Search tips
Search criteria

Results 1-25 (157427)

Clipboard (0)

Related Articles

1.  Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry† 
Journal of medicinal chemistry  2010;53(3):1306-1318.
2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC.
PMCID: PMC2836843  PMID: 20085328
2.  Synthesis and biological activity of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl regioisomers as inhibitors of de novo purine biosynthesis with selectivity for cellular uptake by high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier 
Journal of Medicinal Chemistry  2012;55(4):1758-1770.
We reported the selective transport of classical 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl-for-benzoyl-substituted side chain and a 3- (3a) and 4-carbon (3b) bridge. Compound 3a was more potent than 3b against tumor cells; While 3b was completely selective for transport by folate receptors (FRs) and the proton-coupled folate transporter (PCFT) over reduced folate carrier (RFC), 3a was not. To determine if decreasing the distance between the bicyclic scaffold and L-glutamate in 3b would preserve transport selectivity and potency against human tumor cells, 3b regioisomers with [1,3] (7 and 8) and [1,2] (4, 5 and 6) substitutions on the thienoyl ring, and with acetylenic insertions in the 4-atom bridge, were synthesized and evaluated. Compounds 7 and 8 were potent nanomolar inhibitors of KB and IGROV1 human tumor cells with complete selectivity for FRα and PCFT over RFC.
PMCID: PMC3288238  PMID: 22243528
3.  Therapeutic targeting malignant mesothelioma with a novel 6-substituted pyrrolo[2,3-D]pyrimidine thienoyl antifolate via its selective uptake by the proton-coupled folate transporter 
The 5-substituted pyrrolo[2,3-d]pyrimidine antifolate pemetrexed (Pmx) is an active agent for malignant pleural mesothelioma (MPM). Pmx is transported into MPM cells by the reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). We tested the notion that a novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate (compound 2) might be an effective treatment for MPM, reflecting its highly selective membrane transport by PCFT over RFC. Compound 2 selectively inhibited proliferation of a HeLa subline expressing exclusively PCFT (R1-11-PCFT4) over an isogenic subline expressing only RFC (R1-11-RFC6). By outgrowth, H2452 human MPM cells were highly sensitive to the inhibitory effects of compound 2. By colony-forming assays, following an intermittent (24 h) drug exposure, 2 was cytotoxic. Cytotoxic activity by 2 was due to potent inhibition of glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis, as confirmed by nucleoside protection and in situ GARFTase assays with [14C]glycine. Assays with [3H]compound 2 and R1-11-PCFT4 or R1-11-RFC6 cells directly confirmed selective membrane transport by PCFT over RFC. PCFT transport was also confirmed for H2452 cells. In R1-11-PCFT4 and H2452 cells, [3H]compound 2 was metabolized to polyglutamates. Potent in vivo efficacy was confirmed toward early- and upstage H2452 xenografts in severe combined immunodeficient mice administered intravenous compound 2. Our results demonstrate potent antitumor efficacy of compound 2 toward H2452 MPM in vitro and in vivo, reflecting its efficient membrane transport by PCFT over RFC, synthesis of polyglutamates, and inhibition of GARFTase. Selectivity for non-RFC cellular uptake processes by novel tumor-targeted antifolates such as compound 2 presents an exciting new opportunity for treating solid tumors.
PMCID: PMC3769948  PMID: 23412628
proton-coupled folate transporter; mesothelioma; folate; antifolate; pemetrexed
4.  Synthesis and evaluation of a classical 2,4-diamino-5-substituted-furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted-pyrrolo[2,3-d]pyrimidine as antifolates☆ 
Bioorganic & medicinal chemistry  2006;14(24):10.1016/j.bmc.2006.08.029.
Two classical antifolates, a 2,4-diamino-5-substituted furo[2,3-d]pyrimidine and a 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine, were synthesized as potential inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The syntheses were accomplished by condensation of 2,6-diamino-3(H)-4-oxo-pyrimidine with α-chloro-ketone 21 to afford two key intermediates 23 and 24, followed by hydrolysis, coupling with l-glutamate diethyl ester and saponification of the diethyl ester to afford the classical antifolates 13 and 14. Compounds 13 and 14 with a single carbon atom bridge are both substrates for folylpoly-γ-glutamate synthetase (FPGS), the enzyme responsible for forming critical poly-γ-glutamate antifolate metabolites with increased potency and/or increased cell retention. Compound 14 is a highly efficient FPGS substrate demonstrating that 2,4-diamino-5-substituted furo[2,3-d]pyrimidines are important lead structures for the design of antifolates with FPGS substrate activity. It retains inhibitory potency for DHFR and TS compared to the two atom bridged analog 5. Compound 13 is a poor inhibitor of purified DHFR and TS, and both 13 and 14 are poor inhibitors of the growth of CCRF-CEM human leukemia cells in culture, indicating that single carbon bridged compounds in these series though conducive to FPGS substrate activity were not potent inhibitors.
PMCID: PMC3850758  PMID: 16990006
Pyrrolo[2,3-d]pyrimidines; Antifolates; Dihydrofolate reductase
5.  Synthesis and Discovery of High Affinity Folate Receptor-Specific Glycinamide Ribonucleotide Formyltransferase Inhibitors With Antitumor Activity 
Journal of medicinal chemistry  2008;51(16):5052-5063.
A series of 6-substituted classical pyrrolo[2,3-d]pyrimidine antifolates with a 3- to 6-carbon bridge between the heterocycle and the benzoyl-L-glutamate (compounds 2, 3, 4 and 5, respectively) was synthesized starting from methyl 4-formylbenzoate and a Wittig reaction with the appropriate triphenylphosphonium bromide, followed by reduction and conversion to the α-bromomethylketones. Cyclocondensation of 2,4-diamino-4-oxopyrimidine with the α-bromoketones, coupling with diethyl-L-glutamate and saponification afforded 2–5. Compounds 2–5 had negligible substrate activity for RFC but showed variably potent (nanomolar) and selective inhibitory activities toward Chinese hamster ovary cells that expressed FRα or FRβ, and toward FRα-expressing KB and IGROV1 human tumor cells. Inhibition of KB cell colony formation was also observed. Glycinamide ribonucleotide formyl transferase (GARFTase) was identified as the primary intracellular target of the pyrrolo[2,3-d]pyrimidines. The combined properties of selective FR targeting, lack of RFC transport, and GARFTase inhibition resulting in potent antitumor activity are unprecedented and warrant development of these analogs as antitumor agents.
PMCID: PMC2748117  PMID: 18680275
6.  The Effect of 5-Alkyl Modification on the Biological Activity of Pyrrolo[2,3-d]pyrimidine Containing Classical and Nonclassical Antifolates as Inhibitors of Dihydrofolate Reductase and as Antitumor and/or Antiopportunistic Infection Agents1a-e 
Journal of medicinal chemistry  2008;51(15):10.1021/jm800244v.
Novel classical antifolates (3 and 4) and 17 nonclassical antifolates (11-27) were synthesized as antitumor and/or antiopportunistic infection agents. Intermediates for the synthesis of 3, 4, and 11-27 were 2,4-diamino-5-alkylsubstituted-7H-pyrrolo[2,3-d]pyrimidines, 31 and 38, prepared by a ring transformation/ring annulation sequence of 2-amino-3-cyano-4-alkyl furans to which various aryl thiols were attached at the 6-position via an oxidative addition reaction using I2. The condensation of α-hydroxy ketones with malonodinitrile afforded the furans. For the classical analogues 3 and 4, the ester precursors were deprotected, coupled with diethyl-l-glutamate, and saponified. Compounds 3 (IC50 = 60 nM) and 4 (IC50 = 90 nM) were potent inhibitors of human DHFR. Compound 3 inhibited tumor cells in culture with GI50 ≤ 10−7 M. Nonclassical 17 (IC50 = 58 nM) was a potent inhibitor of Toxoplasma gondii (T. gondii) DHFR with >500-fold selectivity over human DHFR. Analogue 17 was 50-fold more potent than trimethoprim and about twice as selective against T. gondii DHFR.
PMCID: PMC3858179  PMID: 18605720
7.  Synthesis and Biological Activity of N4-phenylsubstituted-6-(2,4-dichloro phenylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as Vascular Endothelial Growth Factor Receptor-2 Inhibitors and Antiangiogenic and Antitumor Agents 
Bioorganic & medicinal chemistry  2010;18(10):3575-3587.
A series of eight N4-phenylsubstituted-6-(2,4-dichlorophenylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines 8–15 were synthesized as vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors with varied substitutions in the phenyl ring of the 4-anilino moiety. In addition, five N4-phenylsubstituted-6-phenylmethylsubstituted-7H-pyrrolo[2,3-d]pyrimidin-4-amines 16–20 were synthesized to evaluate the importance of the 2-NH2 moiety for multiple receptor tyrosine kinase (RTK) inhibition. Cyclocondensation of α-halomethylbenzylketones with 2,6-diamino-4-hydroxypyrimidine afforded 2-amino-6-(2,4-dichlorophenylmethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one, 23 and reaction of α-bromomethylbenzylketones with ethylamidinoacetate followed by cyclocondensation with formamide afforded the 6- phenylmethylsubstituted-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-ones, 40–42 respectively. Chlorination of the 4-position and displacement with appropriate anilines afforded the target compounds 8–20. Compounds 8, 10 and 14 were potent VEGFR-2 inhibitors and were 100-fold, 40-fold and 8-fold more potent than the standard semaxanib, respectively. Previously synthesized multiple RTK inhibitor, 5 and the VEGFR-2 inhibitor 8 from this study, were chosen for further evaluation in a mouse orthotopic model of melanoma and showed significant inhibition of tumor growth, angiogenesis and metastasis.
PMCID: PMC2868963  PMID: 20403700
Pyrrolo[2,3-d]pyrimidines; Receptor tyrosine kinase inhibitors; Antiangiogenic agents; Antitumor agents
8.  Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7 H-pyrrolo[2,3-d]pyrimidines as tyrosine kinase inhibitors and antiangiogenic agents1 
Bioorganic & medicinal chemistry  2010;18(14):5261-5273.
A series of 2-amino-4-m-bromoanilino-6-benzyl pyrrolo[2,3-d]pyrimidines analogues 4–12 were synthesized and evaluated as inhibitors of receptor tyrosine kinases (RTKs). These analogues were synthesized from the appropriate α-bromomethylbenzylketones via cyclocondensation with 2,6-diamino-4-pyrimidone to afford the 2-amino-4-oxo-6-substituted benzyl pyrrolo[2,3-d]pyrimidines. Chlorination at the 4-position followed by displacement with 3-bromoaniline or 3-bromo-N-methylaniline and methylation of the 7-NH afforded the target compounds. Remarkably, dimethylation of both the 4-N and N7 afford whole cell EGFR inhibitors that are more cytotoxic than clinically used erlotinib and mono-methylation at the 4-N or N7 affords more cytotoxic whole cell PDGFR-β inhibitors than clinically used sunitinib. Methylation at either the 4-N or N7 position was detrimental to whole cell VEGFR-2 inhibition. The inhibitory data against the RTKs in this study demonstrates that methylation of the 4-NH and/or the 7-NH influences both the specificity and potency of RTK inhibition.
PMCID: PMC2910361  PMID: 20558072
Multiple receptor; Tyrosine kinase inhibitors; Antiangiogenic agents
9.  Synthesis and biological activity of a novel series of 6-substituted thieno[2,3-d]pyrimidine antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors over the reduced folate carrier and proton-coupled folate transporter for cellular entry 
Journal of medicinal chemistry  2009;52(9):2940-2951.
A series of seven 2-amino-4-oxo-6-substituted thieno[2,3-d]pyrimidines, with bridge length variations (from 2-8 carbon atoms) were synthesized as selective folate receptor (FR) α and β substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenzoate to afford the aldehydes which were converted to the appropriate 2-amino-4-carbethoxy-5-substituted thiophenes 23-29. Cyclization with chlorformamidine afforded the thieno[2,3-d]pyrimidines 30-36 which were hydrolyzed and coupled with diethyl-L-glutamate, followed by saponification to give the target compounds 2-8. Compounds 3-6 were potent growth inhibitors (IC50 4.7 to 334 nM) of human tumor cells (KB and IGROV1) that express FRs. In addition, compounds 3-6 inhibited the growth of Chinese hamster ovary (CHO) cells that expressed FRs but not the reduced folate carrier (RFC) or proton-coupled folate transporter (PCFT). However, the compounds were inactive toward CHO cells that lacked FRs but contained either the RFC or PCFT. By nucleoside and 5-amino-4-imidazole carboxamide (AICA) protection studies, along with in vitro and in situ enzyme activity assays, the mechanism of antitumor activity was identified as the dual inhibition of glycinamide ribonucleotide formyltransferase and, likely, AICA ribonucleotide formyltransferase. The dual inhibitory activity of the active thieno[2,3-d]pyrimidine antifolates and the FR specificity represent unique mechanistic features for these compounds distinct from all other known antifolates. The potent inhibitory effects of compounds 3-6 toward cells expressing FRs but not PCFT provide direct evidence that cellular uptake of this series of compounds by FRs does not depend on the presence of PCFT and argues that direct coupling between these transporters is not obligatory.
PMCID: PMC2730022  PMID: 19371039
10.  Dual Inhibitors of Thymidylate Synthase and Dihydrofolate Reductase as Antitumour Agents: Design, Synthesis and Biological Evaluation of Classical and Nonclassical Pyrrolo[2,3-d]pyrimidine Antifolates1 
Journal of medicinal chemistry  2006;49(3):1055-1065.
We designed and synthesized a classical analog N-[4-[(2-amino-6-ethyl-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)thio]benzoyl]-L-glutamic acid (4) and thirteen nonclassical analogs 5-17 as potential dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors and as antitumour agents. The key intermediate in their synthesis was 2-amino-6-ethyl-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidine, 22, to which various aryl thiols were conveniently attached at the 5-position via an oxidative addition reaction using iodine. For the classical analog 4, the ester obtained from the reaction was deprotected and coupled with diethyl-L-glutamate followed by saponification. Compound 4 was a potent dual inhibitor of human TS (IC50 = 90 nM) and human DHFR (IC50 = 420 nM). Compound 4 was not a substrate for human FPGS. Metabolite protection studies established TS as its principal target. Most of the nonclassical analogs were only inhibitors of human TS with IC50 values of 0.23-26 μM.
PMCID: PMC2547132  PMID: 16451071
11.  Synthesis of classical, four-carbon bridged 5-substituted furo[2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates1 
Journal of medicinal chemistry  2005;48(16):5329-5336.
We report, for the first time, the biological activities of four carbon atom bridged classical antifolates on dihydrofolate reductase (DHFR), thymidylate synthase (TS) and folylpolyglutamate synthetase (FPGS) as well as on antitumor activity. Extension of the bridge homologation studies of classical two-carbon bridged antifolates, a 5-substituted 2,4-diaminofuro[2,3-d]pyrimidine (1) and a 6-subsituted 2-amino-4-oxopyrrolo[2,3-d]pyrimidine (2) afforded two, four-carbon bridged antifolates, analogues 5 and 6, with enhanced FPGS substrate activity and inhibitory activity against tumor cells in culture (EC50 values of ≤ 10−7 M) compared with the two-carbon bridged analogues. These results support our original hypothesis that the distance and orientation of the side chain para-aminobenzoyl-L-glutamate moiety with respect to the pyrimidine ring is a crucial determinant of biological activity. In addition, this study demonstrates that, for classical antifolates that are substrates for FPGS, poor inhibitory activity against isolated target enzymes is not necessarily a predictor of a lack of antitumor activity.
PMCID: PMC2538949  PMID: 16078850
12.  Design, synthesis and biological evaluation of substituted pyrrolo[2,3-d]pyrimidines as multiple receptor tyrosine kinase inhibitors and antiangiogenic agents 
Bioorganic & medicinal chemistry  2008;16(10):5514-5528.
Direct and indirect involvement of Receptor Tyrosine Kinases (RTKs) in tumor growth and metastasis makes them ideal targets for anticancer therapy. A paradigm shift from inhibition of single RTK to inhibition of multiple RTKs has been recently demonstrated. We designed and synthesized eight N4-phenylsubstituted-6-(2-phenylethylsubstituted)- 7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as homologated series of our previously published RTK inhibitors. We reasoned that increased flexibility of the side chain, that determines potency and selectivity, would improve the spectrum of RTK inhibition. These compounds were synthesized using a bis-electrophilic cyclization to afford substituted pyrrolo[2,3-d]pyrimidines followed by chlorination and substitution at the 4- position with various anilines. Five additional compounds of this series were previously reported by Gangjee et al.1 with activities against IGFR only. There synthesis, characterization and biological activities against a variety of other RTKs are reported in this study for the first time. The biological evaluation, in whole cell assays, showed several analogs had remarkable inhibitory activity against epithelial growth factor receptor (EGFR), vascular endothelial growth factor receptor-1 (VEGFR-1), platelet derived growth factor receptor-β (PDGFR-β), the growth of A431 cells in culture and in the chicken embryo chorioallantoic membrane (CAM) angiogenesis assay. The inhibitory data against the RTKs in this study demonstrates that variation of the 6-ethylaryl substituents as well as the N4-phenyl substituents of these analogs does indeed control both the potency and specificity of inhibitory activity against RTKs. In addition, homologation of the chain length of the 6-substituent from a methylene to an ethyl increases the spectrum of RTK inhibition. New multi-RTK inhibitors (8, 12) and potent inhibitors of angiogenesis (15, 19) were identified with the best compound, N4-(3- trifluromethylphenyl)-6-(2-phenylethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine (15), with an IC50 value of 30 nM in the CAM angiogenesis inhibition assay.
PMCID: PMC2474725  PMID: 18467105
13.  N4-(3-bromophenyl)-7-(substituted benzyl) pyrrolo[2,3-d]pyrimidines as Potent Multiple Receptor Tyrosine Kinase Inhibitors: Design, Synthesis, and In vivo Evaluation 
Bioorganic & medicinal chemistry  2012;20(7):2444-2454.
With the goal of developing multitargeted receptor tyrosine kinase inhibitors that display potent inhibition against PDGFRβ and VEGFR-2 we designed and synthesized eleven N4-(3-bromophenyl)-7-(substitutedbenzyl) pyrrolo[2,3-d]pyrimidines 9a–19a. These compounds were obtained from the key intermediate N4-(3-bromophenyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamine 29. Various arylmethyl groups were regiospecifically attached at the N7 of 29 via sodium hydride induced alkylation with substituted arylmethyl halides. Compounds 11a and 19a were potent dual inhibitors of PDGFRβ and VEGFR-2. In a COLO-205, in vivo tumor mouse model 11a demonstrated inhibition of tumor growth, metastasis, and tumor angiogenesis that was better than or comparable to the standard compound TSU-68 (SU6668, 8).
PMCID: PMC3310894  PMID: 22370340
14.  2-Amino-4-methyl-5-phenylethyl substituted-7-N-benzyl-pyrrolo[2,3-d]pyrimidines as novel antitumor antimitotic agents that also reverse tumor resistance1 
Bioorganic & medicinal chemistry  2011;19(14):4355-4365.
Gangjee et al. recently reported a novel series of 2-amino-4-methyl-5-phenylethyl substituted-7-benzyl-pyrrolo[2,3-d]pyrimidines, some of which exhibited two digit nanomolar antitumor and antimitotic activity and were not subject to P-glycoprotein (Pgp) or Multidrug Resistance Protein 1 (MRP1) mediated tumor resistance (unlike the Vinca alkaloids and taxanes). Some of these compounds, in addition to their antitumor activity, had the ability to reverse the Pgp-mediated resistance to clinically used antimitotic agents. This report consists of an attempt to optimize the various activities of the parent compounds by synthetic variations of the phenyl ring of the 5-phenylethyl side chain. The target compounds were synthesized via a 9-step synthesis involving a Sonogashira reaction. The substituted phenylacetylenes as coupling partners were in turn synthesized from unactivated aryl bromides or iodides. The target compounds exhibited moderate cytotoxicity against MCF-7 tumor cells. However, most of these compounds showed improved cytotoxicity against the resistant NCI/ADR and MCF-7/VP. This study afforded an analog which reversed both Pgp-mediated as well as MRP1-mediated resistance to clinically used antimitotic agents, along with its own antimitotic mediated antitumor activity. In addition, in the NCI-60 cell line panel one of the compounds inhibited the growth of MDA-MD-435 breast cancer cell line at submicromolar concentration.
PMCID: PMC3138178  PMID: 21680190
Antimitotic; Tumor resistance reversal; Cytotoxic; Sonogashira coupling
15.  An Efficient Solution-Phase Synthesis of 4,5,7-Trisubstituted Pyrrolo[3,2-d]pyrimidines 
ACS combinatorial science  2012;15(1):10-19.
We have developed an efficient and robust route to synthesize 4,5,7-trisubstituted pyrrolo[3,2-d]pyrimidines as potent kinase inhibitors. This solution-phase synthesis features a SNAr substitution reaction, cross-coupling reaction, one-pot reduction/reductive amination and N-alkylation reaction. These reactions occur rapidly with high yields and have broad substrate scopes. A variety of groups can be selectively introduced into the N5 and C7 positions of 4,5,7-trisubstituted pyrrolopyrimidines at a late stage of the synthesis, thereby providing a highly efficient approach to explore the structure-activity relationships of pyrrolopyrimidine derivatives. Four synthetic analogs have been profiled against a panel of 48 kinases and a new and selective FLT3 inhibitor 9 is identified.
PMCID: PMC3724770  PMID: 23181516
Pyrrolopyrimidine; SNAr displacement; Coupling reaction; Reductive amination; N-alkylation
16.  The human proton-coupled folate transporter 
Cancer Biology & Therapy  2012;13(14):1355-1373.
This review summarizes the biology of the proton-coupled folate transporter (PCFT). PCFT was identified in 2006 as the primary transporter for intestinal absorption of dietary folates, as mutations in PCFT are causal in hereditary folate malabsorption (HFM) syndrome. Since 2006, there have been major advances in understanding the mechanistic roles of critical amino acids and/or domains in the PCFT protein, many of which were identified as mutated in HFM patients, and in characterizing transcriptional control of the human PCFT gene. With the recognition that PCFT is abundantly expressed in human tumors and is active at pHs characterizing the tumor microenvironment, attention turned to exploiting PCFT for delivering novel cytotoxic antifolates for solid tumors. The finding that pemetrexed is an excellent PCFT substrate explains its demonstrated clinical efficacy for mesothelioma and non-small cell lung cancer, and prompted development of more PCFT-selective tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine antifolates that derive their cytotoxic effects by targeting de novo purine nucleotide biosynthesis.
PMCID: PMC3542225  PMID: 22954694
folate; antifolate; transport; proton-coupled folate transporter; reduced folate carrier; tumor microenvironment
17.  The Proton-Coupled Folate Transporter: Impact on Pemetrexed Transport and on Antifolates Activities Compared to the Reduced Folate Carrier 
Molecular pharmacology  2008;74(3):854-862.
The reduced folate carrier (RFC) and the proton-coupled folate transporter (PCFT) are ubiquitously expressed in normal and malignant mammalian tissues and in human solid tumor cell lines. This paper addresses the extent to which PCFT contributes to transport of pemetrexed and to the activities of this and other antifolates relative to RFC at physiological pH. Either RFC or PCFT cDNA was stably transfected into a transporter-null HeLa cell variant to achieve activities similar to their endogenous function in wild-type HeLa cells. PCFT and RFC produced comparable increases in pemetrexed activity in growth medium with 5-formyltetrahydrofolate. However, PCFT had little or no effect on the activities of methotrexate, ZD1694 or PT523 in comparison to RFC irrespective of the folate growth source. PCFT, expressed at high levels in Xenopus oocytes and in transporter-competent HepG2 cells, exhibited a high affinity for pemetrexed with an influx Km of 0.2 – 0.8 µM at pH 5.5 in these systems. PCFT increased the growth inhibitory activity of pemetrexed, but not that of the other antifolates in HepG2 cells grown with 5-formyltetrahydrofolate at physiological pH. These findings illustrate the unique role that PCFT plays in the transport and pharmacological activity of pemetrexed. Because of the ubiquitous expression of PCFT in human tumors, and the ability of PCFT to sustain pemetrexed activity even in the absence of RFC, tumor cells are unlikely to become resistant to pemetrexed due to impaired transport because of the redundancy of these genetically distinct routes.
PMCID: PMC2716086  PMID: 18524888
18.  2,4-Diamino-5-methyl-6-substituted Arylthio-furo[2,3-d]pyrimidines as Novel Classical and Nonclassical Antifolates as Potential Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors1a,b 
A novel classical antifolate N-{4-[(2,4-diamino-5-methyl-furo[2,3-d]pyrimidin-6-yl)thio]-benzoyl}-l-glutamic acid 5 and 11 nonclassical antifolates 6–16 were designed, synthesized, and evaluated as inhibitors of dihydrofolate reductase (DHFR) and thymidylate synthase (TS). The nonclassical compounds 6–16 were synthesized from 20 via oxidative addition of substituted thiophenols using iodine. Peptide coupling of the intermediate acid 21 followed by saponification gave the classical analog 5. Compound 5 is the first example, to our knowledge, of a 2,4-diamino furo[2,3-d]pyrimidine classical antifolate that has inhibitory activity against both human DHFR and human TS. The classical analog 5 was a nanomolar inhibitor and remarkably selective inhibitor of P. carinii DHFR and M. avium DHFR at 263-fold and 2107-fold respectively compared to mammalian DHFR. The nonclassical analogs 6–16 were moderately potent against pathogen DHFR or TS. This study shows that the furo[2,3-d]pyrimidine scaffold is conducive to dual human DHFR-TS inhibitory activity and to high potency and selectivity for pathogen DHFR.
PMCID: PMC2818873  PMID: 20056546
Furo[2,3-d]pyrimidines; Thymidylate Synthase; Dihydrofolate Reductase; Dual Inhibitors
19.  Inhibition of Cyclin-Dependent Kinase 1 by Purines and Pyrrolo[2,3-d]Pyrimidines Does Not Correlate with Antiviral Activity 
We have previously shown that a series of nonnucleoside pyrrolo[2,3-d]pyrimidines selectively inhibit the replication of herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). These compounds act at the immediate-early or early stage of HCMV replication and have antiviral properties somewhat similar to those of roscovitine and olomoucine, specific inhibitors of cyclin-dependent kinases (cdks). In the present study we examine the hypothesis that pyrrolo[2,3-d]pyrimidines exert their antiviral effects by inhibition of cellular cdks. Much higher concentrations of a panel of pyrrolo[2,3-d]pyrimidine nucleoside analogs with antiviral activity were required to inhibit recombinant cdk1/cyclin B compared to the submicromolar concentrations required to inhibit HCMV and HSV-1 replication. 4,6-Diamino-5-cyano-7-(2-phenylethyl)pyrrolo[2,3-d]pyrimidine (compound 1369) was the best inhibitor of cdk1 and cyclin B, with a 50% inhibitory concentration (IC50; 14 μM) similar to that of roscovitine; it was competitive with respect to ATP (Ki = 14 μM). The potency of compound 1369 against cdk1 and cyclin B was similar to its cytotoxicity (IC50s, 32 to 100 μM) but not its antiviral efficacy (IC50s, 0.02 to 0.3 μM). Thus, our results indicated the null hypothesis. In contrast, roscovitine was only weakly active against HSV-1 (IC50, 38 μM) and HCMV (IC50, 40 μM). These values were similar to those derived by cytotoxicity and cell growth inhibition assays, thereby suggesting that roscovitine is not a selective antiviral. Therefore, we propose that inhibition of cdk1 and cyclin B is not responsible for selective antiviral activity and that pyrrolo[2,3-d]pyrimidines constitute novel pharmacophores which compete with ATP to inhibit cdk1 and cyclin B.
PMCID: PMC127371  PMID: 12121920
20.  Novel Water Soluble, Substituted Pyrrolo[3,2-d]pyrimidines: Design, Synthesis and Biological Evaluation as Antitubulin Antitumor Agents 
Pharmaceutical research  2012;29(11):3033-3039.
To study the effects of a regioisomeric change on the biological activities of previously reported water soluble, colchicine site binding, microtubule depolymerizing agents.
Nine pyrrolo[3,2-d]pyrimidines were designed and synthesized. The importance of various substituents was evaluated. Their abilities to cause cellular microtubule depolymerization, inhibit proliferation of MDA-MB-435 tumor cells and displace colchicine binding to tubulin were studied. One of the compounds was also evaluated in the National Cancer Institute preclinical 60 cell line panel.
Pyrrolo[3,2-d]pyrimidine analogs were more potent than their pyrrolo[2,3-d]pyrimidine regioisomers. We identified compounds with submicromolar potency against cellular proliferation. The structure-activity relationship study gave insight into substituents that were crucial for activity and those that improved activity. The compound that was tested in the NCI 60 cell line is a 2-digit nanomolar (GI50) inhibitor of 8 tumor cell lines.
We have identified substituted pyrrolo[3,2-d]pyrimidines that are water-soluble colchicine site microtubule depolymerizing agents. These compounds serve as leads for further optimization.
PMCID: PMC3474888  PMID: 22814902
21.  Design, Synthesis, and Biological Evaluation of Classical and Nonclassical 2-Amino-4-oxo-5-substituted-6-methylpyrrolo[3,2-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors 
Journal of medicinal chemistry  2007;51(1):10.1021/jm701052u.
We designed and synthesized a classical antifolate N-{4-[(2-amino-6-methyl-4-oxo-3,4-dihydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl)methyl]benzoyl}-l-glutamic acid 4 and 11 nonclassical analogues 5–15 as potential dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. The key intermediate in the synthesis was N-(4-chloro-6-methyl-5H-pyrrolo[3,2-d]pyrimidin-2-yl)-2,2-dimethylpropanamide, 29, to which various 5-benzyl substituents were attached. For the classical analogue 4, the ester obtained from the N-benzylation reaction was deprotected and coupled with diethyl l-glutamate followed by saponification. Compound 4 was a potent dual inhibitor of human TS (IC50 = 46 nM, about 206-fold more potent than pemetrexed) and DHFR (IC50 = 120 nM, about 55-fold more potent than pemetrexed). The nonclassical analogues were marginal inhibitors of human TS, but four analogues showed potent T. gondii DHFR inhibition along with >100-fold selectivity compared to human DHFR.
PMCID: PMC3885252  PMID: 18072727
22.  N4-aryl-6-substitutedphenylmethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as receptor tyrosine kinase inhibitors 
Bioorganic & medicinal chemistry  2011;20(2):910-914.
Six novel N4-substitutedphenyl-6-substitutedphenylmethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines were synthesized as multiple receptor tyrosine kinase (RTK) inhibitors and antitumor agents. An improvement in the inhibitory potency against epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor 1 (VEGFR-1) and vascular endothelial growth factor receptor 2 (VEGFR-2) assays and in the A431 cellular proliferation assay was observed for compounds 8–13 over the previously reported 5–7. Three compounds (8, 9, and 13) demonstrated potent, multiple RTK inhibition and were more potent or equipotent compared to the lead compounds 5 and 7 and the standard compounds. Compounds 10 and 12 showed potent inhibition of VEGFR-2 over EGFR, platelet-derived growth factor receptor-β (PDGFR-β) and VEGFR-1. The results indicate that the RTK inhibitory profile could be modulated with slight variations to the N4-aryl-6-substitutedphenylmethyl-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamino scaffold.
PMCID: PMC3276368  PMID: 22204741
Pyrrolo[2; 3-d]pyrimidines; Receptor tyrosine kinase inhibitors
23.  7-(4-Methoxy­phen­yl)-5-methyl-9-phenyl-7H-pyrrolo[2′,3′:4,5]pyrimido[1,6-d]tetrazole 
The title compound, C20H16N6O, is composed of a tetra­zolo ring and a 4-methoxy­phenyl and a benzene-substituted pyrrole ring at the 7 and 9 positions fused to a pyrimidine ring in a nearly planar fashion [maximum deviation of 0.018 (1) Å for the fused ring system]. A methyl group at the 5 position is also in the plane of the hetero cyclic system. The dihedral angle between the mean planes of the benzene and 4-methoxy­phenyl rings is 40.4 (2)°. The dihedral angles between the mean planes of the pyrimidine and the benzene and 4-methoxy­phenyl rings are 15.6 (5)° and 52.6 (7)°, respectively. A weak intra­molecular C—H⋯N hydrogen bond inter­action, which forms an S(7) graph-set motif, helps to establish the relative conformations of the tetrazolo and benzene rings. In the crystal, weak inter­molecular C—H⋯O, C—H⋯π and π–π stacking inter­actions [centroid–centroid distances = 3.5270 (16), 3.5113 (16), 3.7275 (17) and 3.7866 (17) Å] link the mol­ecules into a two-dimensional array obliquely parallel to (101) and propagating along the b axis.
PMCID: PMC2980237  PMID: 21580097
24.  Mechanisms of Membrane Transport of Folates into Cells and Across Epithelia 
Annual review of nutrition  2011;31:10.1146/annurev-nutr-072610-145133.
Until recently, the transport of folates into cells and across epithelia has been interpreted primarily within the context of two transporters with high affinity and specificity for folates, the reduced folate carrier and the folate receptors. However, there were discrepancies between the properties of these transporters and characteristics of folate transport in many tissues, most notably the intestinal absorption of folates, in terms of pH dependency and substrate specificity. With the recent cloning of the proton-coupled folate transporter (PCFT) and the demonstration that this transporter is mutated in hereditary folate malabsorption, an autosomal recessive disorder, the molecular basis for this low-pH transport activity is now understood. This review focuses on the properties of PCFT and briefly addresses the two other folate-specific transporters along with other facilitative and ATP-binding cassette (ABC) transporters with folate transport activities. The role of these transporters in the vectorial transport of folates across epithelia is considered.
PMCID: PMC3885234  PMID: 21568705
proton-coupled folate transporter (PCFT) (SLC46A1); reduced folate carrier (RFC) (SLC19A1); hereditary folate malabsorption (HFM); cerebral folate deficiency (CFD); intestinal folate absorption; heme carrier protein-1 (HCP1)
25.  Inhibition of episomal hepatitis B virus DNA in vitro by 2,4-diamino-7- (2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-pyrrolo[2,3-d]pyrimidine. 
Antimicrobial Agents and Chemotherapy  1995;39(11):2570-2573.
The nucleoside analog 2,4-diamino-7-(2-deoxy-2-fluoro-beta-D- arabinofuranosyl)pyrrolo[2,3-d]pyrimidine (T70080) and several related compounds were evaluated for anti-hepatitis B virus (HBV) activity by using cultured 2.2.15 cells. T70080 reduced episomal viral replication in these cells by 50% at a concentration of 0.7 microgram/ml. At the same time, T70080 reduced cellular proliferation by 50% at a concentration in excess of 100 micrograms/ml, yielding a therapeutic index of > 143. In cells cultured for 12 days in the presence of 10 or 50 micrograms of T70080 per ml and then with drug-free medium, for an additional 12 days, viral DNA replication was completely inhibited initially but resumed between 6 and 12 days post-drug removal. In view of the potent anti-HBV activity shown, T70080 is a good candidate for further evaluation as a treatment of human HBV infection.
PMCID: PMC162987  PMID: 8585748

Results 1-25 (157427)