PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1527156)

Clipboard (0)
None

Related Articles

1.  Extrastriatal dopaminergic abnormalities of DA homeostasis in Parkinson’s patients with medication-induced pathological gambling: A [11C] FLB-457 and PET study 
Neurobiology of disease  2012;48(3):519-525.
Impulse control disorders such as pathological gambling (PG) are a serious and common adverse effect of dopamine (DA) replacement medication in Parkinson’s disease (PD). Patients with PG have increased impulsivity and abnormalities in striatal DA, in common with behavioural and substance addictions in the non-PD population. To date, no studies have investigated the role of extrastriatal dopaminergic abnormalities in PD patients with PG. We used the PET radiotracer, [11C] FLB-457, with high-affinity for extrastriatal DA D2/3 receptors. 14 PD patients on DA agonists were imaged while they performed a gambling task involving real monetary reward and a control task. Trait impulsivity was measured with the Barratt Impulsivity Scale (BIS). Seven of the patients had a history of PG that developed subsequent to DA agonist medication. Change in [11C] FLB-457 binding potential (BP) during gambling was reduced in PD with PG patients in the midbrain, where D2/D3 receptors are dominated by autoreceptors. The degree of change in [11C] FLB-457 binding in this region correlated with impulsivity. In the cortex, [11C] FLB-457 BP was significantly greater in the anterior cingulate cortex (ACC) in PD patients with PG during the control task, and binding in this region was also correlated with impulsivity. Our findings provide the first evidence that PD patients with PG have dysfunctional activation of DA autoreceptors in the midbrain and low DA tone in the ACC. Thus, altered striatal and cortical DA homeostasis may incur vulnerability for the development of PG in PD, linked with the impulsive personality trait.
doi:10.1016/j.nbd.2012.06.021
PMCID: PMC3465363  PMID: 22766031 CAMSID: cams2373
Parkinson’s disease; Dopamine agonists; Pathological gambling; Impulsivity
2.  Dopaminergic and Clinical Correlates of Pathological Gambling in Parkinson’s Disease: A Case Report 
Dopaminergic medication for motor symptoms in Parkinson’s disease (PD) recently has been linked with impulse control disorders, including pathological gambling (PG), which affects up to 8% of patients. PG often is considered a behavioral addiction associated with disinhibition, risky decision-making, and altered striatal dopaminergic neurotransmission. Using [11C]raclopride with positron emission tomography, we assessed dopaminergic neurotransmission during Iowa Gambling Task performance. Here we present data from a single patient with PD and concomitant PG. We noted a marked decrease in [11C]raclopride binding in the left ventral striatum upon gambling, indicating a gambling-induced dopamine release. The results imply that PG in PD is associated with a high dose of dopaminergic medication, pronounced motor symptomatology, young age at disease onset, high propensity for sensation seeking, and risky decision-making. Overall, the findings are consistent with the hypothesis of medication-related PG in PD and underscore the importance of taking clinical variables, such as age and personality, into account when patients with PD are medicated, to reduce the risk of PG.
doi:10.3389/fnbeh.2013.00095
PMCID: PMC3725950  PMID: 23908610
Parkinson’s disease; pathological gambling; impulse control disorders; decision-making; dopamine
3.  Impulse control disorders in Parkinson's disease: decreased striatal dopamine transporter levels 
Objective
Impulse control disorders are commonly associated with dopaminergic therapy in Parkinson's disease (PD). PD patients with impulse control disorders demonstrate enhanced dopamine release to conditioned cues and a gambling task on [11C]raclopride positron emission tomography (PET) imaging and enhanced ventral striatal activity to reward on functional MRI. We compared PD patients with impulse control disorders and age-matched and gender-matched controls without impulse control disorders using [123I]FP-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) single photon emission computed tomography (SPECT), to assess striatal dopamine transporter (DAT) density.
Methods
The [123I]FP-CIT binding data in the striatum were compared between 15 PD patients with and 15 without impulse control disorders using independent t tests.
Results
Those with impulse control disorders showed significantly lower DAT binding in the right striatum with a trend in the left (right: F(1,24)=5.93, p=0.02; left: F(1,24)=3.75, p=0.07) compared to controls.
Conclusions
Our findings suggest that greater dopaminergic striatal activity in PD patients with impulse control disorders may be partly related to decreased uptake and clearance of dopamine from the synaptic cleft. Whether these findings are related to state or trait effects is not known. These findings dovetail with reports of lower DAT levels secondary to the effects of methamphetamine and alcohol. Although any regulation of DAT by antiparkinsonian medication appears to be modest, PD patients with impulse control disorders may be differentially sensitive to regulatory mechanisms of DAT expression by dopaminergic medications.
doi:10.1136/jnnp-2013-305395
PMCID: PMC4031642  PMID: 23899625
BEHAVIOURAL DISORDER; FUNCTIONAL IMAGING; NEUROPSYCHIATRY; SPECT; MOVEMENT DISORDERS
4.  Drug-induced deactivation of inhibitory networks predicts pathological gambling in PD (e–Pub ahead of print)  
Neurology  2010;75(19):1711-1716.
Objective:
Some patients with Parkinson disease (PD) develop pathological gambling when treated with dopamine agonists (DAs). However, little is known about DA-induced changes in neuronal networks that may underpin this drug-induced change in behavior in vulnerable individuals. In this case-control study, we aimed to investigate DA-induced changes in brain activity that may differentiate patients with PD with DA-induced pathological gambling (gamblers) from patients with PD without such a history (controls).
Methods:
Following overnight withdrawal of antiparkinsonian medication, patients were studied with H2 15O PET before and after administration of DA (3 mg apomorphine) to measure changes in regional cerebral blood flow as an index of regional brain activity during a card selection game with probabilistic feedback.
Results:
We observed that the direction of DA-related activity change in brain areas that are implicated in impulse control and response inhibition (lateral orbitofrontal cortex, rostral cingulate zone, amygdala, external pallidum) distinguished gamblers from controls. DA significantly increased activity in these areas in controls, while gamblers showed a significant DA-induced reduction of activity.
Conclusions:
We propose that in vulnerable patients with PD, DAs produce an abnormal neuronal pattern that resembles those found in nonparkinsonian pathological gambling and drug addiction. DA-induced disruption of inhibitory key functions—outcome monitoring (rostral cingulate zone), acquisition and retention of negative action-outcome associations (amygdala and lateral orbitofrontal cortex)—together with restricted access of those areas to executive control (external pallidum)—may well explain loss of impulse control and response inhibition in vulnerable patients with PD, thereby fostering the development of pathological gambling.
GLOSSARY
= analysis of variance;
= dopamine agonist;
= Gambling Symptom Assessment Scale;
= external pallidum;
= Montréal Neurological Institute;
= orbitofrontal cortex;
= Parkinson disease;
= regional cerebral blood flow;
= rostral cingulated zone;
= Unified Parkinson's Disease Rating Scale.
doi:10.1212/WNL.0b013e3181fc27fa
PMCID: PMC3033606  PMID: 20926784
5.  Dopamine agonists and risk: impulse control disorders in Parkinson's; disease 
Brain  2011;134(5):1438-1446.
Impulse control disorders are common in Parkinson's; disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's; disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a ‘Sure’ choice and a ‘Gamble’ choice of moderate risk. To commence each trial, in the ‘Gain’ condition, individuals started at $0 and in the ‘Loss’ condition individuals started at −$50 below the ‘Sure’ amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk (‘Gamble Risk’). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's; disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the ‘Gain’ relative to the ‘Loss’ condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's; disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's; disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.
doi:10.1093/brain/awr080
PMCID: PMC3097893  PMID: 21596771
Parkinson's; disease; dopamine; gambling; decision making; risk
6.  Dopaminergic function and intertemporal choice 
Translational Psychiatry  2015;5(1):e491-.
The discounting of delayed rewards, also known as temporal or delay discounting, is intrinsic to everyday decisions and can be impaired in pathological states such as addiction disorders. Preclinical and human studies suggest a role for dopaminergic function in temporal discounting but this relationship has not yet been verified using molecular imaging of the living human brain. Here, we evaluated dopaminergic function in temporal discounting using positron emission tomography (PET) with two different dopaminergic ligands assessing three populations in whom temporal discounting has been shown to be impaired. First, we show using [11C]raclopride PET that in pathological gamblers, greater temporal discounting correlates with decreased ventral striatal binding potential, convergent with translational findings of lower nucleus accumbens D2/D3 receptor density in high-impulsive rodents. Temporal discounting also correlates with lower ventral striatal dopamine release in response to high-reward magnitude suggesting that dopamine-mediated devaluation of larger delayed rewards may drive choice preferences. Second, we show using [18F]fluorodopa PET that in Parkinson's disease, temporal discounting correlates with greater left caudate dopaminergic terminal function. Finally, in subjects with Parkinson's disease and dopamine medication-induced behavioral addictions, temporal discounting is further correlated with greater dopaminergic terminal function in the anterior putamen. These findings provide insights into the relationship between striatal dopamine function and temporal discounting, and its potential role in pathological disorders and mechanisms underlying treatment interventions.
doi:10.1038/tp.2014.133
PMCID: PMC4312827  PMID: 25562841
7.  Gambling severity predicts midbrain response to near-miss outcomes 
Gambling is a common recreational activity that becomes dysfunctional in a subset of individuals, with DSM ‘pathological gambling’ regarded as the most severe form. During gambling, players experience a range of cognitive distortions that promote an over-estimation of the chances of winning. Near-miss outcomes are thought to fuel these distortions. We observed previously that near-misses recruited overlapping circuitry to monetary wins in a study in healthy volunteers (Clark et al. 2009). The present study sought to extend these observations in regular gamblers and relate brain responses to an index of gambling severity. Twenty regular gamblers, who varied in their involvement from recreational players to probable pathological gamblers, were scanned whilst performing a simplified slot-machine task that delivered occasional monetary wins, as well as near-miss and full-miss non-win outcomes. In the overall group, near-miss outcomes were associated with a significant response in the ventral striatum, which was also recruited by monetary wins. Gambling severity, measured with the South Oaks Gambling Screen, predicted a greater response in the dopaminergic midbrain to near-miss outcomes. This effect survived controlling for clinical co-morbidities that were present in the regular gamblers. Gambling severity did not predict win-related responses in the midbrain or elsewhere. These results demonstrate that near-miss events during gambling recruit reward-related brain circuitry in regular players. An association with gambling severity in the midbrain suggests that near-miss outcomes may enhance dopamine transmission in disordered gambling, which extends neurobiological similarities between pathological gambling and drug addiction.
doi:10.1523/JNEUROSCI.5758-09.2010
PMCID: PMC2929454  PMID: 20445043
Gambling; Cognitive; Addiction; Dopamine; Striatum; Midbrain
8.  The role of dopamine in risk taking: a specific look at Parkinson’s disease and gambling 
An influential model suggests that dopamine signals the difference between predicted and experienced reward. In this way, dopamine can act as a learning signal that can shape behaviors to maximize rewards and avoid punishments. Dopamine is also thought to invigorate reward seeking behavior. Loss of dopamine signaling is the major abnormality in Parkinson’s disease. Dopamine agonists have been implicated in the occurrence of impulse control disorders in Parkinson’s disease patients, the most common being pathological gambling, compulsive sexual behavior, and compulsive buying. Recently, a number of functional imaging studies investigating impulse control disorders in Parkinson’s disease have been published. Here we review this literature, and attempt to place it within a decision-making framework in which potential gains and losses are evaluated to arrive at optimum choices. We also provide a hypothetical but still incomplete model on the effect of dopamine agonist treatment on these value and risk assessments. Two of the main brain structures thought to be involved in computing aspects of reward and loss are the ventral striatum (VStr) and the insula, both dopamine projection sites. Both structures are consistently implicated in functional brain imaging studies of pathological gambling in Parkinson’s disease.
doi:10.3389/fnbeh.2014.00196
PMCID: PMC4038955  PMID: 24910600
impulse control disorders; impulsivity; reward; loss aversion; insula; ventral striatum
9.  Ventral Striatal Dopamine Synthesis Capacity Predicts Financial Extravagance in Parkinson’s Disease 
Impulse control disorders (ICDs), including disordered gambling, can occur in a significant number of patients with Parkinson’s disease (PD) receiving dopaminergic therapy. The neurobiology underlying susceptibility to such problems is unclear, but risk likely results from an interaction between dopaminergic medication and a pre-existing trait vulnerability. Impulse control and addictive disorders form part of a broader psychopathological spectrum of disorders, which share a common underlying genetic vulnerability, referred to as externalizing. The broad externalizing risk factor is a continuously varying trait reflecting vulnerability to various impulse control problems, manifested at the overt level by disinhibitory symptoms and at the personality level by antecedent traits such as impulsivity and novelty/sensation seeking. Trait “disinhibition” is thus a core endophenotype of ICDs, and a key target for neurobiological investigation. The ventral striatal dopamine system has been hypothesized to underlie individual variation in behavioral disinhibition. Here, we examined whether individual differences in ventral striatal dopamine synthesis capacity predicted individual variation in disinhibitory temperament traits in individuals with PD. Eighteen early-stage male PD patients underwent 6-[18F]Fluoro-l-DOPA (FDOPA) positron emission tomography scanning to measure striatal dopamine synthesis capacity, and completed a measure of disinhibited personality. Consistent with our predictions, we found that levels of ventral, but not dorsal, striatal dopamine synthesis capacity predicted disinhibited personality, particularly a propensity for financial extravagance. Our results are consistent with recent preclinical models of vulnerability to behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of potential vulnerability to impulse control problems in PD and other disorders.
doi:10.3389/fpsyg.2013.00090
PMCID: PMC3583186  PMID: 23450713
dopa decarboxylase; dopamine; disordered gambling; externalizing; impulse control disorders; impulsivity; reward; ventral striatum
10.  Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity 
Neuroimage  2012;63(1):40-46.
Pathological gambling (PG) is a behavioural addiction associated with elevated impulsivity and suspected dopamine dysregulation. Reduced striatal dopamine D2/D3 receptor availability has been reported in drug addiction, and may constitute a premorbid vulnerability marker for addictive disorders. The aim of the present study was to assess striatal dopamine D2/D3 receptor availability in PG, and its association with trait impulsivity. Males with PG (n = 9) and male healthy controls (n = 9) underwent [11C]-raclopride positron emission tomography imaging and completed the UPPS-P impulsivity scale. There was no significant difference between groups in striatal dopamine D2/D3 receptor availability, in contrast to previous reports in drug addiction. However, mood-related impulsivity (‘Urgency’) was negatively correlated with [11C]-raclopride binding potentials in the PG group. The absence of a group difference in striatal dopamine binding implies a distinction between behavioural addictions and drug addictions. Nevertheless, our data indicate heterogeneity in dopamine receptor availability in disordered gambling, such that individuals with high mood-related impulsivity may show differential benefits from dopamine-based medications.
Highlights
► Assessed 11C-raclopride binding in pathological gambling, a putative behavioral addiction. ► No group difference in striatal dopamine binding from healthy controls. ► Dopamine binding negatively correlated with mood-related impulsivity (‘Urgency’).
doi:10.1016/j.neuroimage.2012.06.067
PMCID: PMC3438449  PMID: 22776462
Gambling; Impulsivity; Dopamine; Neuroimaging; Addiction; Striatum
11.  Impulse control disorders in Parkinson’s disease: recent advances 
Current opinion in neurology  2011;24(4):324-330.
Purpose of review
To review the recent advances in the epidemiology and pathophysiology of impulse control disorders (ICD) in Parkinson’s disease (PD).
Recent findings
Large cross-sectional and case-control multicentre studies show that ICDs in PD are common with a frequency of 13.6%. These behaviours are associated with impaired functioning and with depressive, anxiety and obsessive symptoms, novelty seeking and impulsivity. Behavioural subtypes demonstrate differences in novelty seeking and impulsivity suggesting pathophysiological differences. Observational and neurophysiological studies point towards a potential mechanistic overlap between the behavioural (ICDs) and motor (dyskinesias) dopaminergic sequelae. Converging data suggest dopamine agonists in ICDs appear to enhance learning from rewarding outcomes and impulsive choice. ICD patients also have enhanced risk preference and impaired working memory. Neuroimaging data points towards enhanced bottom-up ventral striatal dopamine release to incentive cues, gambling tasks and reward prediction, and possibly inhibition of top-down orbitofrontal influences. Dopamine agonist-related ventral striatal hypoactivity to risk is consistent with impaired risk evaluation.
Summary
Recent large scale studies and converging findings are beginning to provide an understanding of mechanisms underlying ICDs in PD which can guide prevention of these behaviours and optimize therapeutic approaches.
doi:10.1097/WCO.0b013e3283489687
PMCID: PMC3154756  PMID: 21725242
Impulse control disorders; Parkinson’s disease; dopamine agonists; pathological gambling; impulsivity
12.  Genome-wide Association Study of a Quantitative Disordered Gambling Trait 
Addiction biology  2012;18(3):511-522.
Disordered gambling is a moderately heritable trait, but the underlying genetic basis is largely unknown. We performed a genome-wide association study (GWAS) for disordered gambling using a quantitative factor score in 1,312 twins from 894 Australian families. Association was conducted for 2,381,914 single nucleotide polymorphisms (SNPs) using the family-based association test in Merlin followed by gene and pathway enrichment analyses. Although no SNP reached genome-wide significance, six achieved P-values < 1 × 10−5 with variants in three genes (MT1X, ATXN1 and VLDLR) implicated in disordered gambling. Secondary case-control analyses found two SNPs on chromosome 9 (rs1106076 and rs12305135 near VLDLR) and rs10812227 near FZD10 on chromosome 12 to be significantly associated with lifetime DSM-IV pathological gambling and SOGS classified probable pathological gambling status. Furthermore, several addiction-related pathways were enriched for SNPs associated with disordered gambling. Finally, gene-based analysis of 24 candidate genes for dopamine agonist induced gambling in individuals with Parkinson’s disease suggested an enrichment of SNPs associated with disordered gambling. We report the first GWAS of disordered gambling. While further replication is required, the identification of susceptibility loci and biological pathways will be important in characterizing the biological mechanisms that underpin disordered gambling.
doi:10.1111/j.1369-1600.2012.00463.x
PMCID: PMC3470766  PMID: 22780124
association; disordered gambling; genomewide; MERLIN; quantitative
13.  Parallel Appearance of Compulsive Behaviors and Artistic Creativity in Parkinson's Disease 
Case Reports in Neurology  2012;4(1):77-83.
A 55-year-old male with idiopathic Parkinson's disease developed three behavioral changes under combination therapy with selegiline, cabergoline and levodopa. Co-existent behaviors included severe pathological gambling, punding and novel skills in writing poetry (published poetry books). Brain [18F]fluorodopa PET imaging showed decreased tracer uptake in the striatum contralateral to the predominant motor symptoms, consistent with the clinical diagnosis of Parkinson's disease. Uptake in the ventral striatum was markedly high. Brain MRI before and after behavioral changes showed no pathological findings. The patient was diagnosed as having Parkinson's disease together with DSM-IV criteria-fulfilling pathological gambling and punding-like stereotyped behavior. There are no established criteria for the classification of emerged artistic creativity, although there are descriptions of the phenomenon in the literature. Inspired by the case, we conducted a preliminary survey – including 290 patients with Parkinson's disease – exploring the possible relationship between creativity and impulsive-compulsive behaviors. The case, supported by the results of the survey, adds to the cumulative evidence of the association between dopaminergic medication and enhanced creativity, and suggests a possible linkage between increased artistic creativity and impulsive-compulsive behaviors in Parkinson's disease. Furthermore, it could be speculated that the high mesolimbic dopamine function might relate to the behavioral changes observed in this patient, and is suggestive of the overlapping neurobiological mechanisms of compulsive behaviors and artistic creativity.
doi:10.1159/000338759
PMCID: PMC3369413  PMID: 22679432
Parkinson's disease; Impulse control disorder; Gambling; Punding; Mesolimbic; Dopamine; Ventral striatum; Creativity
14.  Dopamine Agonists Diminish Value Sensitivity of the Orbitofrontal Cortex: A Trigger for Pathological Gambling in Parkinson’s Disease? 
The neurobehavioral underpinnings of pathological gambling are not well understood. Insight might be gained by understanding pharmacological effects on the reward system in patients with Parkinson’s disease (PD). Treatment with dopamine agonists (DAs) has been associated with pathological gambling in PD patients. However, how DAs are involved in the development of this form of addiction is unknown. We tested the hypothesis that tonic stimulation of dopamine receptors specifically desensitizes the dopaminergic reward system by preventing decreases in dopaminergic transmission that occurs with negative feedback. Using functional magnetic resonance imaging, we studied PD patients during three sessions of a probabilistic reward task in random order: off medication, after levodopa (LD) treatment, and after an equivalent dose of DA (pramipexole). For each trial, a reward prediction error value was computed using outcome, stake, and probability. Pramipexole specifically changed activity of the orbitofrontal cortex (OFC) in two ways that were both associated with increased risk taking in an out-of-magnet task. Outcome-induced activations were generally higher with pramipexole compared with LD or off medication. In addition, only pramipexole greatly diminished trial-by-trial correlation with reward prediction error values. Further analysis yielded that this resulted mainly from impaired deactivation in trials with negative errors in reward prediction. We propose that DAs prevent pauses in dopamine transmission and thereby impair the negative reinforcing effect of losing. Our findings raise the question of whether pathological gambling may in part stem from an impaired capacity of the OFC to guide behavior when facing negative consequences.
doi:10.1038/sj.npp.npp2009124
PMCID: PMC2972251  PMID: 19741594 CAMSID: cams1534
fMRI; impulse control disorder; dopamine agonist; reward; addiction; reinforcement
15.  Frequency of impulse control behaviours associated with dopaminergic therapy in restless legs syndrome 
BMC Neurology  2011;11:117.
Background
Low doses of dopamine agonists (DA) and levodopa are effective in the treatment of restless legs syndrome (RLS). A range of impulse control and compulsive behaviours (ICBs) have been reported following the use of DAs and levodopa in patients with Parkinson's disease. With this study we sought to assess the cross-sectional prevalence of impulse control behaviours (ICBs) in restless legs syndrome (RLS) and to determine factors associated with ICBs in a population cohort in Germany.
Methods
Several questionnaires based on validated and previously used instruments for assessment of ICBs were mailed out to patients being treated for RLS. Final diagnoses of ICBs were based on stringent diagnostic criteria after psychiatric interviews were performed.
Results
10/140 RLS patients of a clinical cohort (7.1%) were finally diagnosed with ICBs, 8 of 10 on dopamine agonist (DA) therapy, 2 of 10 on levodopa. 8 of the 10 affected patients showed more than one type of abnormal behaviour. Among those who responded to the questionnaires 6/140 [4.3%] revealed binge eating, 5/140 [3.6%] compulsive shopping, 3/140 [2.1%] pathological gambling, 3/140 [2.1%] punding, and 2/140 [1.4%] hypersexuality in psychiatric assessments. Among those who did not respond to questionnaires, 32 were randomly selected and interviewed: only 1 patient showed positive criteria of ICBs with compulsive shopping and binge eating. ICBs were associated with higher DA dose (p = 0.001), younger RLS onset (p = 0.04), history of experimental drug use (p = 0.002), female gender (p = 0.04) and a family history of gambling disorders (p = 0.02), which accounted for 52% of the risk variance.
Conclusion
RLS patients treated with dopaminergic agents and dopamine agonists in particular, should be forewarned of potential side effects. A careful history of risk factors should be taken.
doi:10.1186/1471-2377-11-117
PMCID: PMC3195705  PMID: 21955669
Restless legs syndrome; impulse control disorders; dopamine agonist; gambling; levodopa
16.  The Iowa Gambling Task and the three fallacies of dopamine in gambling disorder 
Gambling disorder sufferers prefer immediately larger rewards despite long term losses on the Iowa Gambling Task (IGT), and these impairments are associated with dopamine dysfunctions. Dopamine is a neurotransmitter linked with temporal and structural dysfunctions in substance use disorder, which has supported the idea of impaired decision-making and dopamine dysfunctions in gambling disorder. However, evidence from substance use disorders cannot be directly transferred to gambling disorder. This article focuses on three hypotheses of dopamine dysfunctions in gambling disorder, which appear to be “fallacies,” i.e., have not been supported in a series of positron emission tomography (PET) studies. The first “fallacy” suggests that gambling disorder sufferers have lower dopamine receptor availability, as seen in substance use disorders. However, no evidence supported this hypothesis. The second “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during gambling. No evidence supported the hypothesis, and the literature on substance use disorders offers limited support for this hypothesis. The third “fallacy” suggests that maladaptive decision-making in gambling disorder is associated with higher dopamine release during winning. The evidence did not support this hypothesis either. Instead, dopaminergic coding of reward prediction and uncertainty might better account for dopamine dysfunctions in gambling disorder. Studies of reward prediction and reward uncertainty show a sustained dopamine response toward stimuli with maximum uncertainty, which may explain the continued dopamine release and gambling despite losses in gambling disorder. The findings from the studies presented here are consistent with the notion of dopaminergic dysfunctions of reward prediction and reward uncertainty signals in gambling disorder.
doi:10.3389/fpsyg.2013.00709
PMCID: PMC3792697  PMID: 24115941
gambling disorder; Iowa Gambling Task (IGT); dopamine; addiction; positron-emission tomography
17.  Therapeutic application of transcranial magnetic stimulation in Parkinson’s disease: The contribution of expectation 
NeuroImage  2006;31(4):1666-1672.
Repetitive transcranial magnetic stimulation (rTMS) is a valuable probe of brain function. Ever since its adoption as a research tool, there has been great interest regarding its potential clinical role. Presently, it is unclear whether rTMS will have some role as an alternative treatment for neuropsychiatric and neurological disorders such as Parkinson’s disease (PD). To date, studies addressing the contribution of placebo during rTMS are missing. The placebo effect has been shown to be associated either with release of dopamine in the striatum or with changes in brain glucose metabolism. The main objective of this study was to test whether, in patients with PD, the expectation of therapeutic benefit from rTMS, which actually was delivered only as sham rTMS (placebo-rTMS) induced changes in striatal [11C] raclopride binding potentials (BP) as measured with positron emission tomography (PET). Placebo-rTMS induced a significant bilateral reduction in [11C] raclopride BP in dorsal and ventral striatum as compared to the baseline condition. This reduction BP is indicative of an increase in dopamine neurotransmission. The changes in [11C] raclopride binding were more evident in the hemisphere contralateral to the more affected side supporting the hypothesis that the more severe the symptoms, the greater the drive for symptom relief, and therefore the placebo response. This is the first study addressing the placebo contribution during rTMS. While our results seem to confirm earlier evidence that expectation induces dopaminergic placebo effects, they also suggest the importance of placebo-controlled studies for future clinical trials involving brain stimulation techniques.
doi:10.1016/j.neuroimage.2006.02.005
PMCID: PMC2967525  PMID: 16545582 CAMSID: cams1537
Positron emission tomography; Transcranial magnetic stimulation; Parkinson’s disease; Dopamine; Placebo; Expectation
18.  Risk-taking and pathological gambling behavior in Huntington’s disease 
Huntington’s disease (HD) is a genetic, neurodegenerative disorder, which specifically affects striatal neurons of the indirect pathway, resulting in a progressive decline in muscle coordination and loss of emotional and cognitive control. Interestingly, predisposition to pathological gambling and other addictions involves disturbances in the same cortico-striatal circuits that are affected in HD, and display similar disinhibition-related symptoms, including changed sensitivity to punishments and rewards, impulsivity, and inability to consider long-term advantages over short-term rewards. Both HD patients and pathological gamblers also show similar performance deficits on risky decision-making tasks, such as the Iowa Gambling Task (IGT). These similarities suggest that HD patients are a likely risk group for gambling problems. However, such problems have only incidentally been observed in HD patients. In this review, we aim to characterize the risk of pathological gambling in HD, as well as the underlying neurobiological mechanisms. Especially with the current rise of easily accessible Internet gambling opportunities, it is important to understand these risks and provide appropriate patient support accordingly. Based on neuropathological and behavioral findings, we propose that HD patients may not have an increased tendency to seek risks and start gambling, but that they do have an increased chance of developing an addiction once they engage in gambling activities. Therefore, current and future developments of Internet gambling possibilities and related addictions should be regarded with care, especially for vulnerable groups like HD patients.
doi:10.3389/fnbeh.2014.00103
PMCID: PMC3980094  PMID: 24765067
Huntington’s disease; risk-taking; gambling; prefrontal cortex; basal ganglia; disinhibtion
19.  Ventral striatal dopamine synthesis capacity is associated with individual differences in behavioral disinhibition 
Pathological gambling, alongside addictive and antisocial disorders, forms part of a broad psychopathological spectrum of externalizing disorders, which share an underlying genetic vulnerability. The shared externalizing propensity is a highly heritable, continuously varying trait. Disinhibitory personality traits such as impulsivity and novelty seeking (NS) function as indicators of this broad shared externalizing tendency, which may reflect, at the neurobiological level, variation in the reactivity of dopaminergic (DAergic) brain reward systems centered on the ventral striatum (VS). Here, we examined whether individual differences in ventral striatal dopamine (DA) synthesis capacity were associated with individual variation in disinhibitory personality traits. Twelve healthy male volunteers underwent 6-[18F]Fluoro-L-DOPA (FDOPA) positron emission tomography (PET) scanning to measure striatal DA synthesis capacity, and completed a measure of disinhibited personality (NS). We found that levels of ventral, but not dorsal, striatal DA synthesis capacity were significantly correlated with inter-individual variation in disinhibitory personality traits, particularly a propensity for financial extravagance and irresponsibility. Our results are consistent with preclinical models of behavioral disinhibition and addiction proneness, and provide novel insights into the neurobiology of personality based vulnerability to pathological gambling and other externalizing disorders.
doi:10.3389/fnbeh.2014.00086
PMCID: PMC3954060  PMID: 24672449
addiction; dopamine; externalizing; impulsivity; positron emission tomography; pathological gambling; reward; ventral striatum
20.  The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement 
PLoS ONE  2013;8(1):e54108.
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis.
doi:10.1371/journal.pone.0054108
PMCID: PMC3554713  PMID: 23365649
21.  Targeting impulsivity in Parkinson’s disease using atomoxetine 
Brain  2014;137(7):1986-1997.
In a double-blind randomized placebo-controlled study, Kehagia et al. investigate the effects of a single dose of atomoxetine, a selective noradrenaline reuptake inhibitor, in 25 patients with Parkinson’s disease. Consistent with the presence of a longstanding noradrenergic deficit, atomoxetine improved stopping accuracy, and reduced reflection impulsivity during decision making.
Noradrenergic dysfunction may play a significant role in cognition in Parkinson’s disease due to the early degeneration of the locus coeruleus. Converging evidence from patient and animal studies points to the role of noradrenaline in dopaminergically insensitive aspects of the parkinsonian dysexecutive syndrome, yet the direct effects of noradrenergic enhancement have not to date been addressed. Our aim was to directly investigate these, focusing on impulsivity during response inhibition and decision making. To this end, we administered 40 mg atomoxetine, a selective noradrenaline re-uptake inhibitor to 25 patients with Parkinson’s disease (12 female /13 male; 64.4 ± 6.9 years old) in a double blind, randomized, placebo controlled design. Patients completed an extensive battery of neuropsychological tests addressing response inhibition, decision-making, attention, planning and verbal short term memory. Atomoxetine improved stopping accuracy on the Stop Signal Task [F(1,19) = 4.51, P = 0.047] and reduced reflection impulsivity [F(1,9) = 7.86, P = 0.02] and risk taking [F(1,9) = 9.2, P = 0.01] in the context of gambling. The drug also conferred effects on performance as a function of its measured blood plasma concentration: it reduced reflection impulsivity during information sampling [adjusted R2 = 0.23, F(1,16) = 5.83, P = 0.03] and improved problem solving on the One Touch Stockings of Cambridge [adjusted R2 = 0.29, F(1,17) = 8.34, P = 0.01]. It also enhanced target sensitivity during sustained attention [F(1,9) = 5.33, P = 0.046]. The results of this exploratory study represent the basis of specific predictions in future investigations on the effects of atomoxetine in Parkinson’s disease and support the hypothesis that targeting noradrenergic dysfunction may represent a new parallel avenue of therapy in some of the cognitive and behavioural deficits seen in the disorder.
doi:10.1093/brain/awu117
PMCID: PMC4065022  PMID: 24893708
22.  Impulse control disorders and compulsive behaviors associated with dopaminergic therapies in Parkinson disease 
Neurology. Clinical Practice  2012;2(4):267-274.
Summary
Impulse control disorders (ICD) (most commonly pathologic gambling, hypersexuality, and uncontrollable spending) and compulsive behaviors can be triggered by dopaminergic therapies in Parkinson disease (PD). ICD are especially prevalent in patients receiving a dopamine agonist as part of their treatment regimen for PD, and have also been reported when dopamine agonists are used for other indications (e.g., restless legs syndrome). Although these iatrogenic disorders are common, affecting 1 in 7 patients with PD on dopamine agonists, they often elude detection by the treating physician. ICD lead to serious consequences, causing significant financial loss and psychosocial morbidity for many patients and families. ICD can appear at any time during treatment with dopamine agonists, sometimes within the first few months, but most often after years of treatment, particularly when patients receive dopamine agonists and levodopa together. In most cases ICD resolve if the dopamine agonist is withdrawn, and PD motor symptoms are managed with levodopa monotherapy. Familiarity with the clinical aspects, risk factors, pathophysiology, and management of ICD is essential for physicians using dopaminergic therapies to treat PD and other disorders.
doi:10.1212/CPJ.0b013e318278be9b
PMCID: PMC3613210  PMID: 23634371
23.  The Functional Anatomy of Impulse Control Disorders 
Impulsive–compulsive disorders such as pathological gambling, hypersexuality, compulsive eating, and shopping are side effects of the dopaminergic therapy for Parkinson’s disease. With a lower prevalence, these disorders also appear in the general population. Research in the last few years has discovered that these pathological behaviors share features similar to those of substance use disorders (SUD), which has led to the term “behavioral addictions”. As in SUDs, the behaviors are marked by a compulsive drive toward and impaired control over the behavior. Furthermore, animal and medication studies, research in the Parkinson’s disease population, and neuroimaging findings indicate a common neurobiology of addictive behaviors. Changes associated with addictions are mainly seen in the dopaminergic system of a mesocorticolimbic circuit, the so-called reward system. Here we outline neurobiological findings regarding behavioral addictions with a focus on dopaminergic systems, relate them to SUD theories, and try to build a tentative concept integrating genetics, neuroimaging, and behavioral results.
doi:10.1007/s11910-013-0386-8
PMCID: PMC3779310  PMID: 23963609
Behavioral addictions; Pathological gambling; Binge eating; Compulsive buying; Hypersexuality; Substance use disorders; Mesocorticolimbic circuit; Reward system; Dopamine; Parkinson; Parkinson’s disease; Neurobiology; Risk factors; Impulse control disorders; Functional anatomy
24.  Detecting associations between behavioral addictions and dopamine agonists in the Food & Drug Administration’s Adverse Event database 
Background/Aims: Studies have reported higher prevalences of four behavioral addictions (binge eating, compulsive shopping, hypersexuality, and pathological gambling) in dopamine agonist-treated Parkinson’s disease relative to non-dopamine agonist-treated Parkinson’s. However, recent case-control and epidemiological studies suggest that prevalences of behavioral addictions in dopamine agonist-treated Parkinson’s may be similar to background population rates. This study tests that hypothesis by examining the FDA Adverse Event Reporting System (FAERS) for evidence of these associations, taking into account the potential impact of publicity on reporting rates. Methods: FAERS reports in 2004 (pre-publicity for all but pathological gambling) and 2007 (post-publicity for all four behaviors) were analyzed. A threshold consisting of ≥3 cases, proportional reporting ratio ≥2, and χ2 with Yates’ correction ≥4 was used to detect signals (drug-associated adverse reactions) involving any of five dopamine agonists and any of four behavioral addictions. Results: No reports containing compulsive shopping and no signal for binge eating and dopamine agonists were found in either year. A weak signal was found for hypersexuality in 2004, with a stronger signal in 2007. A robust signal was found for pathological gambling in 2004, with a more robust signal in 2007. Discussion/Conclusions: These results suggest that publicity may increase reporting rates in the FAERS. Findings for binge eating, compulsive shopping, and hypersexuality suggest that prevalences of these behaviors among those treated with dopamine agonists may be similar to background population rates and thus may not reflect an adverse safety signal. Further investigation of the relationship between dopamine agonists and behavioral addictions is warranted.
doi:10.1556/JBA.3.2014.1.3
PMCID: PMC4117280  PMID: 25215211
behavioral addictions; impulse control disorders; Parkinson’s disease; dopamine agonists; pharmaco-vigilance; FAERS
25.  Pathological gambling from dopamine agonist and deep brain stimulation of the nucleus tegmenti pedunculopontine 
BMJ Case Reports  2010;2010:bcr0220102774.
In patients with Parkinson's disease, aberrant or excessive dopaminergic stimulation is commonly indicated as the trigger factor in unmasking impulse control disorders (ICDs) such as pathological gambling. We had the opportunity to follow a patient who experienced Parkinson's disease 7 years ago when he was using pramipexole and again, recently, when he was treated with levodopa (L-dopa) and low frequency stimulation of the nucleus of the pedunculopontine tegmentus (PPTg) but no dopamine agonists. The same patient had shown, when studied with fluorodeoxyglucose-positron emission tomography in the condition PPTg-ON, a peculiar increased activity in the left ventral striatum. This case report confirms that, in a predisposed personality, ICD may arise from the perturbation of endogenous pathways, which connect the brainstem to the basal ganglia.
doi:10.1136/bcr.02.2010.2774
PMCID: PMC3027559  PMID: 22798481

Results 1-25 (1527156)