Search tips
Search criteria

Results 1-25 (411409)

Clipboard (0)

Related Articles

1.  Distribution of ace-1R and resistance to carbamates and organophosphates in Anopheles gambiae s.s. populations from Côte d'Ivoire 
Malaria Journal  2010;9:167.
The spread of pyrethroid resistance in Anopheles gambiae s.s. is a critical issue for malaria vector control based on the use of insecticide-treated nets. Carbamates and organophosphates insecticides are regarded as alternatives or supplements to pyrethroids used in nets treatment. It is, therefore, essential to investigate on the susceptibility of pyrethroid resistant populations of An. gambiae s.s. to these alternative products.
In September 2004, a cross sectional survey was conducted in six localities in Côte d'Ivoire: Toumbokro, Yamoussoukro, Toumodi in the Southern Guinea savannah, Tiassalé in semi-deciduous forest, then Nieky and Abidjan in evergreen forest area. An. gambiae populations from these localities were previously reported to be highly resistant to pyrethroids insecticides. Anopheline larvae were collected from the field and reared to adults. Resistance/susceptibility to carbamates (0.4% carbosulfan, 0.1% propoxur) and organophosphates (0.4% chlorpyrifos-methyl, 1% fenitrothion) was assessed using WHO bioassay test kits for adult mosquitoes. Then, PCR assays were run to determine the molecular forms (M) and (S), as well as phenotypes for insensitive acetylcholinesterase (AChE1) due to G119S mutation.
Bioassays showed carbamates (carbosulfan and propoxur) resistance in all tested populations of An. gambiae s.s. In addition, two out of the six tested populations (Toumodi and Tiassalé) were also resistant to organophosphates (mortality rates ranged from 29.5% to 93.3%). The M-form was predominant in tested samples (91.8%). M and S molecular forms were sympatric at two localities but no M/S hybrids were detected. The highest proportion of S-form (7.9% of An. gambiae identified) was in sample from Toumbokro, in the southern Guinea savannah. The G119S mutation was found in both M and S molecular forms with frequency from 30.9 to 35.2%.
This study revealed a wide distribution of insensitive acetylcholinesterase due to the G119S mutation in both M and S molecular forms of the populations of An. gambiae s.s. tested. The low cross-resistance between carbamates and organophosphates highly suggests involvement of other resistance mechanisms such as metabolic detoxification or F290V mutation.
PMCID: PMC2908637  PMID: 20553593
2.  Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria 
Parasites & Vectors  2012;5:116.
Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin.
Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO) synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR.
Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05) but was significantly higher (P < 0.05) in populations exposed to DDT. All mosquitoes tested were identified as A. gambiae s.s (M form). The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted.
Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of insecticide resistance management strategies to combat the multiple resistance identified.
PMCID: PMC3409038  PMID: 22686575
Carbamate; DDT; Pyrethroids; Insecticide resistance; Urban; Anopheles gambiae mosquitoes; Lagos; Nigeria
3.  Multiple Insecticide Resistance: An Impediment to Insecticide-Based Malaria Vector Control Program 
PLoS ONE  2011;6(1):e16066.
Indoor Residual Spraying (IRS), insecticide-treated nets (ITNs) and long-lasting insecticidal nets (LLINs) are key components in malaria prevention and control strategy. However, the development of resistance by mosquitoes to insecticides recommended for IRS and/or ITNs/LLINs would affect insecticide-based malaria vector control. We assessed the susceptibility levels of Anopheles arabiensis to insecticides used in malaria control, characterized basic mechanisms underlying resistance, and evaluated the role of public health use of insecticides in resistance selection.
Methodology/Principal findings
Susceptibility status of An. arabiensis was assessed using WHO bioassay tests to DDT, permethrin, deltamethrin, malathion and propoxur in Ethiopia from August to September 2009. Mosquito specimens were screened for knockdown resistance (kdr) and insensitive acetylcholinesterase (ace-1R) mutations using AS-PCR and PCR-RFLP, respectively. DDT residues level in soil from human dwellings and the surrounding environment were determined by Gas Chromatography with Electron Capture Detector. An. arabiensis was resistant to DDT, permethrin, deltamethrin and malathion, but susceptible to propoxur. The West African kdr allele was found in 280 specimens out of 284 with a frequency ranged from 95% to 100%. Ace-1R mutation was not detected in all specimens scored for the allele. Moreover, DDT residues were found in soil samples from human dwellings but not in the surrounding environment.
The observed multiple-resistance coupled with the occurrence of high kdr frequency in populations of An. arabiensis could profoundly affect the malaria vector control programme in Ethiopia. This needs an urgent call for implementing rational resistance management strategies and integrated vector control intervention.
PMCID: PMC3020220  PMID: 21264325
4.  Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa 
Parasites & Vectors  2013;6:41.
Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions.
Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95) were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S) using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities.
The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates > 98%) and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control.
In Cameroon, multiple resistance mechanisms segregate in the S form of An. gambiae resulting in heterogeneous resistance profiles, whereas in the M form and An. arabiensis insecticide tolerance seems to be essentially mediated by enzyme-based detoxification. Synergists partially restored susceptibility to pyrethroid insecticides, and might help mitigate the impact of vector resistance in the field. However, additional vector control tools are needed to further impact on malaria transmission in such settings.
PMCID: PMC3583743  PMID: 23433176
5.  Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon 
Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon.
Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method.
Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance phenotypes, suggesting that the kdr mechanism may act with certain co-factors to be identified.
These results demonstrate the ongoing spread of kdr alleles in An. gambiae in Central Africa. The rapid evolution of insecticide resistance in this highly dynamic and genetically polymorphic species remains a challenge for its control.
PMCID: PMC2764715  PMID: 19793389
6.  CYP6 P450 Enzymes and ACE-1 Duplication Produce Extreme and Multiple Insecticide Resistance in the Malaria Mosquito Anopheles gambiae 
PLoS Genetics  2014;10(3):e1004236.
Malaria control relies heavily on pyrethroid insecticides, to which susceptibility is declining in Anopheles mosquitoes. To combat pyrethroid resistance, application of alternative insecticides is advocated for indoor residual spraying (IRS), and carbamates are increasingly important. Emergence of a very strong carbamate resistance phenotype in Anopheles gambiae from Tiassalé, Côte d'Ivoire, West Africa, is therefore a potentially major operational challenge, particularly because these malaria vectors now exhibit resistance to multiple insecticide classes. We investigated the genetic basis of resistance to the most commonly-applied carbamate, bendiocarb, in An. gambiae from Tiassalé. Geographically-replicated whole genome microarray experiments identified elevated P450 enzyme expression as associated with bendiocarb resistance, most notably genes from the CYP6 subfamily. P450s were further implicated in resistance phenotypes by induction of significantly elevated mortality to bendiocarb by the synergist piperonyl butoxide (PBO), which also enhanced the action of pyrethroids and an organophosphate. CYP6P3 and especially CYP6M2 produced bendiocarb resistance via transgenic expression in Drosophila in addition to pyrethroid resistance for both genes, and DDT resistance for CYP6M2 expression. CYP6M2 can thus cause resistance to three distinct classes of insecticide although the biochemical mechanism for carbamates is unclear because, in contrast to CYP6P3, recombinant CYP6M2 did not metabolise bendiocarb in vitro. Strongly bendiocarb resistant mosquitoes also displayed elevated expression of the acetylcholinesterase ACE-1 gene, arising at least in part from gene duplication, which confers a survival advantage to carriers of additional copies of resistant ACE-1 G119S alleles. Our results are alarming for vector-based malaria control. Extreme carbamate resistance in Tiassalé An. gambiae results from coupling of over-expressed target site allelic variants with heightened CYP6 P450 expression, which also provides resistance across contrasting insecticides. Mosquito populations displaying such a diverse basis of extreme and cross-resistance are likely to be unresponsive to standard insecticide resistance management practices.
Author Summary
Malaria control depends heavily on only four classes of insecticide to which Anopheles mosquitoes are increasingly resistant. It is important to manage insecticide application carefully to minimise increases in resistance, for example by using different compounds in combination or rotation. Recently, mosquitoes resistant to all available insecticides have been found in Tiassalé, West Africa, which could be problematic for resistance management, particularly if common genetic mechanisms are responsible (‘cross-resistance’). Tiassalé mosquitoes also exhibit extreme levels of resistance to the two most important classes, pyrethroids and carbamates. We investigated the genetic basis of extreme carbamate resistance and cross-resistance in Tiassalé, and the applicability of results in an additional population from Togo. We find that specific P450 enzymes are involved in both extreme and cross-resistance, including one, CYP6M2, which can cause resistance to three insecticide classes. However, amplification of a mutated version of the gene which codes for acetycholinesterase, the target site of both the carbamate and organophosphate insecticides, also plays an important role. Mechanisms involved in both extreme resistance and cross resistance are likely to be very resilient to insecticide management practices, and represent an alarming scenario for mosquito-targeted malaria control.
PMCID: PMC3961184  PMID: 24651294
7.  Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa 
Malaria Journal  2008;7:192.
Indoor residual spraying and insecticide-treated nets (ITN) are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-western Chad.
Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA).
During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. Anopheles arabiensis was the predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35) of surviving An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49) and M form An. gambiae s.s. (N = 1) carried the susceptible allele.
This first investigation of malaria vector susceptibility to insecticides in Chad revealed variable levels of resistance to pyrethroid insecticides (permethrin and deltamethrin) in most An. gambiae s.l. populations. Resistance was associated with the L1014F kdr mutation in the S form of An. gambiae s.s.. Alternative mechanisms, probably of metabolic origin are involved in An. arabiensis. These results emphasize the crucial need for insecticide resistance monitoring and in-depth investigation of resistance mechanisms in malaria vectors in Chad. The impact of reduced susceptibility to pyrethroids on ITN efficacy should be further assessed.
PMCID: PMC2566574  PMID: 18823537
8.  Multiple-Insecticide Resistance in Anopheles gambiae Mosquitoes, Southern Côte d’Ivoire 
Emerging Infectious Diseases  2012;18(9):1508-1511.
Preventing malaria used to seem as simple as killing the vector, the mosquito; however, a recent study shows that this concept is now anything but simple. The highly effective use of insecticide-treated bed nets and indoor insecticide spraying is being challenged by mosquito resistance to insecticides. In West Africa, populations of this mosquito vector are now resistant to all 4 classes of insecticide approved for this use. And no new classes of insecticide are anticipated until 2020, at the earliest. Development of newer classes of insecticide is crucial because if resistance continues unchecked, the hard-earned progress in malaria control in Africa could be quickly reversed.
Malaria control depends on mosquito susceptibility to insecticides. We tested Anopheles gambiae mosquitoes from Côte d’Ivoire for resistance and screened a subset for target site mutations. Mosquitoes were resistant to insecticides of all approved classes. Such complete resistance, which includes exceptionally strong phenotypes, presents a major threat to malaria control.
PMCID: PMC3437712  PMID: 22932478
pyrethroids; DDT; organophosphates; carbamates; acetylcholinesterase; Anopheles gambiae; mosquitoes; Côte d’Ivoire; malaria; vector-borne infections; insecticide resistance
9.  Update on resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site, "Yaokoffikro", 6 years after the political crisis in Côte d'Ivoire 
Parasites & Vectors  2012;5:68.
At Yaokoffikro field site near Bouaké, in central Côte d'Ivoire, a group of experimental huts built in 1996 served over many years for the evaluation of insecticides against highly resistant mosquitoes. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices until a war broke out in September 2002. Six years after the crisis, we conducted bioassays and biochemical analysis to update the resistance status of Anopheles gambiae s.s. populations and detect other potential mechanisms of resistance that might have evolved.
An. gambiae s.s. larvae from Yaokoffikro were collected in breeding sites and reared to adults. Resistance status of this population to insecticides was assessed using WHO bioassay test kits for adult mosquitoes with seven insecticides: two pyrethroids, a pseudo-pyrethroid, an organochloride, two carbamates and an organophosphate.
Molecular and biochemical assays were carried out to identify the L1014F kdr and ace-1R alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO), non-specific esterases (NSE) and glutathione S-transferases (GST) activity.
High pyrethroids, DDT and carbamate resistance was confirmed in An. gambiae s.s. populations from Yaokoffikro. Mortality rates were less than 70% with pyrethroids and etofenprox, 12% with DDT, and less than 22% with the carbamates. Tolerance to fenitrothion was observed, with 95% mortality after 24 h.
PCR analysis of samples from the site showed high allelic frequency of the L1014F kdr (0.94) and the ace-1R (0.50) as before the crisis. In addition, increased activity of NSE, GST and to a lesser extent MFO was found relative to the reference strain Kisumu. This was the first report detecting enhanced activity of these enzymes in An. gambiae s.s from Yaokoffikro, which could have serious implications in detoxification of insecticides. Their specific roles in resistance should be investigated using additional tools.
The insecticide resistance profile at Yaokoffikro appears multifactorial. The site presents a unique opportunity to evaluate its impact on the protective efficacy of insecticidal products as well as new tools to manage these complex mechanisms. It calls for innovative research on the behaviour of the local vector, its biology and genetics that drive resistance.
PMCID: PMC3351368  PMID: 22472088
10.  Synergy in Efficacy of Fungal Entomopathogens and Permethrin against West African Insecticide-Resistant Anopheles gambiae Mosquitoes 
PLoS ONE  2010;5(8):e12081.
Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes.
A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days).
Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.
PMCID: PMC2920335  PMID: 20711409
11.  Status of Insecticide Susceptibility in Anopheles gambiae Sensu Lato and Anopheles funestus Mosquitoes from Western Kenya 
The status of resistance was investigated in Anopheles gambiae sensu lato and An. funestus (Diptera: Culicidae) mosquitoes from western Kenya to four classes of insecticides approved by World Health Organization for indoor residual spraying. The prevalence of the knockdown-resistance (kdr) mutation associated with resistance to pyrethroids and DDT was determined in An. gambiae s.l.. Standard World Health Organization diagnostic bioassay kits for DDT (an organochlorine), fenitrothion (an organophosphate), bendiocarb (a carbamate), and the pyrethoirds, lambdacyhalothrin and permethrin, were used. Knockdown every 10 min and mortality 24 h after exposure were noted. Controls not treated with insecticides and with the susceptible An. gambiae KISUMU strain were included in the bioassays. The presence of the kdr gene was determined using a standard diagnostic polymerase chain reaction assay. Over 98% mortality was observed for tests with all insecticides for both An. gambiae s.l. and An. funestus. Knockdown rates were not significantly different between An. gambiae s.l. and the KISUMU strain control. 50% and 95% knockdown times were either slightly lower than those for the KISUMU strain or higher by factors of less than 1.6. The mean frequency of the East African kdr mutation was 24.7% in An. gambiae sensu strictu. Based on conventional criteria where susceptibility is defined by mortality rates >98% 24 h after exposure, no evidence for resistance was found, implying that vector control measures employing any of the insecticides tested would be unhampered by resistance. The observed frequencies of the kdr mutation do not appear to compromise the effectiveness of the insecticides. The need for continuous monitoring of the status of insecticide resistance and of the impact of any observed resistance on the efficacy of vector control programs employing insecticides is apparent.
PMCID: PMC3061582  PMID: 20345290
diagnostic bioassays; knockdown rates; percentage mortality; knockdown resistance gene
12.  Multiple Insecticide Resistance in Anopheles gambiae s.l. Populations from Burkina Faso, West Africa 
PLoS ONE  2012;7(11):e48412.
Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. The situation in Burkina Faso is emblematic with Anopheles gambiae populations showing high levels of resistance to most available compounds. Although the frequency of insecticide target-site mutations including knockdown resistance (kdr) and insensitive acetylcholinesterase (Ace-1R) alleles has been regularly monitored in the area, it is not known whether detoxifying enzymes contribute to the diversity of resistance phenotypes observed in the field. Here, we propose an update on the phenotypic diversity of insecticide resistance in An. gambiae populations sampled from 10 sites in Burkina Faso in 2010. Susceptibility to deltamethrin, permethrin, DDT, bendiocarb and fenithrotion was assessed. Test specimens (N = 30 per locality) were identified to species and molecular form and their genotype at the kdr and Ace-1 loci was determined. Detoxifying enzymes activities including non-specific esterases (NSEs), oxydases (cytochrome P450) and Glutathione S-Transferases (GSTs) were measured on single mosquitoes (N = 50) from each test locality and compared with the An. gambiae Kisumu susceptible reference strain. In all sites, mosquitoes demonstrated multiple resistance phenotypes, showing reduced mortality to several insecticidal compounds at the same time, although with considerable site-to-site variation. Both the kdr 1014L and Ace-1R 119S resistant alleles were detected in the M and the S forms of An. gambiae, and were found together in specimens of the S form. Variation in detoxifying enzyme activities was observed within and between vector populations. Elevated levels of NSEs and GSTs were widespread, suggesting multiple resistance mechanisms segregate within An. gambiae populations from this country. By documenting the extent and diversity of insecticide resistance phenotypes and the putative combination of their underlying mechanisms in An. gambiae mosquitoes, our work prompts for new alternative strategies to be urgently developed for the control of major malaria vectors in Burkina Faso.
PMCID: PMC3506617  PMID: 23189131
13.  Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China 
Parasites & Vectors  2014;7:92.
Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays.
The larvae and pupae of Anopheles mosquitoes were sampled from multiple sites in Hainan Island, and five sites yielded sufficient mosquitoes for insecticide susceptibility bioassays. Bioassays of female adult mosquitoes three days after emergence were conducted in the two most abundant species, Anopheles sinensis and An. vagus, using three insecticides (0.05% deltamethrin, 4% DDT, and 5% malathion) and following the WHO standard tube assay procedure. P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were measured. Mutations at the knockdown resistance (kdr) gene and the ace-1gene were detected by DNA sequencing and PCR-RFLP analysis, respectively.
An. sinensis and An. vagus were the predominant Anopheles mosquito species. An. sinensis was found to be resistant to DDT and deltamethrin. An. vagus was susceptible to deltamethrin but resistant to DDT and malathion. Low kdr mutation (L1014F) frequency (<10%) was detected in An. sinensis, but no kdr mutation was detected in An. vagus populations. Modest to high (45%-75%) ace-1 mutation frequency was found in An. sinensis populations, but no ace-1 mutation was detected in An. vagus populations. Significantly higher P450 monooxygenase and carboxylesterase activities were detected in deltamethrin-resistant An. sinensis, and significantly higher P450 monooxygenase, glutathione S-transferase and carboxylesterase activities were found in malathion-resistant An. vagus mosquitoes.
Multiple insecticide resistance was found in An. sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Cost-effective integrated vector control programs that go beyond synthetic insecticides are urgently needed.
PMCID: PMC3975898  PMID: 24589247
Anopheles sinensis; Anopheles vagus; Insecticide resistance; Kdr mutation; Ace-1 mutation; Metabolic detoxification enzymes
14.  Status of pyrethroid resistance in Anopheles gambiae s. s. M form prior to the scaling up of Long Lasting Insecticidal Nets (LLINs) in Adzopé, Eastern Côte d’Ivoire 
Parasites & Vectors  2012;5:289.
The growing development of pyrethroid resistance constitutes a serious threat to malaria control programmes and if measures are not taken in time, resistance may compromise control efforts in the foreseeable future. Prior to Long Lasting Insecticidal Nets (LLINs) distribution in Eastern Cote d’Ivoire, we conducted bioassays to inform the National Malaria Control Programme of the resistance status of the main malaria vector, Anopheles gambiae s. s. and the need for close surveillance of resistance.
Larvae of An. gambiae s. s. were collected in two areas of Adzopé (Port-Bouët and Tsassodji) and reared to adults. WHO susceptibility tests with impregnated filter papers were carried out to detect resistance to three pyrethroids commonly used to develop LLINs: permethrin 1%, deltamethrin 0.05% and lambda-cyhalothrin 0.05%. Molecular assays were conducted to detect M and S forms and the L1014F kdr allele in individual mosquitoes.
Resistance, at various degrees was detected in both areas of Adzopé. Overall, populations of An. gambiae at both sites surveyed showed equivalent frequency of the L1014F kdr allele (0.67) but for all tested pyrethroids, there were significantly higher survival rates for mosquitoes from Tsassodji (32–58%) than those from Port-Bouët (3–32%) (p < 0.001), indicating the implication of resistance mechanisms other than kdr alone. During the survey period (May–June) in this forested area of Côte d’Ivoire, An. gambiae s. s. found were exclusively of the M form and were apparently selected for pyrethroid resistance through agricultural and household usage of insecticides.
Prior to LLINs scaling up in Eastern Côte d’Ivoire, resistance was largely present at various levels in An. gambiae. Underlying mechanisms included the high frequency of the L1014F kdr mutation and other unidentified components, probably metabolic detoxifiers. Their impact on the efficacy of the planned strategy (LLINs) in the area should be investigated alongside careful monitoring of the trend in that resistance over time. The need for alternative insecticides to supplement or replace pyrethroids on nets must be stressed.
PMCID: PMC3534552  PMID: 23232083
15.  Pyrethroid Resistance in an Anopheles funestus Population from Uganda 
PLoS ONE  2010;5(7):e11872.
The susceptibility status of Anopheles funestus to insecticides remains largely unknown in most parts of Africa because of the difficulty in rearing field-caught mosquitoes of this malaria vector. Here we report the susceptibility status of the An. funestus population from Tororo district in Uganda and a preliminary characterisation of the putative resistance mechanisms involved.
Methodology/Principal Findings
A new forced egg laying technique used in this study significantly increased the numbers of field-caught females laying eggs and generated more than 4000 F1 adults. WHO bioassays indicated that An. funestus in Tororo is resistant to pyrethroids (62% mortality after 1 h exposure to 0.75% permethrin and 28% mortality to 0.05% deltamethrin). Suspected DDT resistance was also observed with 82% mortality. However this population is fully susceptible to bendiocarb (carbamate), malathion (organophosphate) and dieldrin with 100% mortality observed after exposure to each of these insecticides. Sequencing of a fragment of the sodium channel gene containing the 1014 codon conferring pyrethroid/DDT resistance in An. gambiae did not detect the L1014F kdr mutation but a correlation between haplotypes and resistance phenotype was observed indicating that mutations in other exons may be conferring the knockdown resistance in this species. Biochemical assays suggest that resistance in this population is mediated by metabolic resistance with elevated level of GSTs, P450s and pNPA compared to a susceptible strain of Anopheles gambiae. RT-PCR further confirmed the involvement of P450s with a 12-fold over-expression of CYP6P9b in the Tororo population compared to the fully susceptible laboratory colony FANG.
This study represents the first report of pyrethroid/DDT resistance in An. funestus from East Africa. With resistance already reported in southern and West Africa, this indicates that resistance in An. funestus may be more widespread than previously assumed and therefore this should be taken into account for the implementation and management of vector control programs in Africa.
PMCID: PMC2912372  PMID: 20686697
16.  Status of insecticide susceptibility in Anopheles arabiensis from Mwea rice irrigation scheme, Central Kenya 
Malaria Journal  2006;5:46.
Control of the Anopheline mosquito vectors of malaria by use of insecticides has been shown to impact on both morbidity and mortality due to this disease. Evidence of insecticide resistance in different settings necessitates surveillance studies to allow prompt detection of resistance should it arise and thus enable its management. Possible resistance by Anopheles arabiensis mosquitoes from Mwea rice irrigation scheme in Central Kenya to insecticides in the four classes of insecticides approved by WHO for indoor residual spraying was investigated.
Susceptibility to DDT (an organochlorine), fenitrothion (an organophosphate), bendiocarb (a carbamate), lambdacyhalothrin and permethrin (both pyrethroids) was tested using standard WHO diagnostic bioassay kits. Bioassays were performed on non-blood fed mosquitoes one- to three-day old. Knockdown was recorded every 10 min and mortality 24 h post-exposure was noted.
Mortality 24 h post-exposure was 100% for all insecticides except for lambdacyhalothrin, which averaged 99.46%. Knockdown rates at 10 min intervals were not significantly different between the Mwea population and the susceptible KISUMU strain of Anopheles gambiae sensu stricto control. The KDT50 and KDT95 values for the Mwea population were either lower than those for the control or higher by factors of no more than 2 for most comparisons and compared well with those of An. gambiae sensu lato categorized as susceptible in other studies.
These results suggest that the Mwea population of An. arabiensis is susceptible to all the insecticides tested. This implies that vector control measures employing any of these insecticides would not be hampered by resistance.
PMCID: PMC1501029  PMID: 16756645
17.  Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa 
Malaria Journal  2011;10:261.
Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. This study reported the spatial and seasonal variations of insecticide resistance in malaria vectors in Benin, West Africa.
Anopheles gambiae s.l populations were collected from October 2008 to June 2010 in four sites selected on the basis of different use of insecticides and environment. WHO susceptibility tests were carried out to detect resistance to DDT, fenitrothion, bendiocarb, permethrin and deltamethrin. The synergist piperonyl butoxide was used to assess the role of non-target site mechanisms in pyrethroid resistance. Anopheles gambiae mosquitoes were identified to species and to molecular M and S forms using PCR techniques. Molecular and biochemical assays were carried out to determine kdr and Ace.1R allelic frequencies and activity of the detoxification enzymes.
Throughout the surveys very high levels of mortality to bendiocarb and fenitrothion were observed in An. gambiae s.l. populations. However, high frequencies of resistance to DDT and pyrethroids were seen in both M and S form of An. gambiae s.s. and Anopheles arabiensis. PBO increased the toxicity of permethrin and restored almost full susceptibility to deltamethrin. Anopheles gambiae s.l. mosquitoes from Cotonou and Malanville showed higher oxidase activity compared to the Kisumu susceptible strain in 2009, whereas the esterase activity was higher in the mosquitoes from Bohicon in both 2008 and 2009. A high frequency of 1014F kdr allele was initially showed in An. gambiae from Cotonou and Tori-Bossito whereas it increased in mosquitoes from Bohicon and Malanville during the second year. For the first time the L1014S kdr mutation was found in An. arabiensis in Benin. The ace.1R mutation was almost absent in An. gambiae s.l.
Pyrethroid and DDT resistance is widespread in malaria vector in Benin and both metabolic and target site resistance are implicated. Resistance was not correlated with a change of malaria species and/or molecular forms. The 1014S kdr allele was first identified in wild population of An. arabiensis hence confirming the expansion of pyrethroid resistance alleles in Africa.
PMCID: PMC3179749  PMID: 21910856
18.  Mixture for Controlling Insecticide-Resistant Malaria Vectors 
Emerging Infectious Diseases  2008;14(11):1707-1714.
Impregnating mosquito nets with an insect repellent and a low dose of organophosphorous insecticide combination was effective.
The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area near Bobo-Dioulasso, Burkina Faso. During the first 2 weeks posttreatment, the mixture was as effective as deltamethrin alone and was more effective at killing An. gambiae that carried knockdown resistance (kdr) or insensitive acetylcholinesterase resistance (Ace1R) genes. The mixture seemed to not kill more susceptible genotypes for the kdr or Ace1R alleles. Mixing repellents and organophosphates on bed nets could be used to control insecticide-resistant malaria vectors if residual activity of the mixture is extended and safety is verified.
PMCID: PMC2630727  PMID: 18976553
Malaria; Anopheles gambiae; bed nets; pyrethroid; resistance; repellents; insecticides; mixtures; research
19.  Mixed-function oxidases and esterases associated with permethrin, deltamethrin and bendiocarb resistance in Anopheles gambiae s.l. in the south-north transect Benin, West Africa 
Parasites & Vectors  2013;6:223.
Insecticide resistance monitoring is essential to help national programmers to implement more effective and sustainable malaria control strategies in endemic countries. The current study aimed at an exploring the involvement of detoxifying enzymes in the insecticide phenotype resistance in Anopheles gambiae s.l.from Benin, in order to guide future malaria vector control interventions.
Larvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Oueme, Atacora and Alibori provinces. CDC susceptibility tests were conducted on unfed female mosquitoes aged 2–5 days old. CDC bioassays were performed with stock solutions of permethrin (21.5 μg per bottle), deltamethrin (12.5 μg per bottle) and bendiocarb (12.5 μg per bottle). CDC biochemical assays using synergists were also conducted to assess the metabolic resistance.
The susceptibility of Anopheles gambiae Agbalilame and Kandi populations to permethrin and deltamethrin respectively, increased significantly when synergized by PBO, suggesting an implication of mono-oxygenases in resistance of Anopheles gambiae s.l. to pyrethroid. Esterases may play a role in bendiocarb resistance in Anopheles gambiae Tanguieta.
Synergists partially restored susceptibility to pyrethroid and carbamate insecticides and might help mitigate the impact of vector resistance in Anopheles gambiae Agbalilame, Kandi and Tanguieta populations. However, additional vector control tools are needed to further impact on malaria transmission in such settings.This will improve the implementation and management of future control programs against this important malaria vector in Benin and in Africa in general.
PMCID: PMC3750545  PMID: 23919515
Susceptibility; Insecticide; CDC bioassay; Synergist; Anopheles gambiae
20.  The insecticide resistance status of malaria vectors in the Mekong region 
Malaria Journal  2008;7:102.
Knowledge on insecticide resistance in target species is a basic requirement to guide insecticide use in malaria control programmes. Malaria transmission in the Mekong region is mainly concentrated in forested areas along the country borders, so that decisions on insecticide use should ideally be made at regional level. Consequently, cross-country monitoring of insecticide resistance is indispensable to acquire comparable baseline data on insecticide resistance.
A network for the monitoring of insecticide resistance, MALVECASIA, was set up in the Mekong region in order to assess the insecticide resistance status of the major malaria vectors in Cambodia, Laos, Thailand, and Vietnam. From 2003 till 2005, bioassays were performed on adult mosquitoes using the standard WHO susceptibility test with diagnostic concentrations of permethrin 0.75% and DDT 4%. Additional tests were done with pyrethroid insecticides applied by the different national malaria control programmes.
Anopheles dirus s.s., the main vector in forested malaria foci, was susceptible to permethrin. However, in central Vietnam, it showed possible resistance to type II pyrethroids. In the Mekong delta, Anopheles epiroticus was highly resistant to all pyrethroid insecticides tested. It was susceptible to DDT, except near Ho Chi Minh City where it showed possible DDT resistance. In Vietnam, pyrethroid susceptible and tolerant Anopheles minimus s.l. populations were found, whereas An. minimus s.l. from Cambodia, Laos and Thailand were susceptible. Only two An. minimus s.l. populations showed DDT tolerance. Anopheles vagus was found resistant to DDT and to several pyrethroids in Vietnam and Cambodia.
This is the first large scale, cross-country survey of insecticide resistance in Anopheles species in the Mekong Region. A unique baseline data on insecticide resistance for the Mekong region is now available, which enables the follow-up of trends in susceptibility status in the region and which will serve as the basis for further resistance management. Large differences in insecticide resistance status were observed among species and countries. In Vietnam, insecticide resistance was mainly observed in low or transmission-free areas, hence an immediate change of malaria vector control strategy is not required. Though, resistance management is important because the risk of migration of mosquitoes carrying resistance genes from non-endemic to endemic areas. Moreover, trends in resistance status should be carefully monitored and the impact of existing vector control tools on resistant populations should be assessed.
PMCID: PMC2467428  PMID: 18534006
21.  Efficacy of ICON® Maxx in the laboratory and against insecticide-resistant Anopheles gambiae in central Côte d'Ivoire 
Malaria Journal  2012;11:167.
Long-lasting treatment kits, designed to transform untreated nets into long-lasting insecticidal nets (LLINs), may facilitate high coverage with LLINs where non-treated nets are in place. In this study, the efficacy of ICON® Maxx (Syngenta) was evaluated under laboratory conditions and in an experimental hut trial in central Côte d'Ivoire, where Anopheles gambiae s.s. are resistant to pyrethroid insecticides.
In the laboratory, polyester and polyethylene net samples were treated with ICON® Maxx, washed up to 20 times and their efficacy determined in World Health Organization (WHO) cone assays against a susceptible laboratory An. gambiae s.s. colony. Over a 12-month period, the polyester nets were evaluated in a hut trial to determine mosquito deterrence, induced exophily, blood-feeding inhibition and mortality.
In the laboratory, ICON® Maxx-treated polyethylene nets showed higher efficacy against pyrethroid-susceptible mosquitoes than polyester nets. After 20 washings, insecticidal efficacy in bioassays was 59.4% knockdown (KD) and 22.3% mortality for polyethylene, and 55.3% KD and 17.9% mortality for polyester nets. In experimental huts, treated nets showed strong deterrence, induced exophily and an over three-fold reduction in blood-fed mosquitoes. More than half (61.8%) of the mosquitoes entering the huts with treated nets were found dead the next morning despite high levels of KD resistance. After washing the treated nets, KD and mortality rates were close to or exceeded predefined WHO thresholds in cone bioassays.
In contrast to previous laboratory investigation, ICON® Maxx-treated nets showed only moderate KD and mortality rates. However, under semi-field conditions, in an area where mosquitoes are resistant to pyrethroids, ICON® Maxx showed high deterrence, induced exophily and provided a significant reduction in blood-feeding rates; features that are likely to have a positive impact in reducing malaria transmission. The WHO cone test may not always be a good proxy for predicting product performance under field conditions.
PMCID: PMC3369213  PMID: 22587687
22.  Impacts of Agricultural Practices on Insecticide Resistance in the Malaria Vector Anopheles arabiensis in Khartoum State, Sudan 
PLoS ONE  2013;8(11):e80549.
Agricultural pesticides may play a profound role in selection of resistance in field populations of mosquito vectors. The objective of this study is to investigate possible links between agricultural pesticide use and development of resistance to insecticides by the major malaria vector Anopheles arabiensis in northern Sudan.
Methodology/Principal Findings
Entomological surveys were conducted during two agricultural seasons in six urban and peri-urban sites in Khartoum state. Agro-sociological data were collected from 240 farmers subjected to semi-structured questionnaires based on knowledge attitude and practice (KAP) surveys. Susceptibility status of An. arabiensis (n=6000) was assessed in all sites and during each season using WHO bioassay tests to DDT, deltamethrin, permethrin, Malathion and bendiocarb. KAP analysis revealed that pesticide application was common practice among both urban and peri-urban farmers, with organophosphates and carbamates most commonly used. Selection for resistance is likely to be greater in peri-urban sites where farmers apply pesticide more frequently and are less likely to dispose of surpluses correctly. Though variable among insecticides and seasons, broad-spectrum mortality was slightly, but significantly higher in urban than peri-urban sites and most marked for bendiocarb, to which susceptibility was lowest. Anopheles arabiensis from all sites showed evidence of resistance or suspected resistance, especially pyrethroids. However, low-moderate frequencies of the L1014F kdr allele in all sites, which was very strongly associated with DDT, permethrin and deltamethrin survivorship (OR=6.14-14.67) suggests that resistance could increase rapidly.
Ubiquitous multiple-resistance coupled with presence of a clear mechanism for DDT and pyrethroids (kdr L1014F) in populations of An. arabiensis from Khartoum-Sudan suggests careful insecticide management is essential to prolong efficacy. Our findings are consistent with agricultural insecticide use as a source of selection for resistance and argue for coordination between the integrated vector control program and the Ministry of Agriculture to permit successful implementation of rational resistance management strategies.
PMCID: PMC3832379  PMID: 24260414
23.  Comparison of the standard WHO susceptibility tests and the CDC bottle bioassay for the determination of insecticide susceptibility in malaria vectors and their correlation with biochemical and molecular biology assays in Benin, West Africa 
Parasites & Vectors  2013;6:147.
The detection of insecticide resistance in natural populations of Anopheles vectors is absolutely necessary for malaria control. In the African region, the WHO insecticide susceptibility test is the most common method for assessing resistance status. In order to search for a simple, rapid and more reliable technique in the assessment of insecticide resistance in malaria vectors, we compared the WHO tests with the CDC bottle bioassay in the Ouemé province of southern Benin where insecticide resistance has been widely reported.
Larvae and pupae of Anopheles gambiae s.l. mosquitoes were collected from the breeding sites in Ouemé. WHO and CDC susceptibility tests were conducted simultaneously on unfed female mosquitoes aged 2–5 days old. WHO bioassays were performed with impregnated papers of deltamethrin (0.05%) and bendiocarb (0.1%), whereas CDC bioassays were performed with stock solutions of deltamethrin (12.5 μg per bottle) and bendiocarb (12.5 μg per bottle). PCR techniques were used to detect species, Kdr and Ace-1 mutations. CDC biochemical assays using synergists were also conducted to assess the metabolic resistance.
A slight decrease in mortality rates was observed with 97.95% and 98.33% obtained from CDC and WHO bioassays respectively in populations of mosquitoes from Adjara and Dangbo. PCR revealed that all specimens tested were Anopheles gambiae s.s. The Kdr mutation was found at high frequency in all populations and both the Kdr mutation and mono-oxygenase enzymes were implicated as mechanisms of pyrethroid resistance in An. gambiae from Misserete.
This study emphasizes that both WHO and CDC bioassays give similar results with regards to the susceptibility of mosquitoes to insecticides in southern Benin. There were complementarities between both methods, however, some specificity was noted for each of the two methods used. Both Kdr and metabolic mechanisms were implicated in the resistance.
PMCID: PMC3669035  PMID: 23688233
Susceptibility; Insecticide; WHO bioassay; CDC bioassay; Synergist; Anopheles gambiae
24.  Insecticide resistance status in Anopheles gambiae in southern Benin 
Malaria Journal  2010;9:83.
The emergence of pyrethroid resistance in Anopheles gambiae has become a serious concern to the future success of malaria control. In Benin, the National Malaria Control Programme has recently planned to scaling up long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) for malaria prevention. It is, therefore, crucial to monitor the level and type of insecticide resistance in An. gambiae, particularly in southern Benin where reduced efficacy of insecticide-treated nets (ITNs) and IRS has previously been reported.
The protocol was based on mosquito collection during both dry and rainy seasons across forty districts selected in southern Benin. Bioassay were performed on adults collected from the field to assess the susceptibility of malaria vectors to insecticide-impregnated papers (permethrin 0.75%, delthamethrin 0.05%, DDT 4%, and bendiocarb 0.1%) following WHOPES guidelines. The species within An. gambiae complex, molecular form and presence of kdr and ace-1 mutations were determined by PCR.
Strong resistance to permethrin and DDT was found in An. gambiae populations from southern Benin, except in Aglangandan where mosquitoes were fully susceptible (mortality 100%) to all insecticides tested. PCR showed the presence of two sub-species of An. gambiae, namely An. gambiae s.s, and Anopheles melas, with a predominance for An. gambiae s.s (98%). The molecular M form of An. gambiae was predominant in southern Benin (97%). The kdr mutation was detected in all districts at various frequency (1% to 95%) whereas the Ace-1 mutation was found at a very low frequency (≤ 5%).
This study showed a widespread resistance to permethrin in An. gambiae populations from southern Benin, with a significant increase of kdr frequency compared to what was observed previously in Benin. The low frequency of Ace-1 recorded in all populations is encouraging for the use of bendiocarb as an alternative insecticide to pyrethroids for IRS in Benin.
PMCID: PMC2858214  PMID: 20334637
25.  Reduced susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore city, South India 
Malaria Journal  2010;9:179.
Synthetic pyrethroids are potent insecticides most commonly used in the vector control programme. These are applied for indoor residual sprays, space sprays and in impregnated bed nets. Resistance reduces the efficacy of insecticides. Thus, the susceptibility status of the target vector(s) is monitored routinely to select the effective ones. A study was undertaken in a malaria endemic coastal city Mangalore, Karnataka, South India, against the known malaria vector Anopheles stephensi.
The susceptibility status was assessed at diagnostic doses of DDT (4%), malathion (5%), deltamethrin (0.05%), cyfluthrin (0.15%), alphacypermethrin (0.10%), lambdacyhalothrin (0.05%) and permethrin (0.75%) using the standard WHO tube test method during October/November 2006.
Anopheles stephensi was resistant to malathion by 54.9%, but tolerant to deltamethrin by 86.1%, cyfluthrin 95.5% and alphacypermethrin 90.6%, whereas it was susceptible to DDT by 98.1%, lambdacyhalothrin 98.6% and permethrin 100.0%, respectively. The KDT50 and KDT95 values for these insecticides also showed the similar responses.
Susceptibility of An. stephensi to DDT is an important finding as this has never been used in Mangalore city, whereas its rural counterpart Anopheles culicifacies is widely resistant to this insecticide. The study explores the selection and rotation of the appropriate insecticide molecule even within the same group for effective vector management.
PMCID: PMC2900284  PMID: 20573246

Results 1-25 (411409)