Search tips
Search criteria

Results 1-25 (1096772)

Clipboard (0)

Related Articles

1.  Karyotypic and Molecular Genetic Changes Associated With Fetal Cardiovascular Abnormalities: Results of a Retrospective 4-Year Ultrasonic Diagnosis Study 
Objective: To investigate the incidence of aneuploidy in fetuses with congenital heart defects (CHDs) and to further identify submicroscopic changes and global DNA methylation levels as potential biomarkers in complex CHD cases.
Methods: Fetuses at high risk for birth defects or with obvious sonographic anomalies were recruited at the Prenatal Diagnosis Center and Ultrasonic Diagnosis Center. Elective fetal karyotyping and DNA copy number and promoter methylation analyses were carried out following parental consent. G-banded karyotyping was performed to detect fetal aneuploidy. Copy number variations (CNVs) were detected using the Affymetrix SNP Array 6.0 and validated by real time PCR. Global DNA methylation analyses were conducted using a Roche NimbleGen Human DNA Methylation 3x720K Array, and DNA methylation differences were assayed by a Sequenom MassARRAY EpiTYPER.
Results: Conventional karyotyping identified 30 cases with aneuploidy in 179 CHD fetuses. Various CNVs were found in two aneuploid fetuses and in five euploid CHD fetuses. Verified segmental deletion or duplications were not directly associated with cardiovascular malformations except in DAAM1 and GATA6. Verifiable aberrant DNA methylation could not be identified in three complex CHD fetuses.
Conclusions: In this study, Trisomy 18, Trisomy 21 and 45,XO were the most common aneuploidies identified in CHD fetuses. In the affected samples, only DAAM1 deletion and GATA6 amplification could be associated with cardiovascular biological processes.
PMCID: PMC3654495  PMID: 23678296
Congenital heart defect; Karyotyping; Copy number variants; Methylation level.
2.  Screening of copy number variants in the 22q11.2 region of congenital heart disease patients from the São Miguel Island, Azores, revealed the second patient with a triplication 
BMC Genetics  2014;15(1):115.
The rearrangements in the 22q11.2 chromosomal region, responsible for the 22q11.2 deletion and microduplication syndromes, are frequently associated with congenital heart disease (CHD). The present work aimed to identify the genetic basis of CHD in 87 patients from the São Miguel Island, Azores, through the detection of copy number variants (CNVs) in the 22q11.2 region. These structural variants were searched using multiplex ligation-dependent probe amplification (MLPA). In patients with CNVs, we additionally performed fluorescent in situ hybridization (FISH) for the assessment of the exact number of 22q11.2 copies among each chromosome, and array comparative genomic hybridization (array-CGH) for the determination of the exact length of CNVs.
We found that four patients (4.6%; A to D) carried CNVs. Patients A and D, both affected with a ventricular septal defect, carried a de novo 2.5 Mb deletion of the 22q11.2 region, which was probably originated by inter-chromosomal (inter-chromatid) non-allelic homologous recombination (NAHR) events in the regions containing low-copy repeats (LCRs). Patient C, with an atrial septal defect, carried a de novo 2.5 Mb duplication of 22q11.2 region, which could have been probably generated during gametogenesis by NAHR or by unequal crossing-over; additionally, this patient presented a benign 288 Kb duplication, which included the TOP3B gene inherited from her healthy mother. Finally, patient B showed a 3 Mb triplication associated with dysmorphic facial features, cognitive deficit and heart defects, a clinical feature not reported in the only case described so far in the literature. The evaluation of patient B’s parents revealed a 2.5 Mb duplication in her father, suggesting a paternal inheritance with an extra copy.
This report allowed the identification of rare deletion and microduplication syndromes in Azorean CHD patients. Moreover, we report the second patient with a 22q11.2 triplication, and we suggest that patients with triplications of chromosome 22q11.2, although they share some characteristic features with the deletion and microduplication syndromes, present a more severe phenotype probably due to the major dosage of implicated genes.
PMCID: PMC4228150  PMID: 25376777
Congenital heart disease; 22q11.2 deletion; 22q11.2 microduplication; 22q11.2 triplication
3.  Chromosome 8p23.1 Deletions as a Cause of Complex Congenital Heart Defects and Diaphragmatic Hernia 
Recurrent interstitial deletion of a region of 8p23.1 flanked by the low copy repeats 8p-OR-REPD and 8p-OR-REPP is associated with a spectrum of anomalies that can include congenital heart malformations and congenital diaphragmatic hernia (CDH). Haploinsufficiency of GATA4 is thought to play a critical role in the development of these birth defects. We describe two individuals and a monozygotic twin pair discordant for anterior CDH all of whom have complex congenital heart defects caused by this recurrent interstitial deletion as demonstrated by array comparative genome hybridization. To better define the genotype/phenotype relationships associated with alterations of genes on 8p23.1, we review the spectrum of congenital heart and diaphragmatic defects that have been reported in individuals with isolated GATA4 mutations and interstitial, terminal, and complex chromosomal rearrangements involving the 8p23.1 region. Our findings allow us to clearly define the CDH minimal deleted region on chromosome 8p23.1 and suggest that haploinsufficiency of other genes, in addition to GATA4, may play a role in the severe cardiac and diaphragmatic defects associated with 8p23.1 deletions. These findings also underscore the importance of conducting a careful cytogenetic/molecular analysis of the 8p23.1 region in all prenatal and postnatal cases involving congenital defects of the heart and/or diaphragm.
PMCID: PMC2765374  PMID: 19606479
Congenital heart defects; 8p23.1 deletion syndrome; Diaphragmatic hernia; Array comparative genomic hybridization; GATA4; Prenatal diagnosis
4.  The contribution of de novo and rare inherited copy number changes to congenital heart disease in an unselected sample of children with conotruncal defects or hypoplastic left heart disease 
Human genetics  2013;133(1):10.1007/s00439-013-1353-9.
Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable pheno-types and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.
PMCID: PMC3880624  PMID: 23979609
5.  Understanding the impact of 1q21.1 copy number variant 
1q21.1 Copy Number Variant (CNV) is associated with a highly variable phenotype ranging from congenital anomalies, learning deficits/intellectual disability (ID), to a normal phenotype. Hence, the clinical significance of this CNV can be difficult to evaluate. Here we described the consequences of the 1q21.1 CNV on genome-wide gene expression and function of selected candidate genes within 1q21.1 using cell lines from clinically well described subjects.
Methods and Results
Eight subjects from 3 families were included in the study: six with a 1q21.1 deletion and two with a 1q21.1 duplication. High resolution Affymetrix 2.7M array was used to refine the 1q21.1 CNV breakpoints and exclude the presence of secondary CNVs of pathogenic relevance. Whole genome expression profiling, studied in lymphoblast cell lines (LBCs) from 5 subjects, showed enrichment of genes from 1q21.1 in the top 100 genes ranked based on correlation of expression with 1q21.1 copy number. The function of two top genes from 1q21.1, CHD1L/ALC1 and PRKAB2, was studied in detail in LBCs from a deletion and a duplication carrier. CHD1L/ALC1 is an enzyme with a role in chromatin modification and DNA damage response while PRKAB2 is a member of the AMP kinase complex, which senses and maintains systemic and cellular energy balance. The protein levels for CHD1L/ALC1 and PRKAB2 were changed in concordance with their copy number in both LBCs. A defect in chromatin remodeling was documented based on impaired decatenation (chromatid untangling) checkpoint (DCC) in both LBCs. This defect, reproduced by CHD1L/ALC1 siRNA, identifies a new role of CHD1L/ALC1 in DCC. Both LBCs also showed elevated levels of micronuclei following treatment with a Topoisomerase II inhibitor suggesting increased DNA breaks. AMP kinase function, specifically in the deletion containing LBCs, was attenuated.
Our studies are unique as they show for the first time that the 1q21.1 CNV not only causes changes in the expression of its key integral genes, associated with changes at the protein level, but also results in changes in their known function, in the case of AMPK, and newly identified function such as DCC activation in the case of CHD1L/ALC1. Our results support the use of patient lymphoblasts for dissecting the functional sequelae of genes integral to CNVs in carrier cell lines, ultimately enhancing understanding of biological processes which may contribute to the clinical phenotype.
PMCID: PMC3180300  PMID: 21824431
6.  Multiplex Ligation-Dependent Probe Amplification Analysis of GATA4 Gene Copy Number Variations in Patients with Isolated Congenital Heart Disease 
Disease markers  2010;28(5):287-292.
GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs), mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and congenital heart defects. Thus far, no study has been carried out to investigate the role of GATA4 copy number variations (CNVs) in non-syndromic CHDs. To explore the possible occurrence of GATA4 gene CNVs in isolated CHDs, we analyzed by multiplex ligation-dependent probe amplification (MLPA) a cohort of 161 non-syndromic patients with cardiac anomalies previously associated with GATA4 gene mutations. The patients were mutation-negative for GATA4, NKX2.5, and FOG2 genes after screening with denaturing high performance liquid chromatography. MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all patients, excluding a major contribution of GATA4 gene CNVs in CHD pathogenesis.
PMCID: PMC3833239  PMID: 20592452
7.  Homocysteine and Coronary Heart Disease: Meta-analysis of MTHFR Case-Control Studies, Avoiding Publication Bias 
PLoS Medicine  2012;9(2):e1001177.
Robert Clarke and colleagues conduct a meta-analysis of unpublished datasets to examine the causal relationship between elevation of homocysteine levels in the blood and the risk of coronary heart disease. Their data suggest that an increase in homocysteine levels is not likely to result in an increase in risk of coronary heart disease.
Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR) appreciably increases homocysteine levels, so “Mendelian randomization” studies using this variant as an instrumental variable could help test causality.
Methods and Findings
Nineteen unpublished datasets were obtained (total 48,175 CHD cases and 67,961 controls) in which multiple genetic variants had been measured, including MTHFR C677T. These datasets did not include measurements of blood homocysteine, but homocysteine levels would be expected to be about 20% higher with TT than with CC genotype in the populations studied. In meta-analyses of these unpublished datasets, the case-control CHD odds ratio (OR) and 95% CI comparing TT versus CC homozygotes was 1.02 (0.98–1.07; p = 0.28) overall, and 1.01 (0.95–1.07) in unsupplemented low-folate populations. By contrast, in a slightly updated meta-analysis of the 86 published studies (28,617 CHD cases and 41,857 controls), the OR was 1.15 (1.09–1.21), significantly discrepant (p = 0.001) with the OR in the unpublished datasets. Within the meta-analysis of published studies, the OR was 1.12 (1.04–1.21) in the 14 larger studies (those with variance of log OR<0.05; total 13,119 cases) and 1.18 (1.09–1.28) in the 72 smaller ones (total 15,498 cases).
The CI for the overall result from large unpublished datasets shows lifelong moderate homocysteine elevation has little or no effect on CHD. The discrepant overall result from previously published studies reflects publication bias or methodological problems.
Please see later in the article for the Editors' Summary
Editors' Summary
Coronary heart disease (CHD) is the leading cause of death among adults in developed countries. With age, fatty deposits (atherosclerotic plaques) coat the walls of the coronary arteries, the blood vessels that supply the heart with oxygen and nutrients. The resultant restriction of the heart's blood supply causes shortness of breath, angina (chest pains that are usually relieved by rest), and sometimes fatal heart attacks. Many established risk factors for CHD, including smoking, physical inactivity, being overweight, and eating a fat-rich diet, can be modified by lifestyle changes. Another possible modifiable risk factor for CHD is a high blood level of the amino acid homocysteine. Methylene tetrahydofolate reductase, which is encoded by the MTHFR gene, uses folate to break down and remove homocysteine so fortification of cereals with folate can reduce population homocysteine blood levels. Pooled results from prospective observational studies that have looked for an association between homocysteine levels and later development of CHD suggest that the reduction in homocysteine levels that can be achieved by folate supplementation is associated with an 11% lower CHD risk.
Why Was This Study Done?
Prospective observational studies cannot prove that high homocysteine levels cause CHD because of confounding, the potential presence of other unknown shared characteristics that really cause CHD. However, an approach called “Mendelian randomization” can test whether high blood homocysteine causes CHD. A common genetic variant of the MTHFR gene—the C677T polymorphism—reduces MTHFR efficiency so TT homozygotes (individuals in whom both copies of the MTHFR gene have the nucleotide thymine at position 677; the human genome contains two copies of most genes) have 25% higher blood homocysteine levels than CC homozygotes. In meta-analyses (statistical pooling of the results of several studies) of published Mendelian randomized studies, TT homozygotes have a higher CHD risk than CC homozygotes. Because gene variants are inherited randomly, they are not subject to confounding, so this result suggests that high blood homocysteine causes CHD. But what if only Mendelian randomization studies that found an association have been published? Such publication bias would affect this aggregate result. Here, the researchers investigate the association of the MTHFR C677T polymorphism with CHD in unpublished datasets that have analyzed this polymorphism incidentally during other genetic studies.
What Did the Researchers Do and Find?
The researchers obtained 19 unpublished datasets that contained data on the MTHFR C677T polymorphism in thousands of people with and without CHD. Meta-analysis of these datasets indicates that the excess CHD risk in TT homozygotes compared to CC homozygotes was 2% (much lower than predicted from the prospective observational studies), a nonsignificant difference (that is, it could have occurred by chance). When the probable folate status of the study populations (based on when national folic acid fortification legislation came into effect) was taken into account, there was still no evidence that TT homozygotes had an excess CHD risk. By contrast, in an updated meta-analysis of 86 published studies of the association of the polymorphism with CHD, the excess CHD risk in TT homozygotes compared to CC homozygotes was 15%. Finally, in a meta-analysis of randomized trials on the use of vitamin B supplements for homocysteine reduction, folate supplementation had no significant effect on the 5-year incidence of CHD.
What Do These Findings Mean?
These analyses of unpublished datasets are consistent with lifelong moderate elevation of homocysteine levels having no significant effect on CHD risk. In other words, these findings indicate that circulating homocysteine levels within the normal range are not causally related to CHD risk. The meta-analysis of the randomized trials of folate supplementation also supports this conclusion. So why is there a discrepancy between these findings and those of meta-analyses of published Mendelian randomization studies? The discrepancy is too large to be dismissed as a chance finding, suggest the researchers, but could be the result of publication bias—some studies might have been prioritized for publication because of the positive nature of their results whereas the unpublished datasets used in this study would not have been affected by any failure to publish null results. Overall, these findings reveal a serious example of publication bias and argue against the use of folate supplements as a means of reducing CHD risk.
Additional Information
Please access these Web sites via the online version of this summary at
The American Heart Association provides information about CHD and tips on keeping the heart healthy; it also provides information on homocysteine, folic acid, and CHD, general information on supplements and heart health, and personal stories about CHD
The UK National Health Service Choices website provides information about CHD, including personal stories about CHD
Information is available from the British Heart Foundation on heart disease and keeping the heart healthy
The US National Heart Lung and Blood Institute also provides information on CHD (in English and Spanish)
MedlinePlus provides links to many other sources of information on CHD (in English and Spanish)
Wikipedia has a page on Mendelian randomization (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC3283559  PMID: 22363213
8.  Rare Copy Number Variants Contribute to Congenital Left-Sided Heart Disease 
PLoS Genetics  2012;8(9):e1002903.
Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort. After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least 10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular biology.
Author Summary
Congenital heart disease (CHD) is the leading malformation among all newborns, and one of the leading causes of morbidity and mortality in Western countries. Left-sided CHD (LS-CHD) encompasses a spectrum ranging from bicuspid aortic valve to aortic stenosis and hypoplastic left heart syndrome with familial clustering. To date, the genetic causes for LS-CHD remain unknown in the majority of patients. To determine the impact of structural genomic variation in multiplex families with LS-CHD, we searched for unique or rare copy number variants present only in affected members of a multiplex family cohort (N total = 464, N affected members = 174 (37.5%)) and absent from 1,582 controls free from LS-CHD. A stringent filter based on in silico prioritization and gene expression analysis during development allowed us to identify genes associated with LS-CHD. Our study revealed 25 new candidate genes for LS-CHD, such as SMC1A, MFAP4, and CTHRC1, and overlap with known syndromic loci. We estimate that unique copy number variants contribute to at least 10% of left-sided CHD cases, with a gene content suggesting broader perturbations of angiogenesis at the base of LS-CHD.
PMCID: PMC3435243  PMID: 22969434
9.  Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 duplications in 2436 congenital heart disease patients and 6760 controls 
Human Molecular Genetics  2011;21(7):1513-1520.
Recurrent rearrangements of chromosome 1q21.1 that occur via non-allelic homologous recombination have been associated with variable phenotypes exhibiting incomplete penetrance, including congenital heart disease (CHD). However, the gene or genes within the ∼1 Mb critical region responsible for each of the associated phenotypes remains unknown. We examined the 1q21.1 locus in 948 patients with tetralogy of Fallot (TOF), 1488 patients with other forms of CHD and 6760 ethnically matched controls using single nucleotide polymorphism genotyping arrays (Illumina 660W and Affymetrix 6.0) and multiplex ligation-dependent probe amplification. We found that duplication of 1q21.1 was more common in cases of TOF than in controls [odds ratio (OR) 30.9, 95% confidence interval (CI) 8.9–107.6); P = 2.2 × 10−7], but deletion was not. In contrast, deletion of 1q21.1 was more common in cases of non-TOF CHD than in controls [OR 5.5 (95% CI 1.4–22.0); P = 0.04] while duplication was not. We also detected rare (n = 3) 100–200 kb duplications within the critical region of 1q21.1 in cases of TOF. These small duplications encompassed a single gene in common, GJA5, and were enriched in cases of TOF in comparison to controls [OR = 10.7 (95% CI 1.8–64.3), P = 0.01]. These findings show that duplication and deletion at chromosome 1q21.1 exhibit a degree of phenotypic specificity in CHD, and implicate GJA5 as the gene responsible for the CHD phenotypes observed with copy number imbalances at this locus.
PMCID: PMC3298277  PMID: 22199024
10.  Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects 
PLoS Genetics  2011;7(11):e1002344.
A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders.
Author Summary
A large fraction of human genes may contribute to polygenic disorders, yet few experimental methods for identifying such genes are currently available. For example, with regard to congenital heart defects (CHD) caused by extra copies of genes on chromosome 21 in Down syndrome patients, it is not known which genes contribute to this complex phenotype. In this paper, we identify two genes, DSCAM and COL6A2 that interact strongly to produce CHD when over-expressed at modest levels in the mouse heart. These two genes were identified as the most strongly interacting pair of CHD candidate genes when over-expressed in the Drosophila heart, where they disrupted several indices of heart function. We then over-expressed these genes in the mouse heart alone or in combination and found that while expression of either gene alone had little or no effect, co-expression of the genes, as in flies, lead to severe cooperative defects in heart physiology and morphology. The strategy we have followed in this study is broadly applicable to identifying genes involved in other polygenic disorders, such as obesity, autism, and schizophrenia, which have been linked to altered copy number of multiple genes.
PMCID: PMC3207880  PMID: 22072978
11.  Consanguinity Mapping of Congenital Heart Disease in a South Indian Population 
PLoS ONE  2010;5(4):e10286.
Parental consanguinity is a risk factor for congenital heart disease (CHD) worldwide, suggesting that a recessive inheritance model may contribute substantially to CHD. In Bangalore, India, uncle-niece and first cousin marriages are common, presenting the opportunity for an international study involving consanguinity mapping of structural CHD. We sought to explore the recessive model of CHD by conducting a genome-wide linkage analysis utilizing high-density oligonucleotide microarrays and enrolling 83 CHD probands born to unaffected consanguineous parents.
Methodology/Principal Findings
In this linkage scan involving single nucleotide polymorphism (SNP) markers, the threshold for genome-wide statistical significance was set at the standard log-of-odds (LOD) score threshold of 3.3, corresponding to 1995∶1 odds in favor of linkage. We identified a maximal single-point LOD score of 3.76 (5754∶1 odds) implicating linkage of CHD with the major allele (G) of rs1055061 on chromosome 14 in the HOMEZ gene, a ubiquitously expressed transcription factor containing leucine zipper as well as zinc finger motifs. Re-sequencing of HOMEZ exons did not reveal causative mutations in Indian probands. In addition, genotyping of the linked allele (G) in 325 U.S. CHD cases revealed neither genotypic nor allele frequency differences in varied CHD cases compared to 605 non-CHD controls.
Despite the statistical power of the consanguinity mapping approach, no single gene of major effect could be convincingly identified in a clinically heterogeneous sample of Indian CHD cases born to consanguineous parents. However, we are unable to exclude the possibility that noncoding regions of HOMEZ may harbor recessive mutations leading to CHD in the Indian population. Further research involving large multinational cohorts of patients with specific subtypes of CHD is needed to attempt replication of the observed linkage peak on chromosome 14. In addition, we anticipate that a targeted re-sequencing approach may complement linkage analysis in future studies of recessive mutation detection in CHD.
PMCID: PMC2858208  PMID: 20422016
12.  Novel GATA6 Mutations Associated with Congenital Ventricular Septal Defect or Tetralogy of Fallot 
DNA and Cell Biology  2012;31(11):1610-1617.
Congenital heart disease (CHD) is the most common form of developmental malformation and is the leading noninfectious cause of infant mortality. Emerging evidence indicates that genetic defects are involved in the pathogenesis of CHD. Nevertheless, CHD is genetically heterogeneous, and the molecular basis for CHD in a majority of patients remains unknown. In this study, the whole coding region of GATA6, a gene encoding a zinc-finger transcription factor crucial for normal cardiogenesis, was sequenced in 380 unrelated patients with CHD. The relatives of the index patients harboring the identified mutations and 200 unrelated control individuals were subsequently genotyped. The functional effect of the mutations was characterized using a luciferase reporter assay system. As a result, two novel heterozygous GATA6 mutations, p.D404Y and p.E460X, were identified in two families with ventricular septal defect and tetralogy of Fallot, respectively. The mutations co-segregated with CHD in the families with complete penetrance, and were absent in 400 control chromosomes. Functional analysis demonstrated that the mutated GATA6 proteins were associated with significantly decreased transactivational activity in comparison with their wild-type counterpart. These findings provide novel insight into the molecular mechanism implicated in CHD, suggesting potential implications for the early prophylaxis and personalized treatment of CHD.
The transcription factor GATA6 is a zinc finger DNA-binding protein that has been shown to be essential for cardiac development. In this article, two novel heterologous polymorphisms were associated with two cardiac malformations in families.
PMCID: PMC3482375  PMID: 23020118
13.  Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects 
Atrioventricular septal defects (AVSDs) are a frequent but not universal component of Down syndrome (DS), while AVSDs in otherwise normal individuals have no well-defined genetic basis. The contribution of copy number variation (CNV) to specific congenital heart disease (CHD) phenotypes including AVSD is unknown. We hypothesized that de novo CNVs on chromosome 21 might cause isolated sporadic AVSDs, and separately that CNVs throughout the genome might constitute an additional genetic risk factor for AVSD in patients with DS. We utilized a custom oligonucleotide arrays targeted to CNV hotspots that are flanked by large duplicated segments of high sequence identity. We assayed 29 euploid and 50 DS individuals with AVSD, and compared to general population controls. In patients with isolated-sporadic AVSD we identified two large unique deletions outside of chromosome 21 not seen in the expanded set of 8,635 controls, each overlapping with larger deletions associated with similar CHD reported in the DECIPHER database. There was a small duplication in one patient with DS and AVSD. We conclude that isolated sporadic AVSDs may be occasionally associated with large de novo genomic structural variation outside of chromosome 21. The absence of CNVs on chromosome 21 in patients with isolated sporadic AVSD suggests that sub-chromosomal duplications or deletions of greater than 150 kbp on chromosome 21 do not cause sporadic AVSDs. Large CNVs do not appear to be an additive risk factor for AVSD in the DS population.
PMCID: PMC3564951  PMID: 22529060
Down syndrome; atrioventricular septal defects; copy number variation; array CGH; congenital heart disease
14.  Rare Copy Number Variants in Isolated Sporadic and Syndromic Atrioventricular Septal Defects 
Atrioventricular septal defects (AVSDs) are a frequent but not universal component of Down syndrome (DS), while AVSDs in otherwise normal individuals have no well-defined genetic basis. The contribution of copy number variation (CNV) to specific congenital heart disease (CHD) phenotypes including AVSD is unknown. We hypothesized that de novo CNVs on chromosome 21 might cause isolated sporadic AVSDs, and separately that CNVs throughout the genome might constitute an additional genetic risk factor for AVSD in patients with DS. We utilized a custom oligonucleotide arrays targeted to CNV hotspots that are flanked by large duplicated segments of high sequence identity. We assayed 29 euploid and 50 DS individuals with AVSD, and compared to general population controls. In patients with isolated-sporadic AVSD we identified two large unique deletions outside of chromosome 21 not seen in the expanded set of 8,635 controls, each overlapping with larger deletions associated with similar CHD reported in the DECIPHER database. There was a small duplication in one patient with DS and AVSD. We conclude that isolated sporadic AVSDs may be occasionally associated with large de novo genomic structural variation outside of chromosome 21. The absence of CNVs on chromosome 21 in patients with isolated sporadic AVSD suggests that sub-chromosomal duplications or deletions of greater than 150 kbp on chromosome 21 do not cause sporadic AVSDs. Large CNVs do not appear to be an additive risk factor for AVSD in the DS population. © 2012 Wiley Periodicals, Inc.
PMCID: PMC3564951  PMID: 22529060
Down syndrome; atrioventricular septal defects; copy number variation; array CGH; congenital heart disease
15.  A novel autosomal dominant condition consisting of congenital heart defects and low atrial rhythm maps to chromosome 9q 
Congenital heart defects (CHDs) occur mostly sporadic, but familial CHD cases have been reported. Mutations in several genes, including NKX2.5, GATA4 and NOTCH1, were identified in families and patients with CHD, but the mechanisms underlying CHD are largely unknown. We performed genome-wide linkage analysis in a large four-generation family with autosomal dominant CHD (including atrial septal defect type I and II, tetralogy of Fallot and persistent left superior vena cava) and low atrial rhythm, a unique phenotype that has not been described before. We obtained phenotypic information including electrocardiography, echocardiography and DNA of 23 family members. Genome-wide linkage analysis on 12 affected, 5 unaffected individuals and 1 obligate carrier demonstrated significant linkage only to chromosome 9q21–33 with a multipoint maximum LOD score of 4.1 at marker D9S1690, between markers D9S167 and D9S1682. This 48-c critical interval corresponds to 39 Mb and contains 402 genes. Sequence analysis of nine candidate genes in this region (INVS, TMOD1, TGFBR1, KLF4, IPPK, BARX1, PTCH1, MEGF9 and S1PR3) revealed no mutations, nor were genomic imbalances detected using array comparative genomic hybridization. In conclusion, we describe a large family with CHD and low atrial rhythm with a significant LOD score to chromosome 9q. The phenotype is representative of a mild form of left atrial isomerism or a developmental defect of the sinus node and surrounding tissue. Because the mechanisms underlying CHD are largely unknown, this study represents an important step towards the discovery of genes implied in cardiogenesis.
PMCID: PMC3137501  PMID: 21386876
atrium; congenital heart defects; sinus node
16.  Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice  
The Journal of Clinical Investigation  2009;119(11):3301-3310.
Aortic arch artery patterning defects account for approximately 20% of congenital cardiovascular malformations and are observed frequently in velocardiofacial syndrome (VCFS). In the current study, we screened for chromosome rearrangements in patients suspected of VCFS, but who lacked a 22q11 deletion or TBX1 mutation. One individual displayed hemizygous CHD7, which encodes a chromodomain protein. CHD7 haploinsufficiency is the major cause of coloboma, heart defect, atresia choanae, retarded growth and development, genital hypoplasia, and ear anomalies/deafness (CHARGE) syndrome, but this patient lacked the major diagnostic features of coloboma and choanal atresia. Because a subset of CHARGE cases also display 22q11 deletions, we explored the embryological relationship between CHARGE and VCSF using mouse models. The hallmark of Tbx1 haploinsufficiency is hypo/aplasia of the fourth pharyngeal arch artery (PAA) at E10.5. Identical malformations were observed in Chd7 heterozygotes, with resulting aortic arch interruption at later stages. Other than Tbx1, Chd7 is the only gene reported to affect fourth PAA development by haploinsufficiency. Moreover, Tbx1+/–;Chd7+/– double heterozygotes demonstrated a synergistic interaction during fourth PAA, thymus, and ear morphogenesis. We could not rescue PAA morphogenesis by restoring neural crest Chd7 expression. Rather, biallelic expression of Chd7 and Tbx1 in the pharyngeal ectoderm was required for normal PAA development.
PMCID: PMC2769172  PMID: 19855134
17.  The Formin Daam1 and Fascin Directly Collaborate to Promote Filopodia Formation 
Current biology : CB  2013;23(14):1373-1379.
Filopodia are slender cellular protrusions that dynamically extend and retract to facilitate directional cell migration, pathogen sensing, and cell-cell adhesion [1–4]. Each filopodium contains a rigid and organized bundle of parallel actin filaments, which are elongated at filopodial tips by formins and Ena/VASP proteins [5–10]. However, relatively little is known about how the actin filaments in the filopodial shaft are spatially organized to form a bundle with appropriate dimensions and mechanical properties. Here, we report that the mammalian formin Daam1 (Disheveled associated activator of morphogenesis 1) is a potent actin bundling protein and localizes all along the filopodial shaft, which differs from other formins that localize specifically to the tips. Silencing of Daam1 led to severe defects in filopodial number, integrity and architecture, similar to silencing of the bundling protein fascin. This led us to investigate the potential relationship between Daam1 and fascin. Fascin and Daam1 co-immunoprecipitated from cell extracts, and silencing of fascin led to a striking loss of Daam1 localization to filopodial shafts but not tips. Further, purified fascin bound directly to Daam1, and multi-color single molecule TIRF imaging revealed that fascin recruited Daam1 to and stabilized Daam1 on actin bundles in vitro. Our results reveal an unanticipated and direct collaboration between Daam1 and fascin in bundling actin, which is required for proper filopodial formation.
PMCID: PMC3748375  PMID: 23850281
18.  A novel CHD7 mutation in a Chinese patient with CHARGE syndrome 
Meta Gene  2014;2:469-478.
In Genetics Out-patient Department of Shanghai Children's Medical Center, we consulted a 3-year-old boy with multiple anomaly syndrome (congenital heart disease, cryptorchidism, congenital deafness, mental retardation, exophthalmos, laryngeal cartilage dysplasia and high arched palate). We ruled out the possibility of multiple deformities caused by genomic imbalances. The patient was then clinically considered to have CHARGE syndrome, an autosomal dominant multi-system disorder involving defects in multiple organs, and CHD7 is the only known gene associated with the syndrome. Sequencing analysis of CHD7 of the proband identified a de novo heterogeneous mutation (c.2916_2917del, p.Gln972HisfsX22), a two-nucleotide deletion causing reading frame shift and resulting in a truncated CHD7 protein. Computational structure analysis suggests that the truncated protein only contains the chromodomains of CHD7, but lacks the SWI2/SNF2-like ATPase/helicase domain and the DNA binding domain, which are indispensable for the proper function of the protein, especially on chromatin remodeling. The patient then received follow up treatment in different clinical departments in a long period. To our best knowledge, this is the first CHARGE syndrome in Chinese patients diagnosed by gene analysis. In summary, the clinical symptoms and the description of treatment in the present case, combined with genetic test and functional prediction of CHD7, are helpful for further understanding and genetic counseling of the CHARGE syndrome.
•CHD7 is a member of the chromodomain family.•CHD7 gene in a Chinese boy clinically diagnosed with CHARGE syndrome was sequenced.•A new heterozygous, two-base deletion of CHD7 located in exon11 (c.2916_2917del) was identified.•The truncated CHD7 (Q972X) only maintains the chromodomains but lacks all the other functional domains.•This is the first CHRAGE syndrome in Chinese patients diagnosed by gene analysis.
PMCID: PMC4287889  PMID: 25606431
CHARGE syndrome; CHD7; Gene mutation
19.  Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome 
eLife  2013;2:e01305.
Mutations in CHD7 are the major cause of CHARGE syndrome, an autosomal dominant disorder with an estimated prevalence of 1/15,000. We have little understanding of the disruptions in the developmental programme that underpin brain defects associated with this syndrome. Using mouse models, we show that Chd7 haploinsufficiency results in reduced Fgf8 expression in the isthmus organiser (IsO), an embryonic signalling centre that directs early cerebellar development. Consistent with this observation, Chd7 and Fgf8 loss-of-function alleles interact during cerebellar development. CHD7 associates with Otx2 and Gbx2 regulatory elements and altered expression of these homeobox genes implicates CHD7 in the maintenance of cerebellar identity during embryogenesis. Finally, we report cerebellar vermis hypoplasia in 35% of CHARGE syndrome patients with a proven CHD7 mutation. These observations provide key insights into the molecular aetiology of cerebellar defects in CHARGE syndrome and link reduced FGF signalling to cerebellar vermis hypoplasia in a human syndrome.
eLife digest
CHARGE syndrome is a rare genetic condition that causes various developmental abnormalities, including heart defects, deafness and neurological defects. In most cases, it is caused by mutations in a human gene called CHD7. CHD7 is known to control the expression of other genes during embryonic development, but the molecular mechanisms by which mutations in CHD7 lead to the neural defects found in CHARGE syndrome are unclear.
During embryonic development, the neural tube—the precursor to the nervous system—is divided into segments, which give rise to different neural structures. The r1 segment, for example, forms the cerebellum, and the secretion of a protein called FGF8 (short for fibroblast growth factor 8) by a nearby structure called the isthmus organiser has an important role in this process. Since a reduction in FGF8 causes defects similar to those found in CHARGE syndrome, Yu et al. decided to investigate if the FGF signalling pathway was involved in this syndrome.
Mice should have two working copies of the Chd7 gene, and mice that lack one of these suffer from symptoms similar to those of humans with CHARGE syndrome. Yu et al. examined the embryos of these mice and found that the isthmus organiser produced less FGF8. Embryos with no working copies of the gene completely lost the r1 segment. The loss of this segment appeared to be caused by changes in the expression of homeobox genes (the genes that determine the identity of brain segments).
Embryos that did not have any working copies of the Chd7 gene died early in development, which made further studies impossible. However, embryos that had one working copy of the Chd7 gene survived, and Yu et al. took advantage of this to study the effects of reduced FGF8 expression on these mice. These experiments showed that mice with just one working copy of the Fgf8 gene and one working copy of the Chd7 gene had a small cerebellar vermis. This part of the cerebellum is known to be very sensitive to changes in FGF8 signalling. Yu et al. then used an MRI scanner to look at the cerebellar vermis in patients with CHARGE syndrome, and found that more than half of the patients had abnormal cerebella.
In addition to confirming that studies on mouse embryos can provide insights into human disease, the work of Yu et al. add defects in the cerebellar vermis to the list of developmental abnormalities associated with CHARGE syndrome. The next step will be to test if any mutations in the human FGF8 gene can contribute to cerebellar defects in CHARGE syndrome, and to investigate if any other developmental defects in CHARGE syndrome are associated with abnormal FGF8 levels.
PMCID: PMC3870572  PMID: 24368733
cerebellum; CHARGE syndrome; CHD7; FGF8; OTX2; GBX2; Human; Mouse
20.  Detailed mapping of a congenital heart disease gene in chromosome 3p25 
Journal of Medical Genetics  2000;37(8):581-587.
Distal deletion of chromosome 3p25-pter (3p− syndrome) produces a distinct clinical syndrome characterised by low birth weight, mental retardation, telecanthus, ptosis, and micrognathia. Congenital heart disease (CHD), typically atrioventricular septal defect (AVSD), occurs in about a third of patients. In total, approximately 25 cases of 3p− syndrome have been reported world wide. We previously analysed five cases and showed that (1) the 3p25-pter deletions were variable and (2) the presence of CHD correlated with the proximal extent of the deletion, mapping a CHD gene centromeric to D3S18. To define the molecular pathology of the 3p− syndrome further, we have now proceeded to analyse the deletion region in a total of 10 patients (five with CHD), using a combination of FISH analysis and polymorphic markers, for up to 21 loci from 3p25-p26. These additional investigations further supported the location of an AVSD locus within 3p25 and refined its localisation. Thus, the critical region was reduced to an interval between D3S1263 and D3S3594. Candidate 3p25 CHD genes, such as PMCA2 (ATP2B2), fibulin 2, TIMP4, and Sec13R, were shown to map outside the target interval. Additionally, the critical region for the phenotypic features of the 3p− phenotype was mapped to D3S1317 to D3S17 (19-21 cM). These findings will accelerate the identification of the 3p25 CHD susceptibility locus and facilitate investigations of the role of this locus in non-syndromic AVSDs, which are a common form of familial and isolated CHD.

Keywords: congenital heart disease; chromosome 3p25
PMCID: PMC1734659  PMID: 10922384
21.  Maternal Folate-Related Gene Environment Interactions and Congenital Heart Defects 
Obstetrics and gynecology  2010;116(2 Pt 1):316-322.
To investigate whether women with congenital heart defect (CHD)-affected pregnancies were more likely to have functional single nucleotide polymorphisms (SNPs) in genes encoding enzymes in folate-dependent pathways.
A population-based case-control study of 572 women with CHD-affected pregnancies and 363 control women was conducted. DNA samples were genotyped for SNPs in three genes encoding for folate pathway enzymes. Maternal lifestyle factor information was obtained using standardized interviews.
Case women were 1.5 times more likely to be obese (BMI of 30 or higher) compared to control women. Obese women carrying the MTHFR TT genotype were 4.6 times more likely to have an affected pregnancy compared to normal weight women carrying a CC genotype. Obese women carrying one or two copies of the A allele in the BHMT polymorphism were 1.8 times more likely to have a CHD-affected pregnancy than normal weight women carrying a BHMT GG genotype. Among women who smoked, those carrying a TCII CG or GG genotype were 1.8 times more likely to have an affected fetus than women who smoked and carried a CC genotype. Among women who drank alcohol, those carrying a TCII CG or GG genotype were 1.7 times more likely to have an affected fetus than women who drank and carried a CC genotype.
Results indicate that functional polymorphisms in folate-related genes increase the risk of having a fetus with CHD when maternal lifestyle factors that alter folate metabolism are present.
PMCID: PMC3027124  PMID: 20664391
22.  BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1 
BMC Medical Genetics  2009;10:144.
Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS) but a subset of subjects do not show alterations of this chromosome region.
We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH) array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays.
One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD) and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs) inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2), not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype.
Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.
PMCID: PMC2805625  PMID: 20030804
23.  Rare copy number variations containing genes involved in RASopathies: deletion of SHOC2 and duplication of PTPN11 
RASopathies are a group of disorders related to Noonan syndrome that with dysregulated RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Noonan syndrome (NS, OMIM# 163950) is a both phenotypically and genotypically variable disorder. We and other researchers have demonstrated that copy number variations underlie a small percentage of patients with RASopathies.
In a cohort of 12 clinically characterized patients with congenital heart defect (CHD) and features suggestive of Noonan syndrome or Noonan like syndrome without known causative gene mutation, we performed an Illumina SNP-array analysis to identify the pathogenic copy number variations (Human660W-Quad Chip, Beadstation Scanner and GenomeStudio V2011 software).
We identifed two rare copy number variations harboring genes involved in RAS- MAPK signaling pathway of RASopathy. One is a 24 Mb duplication of 12q24.1-24.3 containing PTPN11 and the other is a 183 kb deletion of 10q25.2 including SHOC2. The SNP-array results were further validated by quantitative PCR (qPCR). This is might be the first report suggesting that haploinsufficiency of SHOC2 can result in a RASopathy-like phenotype.
Our findings provide additional support that copy number variations containing disease-causing genes of RAS/MAPK pathway play a minor role in RASopathies or related disorders. We recommend the use of microarrays in Noonan syndrome like patients without identified mutations in the causative genes.
PMCID: PMC4031927  PMID: 24739123
Noonan syndrome; RASopathy; SHOC2; PTPN11; 12q24 duplication; 10q25.2 deletion; Copy number variation; CNV; Congenital heart defect
24.  The Impact of CNVs on Outcomes for Infants with Single Ventricle Heart Defects 
Human genomes harbor copy number variants (CNVs), regions of DNA gains or losses. While pathogenic CNVs are associated with congenital heart disease (CHD), their impact on clinical outcomes is unknown. This study sought to determine whether pathogenic CNVs among infants with single ventricle (SV) physiology were associated with inferior neurocognitive and somatic growth outcomes.
Methods and Results
Genomic DNAs from 223 subjects of two National Heart, Lung, and Blood Institute-sponsored randomized clinical trials with infants with SV CHD and 270 controls from The Cancer Genome Atlas project were analyzed for rare CNVs >300 kb using array comparative genomic hybridization. Neurocognitive and growth outcomes at 14 months from the CHD trials were compared among subjects with and without pathogenic CNVs. Putatively pathogenic CNVs, comprising 25 duplications and 6 deletions, had a prevalence of 13.9%, significantly greater than the 4.4% rate of such CNVs among controls. CNVs associated with genomic disorders were found in 13 cases but no control. Several CNVs likely to be causative of SV CHD were observed, including aberrations altering the dosage of GATA4, MYH11, and GJA5. Subjects with pathogenic CNVs had worse linear growth, and those with CNVs associated with known genomic disorders had the poorest neurocognitive and growth outcomes. A minority of children with pathogenic CNVs were noted to be dysmorphic on clinical genetics examination.
Pathogenic CNVs appear to contribute to the etiology of SV forms of CHD in at least 10% of cases, are clinically subtle but adversely affect outcomes in children harboring them.
PMCID: PMC3987966  PMID: 24021551
copy number variant; congenital cardiac defect; outcome; hypoplastic left heart syndrome
25.  Rare copy number variation in cerebral palsy 
Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8329) of the control population. Eight inherited from an unaffected mother: a 751-kb deletion including FSCB, a 1.5-Mb duplication of 7q21.13, a 534-kb duplication of 15q11.2, a 446-kb duplication including CTNND2, a 219-kb duplication including MCPH1, a 169-kb duplication of 22q13.33, a 64-kb duplication of MC2R, and a 135-bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386-kb deletion of 12p12.2-p12.1, a 234-kb duplication of 10q26.13, and a 4-kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157-bp exonic deletion of ACOX1, a 693-kb duplication of 17q25.3, and a 265-kb duplication of DAAM1. This is the first systematic study of CNVs in CP, and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.
PMCID: PMC3865415  PMID: 23695280
copy number; cerebral palsy; microarray

Results 1-25 (1096772)