Search tips
Search criteria

Results 1-25 (665555)

Clipboard (0)

Related Articles

1.  Antibacterial Activity of Mulinum spinosum Extracts against Slime-Producing Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus Isolated from Nasal Carriers 
The Scientific World Journal  2014;2014:342143.
Nasal carriers of Staphylococcus aureus are important reservoirs with risk of developing endogenous infections or transmitting infections to susceptible individuals. Methicillin-resistant S. aureus (MRSA) are associated with higher rates of treatment failure. Some strains of S. aureus produce slime which is believed to make the microorganisms more resistant to antibiotics and host defenses. The antibacterial activity of ethyl acetate : n-hexane (EtOAc : HEX) extracts of Mulinum spinosum (5 : 95% EtOAc : HEX, 50 : 50% EtOAc : HEX, 70 : 30% EtOAc : HEX and mix 20 : 80/30 : 70% EtOAc : HEX, 50 : 50/70 : 30/100 : 0% EtOAc : HEX) were assayed against 3 slime-producing S. aureus strains and 2 MRSA strains isolated from nasal carriers. S. aureus ATCC 35556 slime-producing strain and MRSA ATCC 43300 strain were used as controls. The extracts were prepared using flash chromatography. M. spinosum 5 : 95% AcOEt : HEX showed antibacterial effect against all slime-producing strains (MIC: 500 µg/mL) and the highest activity against MRSA strains (MIC: 500 to 1000 µg/mL). All M. spinosum extracts assayed were active against slime-producing S. aureus and MRSA at doses between 500 and 4000 µg/mL. Both, slime-producing S. aureus and MRSA are highly contagious and hardly eradicated by antibiotic therapies. So, there is an increasing need to find new substances with the ability to inhibit these strains.
PMCID: PMC4235955  PMID: 25530997
2.  Antibacterial activity of leaves extracts of Trifolium alexandrinum Linn. against pathogenic bacteria causing tropical diseases 
To investigate antibacterial potential of Trifolium alexandrinum (T. alexandrinum) Linn. against seven gram positive and eleven gram negative hospital isolated human pathogenic bacterial strains responsible for many tropical diseases.
Non-polar and polar extracts of the leaves of T. alexandrinum i.e., hexane, dichloromethane (DCM), ethyl acetate (EtOAc), methanol (MeOH) and aqueous (AQ) extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were prepared to evaluate their antibacterial value. NCCL standards were strictly followed to perform antimicrobial disc susceptibility test using disc diffusion method.
Polar extracts demonstrated significant antibacterial activity against tested pathogens. EtOAc and MeOH extracts showed maximum antibacterial activity with higher inhibition zone and were found effective against seventeen of the tested pathogens. While AQ plant extract inhibited the growth of sixteen of the test strains. EtOAc and MeOH plant extracts inhibited the growth of all seven gram positive and ten of the gram negative bacterial strains.
The present study strongly confirms the effectiveness of crude leaves extracts against tested human pathogenic bacterial strains causing several tropical diseases. Since Egyptian clover is used as a fodder plant, it could be helpful in controlling various infectious diseases associated with cattle as well.
PMCID: PMC3609279  PMID: 23569896
Trifolium alexandrinum L.; Fabaceae; Antibacterial activity; Pathogenic bacteria; Gram-positive bacteria; Gram-negative bacteria; Tropical disease; Infectious disease
3.  In Vitro Anti-Oxidative Activities of the Various Parts of Parkia Biglobosa and GC-MS Analysis of Extracts with High Activity 
The anti-oxidative activities of sequentially extracted solvent fractions of different parts of P. biglobosa were evaluated in a series of in vitro assays. Our findings indicated that all extracts had electron donating and free radical scavenging activities. But the ethanol (EtOH) extracts from all the parts demonstrated more promising anti-oxidative effects in these experimental models. Apart from the aqueous extracts of the stem bark and leaves, all other extracts exhibited hydroxyl radical scavenging (HRS) activity but the ethyl acetate (EtOAc) extract of the stem bark and EtOH extracts of the root and leaves possessed more powerful HRS activity than other corresponding extracts in the parts. Further, nitric oxide (NO) inhibition activities were observed in all the extracts except the EtOAc extract of the stem bark which showed pro-oxidative activity. However, the EtOH extract of the stem bark and root as well as the EtOAc extract of the leaves displayed more potent anti-NO activity than other extracts in the parts. The GC-MS analysis of the EtOH extracts revealed that the most abundant phytochemicals are pyrogallol derivatives. Data from this study suggest that the EtOH extracts from different parts of P. biglobosa contained potent anti-oxidative agents and pyrogallol could be the main bioactive constituent.
PMCID: PMC3847417  PMID: 24311837
Anti-oxidative; free radicals; GC-MS; Parkia biglobosa; pyrogallol
4.  Antitumor Activity of Kielmeyera Coriacea Leaf Constituents in Experimental Melanoma, Tested in Vitro and in Vivo in Syngeneic Mice 
Advanced Pharmaceutical Bulletin  2014;4(Suppl 1):429-436.
Purpose: The antitumor activity of Kielmeyera coriacea (Clusiaceae), a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated.
Methods: A chloroform extract (CE) of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2) and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition.
Results: We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents.
Conclusion: These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines.
PMCID: PMC4213781  PMID: 25364658
Cancer; Cell cycle arrest; Cell migration; Cerrado; Anti-tumor; Cytotoxic
5.  Phenolic compounds from Foeniculum vulgare (Subsp. Piperitum) (Apiaceae) herb and evaluation of hepatoprotective antioxidant activity 
Pharmacognosy Research  2012;4(2):104-108.
The study was designed to evaluate the antioxidant and hepatoprotective activities of the 80% methanolic extract as well as the ethyl acetate (EtOAc) and butanol (BuOH) fractions of the wild fennel (Foeniculum vulgare (Subsp; Piperitum)) and cultivated fennel (F. vulgare var. azoricum). In addition, quantification of the total phenolic content in the 80% methanol extract of fennel wild and cultivated herbs is measured.
Materials and Methods:
An amount of 400 g of air dried powdered herb of wild and cultivated fennel were sonicated with aqueous methanol (80%), successively extracted with Hexane, EtOAc, and n-BuOH. The EtOAc and n-BuOH were subjected to repeated column chromatography on silica gel and Sephadex LH-20. The antioxidant effect was determined in vitro using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Hepatoprotective activity was carried out using a Wistar male rat (250–300 g). Total phenolic and flavonoid contents were determined as chlorogenic acid and rutin equivalents, respectively.
Two phenolic compounds, i.e., 3,4-dihydroxy-phenethylalchohol-6-O-caffeoyl-β-D-glucopyranoside and 3΄,8΄-binaringenin were isolated from the fennel wild herb, their structures were elucidated by spectral methods including 1D NMR, 2D NMR, and UV. The EtOAc and BuOH fractions of wild fennel were found to exhibit a radical scavenging activity higher than those of cultivated fennel. An in vitro method of rat hepatocytes monolayer culture was used for the investigation of hepatotoxic effects of the 80% methanol extract on the wild and cultivated fennel, which were >1000 and 1000 μg/mL, respectively. As well as, their hepatoprotective effect against the toxic effect of paracetamol (25 mM) was exerted at 12.5 μg/mL concentration.
Fennel (F. Vulgare) is a widespread plant species commonly used as a spice and flavoring. The results obtained in this study indicated that the fennel (F. vulgare) herb is a potential source of natural antioxidant. Two phenolic compounds, i.e. 3,4-dihydroxy-phenethylalchohol-6-O-caffeoyl-β-D-glucopyranoside (A) and 3΄,8΄-binaringenin (B) were isolated from the fennel wild herb for the first time.
PMCID: PMC3326756  PMID: 22518082
Antioxidant (Apiaceae); azoricum; binaringenin; Foeniculum vulgare; hepatoprotection; phenolic compounds; piperitum
6.  Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles) 
Parasites & Vectors  2013;6:337.
Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated.
Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes.
Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was highly susceptible to all the other essential oils at the diagnostic dose.
C. citratus, E. tereticornis, E. citriodora, C. ambrosioides and C. schoenanthus are potential promising plant sources for alternative compounds to pyrethroids, for the control of the Anopheles malaria vector in Benin. The efficacy of their essential oils is possibly based on their chemical compositions in which major and/or minor compounds have reported insecticidal activities on various pests and disease vectors such as Anopheles.
PMCID: PMC3866997  PMID: 24298981
Malaria; A. gambiae; Essential oils; Diagnostic dose; Knock-down times; Insecticide; Benin
7.  Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum 
BMC Research Notes  2012;5:158.
Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum.
The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml).
These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages.
PMCID: PMC3353177  PMID: 22433844
Bryophyllum pinnatum; Crassulaceae; Kaempferol rhamnosides; Antimicrobial; Antioxidant; Minimum inhibitory concentration
8.  Identification of an anticancer compound against HT-29 cells from Phellinus linteus grown on germinated brown rice 
To isolate and identify the anticancer compound against proliferation of human colon cancer cells from ethyl acetate (EtOAC) extract of Phellinus linteus grown on germinated brown rice (PB).
EtOAC extract of PB was partitioned with n-hexane, EtOAC, and water-saturated n-butanol. Anticancer compound of n-hexane layer was isolated and identified by HPLC and NMR, respectively. Cytotoxicity against HT-29 cells was tested by SRB assay.
The n-hexane layer obtained after solvent fractionation of PB EtOAC extracts showed a potent anticancer activity against the HT-29 cell line. Atractylenolide I, a eudesmane-type sesquiterpene lactone, a major anticancer substance of PB, was isolated from the n-hexane layer by silica gel column chromatography and preparative-HPLC. This structure was elucidated by one- and two-dimensional NMR spectroscopic data. Atractylenolide I has not been reported in mushrooms or rice as of yet. The isolated compound dose-dependently inhibited the growth of HT-29 human colon cancer cells.
Atractylenolide I might contribute to the anticancer effect of PB.
PMCID: PMC3761137  PMID: 24075343
Atractylenolide I; Human colon cancer cells; NMR; Phellinus linteus; Germinated brown rice
9.  In Vitro Schistosomicidal Activity of Some Brazilian Cerrado Species and Their Isolated Compounds 
Miconia langsdorffii Cogn. (Melastomataceae), Roupala montana Aubl. (Proteaceae), Struthanthus syringifolius (Mart.) (Loranthaceae), and Schefflera vinosa (Cham. & Schltdl.) Frodin (Araliaceae) are plant species from the Brazilian Cerrado whose schistosomicidal potential has not yet been described. The crude extracts, fractions, the triterpenes betulin, oleanolic acid, ursolic acid and the flavonoids quercetin 3-O-β-D-rhamnoside, quercetin 3-O-β-D-glucoside, quercetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside and isorhamnetin 3-O-β-D-glucopyranosyl-(1-2)-α-L-rhamnopyranoside were evaluated in vitro against Schistosoma mansoni adult worms and the bioactive n-hexane fractions of the mentioned species were also analyzed by GC-MS. Betulin was able to cause worm death percentage values of 25% after 120 h (at 100 μM), and 25% and 50% after 24 and 120 h (at 200 μM), respectively; besides the flavonoid quercetin 3-O-β-D-rhamnoside promoted 25% of death of the parasites at 100 μM. Farther the flavonoids quercetin 3-O-β-D-glucoside and quercetin 3-O-β-D-rhamnoside at 100 μM exhibited significantly reduction in motor activity, 75% and 87.5%, respectively. Biological results indicated that crude extracts of R. montana, S. vinosa, and M. langsdorffii and some n-hexane and EtOAc fractions of this species were able to induce worm death to some extent. The results suggest that lupane-type triterpenes and flavonoid monoglycosides should be considered for further antiparasites studies.
PMCID: PMC3424599  PMID: 22924053
10.  Antileishmanial Activity of Medicinal Plants Used in Endemic Areas in Northeastern Brazil 
This study investigates the leishmanicidal activity of five species of plants used in folk medicine in endemic areas of the state of Alagoas, Brazil. Data were collected in the cities of Colonia Leopoldina, Novo Lino, and União dos Palmares, Alagoas state, from patients with cutaneous leishmaniasis (Leishmania amazonensis) who use medicinal plants to treat this disease. Plants extracts were tested at a concentration of 1–100 μg/mL in all experiments, except in an assay to evaluate activity against amastigotes, when 10 μg/mL was used. All plants extracts did not show deleterious activity to the host cell evidenced by LDH assay at 100, 10, and 1 μg/mL after 48 h of incubation. The plants extracts Hyptis pectinata (L.) Poit, Aloe vera L., Ruta graveolens L., Pfaffia glomerata (Spreng.) Pedersen, and Chenopodium ambrosioides L. exhibited direct activity against extracellular forms at 100 μg/mL; these extracts inhibited growth by 81.9%, 82.9%, 74.4%, 88.7%, and 87.4%, respectively, when compared with promastigotes. The plants extracts H. pectinata, A. vera, and R. graveolens also significantly diminished the number of amastigotes at 10 μg/mL, inhibiting growth by 85.0%, 40.4%, 94.2%, and 97.4%, respectively, when compared with control. Based on these data, we conclude that the five plants exhibited considerable leishmanicidal activity.
PMCID: PMC4122062  PMID: 25126099
11.  Actinidia macrosperma C. F. Liang (a Wild Kiwi): Preliminary Study of Its Antioxidant and Cytotoxic Activities 
The antioxidant potential of Actinidia macrosperma C. F. Liang (Actinidiaceae) was investigated in vitro for total phenolic content, along with total antioxidant activity (TAA), 1,1-diphenyl 2-picryl hydrazyl (DPPH), and lipid peroxidation (LP). The results indicated that different polarity extracts of A. macrosperma exhibit different biological activities, which depends mainly on the presence of phenolic compounds. The antioxidant activity was in the following decreasing order: MeOH extract > EtOAc extract > aqueous extract > CHCl3 extract > Hexane extract. Moreover, the cytotoxic activity of this plant by MTT dye assay using SMMC-7721 has been determined also. The hexane, EtOAc, and CHCl3 extracts showed cytotoxicity in a dose-dependent manner. Methanol and aqueous extracts, however, showed weak activities in this test. And a very significant cytotoxic activity, not significantly different from the positive control of quercetin, was observed in CHCl3 extract.
PMCID: PMC3202103  PMID: 22110544
12.  Antileishmanial Phenylpropanoids from the Leaves of Hyptis pectinata (L.) Poit 
Hyptis pectinata, popularly known in Brazil as “sambacaitá” or “canudinho,” is an aromatic shrub largely grown in the northeast of Brazil. The leaves and bark are used in an infusion for the treatment of throat and skin inflammations, bacterial infections, pain, and cancer. Analogues of rosmarinic acid and flavonoids were obtained from the leaves of Hyptis pectinata and consisted of two new compounds, sambacaitaric acid (1) and 3-O-methyl-sambacaitaric acid (2), and nine known compounds, rosmarinic acid (3), 3-O-methyl-rosmarinic acid (4), ethyl caffeate (5), nepetoidin A (6), nepetoidin B (7), cirsiliol (8), circimaritin (9), 7-O-methylluteolin (10), and genkwanin (11). The structures of these compounds were determined by spectroscopic methods. Compounds 1–5, and 7 were evaluated in vitro against the promastigote form of L. braziliensis, and the ethanol extract. The hexane, ethyl acetate, and methanol-water fractions were also evaluated. The EtOH extract, the hexane extract, EtOAc, MeOH:H2O fractions; and compounds 1, 2 and 4 exhibited antileishmanial activity, and compound 1 was as potent as pentamidine. In contrast, compounds 3, 5, and 7 did not present activity against the promastigote form of L. braziliensis below 100 µM. To our knowledge, compounds 1 and 2 are being described for the first time.
PMCID: PMC3745876  PMID: 23983783
13.  In vitro anticancer activity of Anemopsis californica 
Oncology letters  2010;1(4):711-715.
Three different extract conditions (aqueous, EtOH and EtOAc) of four different parts (bracts, leaves, roots and stems) of the plant Anemopsis californica (A. californica) were evaluated for their effect on the growth and migration of human colon cancer cells, HCT-8, and the breast cancer cell lines Hs 578T and MCF-7/AZ. Our aim was to identify potential anticancer activity in crude A. californica extracts, given that this plant is used by Native Americans to treat a variety of diseases, including cancer. Our results demonstrated that for each of the cell lines tested, the majority of ethyl acetate extracts of all the plant parts are more toxic than the aqueous and ethanol extracts. Furthermore, significant growth inhibitory activity against the three cell lines was found for the ethyl acetate extract of the roots, while the aqueous extract of the roots influenced the migratory capacity of the three cell lines. This study provides evidence for the anticancer properties of A. californica when extracted in water and ethyl acetate, and supports the importance for further purification of the crude extracts and isolation of potential new anticancer compounds through bio-guided fractionation.
PMCID: PMC3176455  PMID: 21941602
Anemopsis californica; extracts; traditional medicine; cytotoxicity; growth; migration
14.  In vitro anticancer activity of Anemopsis californica 
Oncology Letters  2010;1(4):711-715.
Three different extract conditions (aqueous, EtOH and EtOAc) of four different parts (bracts, leaves, roots and stems) of the plant Anemopsis californica (A. californica) were evaluated for their effect on the growth and migration of human colon cancer cells, HCT-8, and the breast cancer cell lines Hs 578T and MCF-7/AZ. Our aim was to identify potential anticancer activity in crude A. californica extracts, given that this plant is used by Native Americans to treat a variety of diseases, including cancer. Our results demonstrated that for each of the cell lines tested, the majority of ethyl acetate extracts of all the plant parts are more toxic than the aqueous and ethanol extracts. Furthermore, significant growth inhibitory activity against the three cell lines was found for the ethyl acetate extract of the roots, while the aqueous extract of the roots influenced the migratory capacity of the three cell lines. This study provides evidence for the anticancer properties of A. californica when extracted in water and ethyl acetate, and supports the importance for further purification of the crude extracts and isolation of potential new anticancer compounds through bio-guided fractionation.
PMCID: PMC3176455  PMID: 21941602
Anemopsis californica; extracts; traditional medicine; cytotoxicity; growth; migration
15.  Antimicrobial and Antioxidant Activities of Some Nigerian Medicinal Plants 
Ten Nigerian plants suggested from their ethnomedical uses to possess antimicrobial and antioxidant activities were studied for their anti-microbial and anti-oxidant properties. Antimicrobial activity was tested against Escherichia coli NCTC 10418, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, Candida albicans, Candida pseudotropicalis and Trichophyton rubrum (clinical isolate). Trichilia heudelotti leaf extract showed both antibacterial and antifungal activities and was the most active against all the strains of bacteria tested. Boerhavia diffusa, Markhamia tomentosa and T. heudelotti leaf extracts inhibited the gram negative bacteria E.coli and P. aeruginosa strains whereas those of M. tomentosa, T. heudelotti and Sphenoceutrum jollyamum root inhibited at least one of the fungi tested. At a concentration of 312 µg/ml, hexane and chloroform fractions of T. heudelotti extract inhibited 6 and 14% of the fifty mult-idrug resistant bacteria isolates from clinical infectins, respectively. At ≤ 5mg/ml, the CHCl3 (64%) and aqueous (22%) fractions of T. heudelotti and those of CHCl3 (34%) and EtOAC (48%) of M. tomentosa gave the highest inhibition that was stronger than their corresponding methanol extracts. The corresponding EC50 of the extracts on M. acuminata, T. heudelotti, E. senegalensis and M. tomentosa were 4.00, 6.50, 13.33, and 16.50 ig/ml using the TLC staining and 1,1-dipheyl-2-picry-hydrazyl (DPPH) free radical scavenging assay. Therefore, leaf extracts of M. tomentosa and T. heudelotti, especially the latter, possess strong antimicrobial and antioxidant activities and should be further investigated. These activities justified the ethnomedical uses of these plants.
PMCID: PMC2816440  PMID: 20162089
Antimicrobial; antifungal; antioxidant properties; Nigerian medicinal plants
16.  Anti-Mayaro virus activity of Cassia australis extracts (Fabaceae, Leguminosae) 
Parasites & Vectors  2014;7(1):537.
The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Studies showed that the virus could also be transmitted by the mosquito Aedes aegypti. Recently, MAYV has attracted attention due to its likely urbanization. To date, there are no drugs that can treat this illness.
Fractions and compounds were obtained by chromatography from leaf extracts of C. australis and chemically identified as flavonoids and condensed tannins using spectroscopic and spectrometric techniques (UV, NMR, and ESI-FT-ICR MS). Cytotoxicity of EtOAc, n-BuOH and EtOAc-Pp fractions were measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Larvicidal activity was measured by the procedures recommended by the WHO expert committee for determining acute toxicity.
The following group of substances was identified from EtOAc, n-BuOH and EtOAc-Pp fractions: flavones, flavonols, and their glycosides and condensed tannins. EtOAc and n-BuOH fractions inhibited MAYV production, respectively, by more than 70% and 85% at 25 μg/mL. EtOAc-Pp fraction inhibited MAYV production by more than 90% at 10 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. This fraction had an excellent antiviral effect (IC90 = 4.7 ± 0.3 μg/mL), while EtOAc and n-BuOH fractions were less active (IC90 = 89.1 ± 4.4 μg/mL and IC90 = 40.9 ± 5.7 μg/mL, respectively).
C. australis can be used as a source of compounds with anti-Mayaro virus activity. This is the first report on the biological activity of C. australis.
PMCID: PMC4258289  PMID: 25428163
Cassia australis; Flavonoids; Tannins; Antiviral; MAYV; Larvicidal activity; Aedes aegypti
17.  Anti-microbial principles of selected remedial plants from Southern India 
To examine the anti-bacterial activity of leaf extracts of Morus alba L. (Moraceae) and Piper betel L. (Piperaceae), and seed extracts of Bombax ceiba L. (Borabacaceae).
We have partially purified plant extracts by solvent extraction method, and evaluated the effect of individual fractions on bacterial growth using Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacterial strains.
Compared with Morus and Bombax fractions, Piper fractions showed significant growth inhibition on all the three types of bacteria studied. The EtOAc-hexane fractions of Piper leaves exhibited significant anti-bacterial activity with minimum inhibitory concentrations (MIC) of 50 µg/mL culture against both gram-positive and gram-negative bacteria. The EtOAc-fractions I, II, and IV inhibited bacterial colony formation on soft agar in addition to growth inhibition. A combination treatment of piper fractions with ampicillin resulted in significant growth inhibition in E. coli and P. aeruginosa, and combination with anticancer drug geldanamycin (2µg/mL) showed selective growth inhibition against P. aeruginosa and S. aureus. Three major compounds, i.e., eugenol, 3-hexene-ol and stigmasterol, were primarily identified from Piper betel leaf extractions. Among the individual compounds, eugenol treatment showed improved growth inhibition compared with stigmasterol and 3-hexene-ol.
We are reporting potential anti-bacterial compounds from Piper betel against both gram-positive and gram-negative bacteria either alone or in combination with drug treatment.
PMCID: PMC3614242  PMID: 23569779
Piper betel; Anti-microbial activity; Escherichia coli; Pseudomonas aeruginosa; Staphylococcus aureus; Morus alba; Bombax ceiba; Minimum inhibitory concentration; Growth inhibition
18.  In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico 
Sonoran ethnic groups (Yaquis, Mayos, Seris, Guarijíos, Pimas, Kikapúes and Pápagos) use mainly herbal based preparations as their first line of medicinal treatment. Among the plants used are those with anti-tuberculosis properties; however, no formal research is available.
Organic extracts were obtained from nine medicinal plants traditionally used by Sonoran ethnic groups to treat different kinds of diseases; three of them are mainly used to treat tuberculosis. All of the extracts were tested against Mycobacterium tuberculosis H37Rv using the Alamar Blue redox bioassay.
Methanolic extracts from Ambrosia confertiflora, Ambrosia ambrosioides and Guaiacum coulteri showed minimal inhibitory concentration (MIC) values of 200, 790 and 1000 μg/mL, respectively, whereas no effect was observed with the rest of the methanolic extracts at the concentrations tested. Chloroform, dichloromethane, and ethyl acetate extracts from Ambrosia confertiflora showed a MIC of 90, 120 and 160 μg/mL, respectively.
A. confertiflora and A. ambrosioides showed the best anti-mycobacterial activity in vitro. The activity of Guaiacum coulteri is consistent with the traditional use by Sonoran ethnic groups as anti-tuberculosis agent.
For these reasons, it is important to investigate a broader spectrum of medicinal plants in order to find compounds active against Mycobacterium tuberculosis.
PMCID: PMC4222557  PMID: 24267469
Medicinal plants; Tuberculosis; Alamar blue; Mycobacterium tuberculosis; Ambrosia
19.  Cytotoxic and Apoptotic Potential of Rheum turkestanicum Janisch Root Extract on Human Cancer and Normal Cells  
Rheum turkestanicum Janischew. (Polygonaceae) is a plant that grows in central Asia and in north-east of Iran. Traditionally, people use roots of R. turkestanicum as an anti-diabetic and anti-hypertensive as well as anticancer agent. In this study the cytotoxicity and apoptogenic properties of ethyl acetate (EtOAc), n-hexane and H2O extracts from Rheum turkestanicum Janischew. (Polygonaceae) root were determined against HeLa and MCF-7 cell lines and human blood lymphocytes.
Malignant and non-malignant cells were cultured in RPMI 1640 medium and incubated with different concentrations of plant extracts. Cell viability was measured by MTS assay. Apoptotic cells were evaluated using PI staining of DNA fragmentation by flow cytometry (sub-G1 peak). The degree of DNA fragmentation was analyzed using agarose gel electrophoresis based on the formation of inter-nucleosomal units. The expression of apoptosis-related protein Bax and PARP cleavage were detected by Western blotting.
EtOAc and n-hexane extracts decreased cell viability in malignant but not in non-malignant cells, as a concentration and time dependent manner. EtOAc extract induced a sub-G1 peak in flow cytometry histogram of treated cells compared to the control. DNA fragmentation indicating apoptotic cell death was involved in R. turkestanicum induced toxicity and cleaved PARP fragment was also detected.
In conclusion, this is the first report on the cytotoxic effects of R. turkestanicum in which apoptosis played an important role. However, further evaluations are needed to fully understand the possible anti-tumor properties.
PMCID: PMC3920695  PMID: 24523761
Rheum turkestanicum Janischew.; Polygonaceae; Cytotoxicity; Apoptosis; Cancer
20.  The radioprotective effects of the hexane and ethyl acetate extracts of Callophyllis japonica in mice that undergo whole body irradiation 
Journal of Veterinary Science  2008;9(3):281-284.
The radioprotective activity of extracts from the red seaweed Callophyllis (C.) japonica was investigated in mice that underwent whole-body exposure to gamma radiation. A methanol extract of C. japonica and its fractions [hexane, ethyl acetate (EtOAc), butanol and the remaining H2O] were used. Each fraction (100 mg/kg body weight) was administered intraperitoneally (i.p.) 2 times into the BALB/c mice, once at 1 and once at 24 h before exposure to 9 Gray (Gy) of gamma radiation. Pre-irradiation administration of the hexane and EtOAc fractions saved the mice, with their survival rates being greater than 80% at 30 days post-irradiation; the mice that were pretreated with the other fractions showed survival rates lower than 20% over the same time period. To examine the effect of each C. japonica fraction on the survival of intestinal and bone marrow stem cells, the number of intestinal crypts and bone marrow cells in the gamma-irradiated mice were examined. Pre-treatment of mice (i.p., 100 mg/kg body weight at 1 and 24 h before irradiation) with the hexane or EtOAc fraction prior to 6-Gy irradiation significantly protected the number of jejunal crypts and bone marrow cells at 9 days after irradiation. These findings suggest that certain extracts from C. japonica, when they are administered prior to irradiation, play an important role in the survival of irradiated mice, and this is possibly due to the extracts protecting the hematopoietic cells and intestinal stem cells against gamma irradiation.
PMCID: PMC2811840  PMID: 18716448
bone marrow cells; Callophyllis japonica; mice; radioprotection
21.  Antioxidant Activities and Phytochemical Study of Leaf Extracts from 18 Indigenous Tree Species in Taiwan 
The objective of this study is to assess antioxidant activities of methanolic extracts from the leaves of 18 indigenous tree species in Taiwan. Results revealed that, among 18 species, Acer oliverianum exhibited the best free radical scavenging activities. The IC50 values were 5.8 and 11.8 μg/mL on DPPH radical and superoxide radical scavenging activities, respectively. In addition, A. oliverianum also exhibited the strongest ferrous ion chelating activity. Based on a bioactivity-guided isolation principle, the resulting methanolic crude extracts of A. oliverianum leaves were fractionated to yield soluble fractions of hexane, EtOAc, BuOH, and water. Of these, the EtOAc fraction had the best antioxidant activity. Furthermore, 8 specific phytochemicals were isolated and identified from the EtOAc fraction. Among them, 1,2,3,4,6-O-penta-galloyl-β-D-glucopyranose had the best free radical scavenging activity. These results demonstrate that methanolic extracts and their derived phytochemicals of A. oliverianum leaves have excellent antioxidant activities and thus they have great potential as sources for natural health products.
PMCID: PMC3291425  PMID: 22454657
22.  ACE and platelet aggregation inhibitors from Tamarix hohenackeri Bunge (host plant of Herba Cistanches) growing in Xinjiang 
Pharmacognosy Magazine  2014;10(38):111-117.
Tamarix hohenackeri Bunge is a salt cedar that grows widespread in the desert mountains in Xinjiang. T. hohenackeri has not been investigated earlier, although there are many reports of phytochemical work on other Tamarix species.
Materials and Methods:
To find out natural angiotensin-converting enzyme (ACE) inhibitor and platelet aggregation inhibitors, the bioactive extract (ethyl acetate [EtOAc] fraction) from the dried aerial parts of T. hohenackeri were investigated. The active fraction was purified by repeated column chromatography, including silica gel, Sephadex LH-20 column, medium-pressure liquid chromatography (MPLC) (polyamide column) and high-performance liquid chromatography (HPLC). The isolated major constituents were tested for their anti-platelet aggregation activity.
Bioassay-directed separation of the EtOAc fraction of the 70% ethanol extract from the air-dried aerial parts of T. hohenackeri led to the isolation of a new triterpenoid lactone (1), together with 13 known compounds (2-14). It was the first time to focus on screening bioactive constituents for this plant. The chemical structures were established on the basis of spectral data (ESI-MS and NMR). The results showed that the flavonoid compounds (7 and 8) and phenolic compounds (9, 10, 11, and 14) were potential ACE inhibitors. And the flavonoid compounds (5 and 7) showed significant anti-platelet aggregation activities.
On the basis of the chemical and biological data, the material basis of ACE inhibitory activity for the active part was the phenolic constituents. However, the flavonoid compounds were responsible for the anti-platelet aggregation. The primary structure and activity relationship were also discussed respectively.
PMCID: PMC4048556  PMID: 24914275
ACE inhibitors; bioassay-directed separation; new triterpenoid lactone; platelet aggregation inhibitors; Tamarix hohenackeri Bunge
23.  Cytotoxic and Apoptotic Effects of Different Extracts of Artemisia turanica Krasch. on K562 and HL-60 Cell Lines 
The Scientific World Journal  2013;2013:628073.
Artemisia is an important genus of Iranian flora. Cytotoxic activities for some species of the genus have already been reported. In this study, we have investigated the cytotoxic effects of n-hexane, CH2Cl2, EtOAc, EtOH, and EtOH/H2O (1 : 1) extracts of A. turanica Krasch. on two human leukemic cancer cell lines (K562 and HL-60) and J774 as normal cells using alamarBlue (resazurin) assay. PI staining of the fragmented DNA and western blot analysis were used to evaluate the possible apoptotic effect of the extract. The CH2Cl2 extract of A. turanica showed the most antiproliferative effect on cancer cells among all tested extracts with IC50 values of 69 and 104 μg/mL on K562 and HL-60 cells, respectively, whereas the normal cells were not affected significantly by this extract. Sub-G1 peak in the flow cytometry histogram of the cells treated with CH2Cl2 extract of A. turanica and cleavage of PARP protein confirmed the induction of apoptosis with CH2Cl2 extract. Taken together, the findings of the present work suggest the anticancer potential of CH2Cl2 extract of A. turanica on human leukemic cancer cell lines.
PMCID: PMC3830890  PMID: 24288497
24.  Sargassum fulvellum Protects HaCaT Cells and BALB/c Mice from UVB-Induced Proinflammatory Responses 
Ultraviolet (UV) radiation has been reported to induce cutaneous inflammation such as erythema and edema via induction of proinflammatory enzymes and mediators. Sargassum fulvellum is a brown alga of Sargassaceae family which has been demonstrated to exhibit antipyretic, analgesic, antiedema, antioxidant, antitumor, fibrinolytic, and hepatoprotective activities. The purpose of this study is to investigate anti-inflammatory effects of ethylacetate fraction of ethanol extract of Sargassum fulvellum (SFE-EtOAc) in HaCaT keratinocytes and BALB/c mice. In HaCaT cells, SFE-EtOAc effectively inhibited UVB-induced cytotoxicity (60 mJ/cm2) and the expression of proinflammatory proteins such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS). Furthermore, SFE-EtOAc significantly reduced UVB-induced production of proinflammatory mediators including prostaglandin E2 (PGE2) and nitric oxide (NO). In BALB/c mice, topical application of SFE-EtOAc prior to UVB irradiation (200 mJ/cm2) effectively suppressed the UVB-induced protein expression of COX-2, iNOS, and TNF-α and subsequently attenuated generation of PGE2 and NO as well. In another experiment, SFE-EtOAc pretreatment suppressed UVB-induced reactive oxygen species production and exhibited an antioxidant potential by upregulation of antioxidant enzymes such as catalase and Cu/Zn-superoxide dismutase in HaCaT cells. These results suggest that SFE-EtOAc could be an effective anti-inflammatory agent protecting against UVB irradiation-induced skin damages.
PMCID: PMC3722794  PMID: 23935680
25.  Antrodia camphorata Grown on Germinated Brown Rice Suppresses Melanoma Cell Proliferation by Inducing Apoptosis and Cell Differentiation and Tumor Growth 
Antrodia camphorata grown on germinated brown rice (CBR) was prepared to suppress melanoma development. CBR extracts were divided into hexane, EtOAc, BuOH, and water fractions. Among all the fractions, EtOAc fraction showed the best suppressive effect on B16F10 melanoma cell proliferation by CCK-8 assay. It also showed the increased cell death and the changed cellular morphology after CBR treatment. Annexin V-FITC/PI, flow cytometry, and western blotting were performed to elucidate anticancer activity of CBR. The results showed that CBR induced p53-mediated apoptotic cell death of B16F10. CBR EtOAc treatment increased melanin content and melanogenesis-related proteins of MITF and TRP-1 expressions, which supports its anticancer activity. Its potential as an anticancer agent was further investigated in tumor-xenografted mouse model. In melanoma-xenografted mouse model, melanoma tumor growth was significantly suppressed under CBR EtOAc fraction treatment. HPLC analysis of CBR extract showed peak of adenosine. In conclusion, CBR extracts notably inhibited B16F10 melanoma cell proliferation through the p53-mediated apoptosis induction and increased melanogenesis. These findings suggest that CBR EtOAc fraction can act as an effective anticancer agent to treat melanoma.
PMCID: PMC3596902  PMID: 23533475

Results 1-25 (665555)