Search tips
Search criteria

Results 1-25 (996952)

Clipboard (0)

Related Articles

1.  Current Status of the Congenital Myasthenic Syndromes 
Neuromuscular Disorders  2011;22(2):99-111.
Congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. Clinical, electrophysiologic, and morphologic studies have paved the way for detecting CMS-related mutations in proteins residing in the nerve terminal, the synaptic basal lamina, and in the postsynaptic region of the motor endplate. The disease proteins identified to date include choline acetyltransferase (ChAT), the endplate species of acetylcholinesterase (AChE), β2-laminin, the acetylcholine receptor (AChR), rapsyn, plectin, Nav1.4, the muscle specific protein kinase (MuSK), agrin, downstream of tyrosine kinase 7 (Dok-7), and glutamine-fructose-6-phosphate transaminase 1 (GFPT1). Myasthenic syndromes associated with centronuclear myopathies were recently recognized. Analysis of properties of expressed mutant proteins contributed to finding improved therapy for most CMS. Despite these advances, the molecular basis of some phenotypically characterized CMS remains elusive. Moreover, other types of CMS and disease genes likely exist and await discovery.
PMCID: PMC3269564  PMID: 22104196
Congenital myasthenic syndrome; neuromuscular junction; EMG; choline acetyltransferase; ColQ; β2-laminin; acetylcholine receptor; rapsyn; agrin; MuSK; Dok-7; GFPT1; plectin; fetal akinesia syndrome
2.  Anti-MuSK autoantibodies block binding of collagen Q to MuSK 
Neurology  2011;77(20):1819-1826.
Muscle-specific receptor tyrosine kinase (MuSK) antibody-positive myasthenia gravis (MG) accounts for 5%–15% of autoimmune MG. MuSK mediates the agrin-signaling pathway and also anchors the collagenic tail subunit (ColQ) of acetylcholinesterase (AChE). The exact molecular target of MuSK–immunoglobulin G (IgG), however, remains elusive. As acetylcholine receptor (AChR) deficiency is typically mild and as cholinesterase inhibitors are generally ineffective, we asked if MuSK-IgG interferes with binding of ColQ to MuSK.
We used 3 assays: in vitro overlay of the human ColQ-tailed AChE to muscle sections of Colq−/− mice; in vitro plate-binding assay to quantitate binding of MuSK to ColQ and to LRP4; and passive transfer of MuSK-IgG to mice.
The in vitro overlay assay revealed that MuSK-IgG blocks binding of ColQ to the neuromuscular junction. The in vitro plate-binding assay showed that MuSK-IgG exerts a dose-dependent block of MuSK binding to ColQ by but not to LRP4. Passive transfer of MuSK-IgG to mice reduced the size and density of ColQ to ∼10% of controls and had a lesser effect on the size and density of AChR and MuSK.
As lack of ColQ compromises agrin-mediated AChR clustering in Colq−/− mice, a similar mechanism may lead to AChR deficiency in MuSK-MG patients. Our experiments also predict partial AChE deficiency in MuSK-MG patients, but AChE is not reduced in biopsied NMJs. In humans, binding of ColQ to MuSK may be dispensable for clustering ColQ, but is required for facilitating AChR clustering. Further studies will be required to elucidate the basis of this paradox.
PMCID: PMC3233209  PMID: 22013178
3.  What Have We Learned from the Congenital Myasthenic Syndromes 
The congenital myasthenic syndromes have now been traced to an array of molecular targets at the neuromuscular junction encoded by no fewer than 11 disease genes. The disease genes were identified by the candidate gene approach, using clues derived from clinical, electrophysiological, cytochemical, and ultrastructural features. For example, electrophysiologic studies in patients suffering from sudden episodes of apnea pointed to a defect in acetylcholine resynthesis and CHAT as the candidate gene (Ohno et al., Proc Natl Acad Sci USA 98:2017–2022–2001); refractoriness to anticholinesterase medications and partial or complete absence of acetylcholinesterase (AChE) from the endplates (EPs) has pointed to one of the two genes (COLQ and ACHET) encoding AChE, though mutations were observed only in COLQ. After a series of patients carrying mutations in a disease gene have been identified, the emerging genotype–phenotype correlations provided clues for targeted mutation analysis in other patients. Mutations in EP-specific proteins also prompted expression studies that proved pathogenicity, highlighted important functional domains of the abnormal proteins, and pointed to rational therapy.
PMCID: PMC3050586  PMID: 19688192
Congenital myasthenic syndromes; Acetylcholine esterase; Choline acetyltransferase; Acetylcholine receptor; Dok-7
4.  Genetic Analysis of Collagen Q: Roles in Acetylcholinesterase and Butyrylcholinesterase Assembly and in Synaptic Structure and Function  
The Journal of Cell Biology  1999;144(6):1349-1360.
Acetylcholinesterase (AChE) occurs in both asymmetric forms, covalently associated with a collagenous subunit called Q (ColQ), and globular forms that may be either soluble or membrane associated. At the skeletal neuromuscular junction, asymmetric AChE is anchored to the basal lamina of the synaptic cleft, where it hydrolyzes acetylcholine to terminate synaptic transmission. AChE has also been hypothesized to play developmental roles in the nervous system, and ColQ is also expressed in some AChE-poor tissues. To seek roles of ColQ and AChE at synapses and elsewhere, we generated ColQ-deficient mutant mice. ColQ−/− mice completely lacked asymmetric AChE in skeletal and cardiac muscles and brain; they also lacked asymmetric forms of the AChE homologue, butyrylcholinesterase. Thus, products of the ColQ gene are required for assembly of all detectable asymmetric AChE and butyrylcholinesterase. Surprisingly, globular AChE tetramers were also absent from neonatal ColQ−/− muscles, suggesting a role for the ColQ gene in assembly or stabilization of AChE forms that do not themselves contain a collagenous subunit. Histochemical, immunohistochemical, toxicological, and electrophysiological assays all indicated absence of AChE at ColQ−/− neuromuscular junctions. Nonetheless, neuromuscular function was initially robust, demonstrating that AChE and ColQ do not play obligatory roles in early phases of synaptogenesis. Moreover, because acute inhibition of synaptic AChE is fatal to normal animals, there must be compensatory mechanisms in the mutant that allow the synapse to function in the chronic absence of AChE. One structural mechanism appears to be a partial ensheathment of nerve terminals by Schwann cells. Compensation was incomplete, however, as animals lacking ColQ and synaptic AChE failed to thrive and most died before they reached maturity.
PMCID: PMC2150590  PMID: 10087275
acetylcholine; acetylcholinesterase; butyrylcholinesterase; collagen; neuromuscular junction
5.  Mutations in MUSK causing congenital myasthenic syndrome impair MuSK–Dok-7 interaction 
Human Molecular Genetics  2010;19(12):2370-2379.
We describe a severe congenital myasthenic syndrome (CMS) caused by two missense mutations in the gene encoding the muscle specific receptor tyrosine kinase (MUSK). The identified MUSK mutations M605I and A727V are both located in the kinase domain of MuSK. Intracellular microelectrode recordings and microscopy studies of the neuromuscular junction conducted in an anconeus muscle biopsy revealed decreased miniature endplate potential amplitudes, reduced endplate size and simplification of secondary synaptic folds, which were consistent with postsynaptic deficit. The study also showed a striking reduction of the endplate potential quantal content, consistent with additional presynaptic failure. Expression studies in MuSK deficient myotubes revealed that A727V, which is located within the catalytic loop of the enzyme, caused severe impairment of agrin-dependent MuSK phosphorylation, aggregation of acetylcholine receptors (AChRs) and interaction of MuSK with Dok-7, an essential intracellular binding protein of MuSK. In contrast, M605I, resulted in only moderate impairment of agrin-dependent MuSK phosphorylation, aggregation of AChRs and interaction of MuSK with Dok-7. There was no impairment of interaction of mutants with either the low-density lipoprotein receptor-related protein, Lrp4 (a co-receptor of agrin) or with the mammalian homolog of the Drosophila tumorous imaginal discs (Tid1). Our findings demonstrate that missense mutations in MUSK can result in a severe form of CMS and indicate that the inability of MuSK mutants to interact with Dok-7, but not with Lrp4 or Tid1, is a major determinant of the pathogenesis of the CMS caused by MUSK mutations.
PMCID: PMC2876883  PMID: 20371544
6.  The Association of Tetrameric Acetylcholinesterase with ColQ Tail: A Block Normal Mode Analysis 
PLoS Computational Biology  2005;1(6):e62.
Acetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine in the neuromuscular junctions and other cholinergic synapses to terminate the neuronal signal. In physiological conditions, AChE exists as tetramers associated with the proline-rich attachment domain (PRAD) of either collagen-like Q subunit (ColQ) or proline-rich membrane-anchoring protein. Crystallographic studies have revealed that different tetramer forms may be present, and it is not clear whether one or both are relevant under physiological conditions. Recently, the crystal structure of the tryptophan amphiphilic tetramerization (WAT) domain of AChE associated with PRAD ([WAT]4PRAD), which mimics the interface between ColQ and AChE tetramer, became available. In this study we built a complete tetrameric mouse [AChET]4–ColQ atomic structure model, based on the crystal structure of the [WAT]4PRAD complex. The structure was optimized using energy minimization. Block normal mode analysis was done to investigate the low-frequency motions of the complex and to correlate the structure model with the two known crystal structures of AChE tetramer. Significant low-frequency motions among the catalytic domains of the four AChE subunits were observed, while the [WAT]4PRAD part held the complex together. Normal mode involvement analysis revealed that the two lowest frequency modes were primarily involved in the conformational changes leading to the two crystal structures. The first 30 normal modes can account for more than 75% of the conformational changes in both cases. The evidence further supports the idea of a flexible tetramer model for AChE. This model can be used to study the implications of the association of AChE with ColQ.
Acetylcholinesterase (AChE) breaks down acetylcholine in the neuromuscular junction and other cholinergic synapses to terminate neuronal signals. AChE exists as tetramers anchored by structural subunits to the cell membranes in the brain or the basal lamina in the neuromuscular junction. Based on a crystal structure of the tetramerization domain of AChE with a proline-rich attachment domain of the anchoring proteins, a symmetric model of the complex of AChE tetramer with the anchoring protein tail was constructed. Block normal mode analysis revealed the presence of several low-frequency, low-barrier normal modes corresponding to inter-subunit motions. Previous crystal structures of AChE tetramer could be rationalized using these normal modes. These low-frequency modes are due to the presence of a flexible hinge in the structure of AChE. This study paints a picture of a flexible AChE tetramer with different conformational states interconverting easily under physiological conditions, which has important implications on the function of AChE. In particular, AChE is not trapped in the compact tetramer structure, for which access of substrate to two of the active sites is somewhat limited. Rather, the tetramer fluctuates to expose all four of its active sites to ensure rapid removal of acetylcholine.
PMCID: PMC1285061  PMID: 16299589
7.  MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction 
The Journal of Cell Biology  2004;165(4):505-515.
At the neuromuscular junction, acetylcholinesterase (AChE) is mainly present as asymmetric forms in which tetramers of catalytic subunits are associated to a specific collagen, collagen Q (ColQ). The accumulation of the enzyme in the synaptic basal lamina strictly relies on ColQ. This has been shown to be mediated by interaction between ColQ and perlecan, which itself binds dystroglycan. Here, using transfected mutants of ColQ in a ColQ-deficient muscle cell line or COS-7 cells, we report that ColQ clusterizes through a more complex mechanism. This process requires two heparin-binding sites contained in the collagen domain as well as the COOH terminus of ColQ. Cross-linking and immunoprecipitation experiments in Torpedo postsynaptic membranes together with transfection experiments with muscle-specific kinase (MuSK) constructs in MuSK-deficient myotubes or COS-7 cells provide the first evidence that ColQ binds MuSK. Together, our data suggest that a ternary complex containing ColQ, perlecan, and MuSK is required for AChE clustering and support the notion that MuSK dictates AChE synaptic localization at the neuromuscular junction.
PMCID: PMC2172359  PMID: 15159418
synapse; cholinergic transmission; perlecan; ColQ; heparin-binding sites
8.  Dok-7/MuSK signaling and a congenital myasthenic syndrome 
Acta Myologica  2008;27(1):25-29.
Skeletal muscle contraction is controlled by motor neurons, which contact the muscle at the neuromuscular junction (NMJ). The formation and maintenance of the NMJ, which includes the aggregation of densely packed clusters of acetylcholine receptor (AChR) opposite the motor nerve terminal, is orchestrated by muscle-specific receptor tyrosine kinase, MuSK. Recently, a MuSK-interacting cytoplasmic adaptor-like protein Dok-7 was identified and its localization at the postsynaptic region of the NMJ was revealed. Mice lacking Dok-7 have a phenotype indistinguishable from MuSK-deficient mice, and fail to form both AChR clusters and NMJs. In cultured myotubes, Dok-7 is required for MuSK activation and AChR clustering. Thus, Dok-7 is essential for neuromuscular synaptogenesis and it appears that the regulatory interaction of Dok-7 with MuSK is integrally involved in this process. In humans there are both autoimmune and genetic causes of defective neuromuscular transmission that gives rise to the fatigable muscle weakness known as myasthenia. DOK7 has been found to be a major locus for mutations that underlie a genetic form of myasthenia with a characteristic ‘limb girdle’ pattern of muscle weakness (DOK7 CMS). Patients with DOK7 CMS have small, simplified NMJs but normal AChR function. The most common mutation causes a COOH-terminal truncation, which greatly impairs Dok-7’s ability to activate MuSK. Recently, a series of differing DOK7 mutations have been identified, which affect not only the COOH-terminal region but also the NH2-terminal moiety. The study of these mutations may help understand the underlying pathogenic mechanism of DOK7 CMS.
PMCID: PMC2859609  PMID: 19108574
DOK7 congenital myasthenic syndrome; neuromuscular junction; protein tyrosine kinase; Dok-7; MuSK
9.  Acetylcholine receptor δ subunit mutations underlie a fast-channel myasthenic syndrome and arthrogryposis multiplex congenita 
Journal of Clinical Investigation  2001;108(1):125-130.
Limitation of movement during fetal development may lead to multiple joint contractures in the neonate, termed arthrogryposis multiplex congenita. Neuromuscular disorders are among the many different causes of reduced fetal movement. Many congenital myasthenic syndromes (CMSs) are due to mutations of the adult-specific ε subunit of the acetylcholine receptor (AChR), and, thus, functional deficits do not arise until late in gestation. However, an earlier effect on the fetus might be predicted with some defects of other AChR subunits. We studied a child who presented at birth with joint contractures and was subsequently found to have a CMS. Mutational screening revealed heteroallelic mutation within the AChR δ subunit gene, δ756ins2 and δE59K. Expression studies demonstrate that δ756ins2 is a null mutation. By contrast, both fetal and adult AChR containing δE59K have shorter than normal channel activations that predict fast decay of endplate currents. Thus, δE59K causes dysfunction of fetal as well as the adult AChR and would explain the presence of joint contractures on the basis of reduced fetal movement. This is the first report of the association of AChR gene mutations with arthrogryposis multiplex congenita. It is probable that mutations that severely disrupt function of fetal AChR will underlie additional cases.
PMCID: PMC209343  PMID: 11435464
10.  Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse 
Molecular Vision  2014;20:1328-1356.
The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer’s disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse.
To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes.
In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype transcripts in the α7 nAChR KO mice. However, the retinal layers showed complex patterns of transcript expression. In the ganglion cell layer (GCL), m2 and m4 mAChR subtype transcripts were significantly upregulated, while β3 and β4 nAChR subunit transcripts were significantly downregulated. In the inner portion of the inner nuclear layer (iINL), α2, α9, β4, nAChR subunit, and m3 and m4 mAChR subtype transcripts were significantly downregulated. In the outer portion of the inner nuclear layer (oINL), β2, β4, and m4 AChR subunit transcripts were significantly upregulated. Western blot experiments confirmed the protein expression of α3–α5 and α9-containing nAChR subunits and m1–m2 mAChR subtypes in mouse retinas. IHC results supported many of the mRNA changes observed. Finally, this is the first report of α9 and α10 nAChR subunit expressions in the retina of any species.
Rather than a simple upregulation of a single AChR subunit or subtype, the absence of the α7 nAChR in the KO mice was associated with complex layer-specific changes in the expression of AChR subunits and subtypes.
PMCID: PMC4169779  PMID: 25352741
11.  Highly fatal fast-channel syndrome caused by AChR ɛ subunit mutation at the agonist binding site 
Neurology  2012;79(5):449-454.
To characterize the molecular basis of a novel fast-channel congenital myasthenic syndrome.
We used the candidate gene approach to identify the pathogenic mutation in the acetylcholine receptor (AChR) ɛ subunit, genetically engineered the mutant AChR into HEK cells, and evaluated the level of expression and kinetic properties of the mutant receptor.
An 8-year-old boy born to consanguineous parents had severe myasthenic symptoms since birth. He is wheelchair bound and pyridostigmine therapy enables him to take only a few steps. Three similarly affected siblings died in infancy. He carries a homozygous p.W55R mutation at the α/ɛ subunit interface of the AChR agonist binding site. The mutant protein expresses well in HEK cells. Patch-clamp analysis of the mutant receptor expressed in HEK cells reveals 30-fold reduced apparent agonist affinity, 75-fold reduced apparent gating efficiency, and strikingly attenuated channel opening probability (Popen) over a range agonist concentrations.
Introduction of a cationic Arg into the anionic environment of α/ɛ AChR binding site hinders stabilization of cationic ACh by aromatic residues and accounts for the markedly perturbed kinetic properties of the receptor. The very low Popen explains the poor response to pyridostigmine and the high fatality of the disease.
PMCID: PMC3405251  PMID: 22592360
Muscle & nerve  2011;44(5):789-794.
Congenital myasthenic syndromes (CMS) are disabling but treatable disorders. Anticholinesterase therapy is effective in most, but is contraindicated in endplate (EP) acetylcholinesterase (AChE) deficiency, the slow-channel syndrome, Dok-7 myasthenia, β2-laminin deficiency, and is not useful in CMS due to defects in MuSK, agrin, and plectin. EP AChE, Dok-7 and β2-laminin deficiencies respond favorably to ephedrine but ephedrine can no longer be prescribed in the US.
We used albuterol, another sympathomimetic agent, to treat three patients with EP AChE deficiency and 15 with Dok-7 myasthenia. Response to therapy was evaluated by a 9-point questionnaire pertaining to activities of daily life.
Comparison of the pre- and post-treatment responses indicated a beneficial response to albuterol (p values <0.001) in both patient groups. The adverse effects of therapy were like those of ephedrine.
Our observations should spur controlled prospective clinical trials of albuterol in these as well as other CMS.
PMCID: PMC3196786  PMID: 21952943
Congenital myasthenic syndrome; Dok-7 myasthenia; Endplate AChE deficiency; Albuterol
13.  IgG1 antibodies to acetylcholine receptors in ‘seronegative’ myasthenia gravis† 
Brain  2008;131(7):1940-1952.
Only around 80% of patients with generalized myasthenia gravis (MG) have serum antibodies to acetylcholine receptor [AChR; acetylcholine receptor antibody positive myasthenia gravis (AChR-MG)] by the radioimmunoprecipitation assay used worldwide. Antibodies to muscle specific kinase [MuSK; MuSK antibody positive myasthenia gravis (MuSK-MG)] make up a variable proportion of the remaining 20%. The patients with neither AChR nor MuSK antibodies are often called seronegative (seronegative MG, SNMG). There is accumulating evidence that SNMG patients are similar to AChR-MG in clinical features and thymic pathology. We hypothesized that SNMG patients have low-affinity antibodies to AChR that cannot be detected in solution phase assays, but would be detected by binding to the AChRs on the cell membrane, particularly if they were clustered at the high density that is found at the neuromuscular junction. We expressed recombinant AChR subunits with the clustering protein, rapsyn, in human embryonic kidney cells and tested for binding of antibodies by immunofluorescence. To identify AChRs, we tagged either AChR or rapsyn with enhanced green fluorescence protein, and visualized human antibodies with Alexa Fluor-labelled secondary or tertiary antibodies, or by fluorescence-activated cell sorter (FACS). We correlated the results with the thymic pathology where available. We detected AChR antibodies to rapsyn-clustered AChR in 66% (25/38) of sera previously negative for binding to AChR in solution and confirmed the results with FACS. The antibodies were mainly IgG1 subclass and showed ability to activate complement. In addition, there was a correlation between serum binding to clustered AChR and complement deposition on myoid cells in patients’ thymus tissue. A similar approach was used to demonstrate that MuSK antibodies, although mainly IgG4, were partially IgG1 subclass and capable of activating complement when bound to MuSK on the cell surface. These observations throw new light on different forms of MG paving the way for improved diagnosis and management, and the approaches used have applicability to other antibody-mediated conditions.
PMCID: PMC2442426  PMID: 18515870
myasthenia gravis; seronegative MG; AChR antibodies; IgG subclasses; complement activation
14.  Myasthenic syndrome due to defects in rapsyn 
Neurology  2009;73(3):228-235.
Pathogenic mutations in rapsyn result in endplate acetylcholine receptor (AChR) deficiency and are a common cause of postsynaptic congenital myasthenic syndromes.
Clinical, electrophysiologic, pathologic, and molecular studies were done in 39 patients.
In all but one patient, the disease presented in the first 2 years of life. In 9 patients, the myasthenic symptoms included constant or episodic ophthalmoparesis, and 1 patient had a pure limb-girdle phenotype. More than one-half of the patients experienced intermittent exacerbations. Long-term follow-up was available in 25 patients after start of cholinergic therapy: 21 became stable or were improved and 2 of these became asymptomatic; 3 had a progressive course; and 1 died in infancy. In 7 patients who had endplate studies, the average counts of AChR per endplate and the synaptic response to ACh were less reduced than in patients harboring low AChR expressor mutations. Eight patients were homozygous and 23 heterozygous for the common p.N88K mutation. Six mutations, comprising 3 missense mutations, an in-frame deletion, a splice-site mutation, and a nonsense mutation, are novel. Homozygosity for p.N88K was associated with varying grades of severity. No genotype-phenotype correlations were observed except in 8 Near-Eastern patients homozygous for the promoter mutation (c.-38A>G), who had a mild course.
All but 1 patient presented early in life and most responded to cholinergic agonists. With early diagnosis and therapy, rapsyn deficiency has a benign course in most patients. There was no consistent phenotype-genotype correlation except for an E-box mutation associated with jaw deformities.
= 3,4-diaminopyridine;
= α-bungarotoxin;
= acetylcholine receptor;
= compound muscle action potential;
= congenital myasthenic syndrome;
= endplate;
= miniature endplate currents;
= miniature endplate potentials;
= tetratricopeptide.
PMCID: PMC2715575  PMID: 19620612
15.  Myasthenic syndrome AChRα C-loop mutant disrupts initiation of channel gating 
The Journal of Clinical Investigation  2012;122(7):2613-2621.
Congenital myasthenic syndromes (CMSs) are neuromuscular disorders that can be caused by defects in ace­tylcholine receptor (AChR) function. Disease-associated point mutants can reveal the unsuspected functional significance of mutated residues. We identified two pathogenic mutations in the extracellular domain of the AChR α subunit (AChRα) in a patient with myasthenic symptoms since birth: a V188M mutation in the C-loop and a heteroallelic G74C mutation in the main immunogenic region. The G74C mutation markedly reduced surface AChR expression in cultured cells, whereas the V188M mutant was expressed robustly but had severely impaired kinetics. Single-channel patch-clamp analysis indicated that V188M markedly decreased the apparent AChR channel opening rate and gating efficiency. Mutant cycle analysis of energetic coupling among conserved residues within or dispersed around the AChRα C-loop revealed that V188 is functionally linked to Y190 in the C-loop and to D200 in β-strand 10, which connects to the M1 transmembrane domain. Furthermore, V188M weakens inter-residue coupling of K145 in β-strand 7 with Y190 and with D200. Cumulatively, these results indicate that V188 of AChRα is part of an interdependent tetrad that contributes to rearrangement of the C-loop during the initial coupling of agonist binding to channel gating.
PMCID: PMC3386830  PMID: 22728938
16.  Decremental Response to High-Frequency Trains of Acetylcholine Pulses but Unaltered Fractional Ca2+ Currents in a Panel of “Slow-Channel Syndrome” Nicotinic Receptor Mutants 
The Journal of General Physiology  2009;133(2):151-169.
The slow-channel congenital myasthenic syndrome (SCCMS) is a disorder of the neuromuscular junction caused by gain-of-function mutations to the muscle nicotinic acetylcholine (ACh) receptor (AChR). Although it is clear that the slower deactivation time course of the ACh-elicited currents plays a central role in the etiology of this disease, it has been suggested that other abnormal properties of these mutant receptors may also be critical in this respect. We characterized the kinetics of a panel of five SCCMS AChRs (αS269I, βV266M, εL221F, εT264P, and εL269F) at the ensemble level in rapidly perfused outside-out patches. We found that, for all of these mutants, the peak-current amplitude decreases along trains of nearly saturating ACh pulses delivered at physiologically relevant frequencies in a manner that is consistent with enhanced entry into desensitization during the prolonged deactivation phase. This suggests that the increasingly reduced availability of activatable AChRs upon repetitive stimulation may well contribute to the fatigability and weakness of skeletal muscle that characterize this disease. Also, these results emphasize the importance of explicitly accounting for entry into desensitization as one of the pathways for burst termination, if meaningful mechanistic insight is to be inferred from the study of the effect of these naturally occurring mutations on channel function. Applying a novel single-channel–based approach to estimate the contribution of Ca2+ to the total cation currents, we also found that none of these mutants affects the Ca2+-conduction properties of the AChR to an extent that seems to be of physiological importance. Our estimate of the Ca2+-carried component of the total (inward) conductance of wild-type and SCCMS AChRs in the presence of 150 mM Na+, 1.8 mM Ca2+, and 1.7 mM Mg2+ on the extracellular side of cell-attached patches turned out be in the 5.0–9.4 pS range, representing a fractional Ca2+ current of ∼14%, on average. Remarkably, these values are nearly identical to those we estimated for the NR1-NR2A N-methyl-d-aspartate receptor (NMDAR), which has generally been considered to be the main neurotransmitter-gated pathway of Ca2+ entry into the cell. Our estimate of the rat NMDAR Ca2+ conductance (using the same single-channel approach as for the AChR but in the nominal absence of extracellular Mg2+) was 7.9 pS, corresponding to a fractional Ca2+ current of 13%.
PMCID: PMC2638206  PMID: 19171769
17.  Mutation causing congenital myasthenia reveals acetylcholine receptor β/δ subunit interaction essential for assembly 
Journal of Clinical Investigation  1999;104(10):1403-1410.
We describe a severe postsynaptic congenital myasthenic syndrome with marked endplate acetylcholine receptor (AChR) deficiency caused by 2 heteroallelic mutations in the β subunit gene. One mutation causes skipping of exon 8, truncating the β subunit before its M1 transmembrane domain, and abolishing surface expression of pentameric AChR. The other mutation, a 3-codon deletion (β426delEQE) in the long cytoplasmic loop between the M3 and M4 domains, curtails but does not abolish expression. By coexpressing β426delEQE with combinations of wild-type subunits in 293 HEK cells, we demonstrate that β426delEQE impairs AChR assembly by disrupting a specific interaction between β and δ subunits. Studies with related deletion and missense mutants indicate that secondary structure in this region of the β subunit is crucial for interaction with the δ subunit. The findings imply that the mutated residues are positioned at the interface between β and δ subunits and demonstrate contribution of this local region of the long cytoplasmic loop to AChR assembly.
J. Clin. Invest. 104:1403–1410 (1999).
PMCID: PMC409847  PMID: 10562302
18.  Naturally Occurring Mutations at the Acetylcholine Receptor Binding Site Independently Alter ACh Binding and Channel Gating 
The Journal of General Physiology  2002;120(4):483-496.
By defining functional defects in a congenital myasthenic syndrome (CMS), we show that two mutant residues, located in a binding site region of the acetylcholine receptor (AChR) epsilon subunit, exert opposite effects on ACh binding and suppress channel gating. Single channel kinetic analysis reveals that the first mutation, ɛN182Y, increases ACh affinity for receptors in the resting closed state, which promotes sequential occupancy of the binding sites and discloses rate constants for ACh occupancy of the nonmutant αδ site. Studies of the analogous mutation in the δ subunit, δN187Y, disclose rate constants for ACh occupancy of the nonmutant αɛ site. The second CMS mutation, ɛD175N, reduces ACh affinity for receptors in the resting closed state; occupancy of the mutant site still promotes gating because a large difference in affinity is maintained between closed and open states. ɛD175N impairs overall gating, however, through an effect independent of ACh occupancy. When mapped on a structural model of the AChR binding site, ɛN182Y localizes to the interface with the α subunit, and ɛD175 to the entrance of the ACh binding cavity. Both ɛN182Y and ɛD175 show state specificity in affecting closed relative to desensitized state affinities, suggesting that the protein chain harboring ɛN182 and ɛD175 rearranges in the course of receptor desensitization. The overall results show that key residues at the ACh binding site differentially stabilize the agonist bound to closed, open and desensitized states, and provide a set point for gating of the channel.
PMCID: PMC2229537  PMID: 12356851
congenital myasthenic syndrome; single channel kinetics; agonist binding; channel gating; mutation analysis
19.  Fundamental Gating Mechanism of Nicotinic Receptor Channel Revealed by Mutation Causing a Congenital Myasthenic Syndrome 
The Journal of General Physiology  2000;116(3):449-462.
We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation εA411P in the amphipathic helix of the acetylcholine receptor (AChR) ε subunit. Myasthenic patients from three unrelated families are either homozygous for εA411P or are heterozygous and harbor a null mutation in the second ε allele, indicating that εA411P is recessive. We expressed human AChRs containing wild-type or A411P ε subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by εA411P. Prolines engineered into positions flanking residue 411 of the ε subunit greatly increase the range of activation kinetics similar to εA411P, whereas prolines engineered into positions equivalent to εA411 in β and δ subunits are without effect. Thus, the amphipathic helix of the ε subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.
PMCID: PMC2233692  PMID: 10962020
congenital myasthenic syndrome; single channel kinetics; hidden Markov modeling; channel gating; energy landscape
20.  Mutation in the M1 Domain of the Acetylcholine Receptor α Subunit Decreases the Rate of Agonist Dissociation  
The Journal of General Physiology  1997;109(6):757-766.
We describe the kinetic consequences of the mutation N217K in the M1 domain of the acetylcholine receptor (AChR) α subunit that causes a slow channel congenital myasthenic syndrome (SCCMS). We previously showed that receptors containing αN217K expressed in 293 HEK cells open in prolonged activation episodes strikingly similar to those observed at the SCCMS end plates. Here we use single channel kinetic analysis to show that the prolonged activation episodes result primarily from slowing of the rate of acetylcholine (ACh) dissociation from the binding site. Rate constants for channel opening and closing are also slowed but to much smaller extents. The rate constants derived from kinetic analysis also describe the concentration dependence of receptor activation, revealing a 20-fold shift in the EC50 to lower agonist concentrations for αN217K. The apparent affinity of ACh binding, measured by competition against the rate of 125I-α-bungarotoxin binding, is also enhanced 20-fold by αN217K. Both the slowing of ACh dissociation and enhanced apparent affinity are specific to the lysine substitution, as the glutamine and glutamate substitutions have no effect. Substituting lysine for the equivalent asparagine in the β, ε, or δ subunits does not affect the kinetics of receptor activation or apparent agonist affinity. The results show that a mutation in the amino-terminal portion of the M1 domain produces a localized perturbation that stabilizes agonist bound to the resting state of the AChR.
PMCID: PMC2217038  PMID: 9222901
single channel kinetics; acetylcholine binding site
21.  AChR deficiency due to ε-subunit mutations: two common mutations in the Netherlands 
Journal of Neurology  2009;256(10):1719-1723.
Congenital myasthenic syndromes are a clinically and genetically heterogeneous group of hereditary disorders affecting neuromuscular transmission. We have identified mutations within the acetylcholine receptor (AChR) ε-subunit gene underlying congenital myasthenic syndromes in nine patients (seven kinships) of Dutch origin. Previously reported mutations ε1369delG and εR311Q were found to be common; ε1369delG was present on at least one allele in seven of the nine patients, and εR311Q in six. Phenotypes ranged from relatively mild ptosis and external ophthalmoplegia to generalized myasthenia. The common occurrence of εR311Q and ε1369delG suggests a possible founder for each of these mutations originating in North Western Europe, possibly in Holland. Knowledge of the ethnic or geographic origin within Europe of AChR deficiency patients can help in targeting genetic screening and it may be possible to provide a rapid genetic diagnosis for patients of Dutch origin by screening first for εR311Q and ε1369delG.
Electronic supplementary material
The online version of this article (doi:10.1007/s00415-009-5190-7) contains supplementary material, which is available to authorized users.
PMCID: PMC2758211  PMID: 19544078
Congenital myasthenic syndrome; AChR ε-subunit gene; AChR mutations
22.  Patients with congenital myasthenia associated with end-plate acetylcholinesterase deficiency show normal sequence, mRNA splicing, and assembly of catalytic subunits. 
Journal of Clinical Investigation  1995;95(1):333-340.
A congenital myasthenic condition has been described in several patients characterized by a deficiency in end-plate acetylcholinesterase (AChE). The characteristic form of AChE in the end-plate basal lamina has the catalytic subunits disulfide linked to a collagen-like tail unit. Southern analysis of the gene encoding the catalytic subunits revealed no differences between patient and control DNA. Genomic DNA clones covering exon 4 and the alternatively spliced exons 5 and 6 were analyzed by nuclease protection and sequencing. Although allelic differences were detected between controls, we found no differences in exonic and intronic areas that might yield distinctive splicing patterns in patients and controls. The ACHE gene was cloned from genomic libraries from a patient and a control. Transfection of the cloned genes revealed identical species of mRNA and expressed AChE. Cotransfection of the genes expressing the catalytic subunits with a cDNA from Torpedo encoding the tail unit yielded asymmetric species that require assembly of catalytic subunits and tail unit. thus the catalytic subunits of AChE expressed in the congenital myasthenic syndrome appear identical in sequence, arise from similar splicing patterns, and assemble normally with a tail unit to form a heteromeric species.
PMCID: PMC295436  PMID: 7814634
23.  MuSK Myasthenia Gravis IgG4 Disrupts the Interaction of LRP4 with MuSK but Both IgG4 and IgG1-3 Can Disperse Preformed Agrin-Independent AChR Clusters 
PLoS ONE  2013;8(11):e80695.
A variable proportion of patients with generalized myasthenia gravis (MG) have autoantibodies to muscle specific tyrosine kinase (MuSK). During development agrin, released from the motor nerve, interacts with low density lipoprotein receptor-related protein-4 (LRP4), which then binds to MuSK; MuSK interaction with the intracellular protein Dok7 results in clustering of the acetylcholine receptors (AChRs) on the postsynaptic membrane. In mature muscle, MuSK helps maintain the high density of AChRs at the neuromuscular junction. MuSK antibodies are mainly IgG4 subclass, which does not activate complement and can be monovalent, thus it is not clear how the antibodies cause disruption of AChR numbers or function to cause MG. We hypothesised that MuSK antibodies either reduce surface MuSK expression and/or inhibit the interaction with LRP4. We prepared MuSK IgG, monovalent Fab fragments, IgG1-3 and IgG4 fractions from MuSK-MG plasmas. We asked whether the antibodies caused endocytosis of MuSK in MuSK-transfected cells or if they inhibited binding of LRP4 to MuSK in co-immunoprecipitation experiments. In parallel, we investigated their ability to reduce AChR clusters in C2C12 myotubes induced by a) agrin, reflecting neuromuscular development, and b) by Dok7- overexpression, producing AChR clusters that more closely resemble the adult neuromuscular synapse. Total IgG, IgG4 or IgG1-3 MuSK antibodies were not endocytosed unless cross-linked by divalent anti-human IgG. MuSK IgG, Fab fragments and IgG4 inhibited the binding of LRP4 to MuSK and reduced agrin-induced AChR clustering in C2C12 cells. By contrast, IgG1-3 antibodies did not inhibit LRP4-MuSK binding but, surprisingly, did inhibit agrin-induced clustering. Moreover, both IgG4 and IgG1-3 preparations dispersed agrin-independent AChR clusters in Dok7-overexpressing C2C12 cells. Thus interference by IgG4 antibodies of the LRP4-MuSK interaction will be one pathogenic mechanism of MuSK antibodies, but IgG1-3 MuSK antibodies will also contribute to the reduced AChR density and neuromuscular dysfunction in myasthenia patients with MuSK antibodies.
PMCID: PMC3820634  PMID: 24244707
24.  The emerging diversity of neuromuscular junction disorders 
Acta Myologica  2007;26(1):5-10.
Research advances over the last 30 years have shown that key transmembrane proteins at the neuromuscular junction are vulnerable to antibody-mediated autoimmune attack These targets are acetylcholine receptors (AChRs) and muscle specific kinase (MuSK) in myasthenia gravis, voltage-gated calcium channels (VGCCs) in the Lambert-Eaton myasthenic syndrome (LEMS), and voltage-gated potassium channels (VGKCs) in neuromyotonia. In parallel with these immunological advances, mutations identified in genes encoding pre-synaptic, synaptic and post-synaptic proteins that are crucial to neuromuscular transmission have revealed a similar diversity of congenital myasthenic syndromes (CMS). These discoveries have had a major impact on diagnosis and management.
PMCID: PMC2949330  PMID: 17915563
Myasthenia gravis; myasthenic syndromes; congenital myasthenia
25.  A COLQ Missense Mutation in Labrador Retrievers Having Congenital Myasthenic Syndrome 
PLoS ONE  2014;9(8):e106425.
Congenital myasthenic syndromes (CMSs) are heterogeneous neuromuscular disorders characterized by skeletal muscle weakness caused by disruption of signal transmission across the neuromuscular junction (NMJ). CMSs are rarely encountered in veterinary medicine, and causative mutations have only been identified in Old Danish Pointing Dogs and Brahman cattle to date. Herein, we characterize a novel CMS in 2 Labrador Retriever littermates with an early onset of marked generalized muscle weakness. Because the sire and dam share 2 recent common ancestors, CMS is likely the result of recessive alleles inherited identical by descent (IBD). Genome-wide SNP profiles generated from the Illumina HD array for 9 nuclear family members were used to determine genomic inheritance patterns in chromosomal regions encompassing 18 functional candidate genes. SNP haplotypes spanning 3 genes were consistent with autosomal recessive transmission, and microsatellite data showed that only the segment encompassing COLQ was inherited IBD. COLQ encodes the collagenous tail of acetylcholinesterase, the enzyme responsible for termination of signal transduction in the NMJ. Sequences from COLQ revealed a variant in exon 14 (c.1010T>C) that results in the substitution of a conserved amino acid (I337T) within the C-terminal domain. Both affected puppies were homozygous for this variant, and 16 relatives were heterozygous, while 288 unrelated Labrador Retrievers and 112 dogs of other breeds were wild-type. A recent study in which 2 human CMS patients were found to be homozygous for an identical COLQ mutation (c.1010T>C; I337T) provides further evidence that this mutation is pathogenic. This report describes the first COLQ mutation in canine CMS and demonstrates the utility of SNP profiles from nuclear family members for the identification of private mutations.
PMCID: PMC4148433  PMID: 25166616

Results 1-25 (996952)