PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1156089)

Clipboard (0)
None

Related Articles

1.  Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs 
Dental implants with proper antibacterial ability as well as ideal osseointegration are being actively pursued. The antimicrobial ability of titanium implants can be significantly enhanced via modification with silver nanoparticles (Ag NPs). However, the high mobility of Ag NPs results in their potential cytotoxicity. The silver plasma immersion ion-implantation (Ag-PIII) technique may remedy the defect. Accordingly, Ag-PIII technique was employed in this study in an attempt to reduce the mobility of Ag NPs and enhance osseointegration of sandblasted and acid-etched (SLA) dental implants. Briefly, 48 dental implants, divided equally into one control and three test groups (further treated by Ag-PIII technique with three different implantation parameters), were inserted in the mandibles of six Labrador dogs. Scanning electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectrometry were used to investigate the surface topography, chemical states, and silver release of SLA- and Ag-PIII-treated titanium dental implants. The implant stability quotient examination, Microcomputed tomography evaluation, histological observations, and histomorphometric analysis were performed to assess the osseointegration effect in vivo. The results demonstrated that normal soft tissue healing around dental implants was observed in all the groups, whereas the implant stability quotient values in Ag-PIII groups were higher than that in the SLA group. In addition, all the Ag-PIII groups, compared to the SLA-group, exhibited enhanced new bone formation, bone mineral density, and trabecular pattern. With regard to osteogenic indicators, the implants treated with Ag-PIII for 30 minutes and 60 minutes, with the diameter of the Ag NPs ranging from 5–25 nm, were better than those treated with Ag-PIII for 90 minutes, with the Ag NPs diameter out of that range. These results suggest that Ag-PIII technique can reduce the mobility of Ag NPs and enhance the osseointegration of SLA surfaces and have the potential for future use.
doi:10.2147/IJN.S73467
PMCID: PMC4298332  PMID: 25609967
surface modification; micro/nanostructure; silver; ion implantation; osseointegration
2.  Osseointegration of zirconia implants compared with titanium: an in vivo study 
Head & Face Medicine  2008;4:30.
Background
Titanium and titanium alloys are widely used for fabrication of dental implants. Since the material composition and the surface topography of a biomaterial play a fundamental role in osseointegration, various chemical and physical surface modifications have been developed to improve osseous healing. Zirconia-based implants were introduced into dental implantology as an altenative to titanium implants. Zirconia seems to be a suitable implant material because of its tooth-like colour, its mechanical properties and its biocompatibility. As the osseointegration of zirconia implants has not been extensively investigated, the aim of this study was to compare the osseous healing of zirconia implants with titanium implants which have a roughened surface but otherwise similar implant geometries.
Methods
Forty-eight zirconia and titanium implants were introduced into the tibia of 12 minipigs. After 1, 4 or 12 weeks, animals were sacrificed and specimens containing the implants were examined in terms of histological and ultrastructural techniques.
Results
Histological results showed direct bone contact on the zirconia and titanium surfaces. Bone implant contact as measured by histomorphometry was slightly better on titanium than on zirconia surfaces. However, a statistically significant difference between the two groups was not observed.
Conclusion
The results demonstrated that zirconia implants with modified surfaces result in an osseointegration which is comparable with that of titanium implants.
doi:10.1186/1746-160X-4-30
PMCID: PMC2614983  PMID: 19077228
3.  Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits 
STATEMENT OF PROBLEM
Macroscopic and especially microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Dental implants with modified surfaces have shown stronger osseointegration than implants which are only turned (machined). Advanced surface modification techniques such as anodic oxidation and Ca-P application have been developed to achieve faster and stronger bonding between the host bone and the implant.
PURPOSE
The purpose of this study was to investigate the effect of surface treatment of titanium dental implant on implant stability after insertion using the rabbit tibia model.
MATERIAL AND METHODS
Three test groups were prepared: sandblasted, large-grit and acid-etched (SLA) implants, anodic oxidized implants, and anodized implants with Ca-P immersion. The turned implants served as control. Twenty rabbits received 80 implants in the tibia. Resonance frequencies were measured at the time of implant insertion, 2 weeks and 4 weeks of healing. Removal torque values (RTV) were measured 2 and 4 weeks after insertion.
RESULTS
The implant stability quotient (ISQ) values of implants for resonance frequency analysis (RFA) increased significantly (P < .05) during 2 weeks of healing period although there were no significant differences among the test and control groups (P > .05). The test and control implants also showed significantly higher ISQ values during 4 weeks of healing period (P < .05). No significant differences, however, were found among all the groups. All the groups showed no significant differences in ISQ values between 2 and 4 weeks after implant insertion (P > .05). The SLA, anodized and Ca-P immersed implants showed higher RTVs at 2 and 4 weeks of healing than the machined one (P < .05). However, there was no significant difference among the experimental groups.
CONCLUSION
The surface-modified implants appear to provide superior implant stability to the turned one. Under the limitation of this study, however, we suggest that neither anodic oxidation nor Ca-P immersion techniques have any advantage over the conventional SLA technique with respect to implant stability.
doi:10.4047/jap.2009.1.2.107
PMCID: PMC2994679  PMID: 21165264
surface treatment; bone to implant contact; removal torque; dental implant
4.  The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation 
Biomaterials  2011;32(13):3395-3403.
Titanium (Ti) osseointegration is critical for the success of dental and orthopaedic implants. Previous studies have shown that surface roughness at the micro- and submicro-scales promotes osseointegration by enhancing osteoblast differentiation and local factor production. Only relatively recently have the effects of nanoscale roughness on cell response been considered. The aim of the present study was to develop a simple and scalable surface modification treatment that introduces nanoscale features to the surfaces of Ti substrates without greatly affecting other surface features, and to determine the effects of such superimposed nano-features on the differentiation and local factor production of osteoblasts. A simple oxidation treatment was developed for generating controlled nanoscale topographies on Ti surfaces, while retaining the starting micro-/submicro-scale roughness. Such nano-modified surfaces also possessed similar elemental compositions, and exhibited similar contact angles, as the original surfaces, but possessed a different surface crystal structure. MG63 cells were seeded on machined (PT), nano-modified PT (NMPT), sandblasted/acid-etched (SLA), and nano-modified SLA (NMSLA) Ti disks. The results suggested that the introduction of such nanoscale structures in combination with micro-/submicro-scale roughness improves osteoblast differentiation and local factor production, which, in turn, indicates the potential for improved implant osseointegration in vivo.
doi:10.1016/j.biomaterials.2011.01.029
PMCID: PMC3350795  PMID: 21310480
(4 to 6) nanotopography; titanium oxide; surface roughness; titanium; bone; implant; osteoblasts
5.  Osseointegration of zirconia implants: an SEM observation of the bone-implant interface 
Head & Face Medicine  2008;4:25.
Background
The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level.
Methods
A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface.
Results
Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography.
Conclusion
The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.
doi:10.1186/1746-160X-4-25
PMCID: PMC2583968  PMID: 18990214
6.  Antimicrobial surfaces for craniofacial implants: state of the art 
In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed.
doi:10.5125/jkaoms.2013.39.2.43
PMCID: PMC3858148  PMID: 24471018
Dental implants; Osseointegration; Antimicrobial agents; Surface-coated materials; Bone regeneration
7.  Techniques for dental implant nanosurface modifications 
PURPOSE
Dental implant has gained clinical success over last decade with the major drawback related to osseointegration as properties of metal (Titanium) are different from human bone. Currently implant procedures include endosseous type of dental implants with nanoscale surface characteristics. The objective of this review article is to summarize the role of nanotopography on titanium dental implant surfaces in order to improve osseointegration and various techniques that can generate nanoscale topographic features to titanium implants.
MATERIALS AND METHODS
A systematic electronic search of English language peer reviewed dental literature was performed for articles published between December 1987 to January 2012. Search was conducted in Medline, PubMed and Google scholar supplemented by hand searching of selected journals. 101 articles were assigned to full text analysis. Articles were selected according to inclusion and exclusion criterion. All articles were screened according to inclusion standard. 39 articles were included in the analysis.
RESULTS
Out of 39 studies, seven studies demonstrated that bone implant contact increases with increase in surface roughness. Five studies showed comparative evaluation of techniques producing microtopography and nanotopography. Eight studies concluded that osteoblasts preferably adhere to nano structure as compared to smooth surface. Six studies illustrated that nanotopography modify implant surface and their properties. Thirteen studies described techniques to produce nano roughness.
CONCLUSION
Modification of dental osseous implants at nanoscale level produced by various techniques can alter biological responses that may improve osseointegration and dental implant procedures.
doi:10.4047/jap.2014.6.6.498
PMCID: PMC4279049  PMID: 25558347
Intelligent surfaces; Sputtering; Superhydrophillic; Chemical vapor deposition; Osseointegration; Engineered surface
8.  Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention 
Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN). The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%). The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm), suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.
doi:10.1155/2012/290179
PMCID: PMC3503304  PMID: 23197981
9.  Osteogenic activity of titanium surfaces with nanonetwork structures 
Background
Titanium surfaces play an important role in affecting osseointegration of dental implants. Previous studies have shown that the titania nanotube promotes osseointegration by enhancing osteogenic differentiation. Only relatively recently have the effects of titanium surfaces with other nanostructures on osteogenic differentiation been investigated.
Methods
In this study, we used NaOH solutions with concentrations of 2.5, 5.0, 7.5, 10.0, and 12.5 M to develop a simple and useful titanium surface modification that introduces the nanonetwork structures with titania nanosheet (TNS) nanofeatures to the surface of titanium disks. The effects of such a modified nanonetwork structure, with different alkaline concentrations on the osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMMSCs), were evaluated.
Results
The nanonetwork structures with TNS nanofeatures induced by alkali etching markedly enhanced BMMSC functions of cell adhesion and osteogenesis-related gene expression, and other cell behaviors such as proliferation, alkaline phosphatase activity, extracellular matrix deposition, and mineralization were also significantly increased. These effects were most pronounced when the concentration of NaOH was 10.0 M.
Conclusion
The results suggest that nanonetwork structures with TNS nanofeatures improved BMMSC proliferation and induced BMMSC osteogenic differentiation. In addition, the surfaces formed with 10.0 M NaOH suggest the potential to improve the clinical performance of dental implants.
doi:10.2147/IJN.S58502
PMCID: PMC3983010  PMID: 24741311
nanotopography; osseointegration; surface modification; bone marrow mesenchymal stem cells
10.  Biomolecular surface coating to enhance orthopaedic tissue healing and integration 
Biomaterials  2007;28(21):3228-3235.
Implant osseointegration is a prerequisite for clinical success in orthopaedic and dental applications, many of which are restricted by loosening. Biomaterial surface modification approaches, including calcium-phosphate ceramic coatings and macro/microporosity, have had limited success in promoting integration. To improve osseointegration, titanium surfaces were coated with the GFOGER collagen-mimetic peptide, selectively promoting α2β1 integrin binding, a crucial event for osteoblastic differentiation. Titanium surfaces presenting GFOGER triggered osteoblastic differentiation and mineral deposition in bone marrow stromal cells, leading to enhanced osteoblastic function compared to unmodified titanium. Furthermore, this integrin-targeted coating significantly improved in vivo peri-implant bone regeneration and osseointegration, as characterized by bone-implant contact and mechanical fixation, compared to untreated titanium in a rat cortical bone-implant model. GFOGER-modified implants also significantly enhanced osseointegration compared to surfaces modified with full-length type I collagen, highlighting the importance of presenting specific biofunctional domains within the native ligand. In addition, this biomimetic implant coating is generated using a simple, single-step procedure that readily translates to a clinical environment with minimal processing and cytotoxicity concerns. Therefore, this study establishes a biologically active and clinically relevant implant coating strategy that enhances bone repair and orthopaedic implant integration.
doi:10.1016/j.biomaterials.2007.04.003
PMCID: PMC2034748  PMID: 17448533
biomimetic material; cell adhesion; collagen; osseointegration; integrin
11.  Reality of Dental Implant Surface Modification: A Short Literature Review 
Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.
doi:10.2174/1874120701408010114
PMCID: PMC4231373  PMID: 25400716
Anodic oxidation; BMP; fluoride; functional peptide; hydrophilicity; implant surface; SLA; surface modification.
12.  Adult Stem Cells Properties in Terms of Commitment, Aging and Biological Safety of Grit-Blasted and Acid-Etched Ti Dental Implants Surfaces 
Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the mutagenicity of the Ti dental implants, and the hemolysis assay for evaluating their hemocompatibility. Human adipose - derived stem cells (ADSCs) were then seeded onto these implants in order to evaluate their cytotoxicity. Gene expression analyzing with real-time PCR was carried out to investigate the osteoinductivity of the biomaterials. Finally, the genetic stability of the cells cultured onto dental implants was determined by karyotyping. Our results demonstrated that Ti dental implants are not mutagenic, do not cause hemolysis, and are biocompatible. The MTT assay revealed that ADSCs, seeded on Ti dental implants, proliferate up to 30 days in culture. Moreover, ADSCs loaded on Ti dental implants show a substantial expression of some osteoblast specific markers, such as COL1A1, OPN, ALPL, and RUNX2, as well as chromosomal stability after 30 days of culture in a medium without osteogenic factors. In conclusion, the grit-blasted and acid-etched treatment seems to favor the adhesion and proliferation of ADSCs and improve the osteoinductivity of Ti dental implant surfaces.
PMCID: PMC4293610  PMID: 25635249
Titanium dental implants; surface properties; adipose- derived stem cells; biocompatibility; osteogenic differentiation
13.  Evaluation of Functional Dynamics during Osseointegration and Regeneration Associated with Oral Implants: A Review 
Objectives
The aim of this paper is to review current investigations on functional assessments of osseointegration and assess correlations to the peri-implant structure.
Material and methods
The literature was electronically searched for studies of promoting dental implant osseointegration, functional assessments of implant stability, and finite element (FE) analyses in the field of implant dentistry, and any references regarding biological events during osseointegration were also cited as background information.
Results
Osseointegration involves a cascade of protein and cell apposition, vascular invasion, de novo bone formation and maturation to achieve the primary and secondary dental implant stability. This process may be accelerated by alteration of the implant surface roughness, developing a biomimetric interface, or local delivery of growth-promoting factors. The current available preclinical and clinical biomechanical assessments demonstrated a variety of correlations to the peri-implant structural parameters, and functionally integrated peri-implant structure through FE optimization can offer strong correlation to the interfacial biomechanics.
Conclusions
The progression of osseointegration may be accelerated by alteration of the implant interface as well as growth factor applications, and functional integration of peri-implant structure may be feasible to predict the implant function during osseointegration. More research in this field is still needed.
doi:10.1111/j.1600-0501.2009.01826.x
PMCID: PMC2808201  PMID: 20070743
finite element analysis; growth factor; bone-implant interactions
14.  Effect of heat treatment on H2O2/HCl etched pure titanium dental implant: An in vitro study 
Summary
Background
Surface chemistry of dental implant plays an important role in osseointegration. Heat treatment might alter surface chemistry and result in different biological response. The aim of this study was to investigate the roles of heat treatment of H2O2/HCl-treated Ti implants in cell attachment, proliferation and osteoblastic differentiation.
Material/Methods
Sandblasted, dual acid-etched and H2O2/HCl heat-treated discs were set as the control group and sandblasted, dual acid-etched H2O2/HCl-treated discs were the test group. Both groups’ discs were sent for surface characterization. MC3T3-E1 cells were seeded on these 2 groups’ discs for 3 hours to 14 days, and then cell attachment, cell proliferation and cell differentiation were evaluated.
Results
Scanning electron microscope analysis revealed that the titanium discs in the 2 groups shared the same surface topography, while x-ray diffraction examination showed an anatase layer in the control group and titanium hydride diffractions in the test group. The cell attachment of the test group was equivalent to that of the control group. Cell proliferation was slightly stimulated at all time points in the control group, but the alkaline phosphatase (ALP) activity and osteocalcin (OC) production increased significantly in the test group compared with those in the control group at every time point investigated (p<0.05 or p<0.01). Moreover, the osteoblastic differentiation-related genes AKP-2, osteopontin (OPN) and OC were greatly up-regulated in the test group (p<0.05 or p<0.01).
Conclusions
The results implied that surface chemistry played an important role in cell response, and H2O2/HCl etched titanium surface without subsequent heat treatment might improve osseointegration response.
doi:10.12659/MSM.883204
PMCID: PMC3560775  PMID: 22739726
titanium implant; heat treatment; anatase; titanium hydride
15.  Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation 
BMC Oral Health  2011;11:8.
Background
The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown.
Methods
We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy.
Results
Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm). Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth.
Conclusions
Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm formation by the two oral commensal species tested than the other surfaces.
doi:10.1186/1472-6831-11-8
PMCID: PMC3061963  PMID: 21385428
16.  The effect of integrin-specific bioactive coatings on tissue healing and implant osseointegration 
Biomaterials  2008;29(19):2849-2857.
Implant osseointegration, defined as bone apposition and functional fixation, is a requisite for clinical success in orthopaedic and dental applications, many of which are restricted by implant loosening. Modification of implants to present bioactive motifs such as the RGD cell-adhesive sequence from fibronectin (FN) represents a promising approach in regenerative medicine. However, these biomimetic strategies have yielded only marginal enhancements in tissue healing in vivo. In this study, clinical-grade titanium implants were grafted with a non-fouling oligo(ethylene glycol)-substituted polymer coating functionalized with controlled densities of ligands of varying specificity for target integrin receptors. Biomaterials presenting the α5β1-integrin-specific FN fragment FNIII7–10 enhanced osteoblastic differentiation in bone marrow stromal cells compared to unmodified titanium and RGD-presenting surfaces. Importantly, FNIII7–10-functionalized titanium significantly improved functional implant osseointegration compared to RGD-functionalized and unmodified titanium in vivo. This study demonstrates that bioactive coatings that promote integrin binding specificity regulate marrow-derived progenitor osteoblastic differentiation and enhance healing responses and functional integration of biomedical implants. This work identifies an innovative strategy for the rational design of biomaterials for regenerative medicine.
doi:10.1016/j.biomaterials.2008.03.036
PMCID: PMC2397448  PMID: 18406458
17.  Surface Modifications of Dental Ceramic Implants with Different Glass Solder Matrices: In Vitro Analyses with Human Primary Osteoblasts and Epithelial Cells 
BioMed Research International  2014;2014:742180.
Ceramic materials show excellent esthetic behavior, along with an absence of hypersensitivity, making them a possible alternative implant material in dental surgery. However, their surface properties enable only limited osseointegration compared to titanium implants. Within this study, a novel surface coating technique for enhanced osseointegration was investigated biologically and mechanically. Specimens of tetragonal zirconia polycrystal (TZP) and aluminum toughened zirconia (ATZ) were modified with glass solder matrices in two configurations which mainly consisted of SiO2, Al2O3, K2O, and Na2O. The influence on human osteoblastic and epithelial cell viability was examined by means of a WST-1 assay as well as live/dead staining. A C1CP-ELISA was carried out to verify procollagen type I production. Uncoated/sandblasted ceramic specimens and sandblasted titanium surfaces were investigated as a reference. Furthermore, mechanical investigations of bilaterally coated pellets were conducted with respect to surface roughness and adhesive strength of the different coatings. These tests could demonstrate a mechanically stable implant coating with glass solder matrices. The coated ceramic specimens show enhanced osteoblastic and partly epithelial viability and matrix production compared to the titanium control. Hence, the new glass solder matrix coating could improve bone cell growth as a prerequisite for enhanced osseointegration of ceramic implants.
doi:10.1155/2014/742180
PMCID: PMC4177732  PMID: 25295270
18.  Definition, etiology, prevention and treatment of peri-implantitis – a review 
Head & Face Medicine  2014;10:34.
Peri-implant inflammations represent serious diseases after dental implant treatment, which affect both the surrounding hard and soft tissue. Due to prevalence rates up to 56%, peri-implantitis can lead to the loss of the implant without multilateral prevention and therapy concepts. Specific continuous check-ups with evaluation and elimination of risk factors (e.g. smoking, systemic diseases and periodontitis) are effective precautions. In addition to aspects of osseointegration, type and structure of the implant surface are of importance. For the treatment of peri-implant disease various conservative and surgical approaches are available. Mucositis and moderate forms of peri-implantitis can obviously be treated effectively using conservative methods. These include the utilization of different manual ablations, laser-supported systems as well as photodynamic therapy, which may be extended by local or systemic antibiotics. It is possible to regain osseointegration. In cases with advanced peri-implantitis surgical therapies are more effective than conservative approaches. Depending on the configuration of the defects, resective surgery can be carried out for elimination of peri-implant lesions, whereas regenerative therapies may be applicable for defect filling. The cumulative interceptive supportive therapy (CIST) protocol serves as guidance for the treatment of the peri-implantitis. The aim of this review is to provide an overview about current data and to give advices regarding diagnosis, prevention and treatment of peri-implant disease for practitioners.
doi:10.1186/1746-160X-10-34
PMCID: PMC4164121  PMID: 25185675
Peri-implantitis; Peri-implant disease; Review; Periodontal disease; Mucositis; Peri-implantitis therapy; Epidemiology; Etiology
19.  Biological and biomechanical evaluation of interface reaction at conical screw-type implants 
Background
Initial stability of the implant is, in effect, one of the fundamental criteria for obtaining long-term osseointegration. Achieving implant stability depends on the implant-bone relation, the surgical technique and on the microscopic and macroscopic morphology of the implant used. A newly designed parabolic screw-type dental implant system was tested in vivo for early stages of interface reaction at the implant surface.
Methods
A total of 40 implants were placed into the cranial and caudal part of the tibia in eight male Göttinger minipigs. Resonance frequency measurements (RFM) were made on each implant at the time of fixture placement, 7 days and 28 days thereafter in all animals. Block biopsies were harvested 7 and 28 days (four animals each) following surgery. Biomechanical testing, removable torque tests (RTV), resonance frequency analysis; histological and histomorphometric analysis as well as ultrastructural investigations (scanning electron microscopy (SEM)) were performed.
Results
Implant stability in respect to the measured RTV and RFM-levels were found to be high after 7 days of implants osseointegration and remained at this level during the experimented course. Additionally, RFM level demonstrated no alteration towards baseline levels during the osseointegration. No significant increase or decrease in the mean RFM (6029 Hz; 6256 Hz and 5885 Hz after 0-, 7- and 28 days) were observed. The removal torque values show after 7 and 28 days no significant difference. SEM analysis demonstrated a direct bone to implant contact over the whole implant surface. The bone-to-implant contact ratio increased from 35.8 ± 7.2% to 46.3 ± 17.7% over time (p = 0,146).
Conclusion
The results of this study indicate primary stability of implants which osseointegrated with an intimate bone contact over the whole length of the implant.
doi:10.1186/1746-160X-2-5
PMCID: PMC1421389  PMID: 16504052
20.  Strain driven fast osseointegration of implants 
Background
Although the bone's capability of dental implant osseointegration has clinically been utilised as early as in the Gallo-Roman population, the specific mechanisms for the emergence and maintenance of peri-implant bone under functional load have not been identified. Here we show that under immediate loading of specially designed dental implants with masticatory loads, osseointegration is rapidly achieved.
Methods
We examined the bone reaction around non- and immediately loaded dental implants inserted in the mandible of mature minipigs during the presently assumed time for osseointegration. We used threaded conical titanium implants containing a titanium2+ oxide surface, allowing direct bone contact after insertion. The external geometry was designed according to finite element analysis: the calculation showed that physiological amplitudes of strain (500–3,000 ustrain) generated through mastication were homogenously distributed in peri-implant bone. The strain-energy density (SED) rate under assessment of a 1 Hz loading cycle was 150 Jm-3 s-1, peak dislocations were lower then nm.
Results
Bone was in direct contact to the implant surface (bone/implant contact rate 90%) from day one of implant insertion, as quantified by undecalcified histological sections. This effect was substantiated by ultrastructural analysis of intimate osteoblast attachment and mature collagen mineralisation at the titanium surface. We detected no loss in the intimate bone/implant bond during the experimental period of either control or experimental animals, indicating that immediate load had no adverse effect on bone structure in peri-implant bone.
Conclusion
In terms of clinical relevance, the load related bone reaction at the implant interface may in combination with substrate effects be responsible for an immediate osseointegration state.
doi:10.1186/1746-160X-1-6
PMCID: PMC1277014  PMID: 16270927
21.  Nanotechnology and Dental Implants 
The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.
doi:10.1155/2010/915327
PMCID: PMC3021857  PMID: 21253543
22.  Early loading of hydrophilic titanium implants inserted in low-mineralized (D3 and D4) bone: one year results of a prospective clinical trial 
Head & Face Medicine  2013;9:37.
Introduction
Pure titanium is the material of choice for contemporary dental implants. However, superficial reaction of the moderately rough titanium surface with atmospheric components decreases its hydrophilicity. INICELL® represents a chemical alteration and hydrophilization of a moderately rough i. e. sand-blasted and acid-etched titanium surface. The hydrophilicity leads to a more homogenous adsorption of proteins on the implant surface in-vitro, supporting the activation of a higher number of platelets and the generation of a homogenous, complete fibrin matrix in the early phases of osseointegration. This in turn helps to reduce the healing time and enhances the predictability of osseointegration in compromised bony situations.
The objective of this case series trial was therefore to investigate if early loading (after 8 weeks) of hydrophilic INICELL implants is feasible in patients with reduced bone quality.
Methods
In 10 patients, 35 hydrophilic implants were placed in sites revealing bone quality class 3 and 4, and uncovered after 4 weeks. Eight weeks later implants were released for loading if the tactile resistance was ≥35 Ncm. Lower resistances resulted in 12 weeks initial healing period. Insertion torque, ISQ, tactile resistance and vertical bone level were evaluated at implant installation, after 4 weeks (uncovering), 8 or 12 weeks (loading), and 12 weeks and one year after loading.
Results
Mean implant insertion torque was 21 Ncm. 31 (88.6%) showed a tactile resistance of >35 Ncm after eight weeks and were released for prosthetic loading. Eight weeks after insertion, one implant (2.9%) had to be removed following a soft tissue complication. One implant had to be removed after 4 weeks due to a technical complication (fractured Osstell-abutment), it was therefore excluded from the analysis.
33 of 34 implants (97%) were loaded to occlusion and were in situ/functional one year after implantation. ISQs increased from 43 at baseline to 63 at eight weeks, and 72 at three months after loading. Then, ISQ remained constant until one year after loading.
Conclusions
Within the limitations of this prospective case series, hydrophilic implants may allow for shortening of the initial healing period even in bone with compromised density.
doi:10.1186/1746-160X-9-37
PMCID: PMC3866303  PMID: 24321192
Titanium implants; Hydrophilic surface; Healing time; Bone quality; Weak bone
23.  The Roles of Titanium Surface Micro/Nanotopography and Wettability on the Differential Response of Human Osteoblast Lineage Cells 
Acta biomaterialia  2012;9(4):6268-6277.
Surface micro and nanostructural modifications of dental and orthopaedic implants have shown promising in vitro, in vivo, and clinical results. Surface wettability has also been suggested to play an important role in osteoblast differentiation and osseointegration. However, the available techniques to measure surface wettability are not reliable on clinically-relevant, rough surfaces. Furthermore, how the differentiation state of osteoblast lineage cells impacts their response to micro/nanostructured surfaces, and the role of wettability on this response, remains unclear. In the current study, surface wettability analyses (optical sessile drop analysis, ESEM analysis, and the Wilhelmy technique) indicated hydrophobic static responses for deposited water droplets on microrough and micro/nanostructured specimens, while hydrophilic responses were observed with dynamic analyses of micro/nanostructured specimens. The maturation and local factor production of human immature osteoblast-like MG63 cells was synergistically influenced by nanostructures superimposed onto microrough titanium (Ti) surfaces. In contrast, human mesenchymal stem cells (MSCs) cultured on micro/nanostructured surfaces in the absence of exogenous soluble factors, exhibited less robust osteoblastic differentiation and local factor production compared to cultures on unmodified microroughened Ti. Our results support previous observations using Ti6Al4V surfaces showing that recognition of surface nanostructures and subsequent cell response is dependent on the differentiation state of osteoblast lineage cells. The results also indicate that this effect may be partly modulated by surface wettability. These findings support the conclusion that the successful osseointegration of an implant depends on contributions from osteoblast lineage cells at different stages of osteoblast commitment.
doi:10.1016/j.actbio.2012.12.002
PMCID: PMC3618468  PMID: 23232211
commercially pure grade 2 titanium implants; osseointegration; bone; nanostructures; mesenchymal stem cell differentiation; dynamic contact angle
24.  Early bone growth on the surface of titanium implants in rat femur is enhanced by an amorphous diamond coating 
Acta Orthopaedica  2011;82(4):499-503.
Background and purpose
Amorphous diamond (AD) is a durable and compatible biomaterial for joint prostheses. Knowledge regarding bone growth on AD-coated implants and their early-stage osseointegration is poor. We investigated bone growth on AD-coated cementless intramedullary implants implanted in rats. Titanium was chosen as a reference due to its well-known performance.
Materials and methods
We placed AD-coated and non-coated titanium implants (Ra ≈ 0.2 μm) into the femoral bone marrow of 25 rats. The animals were divided in 2 groups according to implant coating and they were killed after 4 or 12 weeks. The osseointegration of the implants was examined from hard tissue specimens by measuring the new bone formation on their surface.
Results
4 weeks after the operation, the thickness of new bone in the AD-coated group was greater than that in the non-coated group (15.3 (SD 7.1) μm vs. 7.6 (SD 6.0) μm). 12 weeks after the operation, the thickness of new bone was similar in the non-coated group and in the AD-coated group.
Interpretation
We conclude that AD coating of femoral implants can enhance bone ongrowth in rats in the acute, early stage after the operation and might be an improvement over earlier coatings.
doi:10.3109/17453674.2011.579522
PMCID: PMC3237044  PMID: 21504369
25.  Determination of the Dynamics of Healing at the Tissue-Implant Interface by Means of Microcomputed Tomography and Functional Apparent Moduli 
Purpose
It is currently a challenge to determine the biomechanical properties of the hard tissue–dental implant interface. Recent advances in intraoral imaging and tomographic methods, such as microcomputed tomography (micro-CT), provide three-dimensional details, offering significant potential to evaluate the bone-implant interface, but yield limited information regarding osseointegration because of physical scattering effects emanating from metallic implant surfaces. In the present study, it was hypothesized that functional apparent moduli (FAM), generated from functional incorporation of the peri-implant structure, would eliminate the radiographic artifact–affected layer and serve as a feasible means to evaluate the biomechanical dynamics of tissue-implant integration in vivo.
Materials and Methods
Cylindric titanium mini-implants were placed in osteotomies and osteotomies with defects in rodent maxillae. The layers affected by radiographic artifacts were identified, and the pattern of tissue-implant integration was evaluated from histology and micro-CT images over a 21-day observation period. Analyses of structural information, FAM, and the relationship between FAM and interfacial stiffness (IS) were done before and after eliminating artifacts.
Results
Physical artifacts were present within a zone of about 100 to 150 μm around the implant in both experimental defect situations (osteotomy alone and osteotomy + defect). All correlations were evaluated before and after eliminating the artifact-affected layers, most notably during the maturation period of osseointegration. A strong correlation existed between functional bone apparent modulus and IS within 300 μm at the osteotomy defects (r > 0.9) and functional composite tissue apparent modulus in the osteotomy defects (r > 0.75).
Conclusion
Micro-CT imaging and FAM were of value in measuring the temporal process of tissue-implant integration in vivo. This approach will be useful to complement imaging technologies for longitudinal monitoring of osseointegration.
PMCID: PMC4111564  PMID: 23377049
biomechanics; dental implants; finite element analysis; microcomputed tomography

Results 1-25 (1156089)