Search tips
Search criteria

Results 1-25 (525924)

Clipboard (0)

Related Articles

1.  Influence of coral and algal exudates on microbially mediated reef metabolism 
PeerJ  2013;1:e108.
Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo‘orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs.
PMCID: PMC3719129  PMID: 23882445
Coral; Algae; Microbe; Organic carbon; Metabolism; Central Pacific
2.  Photorespiration and Carbon Limitation Determine Productivity in Temperate Seagrasses 
PLoS ONE  2013;8(12):e83804.
The gross primary productivity of two seagrasses, Zostera marina and Ruppia maritima, and one green macroalga, Ulva intestinalis, was assessed in laboratory and field experiments to determine whether the photorespiratory pathway operates at a substantial level in these macrophytes and to what extent it is enhanced by naturally occurring shifts in dissolved inorganic carbon (DIC) and O2 in dense vegetation. To achieve these conditions in laboratory experiments, seawater was incubated with U. intestinalis in light to obtain a range of higher pH and O2 levels and lower DIC levels. Gross photosynthetic O2 evolution was then measured in this pretreated seawater (pH, 7.8–9.8; high to low DIC:O2 ratio) at both natural and low O2 concentrations (adjusted by N2 bubbling). The presence of photorespiration was indicated by a lower gross O2 evolution rate under natural O2 conditions than when O2 was reduced. In all three macrophytes, gross photosynthetic rates were negatively affected by higher pH and lower DIC. However, while both seagrasses exhibited significant photorespiratory activity at increasing pH values, the macroalga U. intestinalis exhibited no such activity. Rates of seagrass photosynthesis were then assessed in seawater collected from the natural habitats (i.e., shallow bays characterized by high macrophyte cover and by low DIC and high pH during daytime) and compared with open baymouth water conditions (where seawater DIC is in equilibrium with air, normal DIC, and pH). The gross photosynthetic rates of both seagrasses were significantly higher when incubated in the baymouth water, indicating that these grasses can be significantly carbon limited in shallow bays. Photorespiration was also detected in both seagrasses under shallow bay water conditions. Our findings indicate that natural carbon limitations caused by high community photosynthesis can enhance photorespiration and cause a significant decline in seagrass primary production in shallow waters.
PMCID: PMC3869798  PMID: 24376754
3.  Current European Labyrinthula zosterae Are Not Virulent and Modulate Seagrass (Zostera marina) Defense Gene Expression 
PLoS ONE  2014;9(4):e92448.
Pro- and eukaryotic microbes associated with multi-cellular organisms are receiving increasing attention as a driving factor in ecosystems. Endophytes in plants can change host performance by altering nutrient uptake, secondary metabolite production or defense mechanisms. Recent studies detected widespread prevalence of Labyrinthula zosterae in European Zostera marina meadows, a protist that allegedly caused a massive amphi-Atlantic seagrass die-off event in the 1930's, while showing only limited virulence today. As a limiting factor for pathogenicity, we investigated genotype×genotype interactions of host and pathogen from different regions (10–100 km-scale) through reciprocal infection. Although the endophyte rapidly infected Z. marina, we found little evidence that Z. marina was negatively impacted by L. zosterae. Instead Z. marina showed enhanced leaf growth and kept endophyte abundance low. Moreover, we found almost no interaction of protist×eelgrass-origin on different parameters of L. zosterae virulence/Z. marina performance, and also no increase in mortality after experimental infection. In a target gene approach, we identified a significant down-regulation in the expression of 6/11 genes from the defense cascade of Z. marina after real-time quantitative PCR, revealing strong immune modulation of the host's defense by a potential parasite for the first time in a marine plant. Nevertheless, one gene involved in phenol synthesis was strongly up-regulated, indicating that Z. marina plants were probably able to control the level of infection. There was no change in expression in a general stress indicator gene (HSP70). Mean L. zosterae abundances decreased below 10% after 16 days of experimental runtime. We conclude that under non-stress conditions L. zosterae infection in the study region is not associated with substantial virulence.
PMCID: PMC3972160  PMID: 24691450
4.  Comparative Analysis of Expressed Sequence Tag (EST) Libraries in the Seagrass Zostera marina Subjected to Temperature Stress 
Global warming is associated with increasing stress and mortality on temperate seagrass beds, in particular during periods of high sea surface temperatures during summer months, adding to existing anthropogenic impacts, such as eutrophication and habitat destruction. We compare several expressed sequence tag (EST) in the ecologically important seagrass Zostera marina (eelgrass) to elucidate the molecular genetic basis of adaptation to environmental extremes. We compared the tentative unigene (TUG) frequencies of libraries derived from leaf and meristematic tissue from a control situation with two experimentally imposed temperature stress conditions and found that TUG composition is markedly different among these conditions (all P < 0.0001). Under heat stress, we find that 63 TUGs are differentially expressed (d.e.) at 25°C compared with lower, no-stress condition temperatures (4°C and 17°C). Approximately one-third of d.e. eelgrass genes were characteristic for the stress response of the terrestrial plant model Arabidopsis thaliana. The changes in gene expression suggest complex photosynthetic adjustments among light-harvesting complexes, reaction center subunits of photosystem I and II, and components of the dark reaction. Heat shock encoding proteins and reactive oxygen scavengers also were identified, but their overall frequency was too low to perform statistical tests. In all conditions, the most abundant transcript (3–15%) was a putative metallothionein gene with unknown function. We also find evidence that heat stress may translate to enhanced infection by protists. A total of 210 TUGs contain one or more microsatellites as potential candidates for gene-linked genetic markers. Data are publicly available in a user-friendly database at
Eletronic Supplementary Material
The online version of this article (doi:10.1007/s10126-007-9065-6) contains supplementary material which is available to authorized users.
PMCID: PMC2757623  PMID: 18239962
Gene expression profiling; EST library; Ecological genomics; Temperature stress; Seagrass; Zostera marina
5.  Using allometric procedures to substantiate the plastochrone method for eelgrass leaf growth assessments 
Estimation of leaf productivity in eelgrass (Zostera marina L.) is crucial for evaluating the ecological role of this important seagrass species. Although leaf marking techniques are widely used to obtain estimates of leaf productivity, the accuracy of these assessments, has been questioned mainly because these fail to account for leaf growth bellow the reference mark and also because they apparently disregard the contribution of mature leaf tissues to the growth rate of leaves. On the other hand, the plastochrone method is a simpler technique that has been considered to effectively capture growth in a more realistic way, thereby providing more accurate assessments of both above- and below-ground productivities. But since the actual values of eelgrass growth rates are difficult to obtain, the worth of the plastochrone method has been largely vindicated because it produces assessments that overestimate productivity as compared to estimates obtained by leaf marking. Additionally, whenever eelgrass leaf biomass can be allometrically scaled in terms of matching leaf length in a consistent way, the associated leaf growth rates can be also projected allometrically. In this contribution, we used that approach to derive an authentication of the plastochrone method and formally demonstrate that, as has been claimed to occur for leaf marking approaches, the plastochrone method itself underestimates actual values of eelgrass leaf growth rates. We also show that this unavoidable bias is mainly due to the inadequacy of single-leaf biomass assessments in providing a proxy for the growth of all leaf tissue in a shoot over a given interval. Moreover, the derived formulae give conditions under which assessments of leaf growth rates using the plastochrone method would systematically underestimate matching values obtained by leaf marking procedures. And, assessments of leaf growth rates obtained by using the present data show that plastochrone method estimations underestimated corresponding proxies obtained allometrically (27%), or through leaf marking (35%). Allometric projection is recommended as a simpler and more effective procedure to reduce the bias in eelgrass leaf productivity estimations that associates to the use of plastochrone methods.
PMCID: PMC3669004  PMID: 23680348
Eelgrass; Allometric scaling; Leaf growth; Plastochrone method; Formal validation
6.  Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life 
Seagrasses are a polyphyletic group of monocotyledonous angiosperms that have adapted to a completely submerged lifestyle in marine waters. Here, we exploit two collections of expressed sequence tags (ESTs) of two wide-spread and ecologically important seagrass species, the Mediterranean seagrass Posidonia oceanica (L.) Delile and the eelgrass Zostera marina L., which have independently evolved from aquatic ancestors. This replicated, yet independent evolutionary history facilitates the identification of traits that may have evolved in parallel and are possible instrumental candidates for adaptation to a marine habitat.
In our study, we provide the first quantitative perspective on molecular adaptations in two seagrass species. By constructing orthologous gene clusters shared between two seagrasses (Z. marina and P. oceanica) and eight distantly related terrestrial angiosperm species, 51 genes could be identified with detection of positive selection along the seagrass branches of the phylogenetic tree. Characterization of these positively selected genes using KEGG pathways and the Gene Ontology uncovered that these genes are mostly involved in translation, metabolism, and photosynthesis.
These results provide first insights into which seagrass genes have diverged from their terrestrial counterparts via an initial aquatic stage characteristic of the order and to the derived fully-marine stage characteristic of seagrasses. We discuss how adaptive changes in these processes may have contributed to the evolution towards an aquatic and marine existence.
PMCID: PMC3033329  PMID: 21226908
7.  Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity 
PLoS ONE  2011;6(11):e27973.
Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. In general, primary producers with the highest rates of photosynthesis released the most DOC and yielded the greatest bacterioplankton growth; turf algae produced nearly twice as much DOC per unit surface area than the other benthic producers (14.0±2.8 µmol h−1 dm−2), stimulating rapid bacterioplankton growth (0.044±0.002 log10 cells h−1) and concomitant oxygen drawdown (0.16±0.05 µmol L−1 h−1 dm−2). Our results demonstrate that benthic reef algae can release a significant fraction of their photosynthetically-fixed carbon as DOC, these release rates vary by species, and this DOC is available to and consumed by reef associated microbes. These data provide compelling evidence that benthic primary producers differentially influence reef microbial dynamics and biogeochemical parameters (i.e., DOC and oxygen availability, bacterial abundance and metabolism) in coral reef communities.
PMCID: PMC3220721  PMID: 22125645
8.  De Novo Assembly and Characterization of the Transcriptome of Seagrass Zostera marina Using Illumina Paired-End Sequencing 
PLoS ONE  2014;9(11):e112245.
The seagrass Zostera marina is a monocotyledonous angiosperm belonging to a polyphyletic group of plants that can live submerged in marine habitats. Zostera marina L. is one of the most common seagrasses and is considered a cornerstone of marine plant molecular ecology research and comparative studies. However, the mechanisms underlying its adaptation to the marine environment still remain poorly understood due to limited transcriptomic and genomic data.
Principal Findings
Here we explored the transcriptome of Z. marina leaves under different environmental conditions using Illumina paired-end sequencing. Approximately 55 million sequencing reads were obtained, representing 58,457 transcripts that correspond to 24,216 unigenes. A total of 14,389 (59.41%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. 45.18% and 46.91% of the unigenes had significant similarity with proteins in the Swiss-Prot database and Pfam database, respectively. Among these, 13,897 unigenes were assigned to 57 Gene Ontology (GO) terms and 4,745 unigenes were identified and mapped to 233 pathways via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). We compared the orthologous gene family of the Z. marina transcriptome to Oryza sativa and Pyropia yezoensis and 11,667 orthologous gene families are specific to Z. marina. Furthermore, we identified the photoreceptors sensing red/far-red light and blue light. Also, we identified a large number of genes that are involved in ion transporters and channels including Na+ efflux, K+ uptake, Cl− channels, and H+ pumping.
Our study contains an extensive sequencing and gene-annotation analysis of Z. marina. This information represents a genetic resource for the discovery of genes related to light sensing and salt tolerance in this species. Our transcriptome can be further utilized in future studies on molecular adaptation to abiotic stress in Z. marina.
PMCID: PMC4244107  PMID: 25423588
9.  Contrasting Oxygen Dynamics in the Freshwater Isoetid Lobelia dortmanna and the Marine Seagrass Zostera marina 
Annals of Botany  2005;96(4):613-623.
• Background and Aims Submerged plants possess well-developed aerenchyma facilitating intra-plant gas-phase diffusion of O2 to below-ground tissues, which are usually buried in anoxic sediments. However, aquatic habitats differ in terms of O2 fluctuations in the water column and in O2 consumption of the sediment, and aquatic plants differ in aerenchymal volume and resistance to O2 diffusion through the plant and across leaf and root surfaces. The hypothesis that the freshwater isoetid Lobelia dortmanna and the marine seagrass Zostera marina should display pronounced contrasts in intra-plant O2 dynamics because of differences in morphology/anatomy, physiology and growth habitat was tested.
• Methods In order to determine the O2 dynamics and relate this to the anatomy and morphology of the two species, O2 microelectrodes were inserted in the aerenchyma of leaves and roots, the sediment pore-water, and the water column in the field. Manipulation of water column O2 in the laboratory was also carried out.
• Key Results It was found that intra-plant transport of O2 between leaf and root tips takes place more readily in L. dortmanna than in Z. marina due to shorter distances and greater cross-sections of the aerenchyma. The major exchange of O2 across roots of L. dortmanna can be accounted for by small intra-plant resistances to diffusion, larger root than leaf surfaces, and greater radial diffusive resistance of leaves than roots. In contrast, the major O2 exchange across leaves than roots of Z. marina can be accounted for by the opposite anatomical–morphological features. The larger aerenchymal volume and the smaller metabolic rates of L. dortmanna compared to Z. marina imply that turnover of O2 is slower in the aerenchyma of L. dortmanna and O2 fluctuations are more dampened following changes in irradiance. Also, O2 accumulated in the aerenchyma can theoretically support dark respiration for a few hours in L. dortmanna but for only a few minutes in Z. marina.
• Conclusions The build-up of O2 in the pore-water of L. dortmanna sediments during the day as a result of high release of photosynthetic O2 from roots and low O2 consumption of sediments means that sediment, aerenchyma and water are important O2 sources for respiration during the following night, while Z. marina relies on the water column as the sole source of O2 because its sediments are anoxic. These differences between L. dortmanna and Z. marina appear to represent a general difference between the isoetid species mainly inhabiting sediments of low reducing capacity of oligotrophic lakes and the elodeid freshwater species and marine seagrasses mainly inhabiting sediments of higher reducing capacity in more nutrient-rich habitats.
PMCID: PMC4247029  PMID: 16027129
Anaerobiosis; isoetids; oxygen microelectrodes; radial oxygen loss (ROL); root aeration; seagrasses; submerged plants
10.  Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages 
The ISME Journal  2013;7(5):962-979.
Increasing algal cover on tropical reefs worldwide may be maintained through feedbacks whereby algae outcompete coral by altering microbial activity. We hypothesized that algae and coral release compositionally distinct exudates that differentially alter bacterioplankton growth and community structure. We collected exudates from the dominant hermatypic coral holobiont Porites spp. and three dominant macroalgae (one each Ochrophyta, Rhodophyta and Chlorophyta) from reefs of Mo'orea, French Polynesia. We characterized exudates by measuring dissolved organic carbon (DOC) and fractional dissolved combined neutral sugars (DCNSs) and subsequently tracked bacterioplankton responses to each exudate over 48 h, assessing cellular growth, DOC/DCNS utilization and changes in taxonomic composition (via 16S rRNA amplicon pyrosequencing). Fleshy macroalgal exudates were enriched in the DCNS components fucose (Ochrophyta) and galactose (Rhodophyta); coral and calcareous algal exudates were enriched in total DCNS but in the same component proportions as ambient seawater. Rates of bacterioplankton growth and DOC utilization were significantly higher in algal exudate treatments than in coral exudate and control incubations with each community selectively removing different DCNS components. Coral exudates engendered the smallest shift in overall bacterioplankton community structure, maintained high diversity and enriched taxa from Alphaproteobacteria lineages containing cultured representatives with relatively few virulence factors (VFs) (Hyphomonadaceae and Erythrobacteraceae). In contrast, macroalgal exudates selected for less diverse communities heavily enriched in copiotrophic Gammaproteobacteria lineages containing cultured pathogens with increased VFs (Vibrionaceae and Pseudoalteromonadaceae). Our results demonstrate that algal exudates are enriched in DCNS components, foster rapid growth of bacterioplankton and select for bacterial populations with more potential VFs than coral exudates.
PMCID: PMC3635233  PMID: 23303369
coral; algae; reef; bacteria; exudate; DCNS
11.  Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation 
Aquatic Conservation  2014;24(3):410-434.
This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.
PMCID: PMC4497458  PMID: 26167100
Zostera marina; biological organization; eutrophication; trajectories; conservation; genetic diversity; eelgrass food web
12.  Eelgrass Detritus as a Food Source for the Sea Cucumber Apostichopus japonicus Selenka (Echinidermata: Holothuroidea) in Coastal Waters of North China: An Experimental Study in Flow-Through Systems 
PLoS ONE  2013;8(3):e58293.
Eelgrass ecosystems have a wide variety of ecological functions in which living tissues and detritus may be a food source for many marine animals. In this study, we conducted a laboratory simulating experiment to understand the trophic relationship between the eelgrass Zostera marina L and the sea cucumber Apostichopus japonicus. A mixture of decaying eelgrass debris and seafloor surface muddy sediments was used as food to feed A. japonicus, and then specific growth rates (SGR) and fecal production rates (FPR) were measured. According to the proportion of eelgrass debris, we designed five treatment diets, i.e., ES0, ES10, ES20, ES40, and ES100, with eelgrass debris accounting for 0%, 10%, 20%, 40%, and 100% in dry weight, respectively. Results showed that diet composition had a great influence on the growth of A. japonicus. Sea cucumbers could use decaying eelgrass debris as their food source; and when the organic content of a mixture of eelgrass debris and sediment was 19.6% (ES40), a relatively high SGR (1.54%·d−1) and FPR (1.31 g·ind.−1 d−1) of A. japonicus were obtained. It is suggested that eelgrass beds can not only provide habitat for the sea cucumber A. japonicus but can also provide an indirect food source for the deposit feeder. This means that the restoration and reconstruction of eelgrass beds, especially in coastal waters of China, would be a potential and effective measure for sea-cucumber fisheries, in respect to both resource restoration and aquaculture of this valuable species.
PMCID: PMC3591415  PMID: 23505480
13.  Dr. Zompo: an online data repository for Zostera marina and Posidonia oceanica ESTs 
As ecosystem engineers, seagrasses are angiosperms of paramount ecological importance in shallow shoreline habitats around the globe. Furthermore, the ancestors of independent seagrass lineages have secondarily returned into the sea in separate, independent evolutionary events. Thus, understanding the molecular adaptation of this clade not only makes significant contributions to the field of ecology, but also to principles of parallel evolution as well. With the use of Dr. Zompo, the first interactive seagrass sequence database presented here, new insights into the molecular adaptation of marine environments can be inferred. The database is based on a total of 14 597 ESTs obtained from two seagrass species, Zostera marina and Posidonia oceanica, which have been processed, assembled and comprehensively annotated. Dr. Zompo provides experimentalists with a broad foundation to build experiments and consider challenges associated with the investigation of this class of non-domesticated monocotyledon systems. Our database, based on the Ruby on Rails framework, is rich in features including the retrieval of experimentally determined heat-responsive transcripts, mining for molecular markers (SSRs and SNPs), and weighted key word searches that allow access to annotation gathered on several levels including Pfam domains, GeneOntology and KEGG pathways. Well established plant genome sites such as The Arabidopsis Information Resource (TAIR) and the Rice Genome Annotation Project are interfaced by Dr. Zompo. With this project, we have initialized a valuable resource for plant biologists in general and the seagrass community in particular. The database is expected to grow together with more data to come in the near future, particularly with the recent initiation of the Zostera genome sequencing project.
The Dr. Zompo database is available at
PMCID: PMC2790305  PMID: 20157482
14.  Fungi and Bacteria in or on Leaves of Eelgrass (Zostera marina L.) from Chesapeake Bay † 
Samples of green and brown leaves of eelgrass (Zostera marina L.) were incubated in seawater without an additional carbon source. Parallel leaf samples were used for acridine orange bacterial counting and water-soluble aniline blue estimation of fungal biovolume. The incubations produced no evidence that there is an eelgrass counterpart for the chytridialean symbiont which is very common in turtlegrass (Thalassia testudinum König). Sterile mycelium (i.e., living mycelium without identifiable propagules) was the most prevalent fungal form on incubated samples from submerged sites, whereas Dendryphiella salina and Sigmoidea sp. (marina?) were prevalent on brown leaves from the wrack line. Attempts to assay fungal biovolume in field samples indicated that the sterile mycelium observed after incubation represented the outgrowth of formerly dormant propagules or weakly established microcolonies. It was calculated that fungal biomass could not account for more than 0.5% of leaf mass, and it was probably much smaller than this, for no fungal structures were observed even in concentrated leaf homogenates. Bacterial densities fell within the range reported for other particulate substrates. A speculative estimate of bacterial productivity was 1.4× the standing stock per day.
PMCID: PMC243892  PMID: 16345773
15.  Restoring Eelgrass (Zostera marina L.) Habitats Using a Simple and Effective Transplanting Technique 
PLoS ONE  2014;9(4):e92982.
Eelgrass beds in coastal waters of China have declined substantially over the past 30 years. In this study, a simple new transplanting technique was developed for eelgrass (Zostera marina L.) restoration. To assist in anchoring single shoots, several rhizomes of rooted shoots were bound to a small elongate stone (50–150 g) with biodegradable thread (cotton or hemp), and then the bound packet was buried at an angle in the sediments at a depth of 2–4 cm. This stone anchoring method was used to transplant eelgrass in early November 2009 and late May 2010 in Huiquan Bay, Qingdao. The method led to high success. Three month survivorship of the transplanted shoots at the two transplant sites was >95%. From April 20 to November 19, 2012, the following characteristics of the 2009 and 2010 transplanted eelgrass beds were monitored: morphological changes, shoot density, shoot height, leaf biomass, and sediment particle size. Results showed that the sexual reproduction period of the planted eelgrass was from April to August, and vegetative reproduction reached its peak in autumn. Maximum shoot height and biomass were observed in June and July. After becoming established, the transplanted eelgrass beds were statistically equal to natural eelgrass beds nearby in terms of shoot height, biomass, and seasonal variations. This indicates that the transplant technique is effective for eelgrass restoration in coastal waters.
PMCID: PMC3973628  PMID: 24695414
16.  Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative Approach 
PLoS ONE  2011;6(7):e21884.
Inputs of dissolved organic carbon (DOC) to lakes derived from the surrounding landscape can be stored, mineralized or passed to downstream ecosystems. The balance among these OC fates depends on a suite of physical, chemical, and biological processes within the lake, as well as the degree of recalcintrance of the allochthonous DOC load. The relative importance of these processes has not been well quantified due to the complex nature of lakes, as well as challenges in scaling DOC degradation experiments under controlled conditions to the whole lake scale. We used a coupled hydrodynamic-water quality model to simulate broad ranges in lake area and DOC, two characteristics important to processing allochthonous carbon through their influences on lake temperature, mixing depth and hydrology. We calibrated the model to four lakes from the North Temperate Lakes Long Term Ecological Research site, and simulated an additional 12 ‘hypothetical’ lakes to fill the gradients in lake size and DOC concentration. For each lake, we tested several mineralization rates (range: 0.001 d−1 to 0.010 d−1) representative of the range found in the literature. We found that mineralization rates at the ecosystem scale were roughly half the values from laboratory experiments, due to relatively cool water temperatures and other lake-specific factors that influence water temperature and hydrologic residence time. Results from simulations indicated that the fate of allochthonous DOC was controlled primarily by the mineralization rate and the hydrologic residence time. Lakes with residence times <1 year exported approximately 60% of the DOC, whereas lakes with residence times >6 years mineralized approximately 60% of the DOC. DOC fate in lakes can be determined with a few relatively easily measured factors, such as lake morphometry, residence time, and temperature, assuming we know the recalcitrance of the DOC.
PMCID: PMC3136486  PMID: 21779347
17.  Physiological Responses of Zostera marina and Cymodocea nodosa to Light-Limitation Stress 
PLoS ONE  2013;8(11):e81058.
The effects of light-limitation stress were investigated in natural stands of the seagrasses Zostera marina and Cymodocea nodosa in Ria Formosa coastal lagoon, southern Portugal. Three levels of light attenuation were imposed for 3 weeks in two adjacent meadows (2–3 m depth), each dominated by one species. The response of photosynthesis to light was determined with oxygen electrodes. Chlorophylls and carotenoids were determined by high-pressure liquid chromatography (HPLC). Soluble protein, carbohydrates, malondialdehyde and phenol contents were also analysed. Both species showed evident signs of photoacclimation. Their maximum photosynthetic rates were significantly reduced with shading. Ratios between specific light harvesting carotenoids and the epoxidation state of xanthophyll cycle carotenoids revealed significantly higher light harvesting efficiency of C. nodosa, a competitive advantage in a low light environment. The contents of both soluble sugars and starch were considerably lower in Z. marina plants, particularly in the rhizomes, decreasing even further with shading. The different carbohydrate energy storage strategies found between the two species clearly favour C. nodosa's resilience to light deprivation, a condition enhanced by its intrinsic arrangement of the pigment pool. On the other hand, Z. marina revealed a lower tolerance to light reduction, mostly due to a less plastic arrangement of the pigment pool and lower carbohydrate storage. Our findings indicate that Z. marina is close to a light-mediated ecophysiological threshold in Ria Formosa.
PMCID: PMC3842938  PMID: 24312260
18.  Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network 
Journal of Experimental Botany  2015;66(5):1489-1498.
An aquatic life genome sequencing suggests a complete loss of genes for ethylene biosynthesis and signalling pathways in the seagrasses, Zostera muelleri and Zostera marina, a new model for hormone studies.
Seagrasses are flowering plants which grow fully submerged in the marine environment. They have evolved a range of adaptations to environmental challenges including light attenuation through water, the physical stress of wave action and tidal currents, high concentrations of salt, oxygen deficiency in marine sediment, and water-borne pollination. Although, seagrasses are a key stone species of the costal ecosystems, many questions regarding seagrass biology and evolution remain unanswered. Genome sequence data for the widespread Australian seagrass species Zostera muelleri were generated and the unassembled data were compared with the annotated genes of five sequenced plant species (Arabidopsis thaliana, Oryza sativa, Phoenix dactylifera, Musa acuminata, and Spirodela polyrhiza). Genes which are conserved between Z. muelleri and the five plant species were identified, together with genes that have been lost in Z. muelleri. The effect of gene loss on biological processes was assessed on the gene ontology classification level. Gene loss in Z. muelleri appears to influence some core biological processes such as ethylene biosynthesis. This study provides a foundation for further studies of seagrass evolution as well as the hormonal regulation of plant growth and development.
PMCID: PMC4339605  PMID: 25563969
Ethylene biosynthesis/signalling; gene loss; genome survey; seagrass; Zostera muelleri.
19.  Impacts of Groundwater Discharge at Myora Springs (North Stradbroke Island, Australia) on the Phenolic Metabolism of Eelgrass, Zostera muelleri, and Grazing by the Juvenile Rabbitfish, Siganus fuscescens 
PLoS ONE  2014;9(8):e104738.
Myora Springs is one of many groundwater discharge sites on North Stradbroke Island (Queensland, Australia). Here spring waters emerge from wetland forests to join Moreton Bay, mixing with seawater over seagrass meadows dominated by eelgrass, Zostera muelleri. We sought to determine how low pH / high CO2 conditions near the spring affect these plants and their interactions with the black rabbitfish (Siganus fuscescens), a co-occurring grazer. In paired-choice feeding trials S. fuscescens preferentially consumed Z. muelleri shoots collected nearest to Myora Springs. Proximity to the spring did not significantly alter the carbon and nitrogen contents of seagrass tissues but did result in the extraordinary loss of soluble phenolics, including Folin-reactive phenolics, condensed tannins, and phenolic acids by ≥87%. Conversely, seagrass lignin contents were, in this and related experiments, unaffected or increased, suggesting a shift in secondary metabolism away from the production of soluble, but not insoluble, (poly)phenolics. We suggest that groundwater discharge sites such as Myora Springs, and other sites characterized by low pH, are likely to be popular feeding grounds for seagrass grazers seeking to reduce their exposure to soluble phenolics.
PMCID: PMC4134225  PMID: 25127379
20.  Evidence of Eelgrass (Zostera marina) Seed Dispersal by Northern Diamondback Terrapin (Malaclemys terrapin terrapin) in Lower Chesapeake Bay 
PLoS ONE  2014;9(7):e103346.
The initial discovery in May 2009 of eelgrass (Zostera marina) seeds in fecal samples of wild-caught northern diamondback terrapins (Malaclemys terrapin terrapin) was the first field evidence of eelgrass seed ingestion in this species. This finding suggested the potential of terrapins as seed dispersers in eelgrass beds, which we sampled for two additional years (2010 and 2011). Seeds were only found in feces of terrapins captured prior to June 8 in all three years, coinciding with eelgrass seed maturation and release. Numbers of seeds in terrapin feces varied annually and decreased greatly in 2011 after an eelgrass die off in late 2010. The condition of seeds in terrapin feces was viable-mature, germinated, damaged, or immature. Of terrapins captured during time of seed release, 97% were males and juvenile females, both of which had head widths <30 mm. The fraction of individuals with ingested seeds was 33% for males, 35% for small females, and only 6% for large (mature) females. Probability of seed ingestion decreased exponentially with increasing terrapin head width; only males and small females (head width <30 mm) were likely to be vectors of seed dispersal. The characteristic that diamondback terrapins have well-defined home ranges allowed us to estimate the number of terrapins potentially dispersing eelgrass seeds annually. In seagrass beds of the Goodwin Islands region (lower York River, Virginia), there were 559 to 799 terrapins, which could disperse between 1,341 and 1,677 eelgrass seeds annually. These would represent a small proportion of total seed production within a single seagrass bed. However, based on probable home range distances, terrapins can easily traverse eelgrass meadow boundaries, thereby dispersing seeds beyond the bed of origin. Given the relatively short dispersion distance of eelgrass seeds, the diamondback terrapin may be a major source of inter-bed seed dispersal and genetic diversity.
PMCID: PMC4114747  PMID: 25072473
21.  Response of Bacterial Metabolic Activity to Riverine Dissolved Organic Carbon and Exogenous Viruses in Estuarine and Coastal Waters: Implications for CO2 Emission 
PLoS ONE  2014;9(7):e102490.
A cross-transplant experiment between estuarine water and seawater was conducted to examine the response of bacterial metabolic activity to riverine dissolved organic carbon (DOC) input under virus-rich and virus-free conditions, as well as to exogenous viruses. Riverine DOC input increased bacterial production significantly, but not bacterial respiration (BR) because of its high lability. The bioavailable riverine DOC influenced bulk bacterial respiration in two contrasting ways; it enhanced the bulk BR by stimulating bacterial growth, but simultaneously reduced the cell-specific BR due to its high lability. As a result, there was little stimulation of the bulk BR by riverine DOC. This might be partly responsible for lower CO2 degassing fluxes in estuaries receiving high sewage-DOC that is highly labile. Viruses restricted microbial decomposition of riverine DOC dramatically by repressing the growth of metabolically active bacteria. Bacterial carbon demand in the presence of viruses only accounted for 7–12% of that in the absence of viruses. Consequently, a large fraction of riverine DOC was likely transported offshore to the shelf. In addition, marine bacteria and estuarine bacteria responded distinctly to exogenous viruses. Marine viruses were able to infect estuarine bacteria, but not as efficiently as estuarine viruses, while estuarine viruses infected marine bacteria as efficiently as marine viruses. We speculate that the rapid changes in the viral community due to freshwater input destroyed the existing bacteria-virus relationship, which would change the bacterial community composition and affect the bacterial metabolic activity and carbon cycling in this estuary.
PMCID: PMC4103809  PMID: 25036641
22.  Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii 
Ecology and Evolution  2012;2(10):2625-2635.
Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (α) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed.
PMCID: PMC3492787  PMID: 23145346
CO 2 enrichment; glutamine synthetase; growth; nitrate reductase; nitrogen uptake; photosynthesis; seagrasses
23.  Physiological and Morphological Responses of the Temperate Seagrass Zostera muelleri to Multiple Stressors: Investigating the Interactive Effects of Light and Temperature 
PLoS ONE  2013;8(10):e76377.
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.
PMCID: PMC3790674  PMID: 24124551
24.  Rosmarinic Acid from Eelgrass Shows Nematicidal and Antibacterial Activities against Pine Wood Nematode and Its Carrying Bacteria 
Marine Drugs  2012;10(12):2729-2740.
Pine wilt disease (PWD), a destructive disease for pine trees, is caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus and additional bacteria. In this study, extracts of Zostera marina showed a high nematicidal activity against PWN and some of the bacteria that it carries. Light yellow crystals were obtained from extracts of Z. marina through solvent extraction, followed by chromatography on AB-8 resin and crystallization. The NMR and HPLC analysis showed that the isolated compound was rosmarinic acid (RosA). RosA showed effective nematicidal activity, of which the LC50 (50% lethal concentration) to PWN at 24 h, 48 h and 72 h was 1.18 mg/g, 1.05 mg/g and 0.95 mg/g, respectively. To get a high yield rate of RosA from Z. marina, single factor experiments and an L9 (34) orthogonal experiment were performed. This extraction process involved 70% ethanol for 3 h at 40 °C. The extraction dosage was 1:50 (w/v). The highest yield of RosA from Zostera was 3.13 mg/g DW (dried weight). The crude extracts of Zostera marina (10 mg/mL) and RosA (1 mg/mL) also showed inhibitory effects to some bacterial strains carried by PWN: Klebsiella sp., Stenotrophomonas maltophilia, Streptomyces sp. and Pantoea agglomerans. The results of these studies provide clues for preparing pesticide to control PWD from Z. marina.
PMCID: PMC3528122  PMID: 23201594
Zostera marina; Bursaphelenchus xylophilus; rosmarinic acid; nematicidal activity; anti-bacterial activity
25.  Bacterial Contribution to Dissolved Organic Matter in Eutrophic Lake Kasumigaura, Japan 
Applied and Environmental Microbiology  2013;79(23):7160-7168.
Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.
PMCID: PMC3837723  PMID: 24038686

Results 1-25 (525924)