PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1533798)

Clipboard (0)
None

Related Articles

1.  FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic Lateral Sclerosis 
PLoS Genetics  2011;7(8):e1002214.
Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS–related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS–related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.
Author Summary
Mutations in the SOD1, TARDBP, and FUS genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). However, possible interactions between these ALS–causative genetic mutations have not been examined. Here we expressed each of three human FUS mutations (R521H, R521C, and S57Δ) in zebrafish embryos, with or without knocking down the zebrafish homolog Fus, and observed a motor phenotype consisting of significant behavioral (touch-evoked escape response) and cellular (shortened axonal projections from motor neurons) deficits due to loss of function for the R521H and R521C mutations and/or toxic gain of function solely for the R521H mutation. Wild-type FUS could rescue the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP is upstream of FUS in this pathway responsible for motor neuron disorder. Furthermore, neither TARDBP nor FUS were able to modify and/or rescue the motor phenotype caused by mutant SOD1, and likewise SOD1 failed to rescue the phenotype of zebrafish expressing mutant TARDBP or FUS. Our results indicate that TARDBP acts upstream of FUS in a pathogenic pathway that is distinct from that of SOD1.
doi:10.1371/journal.pgen.1002214
PMCID: PMC3150442  PMID: 21829392
2.  Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis 
PLoS Genetics  2008;4(9):e1000193.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43–positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the ∼25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.
Author Summary
The abnormal accumulation of disease proteins in neuronal cells of the brain is a characteristic feature of many neurodegenerative diseases. Rare mutations in the genes that encode the accumulating proteins have been identified in these disorders and are crucial for the development of cell and animal models used to study neurodegeneration. Recently, the TAR DNA-binding protein 43 (TDP-43) was identified as the disease accumulating protein in patients with frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U) and in amyotrophic lateral sclerosis (ALS). TDP-43 was also found in the brains of 20–30% of patients with Alzheimer's disease (AD). Here, we evaluated whether mutations in TDP-43 cause disease in a cohort of 296 patients presenting with FTLD, ALS or AD. We identified three missense mutations in three out of 92 familial ALS patients (3.3%), and no mutations in AD or FTLD patients. All the identified mutations clustered in exon 6, which codes for a highly conserved region in the C-terminal part of the TDP-43 protein, which is known to be involved in the interaction of TDP-43 with other proteins. We conclude that mutations in TDP-43 are a rare cause of familial ALS, but so far are not found in other neurodegenerative diseases.
doi:10.1371/journal.pgen.1000193
PMCID: PMC2527686  PMID: 18802454
3.  Mutational Analysis of TARDBP in Neurodegenerative Diseases 
Neurobiology of aging  2009;32(11):2096-2099.
Neurodegenerative diseases are often characterized by the presence of aggregates of misfolded proteins. TDP-43 is a major component of these aggregates in Amyotrophic Lateral Sclerosis (ALS), but has also been observed in Alzheimer's (AD) and Parkinson's Diseases (PD). In addition, mutations in the TARDBP gene, encoding TDP-43, have been found to be a significant cause of familial ALS (FALS). All mutations, except for one, have been found in exon 6. To confirm this observation in ALS and to investigate whether TARDBP may play a role in the pathogenesis of AD and PD, we screened for mutations in exon 6 of the TARDBP gene in three cohorts composed of 376 AD, 463 PD (18% familial PD) and 376 ALS patients (50% FALS). We found mutations in ∼7% of FALS and ∼0.5% of sporadic ALS (SALS) patients, including two novel mutations, p.N352T and p.G384R. In contrast, we did not find TARDBP mutations in our cohort of AD and PD patients. These results suggest that mutations in TARDBP are not a significant cause of AD and PD.
doi:10.1016/j.neurobiolaging.2009.11.018
PMCID: PMC2889148  PMID: 20031275
4.  Absence of Mutations in Exon 6 of the TARDBP Gene in 207 Chinese Patients with Sporadic Amyotrohic Lateral Sclerosis 
PLoS ONE  2013;8(7):e68106.
Mutations in the TARDBP gene, which encodes the Tar DNA binding protein, have been shown to causes of both familial amyotrophic lateral sclerosis (FALS) and sporadic ALS (SALS). Recently, several novel TARDBP exon 6 mutants have been reported in patients with ALS in Europe and America but not in Asia. To further examine the spectrum and frequency of TARDBP exon 6 mutations, we investigated their frequency in ethnic Chinese patients with sporadic ALS. TARDBP exon 6 was screened by direct sequencing in 207 non-SOD1 SALS patients and 230 unrelated healthy controls but no mutations were identified. Our data indicate that exon 6 mutations in TARDBP are not a common cause of SALS in Han Chinese population from Southern Mainland China.
doi:10.1371/journal.pone.0068106
PMCID: PMC3706600  PMID: 23874513
5.  Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia(e–Pub ahead of print) 
Neurology  2010;75(9):807-814.
Objective:
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder caused by degeneration of motor neurons. Mutations in the FUS gene were identified in patients with familial ALS (FALS) and patients with sporadic ALS (SALS) from a variety of genetic backgrounds. This work further explores the spectrum of FUS mutations in patients with FALS and patients with FALS with features of frontotemporal dementia (FALS/FTD) or parkinsonism and dementia (FALS/PD/DE).
Methods:
All exons of the FUS gene were sequenced in 476 FALS index cases negative for mutations in SOD1 and TARDBP. A total of 561–726 controls were analyzed for genetic variants observed. Clinical data from patients with FUS mutations were compared to those of patients with known SOD1 and TARDBP mutations.
Results:
We identified 17 FUS mutations in 22 FALS families, 2 FALS/FTD families, and 1 FALS/PD/DE family from diverse genetic backgrounds; 11 mutations were novel. There were 4 frameshift, 1 nonsense, and 1 possible alternate splicing mutation. Patients with FUS mutations appeared to have earlier symptom onset, a higher rate of bulbar onset, and shorter duration of symptoms than those with SOD1 mutations.
Conclusions:
FUS gene mutations are not an uncommon cause in patients with FALS from diverse genetic backgrounds, and have a prevalence of 5.6% in non-SOD1 and non-TARDBP FALS, and ∼4.79% in all FALS. The pathogenicity of some of these novel mutations awaits further studies. Patients with FUS mutations manifest earlier symptom onset, a higher rate of bulbar onset, and shorter duration of symptoms.
GLOSSARY
= amyotrophic lateral sclerosis;
= familial amyotrophic lateral sclerosis;
= familial amyotrophic lateral sclerosis with features of frontotemporal dementia;
= familial amyotrophic lateral sclerosis with features of parkinsonism and dementia;
= sporadic amyotrophic lateral sclerosis.
doi:10.1212/WNL.0b013e3181f07e0c
PMCID: PMC2938970  PMID: 20668259
6.  Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations 
Journal of neurology  2012;260(1):85-92.
In amyotrophic lateral sclerosis (ALS) cerebrospinal fluid (CSF) analysis is usually performed to exclude inflammatory processes of the central nervous system. Although in a small subset of patients an intrathecal synthesis of IgG is detectable, usually there is no clear explanation for this evidence. This study investigates the occurrence of oligoclonal bands (OCBs) in the CSF of a large series of ALS patients, attempting a correlation with genotype data. CSF was collected from 259 ALS patients. CSF parameters were measured according to standard procedures, and detection of OCBs performed by isoelectric focusing. The patients were screened for mutations in SOD1, FUS, TARDBP, ANG, OPTN, and C9ORF72. We observed the presence of OCBs in the CSF of 9/259 ALS patients (3.5 %), and of disease-associated mutations in 12 cases. OCBs were significantly more frequent in mutation carriers compared to the remaining cohort (3/12 vs 6/247; p < 0.01). Among patients with OCBs, two patients had the TARDBP p.A382T mutation (one of which in homozygous state), and one the ANG p.P-4S variant. Both patients carrying the p.A382T mutation had an atypical phenotype, one of them manifesting signs suggestive of a cerebellar involvement, and the other presenting neuroradiological findings suggestive of an inflammatory disorder of the central nervous system. Our results suggest that ALS patients with OCBs may harbor mutations in disease-causing genes. We speculate that mutations in both TARDBP and ANG genes may disrupt the blood–brain barrier (BBB), promoting local immune responses and neuroinflammation. The role of mutant TARDBP and ANG genes on BBB integrity of ALS patients warrants further investigation.
doi:10.1007/s00415-012-6589-0
PMCID: PMC4196642  PMID: 22752089
ALS; Genetics; Neuroimmunology; CSF; Motor neuron disease
7.  De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis 
Human mutation  2010;31(5):E1377-E1389.
Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402 P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS.
doi:10.1002/humu.21241
PMCID: PMC2922682  PMID: 20232451
FUS/TLS; fused in sarcoma; amyotrophic lateral sclerosis; de novo mutation; FUS splice-site mutation; FUS truncating mutation
8.  Association between novel TARDBP mutations and Chinese patients with amyotrophic lateral sclerosis 
BMC Medical Genetics  2010;11:8.
Background
TARDBP mutations have been reported in patients with amyotrophic lateral sclerosis (ALS) in different populations except Chinese. The present aim is to investigate the association between TARDBP mutations and Chinese patients with ALS.
Methods
71 SALS patients and 5 FALS families with non-SOD1 mutations were screened for TARDBP mutations via direct sequencing.
Results
A novel heterozygous variation, Ser292Asn (875G>A), was identified in the proband and 4 asymptomatic relatives including the children of the dead patient from a FALS family. Thus the dead patient, the proband's brother, was speculated to carry Ser292Asn though his sample was unavailable to the detection. This variation was not found in 200 unrelated control subjects. A homology search of the TDP-43 protein in different species demonstrated that it was highly conserved. Also, it was predicted to be deleterious to protein function with SIFT-calculated probabilities of 0.00. Therefore, Ser292Asn is predicted to be a pathogenic mutation. In addition, we have found two silent mutations (Gly40Gly and Ala366Ala) and one novel polymorphism (239-18t>c).
Conclusions
The present data have extended the spectrum of TARDBP mutations and polymorphisms, and supported the pathological role of TDP-43 in Chinese ALS patients.
doi:10.1186/1471-2350-11-8
PMCID: PMC2821387  PMID: 20082726
9.  Delineating the genetic heterogeneity of ALS using targeted high-throughput sequencing 
Journal of Medical Genetics  2013;50(11):776-783.
Background
Over 100 genes have been implicated in the aetiology of amyotrophic lateral sclerosis (ALS). A detailed understanding of their independent and cumulative contributions to disease burden may help guide various clinical and research efforts.
Methods
Using targeted high-throughput sequencing, we characterised the variation of 10 Mendelian and 23 low penetrance/tentative ALS genes within a population-based cohort of 444 Irish ALS cases (50 fALS, 394 sALS) and 311 age-matched and geographically matched controls.
Results
Known or potential high-penetrance ALS variants were identified within 17.1% of patients (38% of fALS, 14.5% of sALS). 12.8% carried variants of Mendelian disease genes (C9orf72 8.78%; SETX 2.48%; ALS2 1.58%; FUS 0.45%; TARDBP 0.45%; OPTN 0.23%; VCP 0.23%. ANG, SOD1, VAPB 0%), 4.7% carried variants of low penetrance/tentative ALS genes and 9.7% (30% of fALS, 7.1% of sALS) carried previously described ALS variants (C9orf72 8.78%; FUS 0.45%; TARDBP 0.45%). 1.6% of patients carried multiple known/potential disease variants, including all identified carriers of an established ALS variant (p<0.01); TARDBP:c.859G>A(p.[G287S]) (n=2/2 sALS). Comparison of our results with those from studies of other European populations revealed significant differences in the spectrum of disease variation (p=1.7×10−4).
Conclusions
Up to 17% of Irish ALS cases may carry high-penetrance variants within the investigated genes. However, the precise nature of genetic susceptibility differs significantly from that reported within other European populations. Certain variants may not cause disease in isolation and concomitant analysis of disease genes may prove highly important.
doi:10.1136/jmedgenet-2013-101795
PMCID: PMC3812897  PMID: 23881933
Genetic Epidemiology; Motor Neurone Disease
10.  A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques 
Introduction
Although TDP-43 is the main constituent of the ubiquitinated cytoplasmic inclusions in the most common forms of frontotemporal lobar degeneration, TARDBP mutations are not a common cause of familial frontotemporal dementia, especially in the absence of motor neuron disease.
Results
We describe a pedigree presenting with a complex autosomal dominant disease, with a heterogeneous clinical phenotype, comprising unspecified dementia, parkinsonism, frontotemporal dementia and motor neuron disease. Genetic analyses identified a novel P112H TARDBP double variation located in exon 3 coding for the first RNA recognition motif of the protein (RRM1). This double mutation is probably pathogenic based on neuropathological findings, in silico prediction analysis and exome sequencing. The two autopsied siblings described here presented with frontotemporal dementia involving multiple cognitive domains and behavior but lacking symptoms of motor neuron disease throughout the disease course. The siblings presented with strikingly similar, although atypical, neuropathological features, including an unclassifiable TDP-43 inclusion pattern, a high burden of tau-negative β-amyloid neuritic plaques with an AD-like biochemical profile, and an unclassifiable 4-repeat tauopathy. The co-occurrence of multiple protein inclusions points to a pathogenic mechanism that facilitates misfolded protein interaction and aggregation or a loss of TDP-43 function that somehow impairs protein clearance.
Conclusions
TARDBP mutation screening should be considered in familial frontotemporal dementia cases, even without signs or symptoms of motor neuron disease, especially when other more frequent causes of genetic frontotemporal dementia (i.e. GRN, C9ORF72, MAPT) have been excluded and when family history is complex and includes parkinsonism, motor neuron disease and frontotemporal dementia. Further investigations in this family may provide insight into the physiological functions of TARDBP.
Electronic supplementary material
The online version of this article (doi:10.1186/s40478-015-0190-6) contains supplementary material, which is available to authorized users.
doi:10.1186/s40478-015-0190-6
PMCID: PMC4382926  PMID: 25853458
Frontotemporal lobar degeneration; Frontotemporal dementia; Motor neuron disease; TDP-43; TARDBP; Postmortem
11.  Amyotrophic Lateral Sclerosis–Frontotemporal Lobar Dementia in 3 Families With p.Ala382Thr TARDBP Mutations 
Archives of neurology  2010;67(8):1002-1009.
Background
TAR DNA-binding protein 43, encoded by the TARDBP gene, has been identified as the major pathological protein of frontotemporal lobar dementia (FTLD) with or without amyotrophic lateral sclerosis (ALS) and sporadic ALS. Subsequently, mutations in the TARDBP gene have been detected in 2% to 3% of patients with ALS (both familial and sporadic ALS). However, to our knowledge, there is only 1 description of 2 patients with FTLD and TARDBP gene mutations who later developed motor neuron disease.
Objective
To describe cognitive abnormalities in 3 Italian families with familial ALS and TARDBP gene mutations.
Design, Setting, and Participants
Genetic, neuropsychological, and neuroimaging analyses in 36 patients with familial non–superoxide dismutase 1 gene (SOD1) ALS and 280 healthy controls.
Main Outcome Measure
We identified 3 index cases of familial ALS carrying the p.Ala382Thr missense mutation of the TARDBP gene and with clinical, neuroimaging, and neuropsychological features of FTLD.
Results
The p.Ala382Thr missense mutation of the TARDBP gene was absent in the 280 controls. It was present in all affected members of the 3 families for whom DNA was available. All affected members of the 3 families developed FTLD after the onset of ALS, confirmed by neuropsychological testing and hypometabolism in frontal associative areas assessed with fludeoxyglucose F 18 positron emission tomography and computed tomography.
Conclusions
Three apparently unrelated families with familial ALS carrying the p.Ala382Thr TARDBP missense mutation developed FTLD. In these families, FTLD co-segregates with ALS. Patients with ALS carrying TARDBP mutations may develop FTLD.
doi:10.1001/archneurol.2010.173
PMCID: PMC3535689  PMID: 20697052
12.  Large proportion of amyotrophic lateral sclerosis cases in Sardinia are due to a single founder mutation of the TARDBP gene 
Archives of neurology  2011;68(5):594-598.
Objective
To perform an extensive screening for mutations of amyotrophic lateral sclerosis (ALS)–related genes in a consecutive cohort of Sardinian patients, a genetic isolate phylogenically distinct from other European populations.
Design
Population-based, prospective cohort study.
Patients
A total of 135 Sardinian patients with ALS and 156 healthy control subjects of Sardinian origin who were age- and sex-matched to patients.
Intervention
Patients underwent mutational analysis for SOD1, FUS, and TARDBP.
Results
Mutational screening of the entire cohort found that 39 patients (28.7%) carried the c.1144G A (p.A382T) missense mutation of the TARDBP gene. Of these, 15 had familial ALS (belonging to 10 distinct pedigrees) and 24 had apparently sporadic ALS. None of the 156 age-, sex-, and ethnicity-matched controls carried the pathogenic variant. Genotype data obtained for 5 ALS cases carrying the p.A382T mutation found that they shared a 94–single-nucleotide polymorphism risk haplotype that spanned 663 Kb across the TARDBP locus on chromosome 1p36.22. Three patients with ALS who carry the p.A382T mutation developed extrapyramidal symptoms several years after their initial presentation with motor weakness.
Conclusions
The TARDBP p.A382T missense mutation accounts for approximately one-third of all ALS cases in this island population. These patients share a large risk haplotype across the TARDBP locus, indicating that they have a common ancestor.
doi:10.1001/archneurol.2010.352
PMCID: PMC3513278  PMID: 21220647
13.  TARDBP 3′-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy 
Acta Neuropathologica  2009;118(5):633-645.
Pathogenic mutations in the gene encoding TDP-43, TARDBP, have been reported in familial amyotrophic lateral sclerosis (FALS) and, more recently, in families with a heterogeneous clinical phenotype including both ALS and frontotemporal lobar degeneration (FTLD). In our previous study, sequencing analyses identified one variant in the 3′-untranslated region (3′-UTR) of the TARDBP gene in two affected members of one family with bvFTD and ALS and in one unrelated clinically assessed case of FALS. Since that study, brain tissue has become available and provides autopsy confirmation of FTLD-TDP in the proband and ALS in the brother of the bvFTD-ALS family and the neuropathology of those two cases is reported here. The 3′-UTR variant was not found in 982 control subjects (1,964 alleles). To determine the functional significance of this variant, we undertook quantitative gene expression analysis. Allele-specific amplification showed a significant increase of 22% (P < 0.05) in disease-specific allele expression with a twofold increase in total TARDBP mRNA. The segregation of this variant in a family with clinical bvFTD and ALS adds to the spectrum of clinical phenotypes previously associated with TARDBP variants. In summary, TARDBP variants may result in clinically and neuropathologically heterogeneous phenotypes linked by a common molecular pathology called TDP-43 proteinopathy.
doi:10.1007/s00401-009-0571-7
PMCID: PMC2783457  PMID: 19618195
Frontotemporal lobar degeneration; Frontotemporal dementia; Motor neuron disease; Amyotrophic lateral sclerosis; TDP-43; TARDBP; 3′-Untranslated region
14.  TDP-43 Is Not a Common Cause of Sporadic Amyotrophic Lateral Sclerosis 
PLoS ONE  2008;3(6):e2450.
Background
TAR DNA binding protein, encoded by TARDBP, was shown to be a central component of ubiquitin-positive, tau-negative inclusions in frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). Recently, mutations in TARDBP have been linked to familial and sporadic ALS.
Methodology/Principal Findings
To further examine the frequency of mutations in TARDBP in sporadic ALS, 279 ALS cases and 806 neurologically normal control individuals of European descent were screened for sequence variants, copy number variants, genetic and haplotype association with disease. An additional 173 African samples from the Human Gene Diversity Panel were sequenced as this population had the highest likelihood of finding changes. No mutations were found in the ALS cases. Several genetic variants were identified in controls, which were considered as non-pathogenic changes. Furthermore, pathogenic structural variants were not observed in the cases and there was no genetic or haplotype association with disease status across the TARDBP locus.
Conclusions
Our data indicate that genetic variation in TARDBP is not a common cause of sporadic ALS in North American.
doi:10.1371/journal.pone.0002450
PMCID: PMC2408729  PMID: 18545701
15.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis 
Lancet neurology  2008;7(5):409-416.
SUMMARY
BACKGROUND
TDP-43 is a major component of the ubiquitinated inclusions that characterise amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions (FTLD-U). TDP-43 is an RNA-binding and DNA-binding protein that has many functions and is encoded by the TAR DNA-binding protein gene (TARDBP) on chromosome 1. Our aim was to investigate whether TARDBP is a candidate disease gene for familial ALS that is not associated with mutations in superoxide dismutase 1 (SOD1).
METHODS
TARDBP was sequenced in 259 patients with ALS, FTLD, or both. We used TaqMan-based SNP genotyping to screen for the identifi ed variants in control groups matched to two kindreds of patients for age and ethnic origin. Additional clinical, genetic, and pathological assessments were made in these two families.
FINDINGS
We identified two variants, p.Gly290Ala and p.Gly298Ser, in TARDBP in two familial ALS kindreds and we observed TDP-43 neuropathology in the CNS tissue available from one family. The variants are considered pathogenic mutations because they co-segregate with disease in both families, are absent in ethnically-matched controls, and are associated with TDP-43 neuropathology in several family members.
INTERPRETATION
The p.Gly290Ala and p.Gly298Ser mutations are located in the glycine-rich domain that regulates gene expression and mediates protein-protein interactions; in particular TDP-43 binds to heterogeneous ribonucleoproteins (hnRNPs) via this domain. We postulate that due to the varied and important cellular functions of TDP-43, these mutations may cause neurodegeneration through both gains and losses of function. The finding of TARDBP mutations implicates TDP-43 as an active mediator of neurodegeneration in a novel class of disorders, TDP-43 proteinopathies, a class of disorder that includes ALS and FTLD-U.
doi:10.1016/S1474-4422(08)70071-1
PMCID: PMC3546119  PMID: 18396105
16.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72 
Brain  2012;135(3):784-793.
A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ∼40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis–frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis–frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6–7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7–2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ∼60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.
doi:10.1093/brain/awr366
PMCID: PMC3286333  PMID: 22366794
amyotrophic lateral sclerosis; familial ALS, C9ORF72 gene; phenotype–genotype correlation
17.  Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson’s disease in Sardinia 
Neurogenetics  2011;12(3):203-209.
Mutations in the TARDBP gene are a cause of autosomal dominant amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration (FTLD), but they have not been found so far in patients with Parkinson’s disease (PD). A founder TARDBP mutation (p.Ala382Thr) was recently identified as the cause of ~30% of ALS cases in Sardinia, a Mediterranean genetic isolate. We studied 327 consecutive Sardinian patients with clinically diagnosed PD (88 familial, 239 sporadic) and 578 Sardinian controls. One family with FTLD and parkinsonism was also included. The p.Ala382Thr heterozygous mutation was detected in eight unrelated PD patients (2.5%). The three patients from the FTLD/parkinsonism family also carried this mutation. Within the control group, there were three heterozygous mutation carriers. During follow-up, one of these individuals developed motoneuron disease and another, a rapidly progressive dementia; the third remains healthy at the age of 79 but two close relatives developed motoneuron disease and dementia. The eight PD patients carrying the p.Ala382Thr mutation had all sporadic disease presentation. Their average onset age was 70.0 years (SD 9.4, range 51–79), which is later but not significantly different from that of the patients who did not carry this mutation. In conclusion, we expand the clinical spectrum associated with TARDBP mutations to FTLD with parkinsonism without motoneuron disease and to clinically definite PD. The TDP-43 protein might be directly involved in a broader neurodegenerative spectrum, including not only motoneuron disease and FTLD but also PD.
doi:10.1007/s10048-011-0288-3
PMCID: PMC3158341  PMID: 21667065
Parkinson’s disease; Frontotemporal lobar degeneration; Amyotrophic lateral sclerosis; Sardinia; TARDBP; Mutation
18.  FUS GENE MUTATIONS IN FAMILIAL AND SPORADIC AMYOTROPHIC LATERAL SCLEROSIS 
Muscle & nerve  2010;42(2):170-176.
Introduction
Mutations in the fused in sarcoma (FUS) gene have recently been found to cause familial amyotrophic lateral sclerosis (FALS).
Methods
We screened FUS in a cohort of 200 ALS patients [32 FALS and 168 sporadic ALS (SALS)].
Results
In one FALS proband, we identified a mutation (p.R521C) that was also present in her affected daughter. Their clinical phenotype was remarkably similar and atypical of classic ALS, with symmetric proximal pelvic and pectoral weakness. Distal weakness and upper motor neuron features only developed late. Neuropathological examination demonstrated FUS-immunoreactive neuronal and glial inclusions in the spinal cord and many extramotor regions, but no TDP-43 pathology. We also identified a novel mutation (p.G187S) in one SALS patient. Overall, FUS mutations accounted for 3% of our non-SOD1, non-TARDBP FALS cases and 0.6% of SALS.
Discussion
This study demonstrates that the phenotype with FUS mutations extends beyond classical ALS. It suggests there are specific clinicogenetic correlations and provides the first detailed neuropathological description.
doi:10.1002/mus.21665
PMCID: PMC2969843  PMID: 20544928
amyotrophic lateral sclerosis; fused in sarcoma; FUS; translocated in liposarcoma; TLS
19.  Screening of SOD1, FUS and TARDBP genes in patients with amyotrophic lateral sclerosis in central-southern China 
Scientific Reports  2016;6:32478.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons of the brain, brainstem and spinal cord. To date, mutations in more than 30 genes have been linked to the pathogenesis of ALS. Among them, SOD1, FUS and TARDBP are ranked as the three most common genes associated with ALS. However, no mutation analysis has been reported in central-southern China. In this study, we sequenced SOD1, FUS and TARDBP in a central-southern Chinese cohort of 173 patients with ALS (15 familial ALS and 158 sporadic ALS) to detect mutations. As a result, five missense mutations in SOD1, namely, p.D101N, p.D101G, p.C111Y, p.N86S and p.V87A, were identified in three unrelated familial probands and three sporadic cases; two mutations in FUS were found in two unrelated familial probands, including an insertion mutation (p.P525_Y526insY) and a missense mutation (p.R521H); no variants of TARDBP were observed in patients. Therefore, SOD1 mutations were present in 20.0% of familial ALS patients and 1.9% of sporadic ALS patients, while FUS mutations were responsible for 13.3% of familial ALS cases, and TARDBP mutations were rare in either familial or sporadic ALS cases. This study broadens the known mutational spectrum in patients with ALS and further demonstrates the necessity for genetic screening in ALS patients from central-southern China.
doi:10.1038/srep32478
PMCID: PMC5015023  PMID: 27604643
20.  Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis 
Human Molecular Genetics  2009;18(R2):R156-R162.
Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease that affects ∼2/100 000 individuals each year worldwide. Patients with ALS suffer from rapidly progressive degeneration of motor neurons ultimately leading to death. The major pathological features observed in post-mortem tissue from patients with ALS are motor neuron loss, cortical spinal tract degeneration, gliosis and cytoplasmic neuronal inclusions formed by TDP-43 or TAR DNA binding Protein with a molecular mass of 43 kDa, which are now recognized as the signature lesions of sporadic ALS. TDP-43 possesses two RNA binding domains (RBD) and a glycine-rich C terminus classifying it with other heterogeneous nuclear ribonucleoproteins known as 2XRBD-Gly proteins. A number of reports showed that a subset of patients with ALS possess mutations in the TDP-43 (TARDBP) gene. This further strengthens the hypotheses that gain of toxic function or loss of function in TDP-43 causes ALS. Currently, 29 different TARDBP missense mutations have been reported in 51 unrelated sporadic or familial ALS cases and two cases of ALS plus concomitant frontotemporal lobar degeneration with a remarkable concentration of mutations in the C-terminal glycine-rich domain of TDP-43. As these mutations will most certainly be an invaluable tool for the design and implementation of ALS animal and cell models, as well as serve as a platform for exploring the pathobiology of TDP-43, here we summarize the identified pathogenic TARDBP mutations and their potential impact on our understanding of the role of TDP-43 in disease.
doi:10.1093/hmg/ddp303
PMCID: PMC2758707  PMID: 19808791
21.  Genetic architecture of ALS in Sardinia 
Neurobiology of aging  2014;35(12):2882.e7-2882.e12.
Conserved populations, such as Sardinians, displaying elevated rates of familial or sporadic ALS provide unique information on the genetics of the disease. Our aim was to describe the genetic profile of a consecutive series of ALS patients of Sardinian ancestry. All ALS patients of Sardinian ancestry, identified between 2008 and 2013 through the ITALSGEN consortium, were eligible to be included in the study. Patients and controls underwent the analysis of TARDBP, C9ORF72, SOD1, and FUS genes. Genetic mutations were identified in 155 out of 375 Sardinian ALS cases (41.3%), more commonly the p.A382T and p.G295S mutations of TARDBP, and the GGGGCC hexanucleotide repeat expansion of C9ORF72. One patient had both p.G295S and p.A382T mutation of TARDBP and eight carried both the heterozygous p.A382T mutation of TARDBP and a repeat expansion of C9ORF72. Patients carrying the p.A382T and the p.G295S mutations of TARDBP and the C9ORF72 repeat expansion shared distinct haplotypes across these loci. Patients with co-occurrence of C9ORF72 and TARDBP p.A382T missense mutation had a significantly lower age at onset and shorter survival. More than 40% of all cases on the island of Sardinia carry a mutation of an ALS-related gene, representing the highest percentage of ALS cases genetically explained outside of Scandinavia. Clinical phenotypes associated with different genetic mutations show some distinctive characteristics, but the heterogeneity between and among families carrying the same mutations implies that ALS manifestation is influenced by other genetic and non-genetic factors.
doi:10.1016/j.neurobiolaging.2014.07.012
PMCID: PMC4252367  PMID: 25123918
Amyotrophic Lateral Sclerosis; Sardinia; phenotype; genetics; penetrance; prognosis
22.  ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations 
Background
In the isolated population of Sardinia, a Mediterranean island, ~25% of ALS cases carry either a p.A382T mutation of the TARDBP gene or a GGGGCC hexanucleotide repeat expansion in the first intron of the C9ORF72 gene.
Objective
To describe the co-presence of two genetic mutations in two Sardinian ALS patients.
Methods
We identified two index ALS cases carrying both the p.A382T missense mutation of TARDBP gene and the hexanucleotide repeat expansion of C9ORF72 gene.
Results
The index case of Family A had bulbar ALS and frontemporal dementia (FTD) at 43. His father, who carried the hexanucleotide repeat expansion of C9ORF72 gene, had spinal ALS and FTD at 64 and his mother, who carried the TARDBP gene p.A382T missense mutation, had spinal ALS and FTD at 69. The index case of Family B developed spinal ALS without FTD at 35 and had a rapid course to respiratory failure. His parents are healthy at 62 and 63. The two patients share the known founder risk haplotypes across both the C9ORF72 9p21 locus and the TARDBP 1p36.22 locus.
Conclusions
Our data show that in rare neurodegenerative causing genes can co-exist within the same individuals and are associated with a more severe disease course.
doi:10.1136/jnnp-2012-302219
PMCID: PMC4568835  PMID: 22550220
23.  Two German Kindreds with Familial Amyotrophic Lateral Sclerosis due to TARDBP Mutations 
Archives of neurology  2008;65(9):1185-1189.
Background:
Abnormal neuronal inclusions composed of the TAR DNA binding protein 43 (TDP-43) are the characteristic neuropathological lesions in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). This makes TARDBP, the gene encoding for TDP-43, an interesting candidate gene for genetic screening in ALS.
Objective:
To investigate the presence and frequency of TARDBP mutations in ALS.
Design:
Genetic analysis
Participants:
One hundred thirty-four patiens with sporadic ALS, 31 patients with familial non-SOD1-ALS, and 400 healthy control subjects.
Results:
We identified two missense mutations in TARDBP (G348C and the novel N352S) in two small kindreds with a hereditary form of ALS with early spinal onset resulting in fatal respiratory insufficiency without clinical relevant bulbar symptoms or signs of cognitive impairment. The mutations located in the C-terminus of TDP-43 were absent in 400 Caucasian control individuals. The novel identified N352S mutation is predicted to increase TDP-43 phosphorylation while the G348C mutation might interfere with normal TDP-43 function by forming intermolecular disulfide bridges.
Conclusion:
Mutations in TARDBP are a rare cause of familial non-SOD1-ALS. The identification of TARDBP mutations provides strong evidence for a direct link between TDP-43 dysfunction and neurodegeneration in ALS.
doi:10.1001/archneur.65.9.1185
PMCID: PMC2742976  PMID: 18779421
TDP-43; ALS; TARDBP
24.  Defining the spectrum of frontotemporal dementias associated with TARDBP mutations 
Neurology: Genetics  2016;2(3):e80.
Objectives:
We describe the largest series of patients with TARDBP mutations presenting with frontotemporal dementia (FTD) and review the cases in the literature to precisely characterize FTD diseases associated with this genotype.
Methods:
The phenotypic characteristics of 29 TARDBP patients, including 10 new French and Dutch cases and 19 reviewed from the literature, were evaluated.
Results:
The most frequent phenotype was a behavioral variant frontotemporal dementia (bvFTD), but a significant proportion (40%) of our patients had semantic (svFTD) or nonfluent variants (nfvFTD) at onset; and svFTD was significantly more frequent in TARDBP carriers than in other FTD genotypes (p < 0.001). Remarkably, only a minority (40%) of our patients secondarily developed amyotrophic lateral sclerosis (ALS). Two patients carried a homozygous mutation but strikingly different phenotypes (bvFTD and ALS) indicating that homozygosity does not result in a specific phenotype. Earlier age at onset in children than parent's generations, mimicking an apparent “anticipation” (21.8 ± 9.3 years, p = 0.001), and possible reduced penetrance were present in most families.
Conclusions:
This study enlarges the phenotypic spectrum of TARDBP and will have important clinical implications: (1) FTD can be the only clinical manifestation of TARDBP mutations; (2) Initial language or semantic disorders might be indicative of a specific genotype; (3) Mutations should be searched in all FTD phenotypes after exclusion of major genes, even in the absence of ALS in the proband or in family history; (4) reduced penetrance and clinical variability should be considered to deliver appropriate genetic counseling.
doi:10.1212/NXG.0000000000000080
PMCID: PMC4882769  PMID: 27280171
25.  Mutations in FUS cause FALS and SALS in French and French Canadian populations 
Neurology  2009;73(15):1176-1179.
Background: The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease.
Methods: To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported.
Results: In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS.
Conclusions: Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.
doi:10.1212/WNL.0b013e3181bbfeef
PMCID: PMC3462471  PMID: 19741216

Results 1-25 (1533798)