Search tips
Search criteria

Results 1-25 (401372)

Clipboard (0)

Related Articles

1.  Drosophila Carrying Pex3 or Pex16 Mutations Are Models of Zellweger Syndrome That Reflect Its Symptoms Associated with the Absence of Peroxisomes 
PLoS ONE  2011;6(8):e22984.
The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology.
PMCID: PMC3149631  PMID: 21826223
2.  Pex12 Interacts with Pex5 and Pex10 and Acts Downstream of Receptor Docking in Peroxisomal Matrix Protein Import 
The Journal of Cell Biology  1999;147(4):761-774.
Peroxisomal matrix protein import requires PEX12, an integral peroxisomal membrane protein with a zinc ring domain at its carboxy terminus. Mutations in human PEX12 result in Zellweger syndrome, a lethal neurological disorder, and implicate the zinc ring domain in PEX12 function. Using two-hybrid studies, blot overlay assays, and coimmunoprecipitation experiments, we observed that the zinc-binding domain of PEX12 binds both PEX5, the PTS1 receptor, and PEX10, another integral peroxisomal membrane protein required for peroxisomal matrix protein import. Furthermore, we identified a patient with a missense mutation in the PEX12 zinc-binding domain, S320F, and observed that this mutation reduces the binding of PEX12 to PEX5 and PEX10. Overexpression of either PEX5 or PEX10 can suppress this PEX12 mutation, providing genetic evidence that these interactions are biologically relevant. PEX5 is a predominantly cytoplasmic protein and previous PEX5-binding proteins have been implicated in docking PEX5 to the peroxisome surface. However, we find that loss of PEX12 or PEX10 does not reduce the association of PEX5 with peroxisomes, demonstrating that these peroxins are not required for receptor docking. These and other results lead us to propose that PEX12 and PEX10 play direct roles in peroxisomal matrix protein import downstream of the receptor docking event.
PMCID: PMC2156163  PMID: 10562279
PTS1 receptor; PEX5; PEX10; Zellweger syndrome; peroxisome biogenesis disorder
3.  Pex13 Inactivation in the Mouse Disrupts Peroxisome Biogenesis and Leads to a Zellweger Syndrome Phenotype 
Molecular and Cellular Biology  2003;23(16):5947-5957.
Zellweger syndrome is the archetypical peroxisome biogenesis disorder and is characterized by defective import of proteins into the peroxisome, leading to peroxisomal metabolic dysfunction and widespread tissue pathology. In humans, mutations in the PEX13 gene, which encodes a peroxisomal membrane protein necessary for peroxisomal protein import, can lead to a Zellweger phenotype. To develop mouse models for this disorder, we have generated a targeted mouse with a loxP-modified Pex13 gene to enable conditional Cre recombinase-mediated inactivation of Pex13. In the studies reported here, we crossed these mice with transgenic mice that express Cre recombinase in all cells to generate progeny with ubiquitous disruption of Pex13. The mutant pups exhibited many of the clinical features of Zellweger syndrome patients, including intrauterine growth retardation, severe hypotonia, failure to feed, and neonatal death. These animals lacked morphologically intact peroxisomes and showed deficient import of matrix proteins containing either type 1 or type 2 targeting signals. Biochemical analyses of tissue and cultured skin fibroblasts from these animals indicated severe impairment of peroxisomal fatty acid oxidation and plasmalogen synthesis. The brains of these animals showed disordered lamination in the cerebral cortex, consistent with a neuronal migration defect. Thus, Pex13−/− mice reproduce many of the features of Zellweger syndrome and PEX13 deficiency in humans.
PMCID: PMC166343  PMID: 12897163
4.  Peroxisome Synthesis in the Absence of Preexisting Peroxisomes  
The Journal of Cell Biology  1999;144(2):255-266.
Zellweger syndrome and related diseases are caused by defective import of peroxisomal matrix proteins. In all previously reported Zellweger syndrome cell lines the defect could be assigned to the matrix protein import pathway since peroxisome membranes were present, and import of integral peroxisomal membrane proteins was normal. However, we report here a Zellweger syndrome patient (PBD061) with an unusual cellular phenotype, an inability to import peroxisomal membrane proteins. We also identified human PEX16, a novel integral peroxisomal membrane protein, and found that PBD061 had inactivating mutations in the PEX16 gene. Previous studies have suggested that peroxisomes arise from preexisting peroxisomes but we find that expression of PEX16 restores the formation of new peroxisomes in PBD061 cells. Peroxisome synthesis and peroxisomal membrane protein import could be detected within 2–3 h of PEX16 injection and was followed by matrix protein import. These results demonstrate that peroxisomes do not necessarily arise from division of preexisting peroxisomes. We propose that peroxisomes may form by either of two pathways: one that involves PEX11-mediated division of preexisting peroxisomes, and another that involves PEX16-mediated formation of peroxisomes in the absence of preexisting peroxisomes.
PMCID: PMC2132891  PMID: 9922452
membrane biogenesis; Zellweger syndrome; peroxisomal membrane protein import; PEX16; peroxisome biogenesis disorders
5.  Identification of Novel Mutations and Sequence Variation in the Zellweger Syndrome Spectrum of Peroxisome Biogenesis Disorders 
Human mutation  2009;30(3):E467-E480.
Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive neurodegenerative disorders that affect multiple organ systems. Approximately 80% of PBD patients are classified in the Zellweger syndrome spectrum (PBD-ZSS). Mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes are found in approximately 90% of PBD-ZSS patients. Here, we sequenced the coding regions and splice junctions of these five genes in 58 PBD-ZSS cases previously subjected to targeted sequencing of a limited number of PEX gene exons. In our cohort, 71 unique sequence variants were identified, including 18 novel mutations predicted to disrupt protein function and 2 novel silent variants. We identified 4 patients who had two deleterious mutations in one PEX gene and a third deleterious mutation in a second PEX gene. For two such patients, we conducted cell fusion complementation analyses to identify the defective gene responsible for aberrant peroxisome assembly. Overall, we provide empirical data to estimate the relative fraction of disease-causing alleles that occur in the coding and splice junction sequences of these five PEX genes and the frequency of cases where mutations occur in multiple PEX genes. This information is beneficial for efforts aimed at establishing rapid and sensitive clinical diagnostics for PBD-ZSS patients and interpreting the results from these genetic tests.
PMCID: PMC2649967  PMID: 19105186
peroxisome biogenesis disorders; Zellweger syndrome; PBD-ZSS; neonatal adrenoleukodystrophy; infantile Refsum disease; PEX1; PEX6; PEX10; PEX12
6.  PEX11β Deficiency Is Lethal and Impairs Neuronal Migration but Does Not Abrogate Peroxisome Function 
Molecular and Cellular Biology  2002;22(12):4358-4365.
Zellweger syndrome is a lethal neurological disorder characterized by severe defects in peroxisomal protein import. The resulting defects in peroxisome metabolism and the accumulation of peroxisomal substrates are thought to cause the other Zellweger syndrome phenotypes, including neuronal migration defects, hypotonia, a developmental delay, and neonatal lethality. These phenotypes are also manifested in mouse models of Zellweger syndrome generated by disruption of the PEX5 or PEX2 gene. Here we show that mice lacking peroxisomal membrane protein PEX11β display several pathologic features shared by these mouse models of Zellweger syndrome, including neuronal migration defects, enhanced neuronal apoptosis, a developmental delay, hypotonia, and neonatal lethality. However, PEX11β deficiency differs significantly from Zellweger syndrome and Zellweger syndrome mice in that it is not characterized by a detectable defect in peroxisomal protein import and displays only mild defects in peroxisomal fatty acid β-oxidation and peroxisomal ether lipid biosynthesis. These results demonstrate that the neurological pathologic features of Zellweger syndrome can occur without peroxisomal enzyme mislocalization and challenge current models of Zellweger syndrome pathogenesis.
PMCID: PMC133847  PMID: 12024045
7.  Inhibitors of Copi and Copii Do Not Block PEX3-Mediated Peroxisome Synthesis 
The Journal of Cell Biology  2000;149(7):1345-1360.
In humans, defects in peroxisome biogenesis are the cause of lethal diseases typified by Zellweger syndrome. Here, we show that inactivating mutations in human PEX3 cause Zellweger syndrome, abrogate peroxisome membrane synthesis, and result in reduced abundance of peroxisomal membrane proteins (PMPs) and/or mislocalization of PMPs to the mitochondria. Previous studies have suggested that PEX3 may traffic through the ER en route to the peroxisome, that the COPI inhibitor, brefeldin A, leads to accumulation of PEX3 in the ER, and that PEX3 overexpression alters the morphology of the ER. However, we were unable to detect PEX3 in the ER at early times after expression. Furthermore, we find that inhibition of COPI function by brefeldin A has no effect on trafficking of PEX3 to peroxisomes and does not inhibit PEX3-mediated peroxisome biogenesis. We also find that inhibition of COPII-dependent membrane traffic by a dominant negative SAR1 mutant fails to block PEX3 transport to peroxisomes and PEX3-mediated peroxisome synthesis. Based on these results, we propose that PEX3 targeting to peroxisomes and PEX3-mediated peroxisome membrane synthesis may occur independently of COPI- and COPII-dependent membrane traffic.
PMCID: PMC2175136  PMID: 10871277
Zellweger syndrome; membrane biogenesis; protein import; vesicle traffic; peroxisome biogenesis disorders
8.  PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress 
Disease Models & Mechanisms  2010;4(1):104-119.
Delayed cerebellar development is a hallmark of Zellweger syndrome (ZS), a severe neonatal neurodegenerative disorder. ZS is caused by mutations in PEX genes, such as PEX13, which encodes a protein required for import of proteins into the peroxisome. The molecular basis of ZS pathogenesis is not known. We have created a conditional mouse mutant with brain-restricted deficiency of PEX13 that exhibits cerebellar morphological defects. PEX13 brain mutants survive into the postnatal period, with the majority dying by 35 days, and with survival inversely related to litter size and weaning body weight. The impact on peroxisomal metabolism in the mutant brain is mixed: plasmalogen content is reduced, but very-long-chain fatty acids are normal. PEX13 brain mutants exhibit defects in reflex and motor development that correlate with impaired cerebellar fissure and cortical layer formation, granule cell migration and Purkinje cell layer development. Astrogliosis and microgliosis are prominent features of the mutant cerebellum. At the molecular level, cultured cerebellar neurons from E19 PEX13-null mice exhibit elevated levels of reactive oxygen species and mitochondrial superoxide dismutase-2 (MnSOD), and show enhanced apoptosis together with mitochondrial dysfunction. PEX13 brain mutants show increased levels of MnSOD in cerebellum. Our findings suggest that PEX13 deficiency leads to mitochondria-mediated oxidative stress, neuronal cell death and impairment of cerebellar development. Thus, PEX13-deficient mice provide a valuable animal model for investigating the molecular basis and treatment of ZS cerebellar pathology.
PMCID: PMC3014351  PMID: 20959636
9.  Characterization of two common 5' polymorphisms in PEX1 and correlation to survival in PEX1 peroxisome biogenesis disorder patients 
BMC Medical Genetics  2011;12:109.
Mutations in PEX1 are the most common primary cause of Zellweger syndrome. In addition to exonic mutations, deletions and splice site mutations two 5' polymorphisms at c.-137 and c.-53 with a potential influence on PEX1 protein levels have been described in the 5' untranslated region (UTR) of the PEX1 gene.
We used RACE and in silico promoter prediction analysis to study the 5' UTR of PEX1. We determined the distribution of PEX1 5' polymorphisms in a cohort of 30 Zellweger syndrome patients by standard DNA sequencing. 5' polymorphisms were analysed in relation to the two most common mutations in PEX1 and were incorporated into a novel genotype-phenotype analysis by correlation of three classes of PEX1 mutations with patient survival.
We provide evidence that the polymorphism 137 bp upstream of the ATG codon is not part of the UTR, rendering it a promoter polymorphism. We show that the first, but not the second most common PEX1 mutation arose independently of a specific upstream polymorphic constellation. By genotype-phenotype analysis we identified patients with identical exonic mutation and identical 5' polymorphisms, but strongly differing survival.
Our study suggests that two different types of PEX1 5' polymorphisms have to be distinguished: a 5' UTR polymorphism at position c.-53 and a promoter polymorphism 137 bp upstream of the PEX1 start codon. Our results indicate that the exonic PEX1 mutation correlates with patient survival, but the two 5' polymorphisms analysed in this study do not have to be considered for diagnostic and/or prognostic purposes.
PMCID: PMC3167756  PMID: 21846392
10.  Arginine improves peroxisome functioning in cells from patients with a mild peroxisome biogenesis disorder 
Zellweger spectrum disorders (ZSDs) are multisystem genetic disorders caused by a lack of functional peroxisomes, due to mutations in one of the PEX genes, encoding proteins involved in peroxisome biogenesis. The phenotypic spectrum of ZSDs ranges from an early lethal form to much milder presentations. In cultured skin fibroblasts from mildly affected patients, peroxisome biogenesis can be partially impaired which results in a mosaic catalase immunofluorescence pattern. This peroxisomal mosaicism has been described for specific missense mutations in various PEX genes. In cell lines displaying peroxisomal mosaicism, peroxisome biogenesis can be improved when these are cultured at 30°C. This suggests that these missense mutations affect the folding and/or stability of the encoded protein. We have studied if the function of mutant PEX1, PEX6 and PEX12 can be improved by promoting protein folding using the chemical chaperone arginine.
Fibroblasts from three PEX1 patients, one PEX6 and one PEX12 patient were cultured in the presence of different concentrations of arginine. To determine the effect on peroxisome biogenesis we studied the following parameters: number of peroxisome-positive cells, levels of PEX1 protein and processed thiolase, and the capacity to β-oxidize very long chain fatty acids and pristanic acid.
Peroxisome biogenesis and function in fibroblasts with mild missense mutations in PEX1, 6 and 12 can be improved by arginine.
Arginine may be an interesting compound to promote peroxisome function in patients with a mild peroxisome biogenesis disorder.
PMCID: PMC3844471  PMID: 24016303
Peroxisome biogenesis disorder; Zellweger spectrum disorder; Misfolded protein; Peroxisomal mosaicism; Arginine; Therapy
11.  Disturbed Cholesterol Homeostasis in a Peroxisome-Deficient PEX2 Knockout Mouse Model 
We evaluated the major pathways of cholesterol regulation in the peroxisome-deficient PEX2−/− mouse, a model for Zellweger syndrome. Zellweger syndrome is a lethal inherited disorder characterized by severe defects in peroxisome biogenesis and peroxisomal protein import. Compared with wild-type mice, PEX2−/− mice have decreased total and high-density lipoprotein cholesterol levels in plasma. Hepatic expression of the SREBP-2 gene is increased 2.5-fold in PEX2−/− mice and is associated with increased activities and increased protein and expression levels of SREBP-2-regulated cholesterol biosynthetic enzymes. However, the upregulated cholesterogenic enzymes appear to function with altered efficiency, associated with the loss of peroxisomal compartmentalization. The rate of cholesterol biosynthesis in 7- to 9-day-old PEX2−/− mice is markedly increased in most tissues, except in the brain and kidneys, where it is reduced. While the cholesterol content of most tissues is normal in PEX2−/− mice, in the knockout mouse liver it is decreased by 40% relative to that in control mice. The classic pathway of bile acid biosynthesis is downregulated in PEX2−/− mice. However, expression of CYP27A1, the rate-determining enzyme in the alternate pathway of bile acid synthesis, is upregulated threefold in the PEX2−/− mouse liver. The expression of hepatic ATP-binding cassette (ABC) transporters (ABCA1 and ABCG1) involved in cholesterol efflux is not affected in PEX2−/− mice. These data illustrate the diversity in cholesterol regulatory responses among different organs in postnatal peroxisome-deficient mice and demonstrate that peroxisomes are critical for maintaining cholesterol homeostasis in the neonatal mouse.
PMCID: PMC303355  PMID: 14673138
12.  Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene 
To expand the spectrum of genetic causes of autosomal recessive cerebellar ataxia (ARCA).
Case report
Two brothers are described who developed progressive cerebellar ataxia at 3 1/2 and 18 years, respectively. After ruling out known common genetic causes of ARCA, analysis of blood peroxisomal markers strongly suggested a peroxisomal biogenesis disorder. Sequencing of candidate PEX genes revealed a homozygous c.865_866insA mutation in the PEX2 gene leading to a frameshift 17 codons upstream of the stop codon. PEX gene mutations usually result in a severe neurological phenotype (Zellweger spectrum disorders).
Genetic screening of PEX2 and other PEX genes involved in peroxisomal biogenesis is warranted in children and adults with ARCA.
PMCID: PMC3064617  PMID: 21392394
13.  Defective PEX gene products correlate with the protein import, biochemical abnormalities, and phenotypic heterogeneity in peroxisome biogenesis disorders 
Journal of Medical Genetics  1999;36(10):779-781.
Peroxisome biogenesis disorders (PBD) comprise three phenotypes including Zellweger syndrome (ZS) (the most severe), neonatal adrenoleucodystrophy, and infantile Refsum disease (IRD) (the most mild), and can be classified into at least 12 genetic complementation groups, which are not predictive of the phenotypes. Several pathogenic genes for PBD groups have been identified, but the relationship between the defective gene products and phenotypic heterogeneity has remained unclear. We identified a mutation in the PEX2 gene in an IRD patient with compound heterozygosity for a missense mutation and the known nonsense mutation detected in ZS patients. In transfection experiments using the peroxisome deficient CHO mutant, Z65 with a nonsense mutation in the PEX2 gene, we noted the E55K mutation had mosaic activities of peroxisomal protein import machinery and residual activities of peroxisomal functions, including dihydroxyacetone phosphate acyltransferase and β oxidation of very long chain fatty acids. The nonsense mutation severely affects these peroxisomal functions as well as the protein import. These data suggest that allelic heterogeneity of the PEX gene affects the peroxisomal protein import and functions and regulates the clinical severity in PBD.

Keywords: Zellweger syndrome; infantile Refsum disease; PEX gene; mosaic
PMCID: PMC1734244  PMID: 10528859
14.  Targeted Deletion of the PEX2 Peroxisome Assembly Gene in Mice Provides a Model for Zellweger Syndrome, a Human Neuronal Migration Disorder  
The Journal of Cell Biology  1997;139(5):1293-1305.
Zellweger syndrome is a peroxisomal biogenesis disorder that results in abnormal neuronal migration in the central nervous system and severe neurologic dysfunction. The pathogenesis of the multiple severe anomalies associated with the disorders of peroxisome biogenesis remains unknown. To study the relationship between lack of peroxisomal function and organ dysfunction, the PEX2 peroxisome assembly gene (formerly peroxisome assembly factor-1) was disrupted by gene targeting.
Homozygous PEX2-deficient mice survive in utero but die several hours after birth. The mutant animals do not feed and are hypoactive and markedly hypotonic. The PEX2-deficient mice lack normal peroxisomes but do assemble empty peroxisome membrane ghosts. They display abnormal peroxisomal biochemical parameters, including accumulations of very long chain fatty acids in plasma and deficient erythrocyte plasmalogens. Abnormal lipid storage is evident in the adrenal cortex, with characteristic lamellar–lipid inclusions. In the central nervous system of newborn mutant mice there is disordered lamination in the cerebral cortex and an increased cell density in the underlying white matter, indicating an abnormality of neuronal migration. These findings demonstrate that mice with a PEX2 gene deletion have a peroxisomal disorder and provide an important model to study the role of peroxisomal function in the pathogenesis of this human disease.
PMCID: PMC2140200  PMID: 9382874
15.  Peroxisomes Are Required for Lipid Metabolism and Muscle Function in Drosophila melanogaster 
PLoS ONE  2014;9(6):e100213.
Peroxisomes are ubiquitous organelles that perform lipid and reactive oxygen species metabolism. Defects in peroxisome biogenesis cause peroxisome biogenesis disorders (PBDs). The most severe PBD, Zellweger syndrome, is characterized in part by neuronal dysfunction, craniofacial malformations, and low muscle tone (hypotonia). These devastating diseases lack effective therapies and the development of animal models may reveal new drug targets. We have generated Drosophila mutants with impaired peroxisome biogenesis by disrupting the early peroxin gene pex3, which participates in budding of pre-peroxisomes from the ER and peroxisomal membrane protein localization. pex3 deletion mutants lack detectible peroxisomes and die before or during pupariation. At earlier stages of development, larvae lacking Pex3 display reduced size and impaired lipid metabolism. Selective loss of peroxisomes in muscles impairs muscle function and results in flightless animals. Although, hypotonia in PBD patients is thought to be a secondary effect of neuronal dysfunction, our results suggest that peroxisome loss directly affects muscle physiology, possibly by disrupting energy metabolism. Understanding the role of peroxisomes in Drosophila physiology, specifically in muscle cells may reveal novel aspects of PBD etiology.
PMCID: PMC4063865  PMID: 24945818
16.  Rational diagnostic strategy for Zellweger syndrome spectrum patients 
Zellweger syndrome spectrum (ZSS) comprises a clinically and genetically heterogeneous disease entity, which is caused by mutations in any of the 12 different human PEX genes leading to impaired biogenesis of the peroxisome. Patients potentially suffering from ZSS are diagnosed biochemically by measuring elevated levels of very long chain fatty acids, pristanic acid and phytanic acid in plasma and serum and reduced levels of ether phospholipids in erythrocytes. Published reports on diagnostic procedures for ZSS patients are restricted either to biochemical markers or to defined mutations in a subset of PEX genes. Clarification of the primary genetic defect in an affected patient is crucial for genetic counselling, carrier testing or prenatal diagnosis. In this study, we present a rational diagnostic strategy for patients suspected of ZSS. By combining cell biology and molecular genetic methods in an appropriate sequence, we were able to detect the underlying mutation in various PEX genes within adequate time and cost. We applied this method on 90 patients who presented at our institute, Department of Pediatrics and Pediatric Neurology at Georg August University, and detected 174 mutant alleles within six different PEX genes, including two novel deletions and three new missense mutations in PEX6. Furthermore, this strategy will extend our knowledge on genotype–phenotype correlation in various PEX genes. It will contribute to a better understanding of ZSS pathogenesis, allowing the investigation of the effects of diverse mutations on the interaction between PEX proteins and peroxisomal function in vivo.
PMCID: PMC2947092  PMID: 19142205
Zellweger syndrome spectrum; peroxisome; diagnosis; PEX mutation
17.  Pex15p of Saccharomyces cerevisiae Provides a Molecular Basis for Recruitment of the AAA Peroxin Pex6p to Peroxisomal Membranes 
Molecular Biology of the Cell  2003;14(6):2226-2236.
The gene products (peroxins) of at least 29 PEX genes are known to be necessary for peroxisome biogenesis but for most of them their precise function remains to be established. Here we show that Pex15p, an integral peroxisomal membrane protein, in vivo and in vitro binds the AAA peroxin Pex6p. This interaction functionally interconnects these two hitherto unrelated peroxins. Pex15p provides the mechanistic basis for the reversible targeting of Pex6p to peroxisomal membranes. We could demonstrate that the N-terminal part of Pex6p contains the binding site for Pex15p and that the two AAA cassettes D1 and D2 of Pex6p have opposite effects on this interaction. A point mutation in the Walker A motif of D1 (K489A) decreased the binding of Pex6p to Pex15p indicating that the interaction of Pex6p with Pex15p required binding of ATP. Mutations in Walker A (K778A) and B (D831Q) motifs of D2 abolished growth on oleate and led to a considerable larger fraction of peroxisome bound Pex6p. The nature of these mutations suggested that ATP-hydrolysis is required to disconnect Pex6p from Pex15p. On the basis of these results, we propose that Pex6p exerts at least part of its function by an ATP-dependent cycle of recruitment and release to and from Pex15p.
PMCID: PMC194873  PMID: 12808025
18.  Genetic and clinical aspects of Zellweger spectrum patients with PEX1 mutations 
Journal of Medical Genetics  2005;42(9):e58.
Objective: To analyse the PEX1 gene, the most common cause for peroxisome biogenesis disorders (PBD), in a consecutive series of patients with Zellweger spectrum.
Methods: Mutations were detected by different methods including SSCP analyses as a screening technique on the basis of genomic or cDNA, followed by direct sequencing of PCR fragments with an abnormal electrophoresis pattern.
Results: 33 patients were studied. Two common mutations, c.2528G→A, G843D and c.2098_2098insT, I700YfsX42, accounted for over 80% of all abnormal PEX1 alleles, emphasising their diagnostic relevance. Most PEX1 mutations were distributed over the two AAA cassettes with the two functional protein domains, D1 and D2, and the highly conserved Walker motifs. Phenotypic severity of Zellweger spectrum in CG1 depended on the effect of the mutation on the PEX1 protein, peroxin 1. PEX1 mutations could be divided into two classes of genotype–phenotype correlation: class I mutations led to residual PEX1 protein levels and function and a milder phenotype; class II mutations almost abolished PEX1 protein levels and function, resulting in a severe phenotype. Compound heterozygote patients for a class I and class II mutation had an intermediate phenotype.
Conclusions: Molecular confirmation of the clinical and biochemical diagnosis will allow the prediction of the clinical course of disease in individual PBD cases.
PMCID: PMC1736134  PMID: 16141001
19.  Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. 
Molecular and Cellular Biology  1997;17(9):5210-5226.
We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.
PMCID: PMC232372  PMID: 9271399
20.  Child Neurology: Zellweger syndrome 
Neurology  2013;80(20):e207-e210.
Zellweger syndrome (ZS) is a severe manifestation of disease within the spectrum of peroxisome biogenesis disorders that includes neonatal adrenoleukodystrophy, infantile Refsum disease, and rhizomelic chondroplasia punctata. Patients with ZS present in the neonatal period with a characteristic phenotype of distinctive facial stigmata, pronounced hypotonia, poor feeding, hepatic dysfunction, and often seizures and boney abnormalities. In patients with ZS, a mutation in one of the PEX genes coding for a peroxin (a peroxisome assembly protein) creates functionally incompetent organelles causing an accumulation of very long chain fatty acids (VLCFA), among other complications. Despite an absence of treatment options, prompt diagnosis of ZS is important for providing appropriate symptomatic care, definitive genetic testing, and counseling regarding family planning.
PMCID: PMC3908348  PMID: 23671347
21.  The Peroxisome Biogenesis Factors Pex4p, Pex22p, Pex1p, and Pex6p Act in the Terminal Steps of Peroxisomal Matrix Protein Import 
Molecular and Cellular Biology  2000;20(20):7516-7526.
Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20 PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in most pex mutants of the yeast Pichia pastoris but is severely reduced in pex4 and pex22 mutants and moderately reduced in pex1 and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups of pex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1, pex6, and pex22 mutant cells, we show here that pex4Δ mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.
PMCID: PMC86304  PMID: 11003648
22.  Identification of a Novel, Intraperoxisomal Pex14-Binding Site in Pex13: Association of Pex13 with the Docking Complex Is Essential for Peroxisomal Matrix Protein Import 
Molecular and Cellular Biology  2005;25(8):3007-3018.
The peroxisomal docking complex is a key component of the import machinery for matrix proteins. The core protein of this complex, Pex14, is thought to represent the initial docking site for the import receptors Pex5 and Pex7. Associated with this complex is a fraction of Pex13, another essential component of the import machinery. Here we demonstrate that Pex13 directly binds Pex14 not only via its SH3 domain but also via a novel intraperoxisomal site. Furthermore, we demonstrate that Pex5 also contributes to the association of Pex13 with Pex14. Peroxisome function was affected only mildly by mutations within the novel Pex14 interaction site of Pex13 or by the non-Pex13-interacting mutant Pex5W204A. However, when these constructs were tested in combination, PTS1-dependent import and growth on oleic acid were severely compromised. When the SH3 domain-mediated interaction of Pex13 with Pex14 was blocked on top of that, PTS2-dependent matrix protein import was completely compromised and Pex13 was no longer copurified with the docking complex. We conclude that the association of Pex13 with Pex14 is an essential step in peroxisomal protein import that is enabled by two direct interactions and by one that is mediated by Pex5, a result which indicates a novel, receptor-independent function of Pex5.
PMCID: PMC1069607  PMID: 15798189
23.  Peroxisome Function Regulates Growth on Glucose in the Basidiomycete Fungus Cryptococcus neoformans▿  
Eukaryotic Cell  2006;6(1):60-72.
The function of the peroxisomes was examined in the pathogenic basidiomycete Cryptococcus neoformans. Recent studies reveal the glyoxylate pathway is required for virulence of diverse microbial pathogens of plants and animals. One exception is C. neoformans, in which isocitrate lyase (encoded by ICL1) was previously shown not to be required for virulence, and here this was extended to exclude also a role for malate synthase (encoded by MLS1). The role of peroxisomes, in which the glyoxylate pathway enzymes are localized in many organisms, was examined by mutation of two genes (PEX1 and PEX6) encoding AAA (ATPases associated with various cellular activities)-type proteins required for peroxisome formation. The pex1 and pex6 deletion mutants were unable to localize the fluorescent DsRED-SKL protein to peroxisomal punctate structures, in contrast to wild-type cells. pex1 and pex6 single mutants and a pex1 pex6 double mutant exhibit identical phenotypes, including abolished growth on fatty acids but no growth difference on acetate. Because both icl1 and mls1 mutants are unable to grow on acetate as the sole carbon source, these findings demonstrate that the glyoxylate pathway can function efficiently outside the peroxisome in C. neoformans. The pex1 mutant exhibits wild-type virulence in a murine inhalation model and in an insect host, demonstrating that peroxisomes are not required for virulence under these conditions. An unusual phenotype of the pex1 and pex6 mutants was that they grew poorly with glucose as the carbon source, but nearly wild type with galactose, which suggested impaired hexokinase function and that C. neoformans peroxisomes might function analogously to the glycosomes of the trypanosomid parasites. Deletion of the hexokinase HXK2 gene reduced growth in the presence of glucose and suppressed the growth defect of the pex1 mutant on glucose. The hexokinase 2 protein of C. neoformans contains a predicted peroxisome targeting signal (type 2) motif; however, Hxk2 fused to fluorescent proteins was not localized to peroxisomes. Thus, we hypothesize that glucose or glycolytic metabolites are utilized in the peroxisome by an as yet unidentified enzyme or regulate a pathway required by the fungus in the absence of peroxisomes.
PMCID: PMC1800366  PMID: 17041184
24.  Predicting the Function and Subcellular Location of Caenorhabditis Elegans Proteins Similar to Saccharomyces Cerevisiae β-Oxidation Enzymes  
Yeast (Chichester, England)  2000;17(3):188-200.
The role of peroxisomal processes in the maintenance of neurons has not been thoroughly investigated. We propose using Caenorhabditis elegans as a model organism for studying the molecular basis underlying neurodegeneration in certain human peroxisomal disorders, e.g. Zellweger syndrome, since the nematode neural network is well characterized and relatively simple in function. Here we have identified C. elegans PEX-5 (C34C6.6) representing the receptor for peroxisomal targeting signal type 1 (PTS1), defective in patients with such disorders. PEX-5 interacted strongly in a two-hybrid assay with Gal4p–SKL, and a screen using PEX-5 identified interaction partners that were predominantly terminated with PTS1 or its variants. A list of C. elegans proteins with similarities to well-characterized yeast β-oxidation enzymes was compiled by homology probing. The possible subcellular localization of these orthologues was predicted using an algorithm based on trafficking signals. Examining the C termini of selected nematode proteins for PTS1 function substantiated predictions made regarding the proteins' peroxisomal location. It is concluded that the eukaryotic PEX5-dependent route for importing PTS1-containing proteins into peroxisomes is conserved in nematodes. C. elegans might emerge as an attractive model system for studying the importance of peroxisomes and affiliated processes in neurodegeneration, and also for studying a β-oxidation process that is potentially compartmentalized in both mitochondria and peroxisomes.
PMCID: PMC2448379  PMID: 11025529
25.  Alpha-Synuclein Abnormalities in Mouse Models of Peroxisome Biogenesis Disorders 
alpha-Synuclein (αS) is a presynaptic protein implicated in Parkinson’s disease (PD). Growing evidence implicates mitochondrial dysfunction, oxidative stress and αS-lipids interactions in the gradual accumulation of αS in pathogenic forms and its deposition in Lewy bodies, the pathological hallmark of PD and related synucleinopathies. The peroxisomal biogenesis disorders (PBD), with Zellweger syndrome serving as the prototype of this group, are characterized by malformed and functionally impaired peroxisomes. Here we utilized the PBD mouse models, Pex2-/-, Pex5-/- and Pex13-/-, to study the potential effects of peroxisomal dysfunction on αS–related pathogenesis. We found increased αS oligomerization and phosphorylation and its increased deposition in cytoplasmic inclusions in these PBD mouse models. Further, we show that αS abnormalities correlate with the altered lipid metabolism and specifically, with accumulation of long chain, n-6 polyunsaturated fatty acids, that occurs in the PBD models.
PMCID: PMC2819671  PMID: 19830841
Parkinson’s disease; lipids; alpha synuclein; peroxisomes

Results 1-25 (401372)