figures for confirmed human cases
UK Health Protection Agency information on seasonal, avian, and pandemic influenza
Wikipedia pages on passive immunity and monoclonal antibodies (note: Wikipedia is an online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040178
PMCID: PMC1880850  PMID: 17535101
20.  Ensemble Modeling of the Likely Public Health Impact of a Pre-Erythrocytic Malaria Vaccine 
PLoS Medicine  2012;9(1):e1001157.
Using an ensemble modeling approach, Thomas Smith and colleagues find that targeted mass vaccination with a pre-erythrocytic malaria vaccine RTS,S in low-transmission settings might have better health effects than vaccination through national EPI programs.
Background
The RTS,S malaria vaccine may soon be licensed. Models of impact of such vaccines have mainly considered deployment via the World Health Organization's Expanded Programme on Immunization (EPI) in areas of stable endemic transmission of Plasmodium falciparum, and have been calibrated for such settings. Their applicability to low transmission settings is unclear. Evaluations of the efficiency of different deployment strategies in diverse settings should consider uncertainties in model structure.
Methods and Findings
An ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics, with differing assumptions about immune decay, transmission heterogeneity, and treatment access, was constructed. After fitting to an extensive library of field data, each model was used to predict the likely health benefits of RTS,S deployment, via EPI (with or without catch-up vaccinations), supplementary vaccination of school-age children, or mass vaccination every 5 y. Settings with seasonally varying transmission, with overall pre-intervention entomological inoculation rates (EIRs) of two, 11, and 20 infectious bites per person per annum, were considered. Predicted benefits of EPI vaccination programs over the simulated 14-y time horizon were dependent on duration of protection. Nevertheless, EPI strategies (with an initial catch-up phase) averted the most deaths per dose at the higher EIRs, although model uncertainty increased with EIR. At two infectious bites per person per annum, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose, even at modest coverage.
Conclusions
In higher transmission settings, EPI strategies will be most efficient, but vaccination additional to the EPI in targeted low transmission settings, even at modest coverage, might be more efficient than national-level vaccination of infants. The feasibility and economics of mass vaccination, and the circumstances under which vaccination will avert epidemics, remain unclear. The approach of using an ensemble of models provides more secure conclusions than a single-model approach, and suggests greater confidence in predictions of health effects for lower transmission settings than for higher ones.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The World Health Organization estimates that there are over 200 million cases of malaria each year, and that more than three-quarters of a million people (mostly children living in sub-Saharan Africa) die as a result. Several Plasmodium parasites cause malaria, the most deadly being Plasmodium falciparum. Plasmodium parasites, which are transmitted to people through the bites of infected night-flying mosquitoes, cause recurring fever and can cause life-threatening organ damage. Malaria transmission can be prevented by using insecticides to control the mosquitoes that spread the parasite and by sleeping under insecticide-treated bed nets to avoid mosquito bites. Treatment with antimalarial drugs also reduces transmission. Together, these preventative measures have greatly reduced the global burden of malaria over recent years, but a malaria vaccine could be a valuable additional tool against the disease. At present there is no licensed malaria vaccine, but one promising vaccine—RTS,S—is currently undergoing phase III clinical trials (the last stage of testing before licensing) in infants and children in seven African countries.
Why Was This Study Done?
If the RTS,S vaccine fulfills its promise and is licensed, how should it be used to maximize its effect on the global malaria burden? Should it be given through the World Health Organization's Expanded Programme on Immunization (EPI), which aims to provide universal access to immunization against several infectious diseases during the first three months of life, for example, or through mass vaccination campaigns? Individual mathematical models have been used to investigate this type of question, but the predictions made by these models may be inaccurate because malaria immunity is poorly understood, because little is known about the levels of variability (heterogeneity) in host responses to malaria infection and in malaria transmission, and because it is unclear what the structure of models used to predict vaccine efficacy should be. In this study, the researchers use an “ensemble” approach to model the likely public health impact of the RTS,S malaria vaccine. That is, they simultaneously consider the effect of the vaccine in multiple models of P. falciparum dynamics. Ensemble modeling is widely used in weather forecasting and has been used to investigate several other infectious diseases.
What Did the Researchers Do and Find?
The researchers constructed an ensemble of 14 individual-based stochastic simulation models of P. falciparum dynamics that included different assumptions about immune decay, transmission heterogeneity, and access to treatment. Such models simulate the passage of thousands of hypothetical individuals through different stages of malaria infection; movement between stages occurs stochastically (by chance) at a probability based on field data. Each model was used to predict the health benefits over 14 years of RTS,S deployment through EPI (with and without catch-up vaccination for infants who were not immunized during their first three months of life), through EPI and supplementary vaccination of school children, and through mass vaccination campaigns every five years at malaria transmission levels of 2, 11, and 20 infectious bites per person per annum (low, medium, and high entomological inoculation rates [EIRs], respectively). The predicted benefits of EPI vaccination programs over the 14-year period were modest and similar over a wide range of settings. However, EPI with an initial catch-up phase averted the most deaths per vaccine dose at higher EIRs. At the lowest EIR, mass vaccination strategies substantially reduced transmission, leading to much greater health effects per dose than other strategies, even at modest coverage.
What Do These Findings Mean?
The ensemble approach taken here suggests that targeted mass vaccination with RTS,S in low transmission settings may have greater health benefits than vaccination through national EPI programs. Importantly, this computer-intensive approach, which used computers made available over the internet by volunteers, provides more secure predictions than can be obtained using single models. In addition, it suggests that predictions made about the health effects of RTS,S vaccination for low transmission settings are more likely to be accurate than those made for higher transmission settings. However, this study only reports the first stages of using ensemble modeling to predict the health effects of RTS,S vaccination. Future studies will need to combine the outputs of multiple models with economic analyses to provide a rational basis for the design of vaccine-containing malaria control and elimination programs.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001157.
Information is available from the World Health Organization on malaria and on malaria immunization; the 2010 World Malaria Report provides details on the current global malaria situation; WHO also provides information on its Expanded Programme on Immunization (EPI), and its Global Immunization Vision and Strategy (some information is available in several languages)
The US Centers for Disease Control and Prevention provide information on malaria (in English and Spanish), including a selection of personal stories about malaria
Information is available from the Roll Back Malaria Partnership on the global control of malaria and on malaria in Africa
The latest results from the phase III trial of RTS,S are available on the website of the PATH Malaria Vaccine Initiative, a global program of the international nonprofit organization PATH that aims to accelerate the development of malaria vaccines and ensure their availability and accessibility in the developing world
Wikipedia has a page on ensemble forecasting (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
OpenMalaria is the open source simulator of malaria epidemiology and control used in this study; BOINC is the open source software for volunteer computing and grid computing that was used to run the simulations
MedlinePlus provides links to additional information on malaria and on immunization (in English and Spanish)
doi:10.1371/journal.pmed.1001157
PMCID: PMC3260300  PMID: 22272189
21.  Vaccinating to Protect a Vulnerable Subpopulation 
PLoS Medicine  2007;4(5):e174.
Background
Epidemic influenza causes serious mortality and morbidity in temperate countries each winter. Research suggests that schoolchildren are critical in the spread of influenza virus, while the elderly and the very young are most vulnerable to the disease. Under these conditions, it is unclear how best to focus prevention efforts in order to protect the population. Here we investigate the question of how to protect a population against a disease when one group is particularly effective at spreading disease and another group is more vulnerable to the effects of the disease.
Methods and Findings
We developed a simple mathematical model of an epidemic that includes assortative mixing between groups of hosts. We evaluate the impact of different vaccine allocation strategies across a wide range of parameter values. With this model we demonstrate that the optimal vaccination strategy is extremely sensitive to the assortativity of population mixing, as well as to the reproductive number of the disease in each group. Small differences in parameter values can change the best vaccination strategy from one focused on the most vulnerable individuals to one focused on the most transmissive individuals.
Conclusions
Given the limited amount of information about relevant parameters, we suggest that changes in vaccination strategy, while potentially promising, should be approached with caution. In particular, we find that, while switching vaccine to more active groups may protect vulnerable groups in many cases, switching too much vaccine, or switching vaccine under slightly different conditions, may lead to large increases in disease in the vulnerable group. This outcome is more likely when vaccine limitation is stringent, when mixing is highly structured, or when transmission levels are high.
Jonathan Dushoff and colleagues model the benefits of different vaccination strategies and suggest that small differences in how populations mix can change the best vaccination strategy from one focused on the most vulnerable individuals to one focused on the most transmissive individuals.
Editors' Summary
Background.
Every winter, millions of people take to their beds with influenza—a viral infection of the nose, throat, and airways that is transmitted in airborne droplets released by coughing and sneezing. Most people who catch flu recover within a few days, but some develop serious complications such as pneumonia, and in the US alone, about 36,000 people—mainly infants, elderly, and chronically ill individuals—die every year. To minimize the morbidity (illness) and mortality (death) associated with seasonal (epidemic) influenza, the World Health Organization recommends that these vulnerable people be vaccinated against influenza every autumn. Annual vaccination is necessary because flu viruses continually make small changes to the viral proteins that the immune system recognizes.
Why Was This Study Done?
Although infants and the elderly are particularly vulnerable to influenza, schoolchildren are more likely to spread the flu virus. Also, vaccination is more effective in schoolchildren than in elderly people. So could vaccination of schoolchildren be the best way to reduce influenza morbidity and mortality? Some Japanese and US data suggest that it might be, but policymakers need to know more about the likely effects of changing the current influenza vaccination strategy. They need to know in what circumstances the direct effects of vaccination (protection of vaccinated individuals from disease) outweigh its indirect effects (reduced infection in vulnerable individuals caused by the reduced spread of disease in the whole population) and when the opposite is true. In this study, the researchers have used mathematical modeling to investigate how vaccination affects the spread of diseases such as influenza for which a “core” group in the population spreads the disease and a distinct “vulnerable” group is sensitive to its effects.
What Did the Researchers Do and Find?
The researchers developed a mathematical model in which members of each group mixed mainly with their own group (assortative mixing) and used it to predict how changing the proportion of a limited amount of vaccine given to each group might affect disease spread under different conditions. For example, they report that in a population in which the two groups were very unlikely to mix and viral transmission was low, switching vaccine from the vulnerable group to the core group initially increased infections in the vulnerable group because fewer individuals were directly protected but, as more vaccine was allocated to the core group, fewer vulnerable people became infected because the size of the epidemic decreased. When viral transmission was high, vaccination of the vulnerable group was always best. However, when viral transmission was moderate, shifting vaccine from the vulnerable group first increased, then decreased infections in this group before increasing them again. This last change occurred when vaccination in the vulnerable group was so low that viral transmission was sufficient to maintain the epidemic within this group.
What Do These Findings Mean?
As with all mathematical modeling, the researchers' findings depend on the assumptions included in the model, many of which are based on limited information. The model also considers a population that contains only two groups, an unlikely situation in real life. Nevertheless, these findings indicate that in a population in which one group of people is mainly responsible for the spread of a disease and another is most vulnerable to its effects, the best vaccination strategy is very sensitive to how the groups mix and how well the disease spreads in each group. Small changes in these poorly understood parameters can change the optimal vaccination strategy from one that vaccinates vulnerable individuals to one that mainly vaccinates the people who spread the disease. Importantly, a beneficial change in strategy can become deleterious if taken too far, so policy makers need to approach potentially promising changes in vaccination policy cautiously. Finally, for influenza, the model supports the idea that using some vaccine stocks in schoolchildren might decrease morbidity and mortality among elderly people but suggests that—even if this turns out to be correct—if all the vaccine were given to schoolchildren, more old people might die. Thus, the most prudent policy would be to supplement rather than replace vaccination of the elderly with vaccination of children.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040174.
US Centers for Disease Control and Prevention provide information about influenza for patients and professionals, including key facts about the flu vaccine (in English and Spanish)
World Health Organization, fact sheet on influenza and information on vaccination (in English, Spanish, French, Arabic, Chinese and Russian)
UK Health Protection Agency, information on seasonal influenza
MedlinePlus encyclopedia entries on influenza and the influenza vaccine (in English and Spanish)
Public disease mortality and morbidity data at the International Infectious Disease Data Archive (IIDDA)
doi:10.1371/journal.pmed.0040174
PMCID: PMC1872043  PMID: 17518515
22.  Characterization of Regional Influenza Seasonality Patterns in China and Implications for Vaccination Strategies: Spatio-Temporal Modeling of Surveillance Data 
PLoS Medicine  2013;10(11):e1001552.
Cécile Viboud and colleagues describe epidemiological patterns of influenza incidence across China to support the design of a national vaccination program.
Please see later in the article for the Editors' Summary
Background
The complexity of influenza seasonal patterns in the inter-tropical zone impedes the establishment of effective routine immunization programs. China is a climatologically and economically diverse country, which has yet to establish a national influenza vaccination program. Here we characterize the diversity of influenza seasonality in China and make recommendations to guide future vaccination programs.
Methods and Findings
We compiled weekly reports of laboratory-confirmed influenza A and B infections from sentinel hospitals in cities representing 30 Chinese provinces, 2005–2011, and data on population demographics, mobility patterns, socio-economic, and climate factors. We applied linear regression models with harmonic terms to estimate influenza seasonal characteristics, including the amplitude of annual and semi-annual periodicities, their ratio, and peak timing. Hierarchical Bayesian modeling and hierarchical clustering were used to identify predictors of influenza seasonal characteristics and define epidemiologically-relevant regions. The annual periodicity of influenza A epidemics increased with latitude (mean amplitude of annual cycle standardized by mean incidence, 140% [95% CI 128%–151%] in the north versus 37% [95% CI 27%–47%] in the south, p<0.0001). Epidemics peaked in January–February in Northern China (latitude ≥33°N) and April–June in southernmost regions (latitude <27°N). Provinces at intermediate latitudes experienced dominant semi-annual influenza A periodicity with peaks in January–February and June–August (periodicity ratio >0.6 in provinces located within 27.4°N–31.3°N, slope of latitudinal gradient with latitude −0.016 [95% CI −0.025 to −0.008], p<0.001). In contrast, influenza B activity predominated in colder months throughout most of China. Climate factors were the strongest predictors of influenza seasonality, including minimum temperature, hours of sunshine, and maximum rainfall. Our main study limitations include a short surveillance period and sparse influenza sampling in some of the southern provinces.
Conclusions
Regional-specific influenza vaccination strategies would be optimal in China; in particular, annual campaigns should be initiated 4–6 months apart in Northern and Southern China. Influenza surveillance should be strengthened in mid-latitude provinces, given the complexity of seasonal patterns in this region. More broadly, our findings are consistent with the role of climatic factors on influenza transmission dynamics.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, millions of people worldwide catch influenza, a viral disease of the airways. Most infected individuals recover quickly but seasonal influenza outbreaks (epidemics) kill about half a million people annually. These epidemics occur because antigenic drift—frequent small changes in the viral proteins to which the immune system responds—means that an immune response produced one year provides only partial protection against influenza the next year. Annual vaccination with a mixture of killed influenza viruses of the major circulating strains boosts this natural immunity and greatly reduces the risk of catching influenza. Consequently, many countries run seasonal influenza vaccination programs. Because the immune response induced by vaccination decays within 4–8 months of vaccination and because of antigenic drift, it is important that these programs are initiated only a few weeks before the onset of local influenza activity. Thus, vaccination starts in early autumn in temperate zones (regions of the world that have a mild climate, part way between a tropical and a polar climate), because seasonal influenza outbreaks occur in the winter months when low humidity and low temperatures favor the transmission of the influenza virus.
Why Was This Study Done?
Unlike temperate regions, seasonal influenza patterns are very diverse in tropical countries, which lie between latitudes 23.5°N and 23.5°S, and in the subtropical countries slightly north and south of these latitudes. In some of these countries, there is year-round influenza activity, in others influenza epidemics occur annually or semi-annually (twice yearly). This complexity, which is perhaps driven by rainfall fluctuations, complicates the establishment of effective routine immunization programs in tropical and subtropical countries. Take China as an example. Before a national influenza vaccination program can be established in this large, climatologically diverse country, public-health experts need a clear picture of influenza seasonality across the country. Here, the researchers use spatio-temporal modeling of influenza surveillance data to characterize the seasonality of influenza A and B (the two types of influenza that usually cause epidemics) in China, to assess the role of putative drivers of seasonality, and to identify broad epidemiological regions (areas with specific patterns of disease) that could be used as a basis to optimize the timing of future Chinese vaccination programs.
What Did the Researchers Do and Find?
The researchers collected together the weekly reports of laboratory-confirmed influenza prepared by the Chinese national sentinel hospital-based surveillance network between 2005 and 2011, data on population size and density, mobility patterns, and socio-economic factors, and daily meteorological data for the cities participating in the surveillance network. They then used various statistical modeling approaches to estimate influenza seasonal characteristics, to assess predictors of influenza seasonal characteristics, and to identify epidemiologically relevant regions. These analyses indicate that, over the study period, northern provinces (latitudes greater than 33°N) experienced winter epidemics of influenza A in January–February, southern provinces (latitudes less than 27°N) experienced peak viral activity in the spring (April–June), and provinces at intermediate latitudes experienced semi-annual epidemic cycles with infection peaks in January–February and June–August. By contrast, influenza B activity predominated in the colder months throughout China. The researchers also report that minimum temperatures, hours of sunshine, and maximum rainfall were the strongest predictors of influenza seasonality.
What Do These Findings Mean?
These findings show that influenza seasonality in China varies between regions and between influenza virus types and suggest that, as in other settings, some of these variations might be associated with specific climatic factors. The accuracy of these findings is limited by the short surveillance period, by sparse surveillance data from some southern and mid-latitude provinces, and by some aspects of the modeling approach used in the study. Further surveillance studies need to be undertaken to confirm influenza seasonality patterns in China. Overall, these findings suggest that, to optimize routine influenza vaccination in China, it will be necessary to stagger the timing of vaccination over three broad geographical regions. More generally, given that there is growing interest in rolling out national influenza immunization programs in low- and middle-income countries, these findings highlight the importance of ensuring that vaccination strategies are optimized by taking into account local disease patterns.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/ 10.1371/journal.pmed.1001552.
This study is further discussed in a PLOS Medicine Perspective by Steven Riley
The UK National Health Service Choices website provides information for patients about seasonal influenza and about influenza vaccination
The World Health Organization provides information on seasonal influenza (in several languages) and on influenza surveillance and monitoring
The US Centers for Disease Control and Prevention also provides information for patients and health professionals on all aspects of seasonal influenza, including information about vaccination; its website contains a short video about personal experiences of influenza.
Flu.gov, a US government website, provides access to information on seasonal influenza and vaccination
Information about the Chinese National Influenza Center, which is part of the Chinese Center for Disease Control and Prevention: and which runs influenza surveillance in China, is available (in English and Chinese)
MedlinePlus has links to further information about influenza and about vaccination (in English and Spanish)
A recent PLOS Pathogens Research Article by James D. Tamerius et al. investigates environmental predictors of seasonal influenza epidemics across temperate and tropical climates
A study published in PLOS ONE by Wyller Alencar de Mello et al. indicates that Brazil, like China, requires staggered timing of vaccination from Northern to Southern states to account for different timings of influenza activity.
doi:10.1371/journal.pmed.1001552
PMCID: PMC3864611  PMID: 24348203
23.  Safety and Allele-Specific Immunogenicity of a Malaria Vaccine in Malian Adults: Results of a Phase I Randomized Trial 
PLoS Clinical Trials  2006;1(7):e34.
Objectives:
The objectives were to evaluate the safety, reactogenicity, and allele-specific immunogenicity of the blood-stage malaria vaccine FMP1/AS02A in adults exposed to seasonal malaria and the impact of natural infection on vaccine-induced antibody levels.
Design:
We conducted a randomized, double-blind, controlled phase I clinical trial.
Setting:
Bandiagara, Mali, West Africa, is a rural town with intense seasonal transmission of Plasmodium falciparum malaria.
Participants:
Forty healthy, malaria-experienced Malian adults aged 18–55 y were enrolled.
Interventions:
The FMP1/AS02A malaria vaccine is a 42-kDa recombinant protein based on the carboxy-terminal end of merozoite surface protein-1 (MSP-142) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The control vaccine was a killed rabies virus vaccine (Imovax). Participants were randomized to receive either FMP1/AS02A or rabies vaccine at 0, 1, and 2 mo and were followed for 1 y.
Outcome Measures:
Solicited and unsolicited adverse events and allele-specific antibody responses to recombinant MSP-142 and its subunits derived from P. falciparum strains homologous and heterologous to the 3D7 vaccine strain were measured.
Results:
Transient local pain and swelling were more common in the malaria vaccine group than in the control group (11/20 versus 3/20 and 10/20 versus 6/20, respectively). MSP-142 antibody levels rose during the malaria transmission season in the control group, but were significantly higher in malaria vaccine recipients after the second immunization and remained higher after the third immunization relative both to baseline and to the control group. Immunization with the malaria vaccine was followed by significant increases in antibodies recognizing three diverse MSP-142 alleles and their subunits.
Conclusions:
FMP1/AS02A was well tolerated and highly immunogenic in adults exposed to intense seasonal malaria transmission and elicited immune responses to genetically diverse parasite clones. Anti-MSP-142 antibody levels followed a seasonal pattern that was significantly augmented and prolonged by the malaria vaccine.
Editorial Commentary
Background: In sub-Saharan Africa the burden of death and disease from malaria is particularly severe. Most affected are young children under the age of five, in whom natural immunity against the malaria parasite has not yet developed. There are not yet any approved vaccines that would reduce this burden, although many research groups are currently developing potential vaccines. One such candidate vaccine is FMP1/AS02A. This vaccine is designed to trigger an immune response against a protein (merozoite surface protein-1, or MSP-1) found on the surface of the infectious, blood-stage form of the malaria parasite. Early-stage clinical trials have already been performed in healthy people in the United States, who were not exposed to clinical malaria, and in Kenyan adults who are exposed to malaria throughout the year. These studies did not identify any safety concerns regarding the candidate vaccine, which meant that it could progress further in clinical testing. As part of this next stage, a group of researchers wanted to examine the safety and ability of the vaccine to boost immune responses in an area of sub-Saharan Africa where people are not exposed to malaria throughout the year, but rather only in the wet season. The trial reported here was carried out in northeast Mali, in which 40 adults received either the FMP1/AS02A vaccine or a rabies vaccine for comparison, just at the start of the malaria transmission season. The researchers primarily looked at safety outcomes, collecting data on certain specific signs or symptoms up to 8 d after immunization, other reported symptoms up to 31 d after immunization, and any serious adverse events during a follow-up period of 364 d after immunization. The researchers also examined antibody levels in the participants' blood against the MSP-1 protein.
What this trial shows: The researchers found that participants receiving the FMP1/AS02A vaccine had more immediate symptoms at the injection site (for example, pain or swelling) than the comparison group did. Other general symptoms, both solicited and unsolicited, such as headache, muscle aches, fever, and infections, were also more common in the malaria vaccine group than in the group receiving the rabies vaccine. There were two serious adverse events in the vaccine group, but these were not judged to be related to the vaccination. Antibody levels against the MSP-1 protein increased in both study groups through the course of the rainy season (when individuals would be likely exposed to bites from malaria-infected mosquitoes) and subsequently fell after the end of the malaria transmission season. However, participants receiving the vaccine had higher antibody responses at all timepoints measured; the differences were statistically significant at some timepoints, but not at others. Finally, the researchers looked at antibody reactions against three different variants of the MSP-1 protein in sera from participants receiving the candidate vaccine and found that the sera reacted similarly to all three variants.
Strengths and limitations: The study protocol followed established procedures for phase I clinical trials of this type, which allows the data to be compared across studies. Randomization procedures were appropriate, and steps were taken to blind participants in the trial, as well as those assessing outcomes, to the intervention participants received. A limitation of this study, which can apply to other phase I studies in general, is that small numbers of participants were recruited. Therefore, the trial was not powered to detect statistically significant differences between participant groups. It is also not clear whether the higher antibody levels seen in the participants receiving the FMP1/AS02A vaccine would be biologically significant (that is, act to prevent clinical malaria cases), a question that would need to be addressed in further trials.
Contribution to the evidence: The safety results from this study are similar to those from other trials and confirm that no safety concerns have thus far been identified regarding the FMP1/AS02A vaccine, which has now progressed to efficacy testing. This study was also conducted in a population exposed to seasonal malaria, whereas previous trials had been done among people exposed to malaria year-round. Finally, results from the trial also suggest that this vaccine induces antibodies that recognize genetically diverse forms of the vaccine antigen.
doi:10.1371/journal.pctr.0010034
PMCID: PMC1851722  PMID: 17124530
24.  Cholera Toxin B Subunit Linked to Glutamic Acid Decarboxylase Suppresses Dendritic Cell Maturation and Function 
Vaccine  2011;29(46):8451-8458.
Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5 kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD35), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC - GAD35 autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD35 protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD35 alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD35 was capable of arresting PMA + Ionomycin induced DC maturation. Consistant with this finding, CTB-GAD35 mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC maturation through the down regulation of major co-stimulatory factors and inflammatory cytokine biosynthesis. These results emphasize the possibility that CTB-autoantigen fusion proteins enhance DC priming of naïve Th0 cell development in the direction of immunosuppressive T lymphocytes. The immunological phenomena observed here establish a basis for improvement of adjuvant augmented multi-component subunit vaccine strategies capable of complete suppression of organ-specific autoimmune diseases in vivo.
doi:10.1016/j.vaccine.2011.07.077
PMCID: PMC3551541  PMID: 21807047
adjuvant; autoimmunity; cholera toxin-B (CTB); dendritic cells; IDDM; juvenile diabetes
25.  Immune Mechanisms Responsible for Vaccination against and Clearance of Mucosal and Lymphatic Norovirus Infection 
PLoS Pathogens  2008;4(12):e1000236.
Two cardinal manifestations of viral immunity are efficient clearance of acute infection and the capacity to vaccinate against secondary viral exposure. For noroviruses, the contributions of T cells to viral clearance and vaccination have not been elucidated. We report here that both CD4 and CD8 T cells are required for efficient clearance of primary murine norovirus (MNV) infection from the intestine and intestinal lymph nodes. Further, long-lasting protective immunity was generated by oral live virus vaccination. Systemic vaccination with the MNV capsid protein also effectively protected against mucosal challenge, while vaccination with the capsid protein of the distantly related human Lordsdale virus provided partial protection. Fully effective vaccination required a broad immune response including CD4 T cells, CD8 T cells, and B cells, but the importance of specific immune cell types varied between the intestine and intestinal lymph nodes. Perforin, but not interferon gamma, was required for clearance of MNV infection by adoptively transferred T lymphocytes from vaccinated hosts. These studies prove the feasibility of both mucosal and systemic vaccination against mucosal norovirus infection, demonstrate tissue specificity of norovirus immune cells, and indicate that efficient vaccination strategies should induce potent CD4 and CD8 T cell responses.
Author Summary
Human noroviruses are the most common cause of epidemic nonbacterial gastroenteritis in the world. Despite their importance as human pathogens, little is known about how the immune system controls and clears norovirus infection, and the potential and mechanisms of vaccination remain unclear. Here, we used norovirus infection of mice to show that vaccination can provide long-lasting immunity against mucosal norovirus challenge and to identify the types of immune cells that are important in vaccination against norovirus infection. Similarly, we identified the types of immune T cells that are important for clearance of acute infection. Efficient vaccination required all three major arms of adaptive immunity: CD4 T cells, CD8 T cell, and B cells. Importantly, protective vaccination against mucosal challenge was observed after either mucosal or systemic norovirus antigen exposure. The pore-forming molecule perforin was important for T cell-mediated control of norovirus infection. Our study has important implications for understanding adaptive immunity to norovirus infection, and may provide insight into the directions to take in developing a human norovirus vaccine.
doi:10.1371/journal.ppat.1000236
PMCID: PMC2587711  PMID: 19079577

Results 1-25 (861767)