Search tips
Search criteria

Results 1-25 (652187)

Clipboard (0)

Related Articles

1.  How Myasthenia Gravis Alters the Safety Factor for Neuromuscular Transmission 
Journal of neuroimmunology  2008;201-202:13-20.
Myasthenia gravis (MG), the most common of autoimmune myasthenic syndromes, is characterized by antibodies directed against the skeletal muscle acetylcholine receptors (AChRs). Endplate Na+ channels ensure the efficiency of neuromuscular transmission by reducing the threshold depolarization needed to trigger an action potential. Postsynaptic AChRs and voltage-gated Na+ channels are both lost from the neuromuscular junction in MG. This study examined the impact of postsynaptic voltage-gated Na+ channel loss on the safety factor for neuromuscular transmission. In intercostal nerve-muscle preparations from MG patients, we found that endplate AChR loss decreases the size of the endplate potential, and endplate Na+ channel loss increases the threshold depolarization needed to produce a muscle action potential. To evaluate whether AChR-specific antibody impairs the function of Na+ channels, we tested omohyoid nerve-muscle preparations from rats injected with monoclonal myasthenogenic IgG (passive transfer model of MG [PTMG]). The AChR antibody that produces PTMG did not alter the function of Na+ channels. We conclude that loss of endplate Na+ channels in MG is due to complement-mediated loss of endplate membrane rather than a direct effect of myasthenogenic antibodies on endplate Na+ channels.
PMCID: PMC2646503  PMID: 18632162
2.  Gating Dynamics of the Acetylcholine Receptor Extracellular Domain 
The Journal of General Physiology  2004;123(4):341-356.
We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the α-subunit of mouse muscle–type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a β-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the β-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the α-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Φ = 0.93) and is followed by the loop 2/loop 7 domain (Φ = 0.80). These movements precede that of the extracellular linker (Φ = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.
PMCID: PMC2217457  PMID: 15051806
nicotinic; single channel; kinetics; REFER
3.  Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist 
Nature neuroscience  2011;14(10):1253-1259.
The α7 acetylcholine receptor (AChR) mediates pre- and postsynaptic neurotransmission in the central nervous system and is a potential therapeutic target in neurodegenerative, neuropsychiatric and inflammatory disorders. We determined the crystal structure of the extracellular domain of a receptor chimera constructed from the human α7 AChR and Lymnaea stagnalis acetylcholine binding protein (AChBP), which shares 64% sequence identity and 71% similarity with native α7. We also determined the structure with bound epibatidine, a potent AChR agonist. Comparison of the structures revealed molecular rearrangements and interactions that mediate agonist recognition and early steps in signal transduction in α7 AChRs. The structures further revealed a ring of negative charge within the central vestibule, poised to contribute to cation selectivity. Structure-guided mutational studies disclosed distinctive contributions to agonist recognition and signal transduction in α7 AChRs. The structures provide a realistic template for structure-aided drug design and for defining structure–function relationships of α7 AChRs.
PMCID: PMC3489043  PMID: 21909087
4.  Interaction of Bupropion with Muscle-Type Nicotinic Acetylcholine Receptors in Different Conformational States† 
Biochemistry  2009;48(21):4506-4518.
To characterize the binding sites and the mechanisms of inhibition of bupropion on muscle-type nicotinic acetylcholine receptors (AChRs), structural and functional approaches were used. The results established that bupropion: (a) inhibits epibatidine-induced Ca2+ influx in embryonic muscle AChRs, (b) inhibits adult muscle AChR macroscopic currents in the resting/activatable state with ~100-fold higher potency compared to that in the open state, (c) increases desensitization rate of adult muscle AChRs from the open state and impairs channel opening from the resting state, (d) inhibits [3H]TCP and [3H]imipramine binding to the desensitized/carbamylcholine-bound Torpedo AChR with higher affinity compared to the resting/α-bungarotoxin-bound AChR, (e) binds to the Torpedo AChR in either state mainly by an entropy–driven process, and (f) interacts with a binding domain located between the serine (position 6’) and valine (position 13’) rings, by a network of van der Waals, hydrogen bond, and polar interactions. Collectively our data indicate that bupropion first binds to the resting AChR, decreasing the probability of ion channel opening. The remnant fraction of open ion channels is subsequently decreased by accelerating the desensitization process. Bupropion interacts with a luminal binding domain shared with PCP that is located between the serine and valine rings, and this interaction is mediated mainly by an entropy-driven process.
PMCID: PMC2756054  PMID: 19334677
5.  Desensitization of Mouse Nicotinic Acetylcholine Receptor Channels  
The Journal of General Physiology  1998;112(2):181-197.
The rate constants of acetylcholine receptor channels (AChR) desensitization and recovery were estimated from the durations and frequencies of clusters of single-channel currents. Diliganded-open AChR desensitize much faster than either unliganded- or diliganded-closed AChR, which indicates that the desensitization rate constant depends on the status of the activation gate rather than the occupancy of the transmitter binding sites. The desensitization rate constant does not change with the nature of the agonist, the membrane potential, the species of permeant cation, channel block by ACh, the subunit composition (ε or γ), or several mutations that are near the transmitter binding sites. The results are discussed in terms of cyclic models of AChR activation, desensitization, and recovery. In particular, a mechanism by which activation and desensitization are mediated by two distinct, but interrelated, gates in the ion permeation pathway is proposed.
PMCID: PMC2525745  PMID: 9689026
single-channel; kinetics; electrophysiology
6.  Nicotinic Receptor Fourth Transmembrane Domain 
The Journal of General Physiology  2000;115(5):663-672.
The fourth transmembrane domain (M4) of the nicotinic acetylcholine receptor (AChR) contributes to the kinetics of activation, yet its close association with the lipid bilayer makes it the outermost of the transmembrane domains. To investigate mechanistic and structural contributions of M4 to AChR activation, we systematically mutated αT422, a conserved residue that has been labeled by hydrophobic probes, and evaluated changes in rate constants underlying ACh binding and channel gating steps. Aromatic and nonpolar mutations of αT422 selectively affect the channel gating step, slowing the rate of opening two- to sevenfold, and speeding the rate of closing four- to ninefold. Additionally, kinetic modeling shows a second doubly liganded open state for aromatic and nonpolar mutations. In contrast, serine and asparagine mutations of αT422 largely preserve the kinetics of the wild-type AChR. Thus, rapid and efficient gating of the AChR channel depends on a hydrogen bond involving the side chain at position 422 of the M4 transmembrane domain.
PMCID: PMC2217218  PMID: 10779322
patch clamp; kinetic analysis; nicotinic acetylcholine receptor channel gating; fourth transmembrane domain; hydrogen bond
7.  Myasthenogenicity of the main immunogenic region and endogenous muscle nicotinic acetylcholine receptors 
Autoimmunity  2011;45(3):245-252.
In myasthenia gravis (MG) and experimental autoimmune MG (EAMG) many pathologically significant autoantibodies are directed at the main immunogenic region (MIR), a conformation-dependent region at the extracellular tip of α1 subunits of muscle nicotinic acetylcholine receptors (AChRs). Human muscle AChR α1 MIR sequences were integrated into Aplysia ACh binding protein (AChBP). The chimera was potent at inducing both acute and chronic EAMG, though less potent than Torpedo electric organ AChR. Wild-type AChBP also induced EAMG but was less potent, and weakness developed slowly without an acute phase. AChBP is more closely related in sequence to neuronal α7 AChRs which are also homomeric, however autoimmune responses were induced to muscle AChR, but not to neuronal AChR subtypes. The greater accessibility of muscle AChRs to antibodies, compared to neuronal AChRs, may allow muscle AChRs to induce self-sustaining autoimmune responses. The human α1 subunit MIR is a potent immunogen for producing pathologically significant autoantibodies. Additional epitopes in this region or other parts of the AChR extracellular domain contribute significantly to myasthenogenicity. We show that an AChR-related protein can induce EAMG. Thus, in principle, an AChR-related protein could induce MG. AChBP is a water soluble protein resembling the extracellular domain of AChRs, yet rats which developed EAMG had autoantibodies to AChR cytoplasmic domains. We propose that an initial autoimmune response, directed at the MIR on the extracellular surface of muscle AChRs, leads to an autoimmune response sustained by muscle AChRs. Autoimmune stimulation sustained by endogenous muscle AChR may be a target for specific immunosuppression.
PMCID: PMC3250566  PMID: 21950318
myasthenia gravis; autoantibodies; AChBP; AChR; MIR
8.  Selective effect of the anthelmintic bephenium on Haemonchus contortus levamisole-sensitive acetylcholine receptors 
Invertebrate Neuroscience  2012;12(1):43-51.
Acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels involved in the neurotransmission of both vertebrates and invertebrates. A number of anthelmintic compounds like levamisole and pyrantel target the AChRs of nematodes producing spastic paralysis of the worms. The muscle AChRs of nematode parasites fall into three pharmacological classes that are preferentially activated by the cholinergic agonists levamisole (L-type), nicotine (N-type) and bephenium (B-type), respectively. Despite a number of studies of the B-type AChR in parasitic species, this receptor remains to be characterized at the molecular level. Recently, we have reconstituted and functionally characterized two distinct L-AChR subtypes of the gastro-intestinal parasitic nematode Haemonchus contortus in the Xenopus laevis oocyte expression system by providing the cRNAs encoding the receptor subunits and three ancillary proteins (Boulin et al. in Br J Pharmacol 164(5):1421–1432, 2011). In the present study, the effect of the bephenium drug on Hco-L-AChR1 and Hco-L-AChR2 subtypes was examined using the two microelectrode voltage-clamp technique. We demonstrate that bephenium selectively activates the Hco-L-AChR1 subtype made of Hco-UNC-29.1, Hco-UNC-38, Hco-UNC-63, Hco-ACR-8 subunits that is more sensitive to levamisole than acetylcholine. Removing the Hco-ACR-8 subunit produced the Hco-L-AChR2 subtype that is more sensitive to pyrantel than acetylcholine and partially activated by levamisole, but which was bephenium-insensitive indicating that the bephenium-binding site involves Hco-ACR-8. Attempts were made to modify the subunit stoichiometry of the Hco-L-AChR1 subtype by injecting five fold more cRNA of individual subunits. Increased Hco-unc-29.1 cRNA produced no functional receptor. Increasing Hco-unc-63, Hco-unc-38 or Hco-acr-8 cRNAs did not affect the pharmacological characteristics of Hco-L-AChR1 but reduced the currents elicited by acetylcholine and the other agonists. Here, we provide the first description of the molecular composition and functional characteristics of any invertebrate bephenium-sensitive receptor.
PMCID: PMC3362318  PMID: 22526556
Bephenium; Levamisole-sensitive acetylcholine receptor; Oocyte expression system; Electrophysiology; Haemonchus contortus
9.  Free-energy Landscapes of Ion-channel Gating Are Malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels† 
Biochemistry  2003;42(50):14977-14987.
Acetylcholine-receptor channels (AChRs) are allosteric membrane proteins that mediate synaptic transmission by alternatively opening and closing (‘gating’) a cation-selective transmembrane pore. Although ligand binding is not required for the channel to open, the binding of agonists (for example, acetylcholine) increases the closed ⇌ open equilibrium constant because the ion-impermeable → ion-permeable transition of the ion pathway is accompanied by a low → high affinity change at the agonist-binding sites. The fact that the gating conformational change of muscle AChRs can be kinetically modeled as a two-state reaction has paved the way to the experimental characterization of the corresponding transition state, which represents a snapshot of the continuous sequence of molecular events separating the closed and open states. Previous studies of fully (di-) liganded AChRs, combining single-channel kinetic measurements, site-directed mutagenesis, and data analysis in the framework of the linear free-energy relationships of physical organic chemistry, have suggested a transition-state structure that is consistent with channel opening being an asynchronous conformational change that starts at the extracellular agonist-binding sites and propagates towards the intracellular end of the pore. In this paper, I characterize the gating transition state of unliganded AChRs, and report a remarkable difference: unlike that of diliganded gating, the unliganded transition state is not a hybrid of the closed- and open-state structures but, rather, is almost indistinguishable from the open state itself. This displacement of the transition state along the reaction coordinate obscures the mechanism underlying the unliganded closed ⇌ open reaction but brings to light the malleable nature of free-energy landscapes of ion-channel gating.
The muscle acetylcholine receptor channel (AChR)1 is the neurotransmitter-gated ion channel that mediates neuromuscular synaptic transmission in vertebrates (1). Although the structure of this large pentameric transmembrane protein (∼470 residues per subunit) is not known with atomic resolution, a wealth of structural information exists, mainly from mutational studies, affinity labeling, chemical modification of specific residues, electron microscopy, and crystallography (reviewed in ref. 2). As is the case of any other allosteric protein, the dynamic behavior of this receptor-channel can be understood in the framework of thermodynamic cycles, with conformational changes and ligand-binding events as the elementary steps (3-5). Thus, the AChR can adopt a variety of different conformations that can interconvert (closed, open, and desensitized ‘states’), and each conformation has a distinct ligand-binding affinity (low affinity in the closed state and high affinity in the open and desensitized states) and a particular ‘catalytic efficiency’ (ion-impermeable in the closed and desensitized states, and ion-permeable in the open state). To meet the physiological requirement of a small closed ⇌ open (‘gating’) equilibrium constant for the unliganded receptor, and a large gating equilibrium constant for the ACh-diliganded receptor, the affinity of the AChR for ACh must be higher in the open than in the closed conformation (4-6). This follows from the notion that the equilibrium constants governing the different reaction steps (ligand binding and gating) of these cyclic reaction schemes are constrained by the principle of detailed balance.
Hence, irrespective of whether the receptor is diliganded, monoliganded or unliganded, two changes must take place in going from the closed state (low ligand affinity and ion-impermeable) to the open state (high ligand affinity and ion-permeable): a) the pore becomes permeable to ions, and b) the transmitter-binding sites, some 50 Å away from the pore domain (7), increase their affinity for the ligand (with the reverse changes taking place during closing). The apparent lack of stable intermediates between the closed and open conformations, inferred from kinetic modeling of the diliganded-gating reaction (8), suggests that these two changes occur as a result of a one-step, global conformational change. The question, then, arises as to whether this concerted conformational change proceeds synchronously (i.e., every residue of the protein moves ‘in unison’) or asynchronously (i.e., following a sequence of events; ref. 9) and, if the latter were the case, whether multiple, few, or just one sequence of events is actually traversed by the channel to ‘connect’ the end states.
Analysis of the correlation between rate and equilibrium constants of gating in diliganded AChRs has allowed us to address some of these issues by probing the structure of the transition state (8, 10-12), that is, the intermediate species between the end states of a one-step reaction that can be most easily studied. Interpretation of these results in the framework of the classical rate-equilibrium free-energy relationships of physical organic chemistry (13, 14), revealed that AChR diliganded gating is a highly asynchronous reaction, and suggested that the transition-state ensemble is quite homogeneous, as if the crossing of the energy barrier were confined to a narrow pass at the top of the energy landscape. In the opening direction, the conformational rearrangement that leads to the low-to-high affinity change at the extracellular binding sites precedes the conformational rearrangement of the pore that renders the channel ion-permeable. This propagated global conformational change, which we have referred to as a ‘conformational wave’ (11), must reverse during channel closing so that closing starts at the pore and propagates all the way to the binding sites.
It is not at all obvious why the diliganded-gating conformational change starts at the binding sites when the channel opens, nor even why the conformational change propagates at all through the receptor, instead of taking place synchronously throughout the protein. Is there any correlation between the location of the domain that binds agonist and the location of the initiation site for the opening conformational change? Could the latter have started from the intracellular end of the pore, for example, and have propagated to the (extracellular) transmitter-binding sites? What difference does it make to be liganded or unliganded as far as the mechanism of the gating conformational change is concerned? To address these issues, I set out to explore the mechanism of gating in unliganded AChRs by probing the structure of the corresponding transition state using kinetic measurements, site-directed mutagenesis, and the concepts of rate-equilibrium free-energy relationships and Φ-value analysis.
Briefly, a Φ-value can be assigned to any position in the protein by estimating the slope of a ‘Brönsted plot’2 [log (gating rate constant) versus log (gating equilibrium constant)] where each point corresponds to a different amino-acid substitution at that given position. More coarsegrained Φ-values can also be obtained by using different agonists or different transmembrane potentials, for example, as a means of altering the rate and equilibrium constants of gating. Very often, rate-equilibrium plots are linear, and 0 < Φ < 1. A value of Φ = 0 suggests that the position in question (in the case of a mutation series) experiences a closed-state-like environment at the transition state whereas a value of Φ = 1 suggests an open-state-like environment. A fractional Φ-value suggests an environment that is intermediate between those experienced in the closed and open states (16).
Earlier results indicated that the Φ-values obtained by varying the transmembrane potential are different in diliganded and unliganded AChRs. These Φ-values, which are a measure of the closed-state-like versus open-state-like character of the channel’s voltage-sensing elements at the transition state, are 0.070 ± 0.060 in diliganded receptors (17), and 1.025 ± 0.053 in unliganded AChRs (11, 18). The present study reveals that residues at the transmitter-binding sites (Figure 1), the extracellular loop that links the second (M2) and third (M3) transmembrane segments (M2-M3 linker), and the upper and lower half of M2, which during diliganded gating have Φ-values of ∼1 (ref. 11), ∼0.7 (ref. 10), ∼0.35 (refs 8, 11, 12), and ∼0 (ref. 12), respectively, have also Φ-values very close to 1 during unliganded gating. This generalized shift in Φ-values suggests that the diliganded → unliganded perturbation deforms the energy landscape of gating in such a way that the ‘new’ transition state occurs very close to the open state, to such an extent that all tested positions experience an open-state-like environment at the transition state of unliganded gating. Thus, the transition state occurs so ‘late’ (i.e., so close to the open state) that its inferred structure does not provide any clues as to the intermediate stages of this reaction.
Hence, the mechanism of unliganded gating remains obscure. The change in the position of the transition state along a reaction coordinate, as a result of perturbations to the energy landscape, is a very well known phenomenon in organic chemistry (e.g., refs 20-26), and protein folding (e.g., refs 27-34). In this paper, I show that this phenomenon can also take place in the case of allosteric transitions and, therefore, that the structure of the transition state of a global conformational change need not be fixed; rather, it can change depending on the experimental conditions.
PMCID: PMC1463891  PMID: 14674774
10.  Probing Protein Packing Surrounding the Residues In and Flanking the Nicotinic Acetylcholine Receptor M2M3 Loop 
Nicotinic Acetylcholine Receptors (nAChR) are cation-selective, ligand-gated ion channels of the Cys-loop gene superfamily. The recent crystal structure of a bacterial homologue from Erwinia chrysanthemi (ELIC) agrees with previous structures of the N-terminal domain of acetylcholine-binding protein (AChBP) and of the electronmicroscopy derived Torpedo nAChR structure. However, the ELIC transmembrane domain is significantly more tightly packed than the corresponding region of the Torpedo nAChR. We investigated the tightness of protein packing surrounding the extracellular end of the M2 transmembrane segment and around the loop connecting the M2 and M3 segments using the substituted cysteine accessibility method (SCAM). The M2 20′ to 27′ residues were highly water accessible and the variation in reaction rates were consistent with this region being α-helical. At all positions tested, the presence of ACh changed MTSEA modification rates by less than 10-fold. In the presence of ACh, reaction rates for residues in the last extracellular α-helical turn of M2 and in the M2M3 loop increased, whereas rates in M2's penultimate α-helical turn decreased. Only 3 out of 8 M2M3 loop residues were accessible to MTSEA in both the presence and absence of ACh. We infer that the protein packing around the M2M3 loop is tight, consistent with it's location at the interdomain interface where it is involved in the transduction of ligand binding in the extracellular domain to gating in the transmembrane domain. Our data indicate that the Torpedo nAChR transmembrane domain structure is a better model than the ELIC structure for eukaryotic Cys loop receptors.
PMCID: PMC2654246  PMID: 19211870
acetylcholine; nicotine; serotonin; Cys-loop; ion-channel; gating
11.  Autonomic ganglia, acetylcholine receptor antibodies, and autoimmune ganglionopathy 
Nicotinic acetylcholine receptors (AChR) are ligand-gated cation channels that are present throughout the nervous system. The ganglionic (α3-type) neuronal AChR mediates fast synaptic transmission in sympathetic, parasympathetic and enteric autonomic ganglia. Autonomic ganglia are an important site of neural integration and regulation of autonomic reflexes. Impaired cholinergic ganglionic synaptic transmission is one important cause of autonomic failure.
Ganglionic AChR antibodies are found in many patients with autoimmune autonomic ganglionopathy (AAG). These antibodies recognize the α3 subunit of the ganglionic AChR, and thus do not bind non-specifically to other nicotinic AChR. Patients with high levels of ganglionic AChR antibodies typically present with rapid onset of severe autonomic failure, with orthostatic hypotension, gastrointestinal dysmotility, anhidrosis, bladder dysfunction and sicca symptoms. Impaired pupillary light reflex is often seen. Like myasthenia gravis, AAG is an antibody-mediated neurological disorder. Antibodies from patients with AAG inhibit ganglionic AChR currents and impair transmission in autonomic ganglia. An animal model of AAG in the rabbit recapitulates the important clinical features of the human disease and provides additional evidence that AAG is an antibody-mediated disorder caused by impairment of synaptic transmission in autonomic ganglia.
PMCID: PMC2677210  PMID: 18951069
autonomic neuropathy; thymoma; gastrointestinal dysmotility; orthostatic hypotension
12.  Action of nicotine and analogs on acetylcholine receptors having mutations of transmitter-binding site residue αG153 
The Journal of General Physiology  2013;141(1):95-104.
A primary target for nicotine is the acetylcholine receptor channel (AChR). Some of the ability of nicotine to activate differentially AChR subtypes has been traced to a transmitter-binding site amino acid that is glycine in lower affinity and lysine in higher affinity AChRs. We studied the effects of mutations of this residue (αG153) in neuromuscular AChRs activated by nicotine and eight other agonists including nornicotine and anabasine. All of the mutations increased the unliganded gating equilibrium constant. The affinity of the resting receptor (Kd) and the net binding energy from the agonist for gating (ΔGB) were estimated by cross-concentration fitting of single-channel currents. In all but one of the agonist/mutant combinations there was a moderate decrease in Kd and essentially no change in ΔGB. The exceptional case was nicotine plus lysine, which showed a large, >8,000-fold decrease in Kd but no change in ΔGB. The extraordinary specificity of this combination leads us to speculate that AChRs with a lysine at position αG153 may be exposed to a nicotine-like compound in vivo.
PMCID: PMC3536520  PMID: 23277476
13.  Myasthenogenicity of the main immunogenic region 
In myasthenia gravis (MG) and experimental autoimmune MG (EAMG), many pathologically significant autoantibodies are directed to the main immunogenic region (MIR) of muscle nicotinic acetylcholine receptors (AChRs), a conformation-dependent region at the extracellular tip of α1 subunits of AChRs. Human muscle AChR α1 MIR sequences were integrated into Aplesia ACh-binding protein (AChBP). The chimera potently induced EAMG. AChBP induced EAMG much less potently. AChBP is a water-soluble protein resembling the extracellular domain of AChRs, yet rats immunized with chimeras developed autoantibodies to both extracellular and cytoplasmic domains of muscle AChRs. We propose that an initial autoimmune response directed at the MIR leads to an autoimmune response sustained by muscle AChRs. Autoimmune stimulation sustained by endogenous muscle AChR may be a target for specific immunosuppression. These studies show that the α1 MIR is highly myasthenogenic, and that AChR-like proteins distantly related to muscle AChR can induce EAMG and, potentially, MG.
PMCID: PMC3531903  PMID: 23252892
nicotinic acetylcholine receptor; AChR; MG; EAMG; antigenic structure
14.  Loop C and the mechanism of acetylcholine receptor–channel gating 
The Journal of General Physiology  2013;141(4):467-478.
Agonist molecules at the two neuromuscular acetylcholine (ACh) receptor (AChR) transmitter-binding sites increase the probability of channel opening. In one hypothesis for AChR activation (“priming”), the capping of loop C at each binding site transfers energy independently to the distant gate over a discrete structural pathway. We used single-channel analyses to examine the experimental support for this proposal with regard to brief unliganded openings, the effects of loop-C modifications, the effects of mutations to residues either on or off the putative pathway, and state models for describing currents at low [ACh]. The results show that (a) diliganded and brief unliganded openings are generated by the same essential, global transition; (b) the radical manipulation of loop C does not prevent channel opening but impairs agonist binding; (c) both on- and off-pathway mutations alter gating by changing the relative stability of the open-channel conformation by local interactions rather than by perturbing a specific site–gate communication link; and (d) it is possible to estimate directly the rate constants for agonist dissociation from and association to both the low and high affinity forms of the AChR-binding site by using a cyclic kinetic model. We conclude that the mechanism of energy transfer between the binding sites and the gate remains an open question.
PMCID: PMC3607824  PMID: 23478996
15.  Curariform Antagonists Bind in Different Orientations to Acetylcholine-binding Protein* 
The Journal of biological chemistry  2003;278(25):23020-23026.
Acetylcholine-binding protein (AChBP) recently emerged as a prototype for relating structure to function of the ligand binding domain of nicotinic acetylcholine receptors (AChRs). To understand interactions of competitive antagonists at the atomic structural level, we studied binding of the curare derivatives d-tubocurarine (d-TC) and metocurine to AChBP using computational methods, mutagenesis, and ligand binding measurements. To account for protein flexibility, we used a 2-ns molecular dynamics simulation of AChBP to generate multiple snapshots of the equilibrated dynamic structure to which optimal docking orientations were determined. Our results predict a predominant docking orientation for both d-TC and metocurine, but unexpectedly, the bound orientations differ fundamentally for each ligand. At one subunit interface of AChBP, the side chain of Tyr-89 closely approaches a positively charged nitrogen in d-TC but is farther away from the equivalent nitrogen in metocurine, whereas, at the opposing interface, side chains of Trp-53 and Gln-55 closely approach the metocurine scaffold but not that of d-TC. The different orientations correspond to ~170° rotation and ~30° degree tilt of the curare scaffold within the binding pocket. Mutagenesis of binding site residues in AChBP, combined with measurements of ligand binding, confirms the different docking orientations. Thus structurally similar ligands can adopt distinct orientations at receptor binding sites, posing challenges for interpreting structure-activity relationships for many drugs.
PMCID: PMC3191914  PMID: 12682067
16.  A virtual screening study of the acetylcholine binding protein using a relaxed-complex approach 
The nicotinic acetylcholine receptor (nAChR) is a member of the ligand-gated ion channel family and is implicated in many neurological events. Yet, the receptor is difficult to target without high-resolution structures. In contrast, the structure of the acetylcholine binding protein (AChBP) has been solved to high resolution, and it serves as a surrogate structure of the extra-cellular domain in nAChR. Here we conduct a virtual screening study of the AChBP using the relaxed-complex method, which involves a combination of molecular dynamics simulations (to achieve receptor structures) and ligand docking. The library screened through comes from the National Cancer Institute, and its ligands show great potential for binding AChBP in various manners. These ligands mimic the known binders of AChBP; a significant subset docks well against all species of the protein and some distinguish between the various structures. These novel ligands could serve as potential pharmaceuticals in the AChBP/nAChR systems.
PMCID: PMC2684879  PMID: 19186108
acetylcholine binding protein; nicotinic acetylcholine receptor; relaxed-complex; molecular dynamics; docking; virtual screening
Physiological reviews  2012;92(3):1189-1234.
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
PMCID: PMC3489064  PMID: 22811427
18.  Mechanosensitivity of nicotinic receptors 
Pflugers Archiv  2012;464(2):193-203.
Nicotinic acetylcholine receptors (nAChRs) are heteropentameric ligand-gated ion channels that mediate excitatory neurotransmission at the neuromuscular junction (NMJ) and other peripheral and central synapses. At the NMJ, acetylcholine receptors (AChRs) are constantly exposed to mechanical stress resulting from muscle contraction. It is therefore of interest to understand if their function is influenced by mechanical stimuli. In this study, patch-clamp recordings showed that AChR channel activity was enhanced upon membrane stretching in both cultured Xenopus muscle cells and C2C12 myotubes. To examine how this property is physiologically regulated, effects of membrane-intrinsic and membrane-extrinsic factors on AChRs expressed in HEK293T cells were studied. As in muscle cells, AChR single channel currents recorded under cell-attached configuration were significantly increased—without change in current amplitude—when negative pressure was applied through the patch pipette. GsMTx-4, a peptide toxin that blocks mechanically activated cation channels, inhibited this effect on AChRs. The mechanosensitivity decreased when cells were treated with MβCD, latrunculin A or cytochalasin D, but increased when exposed to lysophosphatidylcholine, indicating contributions from both membrane lipids and the cytoskeleton. Rapsyn, which binds to AChRs and mediates their cytoskeletal interaction in muscle, suppressed AChR mechanosensitivity when co-expressed in HEK293T cells, but this influence of rapsyn was impaired following the deletion of rapsyn’s AChR-binding domain or upon cytoskeletal disruption by cytochalasin D. These results suggest a mechanism for regulating AChR’s mechanosensitivity through its cytoskeletal linkage via rapsyn, which may serve to protect the receptors and sarcolemmal integrity under high mechanical stress encountered by the NMJ.
Electronic supplementary material
The online version of this article (doi:10.1007/s00424-012-1132-9) contains supplementary material, which is available to authorized users.
PMCID: PMC3395360  PMID: 22733356
Acetylcholine receptor; Mechanosensitivity; Rapsyn; Neuromuscular junction
19.  Crystal Structure of Lymnaea stagnalis AChBP Complexed with the Potent nAChR Antagonist DHβE Suggests a Unique Mode of Antagonism 
PLoS ONE  2012;7(8):e40757.
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels that belong to the Cys-loop receptor superfamily. These receptors are allosteric proteins that exist in different conformational states, including resting (closed), activated (open), and desensitized (closed) states. The acetylcholine binding protein (AChBP) is a structural homologue of the extracellular ligand-binding domain of nAChRs. In previous studies, the degree of the C-loop radial extension of AChBP has been assigned to different conformational states of nAChRs. It has been suggested that a closed C-loop is preferred for the active conformation of nAChRs in complex with agonists whereas an open C-loop reflects an antagonist-bound (closed) state. In this work, we have determined the crystal structure of AChBP from the water snail Lymnaea stagnalis (Ls) in complex with dihydro-β-erythroidine (DHβE), which is a potent competitive antagonist of nAChRs. The structure reveals that binding of DHβE to AChBP imposes closure of the C-loop as agonists, but also a shift perpendicular to previously observed C-loop movements. These observations suggest that DHβE may antagonize the receptor via a different mechanism compared to prototypical antagonists and toxins.
PMCID: PMC3425559  PMID: 22927902
20.  Mutation causing severe myasthenia reveals functional asymmetry of AChR signature cystine loops in agonist binding and gating 
Journal of Clinical Investigation  2003;111(4):497-505.
We describe a highly disabling congenital myasthenic syndrome (CMS) associated with rapidly decaying, low-amplitude synaptic currents, and trace its cause to a valine to leucine mutation in the signature cystine loop (cys-loop) of the AChR α subunit. The recently solved crystal structure of an ACh-binding protein places the cys-loop at the junction between the extracellular ligand-binding and transmembrane domains where it may couple agonist binding to channel gating. We therefore analyzed the kinetics of ACh-induced single-channel currents to identify elementary steps in the receptor activation mechanism altered by the αV132L mutation. The analysis reveals that αV132L markedly impairs ACh binding to receptors in the resting closed state, decreasing binding affinity for the second binding step 30-fold, but attenuates gating efficiency only about twofold. By contrast, mutation of the equivalent valine residue in the δ subunit impairs channel gating approximately fourfold with little effect on ACh binding, while corresponding mutations in the β and ε subunits are without effect. The unique functional contribution of the α subunit cys-loop likely owes to its direct connection via a β strand to αW149 at the center of the ligand-binding domain. The overall findings reveal functional asymmetry between cys-loops of the different AChR subunits in contributing to ACh binding and channel gating.
PMCID: PMC151927  PMID: 12588888
21.  The Role of Loop 5 in Acetylcholine Receptor Channel Gating 
The Journal of General Physiology  2003;122(5):521-539.
Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse α-subunit 92–100) that links the β4 and β5 strands of the extracellular domain and that (in the α-subunit) contains binding segment A. Based on the structure of the acetylcholine binding protein, we speculate that in AChRs L5 projects from the transmitter binding site toward the membrane along a subunit interface. We used single-channel kinetics to quantify the effects of mutations to αD97 and other L5 residues with respect to agonist binding (to both open and closed AChRs), channel gating (for both unliganded and fully-liganded AChRs), and desensitization. Most αD97 mutations increase gating (up to 168-fold) but have little or no effect on ligand binding or desensitization. Rate-equilibrium free energy relationship analysis indicates that αD97 moves early in the gating reaction, in synchrony with the movement of the transmitter binding site (Φ = 0.93, which implies an open-like character at the transition state). αD97 mutations in the two α-subunits have unequal energetic consequences for gating, but their contributions are independent. We conclude that the key, underlying functional consequence of αD97 perturbations is to increase the unliganded gating equilibrium constant. L5 emerges as an important and early link in the AChR gating reaction which, in the absence of agonist, serves to increase the relative stability of the closed conformation of the protein.
PMCID: PMC2229574  PMID: 14557402
nicotinic; single channel; kinetics; synapse; free energy
22.  Linear Free-Energy Relationships and the Dynamics of Gating in the Acetylcholine Receptor Channel 
Journal of Biological Physics  2002;28(2):267-277.
The muscle acetylcholine receptor channel (AChR) is a large (Mr ≅290K) transmembrane protein that mediates synaptic transmission. Theactivation of this ion channel can be understood in the framework of athermodynamic cycle with spontaneous gating (i.e., the closed ⇌ open reaction) and ligand-binding events as the elementary steps. Becauseagonists bind more tightly to the open than to the closed state, gating ofliganded receptors is more favorable than that of unliganded receptors.Accordingly, channel opening must involve two major conformationalchanges: the ACh-binding sites switch from a low-affinity to a high-affinityform, and the pore (located ∼ 45 Å away from the binding sites)switches from an ion-impermeable to an ion-permeable conformation. Togain insight into the reaction mechanism of fully-liganded gating, wecharacterized the corresponding transition state in the context of the `linearfree-energy relationships' of physical organic chemistry (Φ-valueanalysis). Gating of fully-liganded AChRs was studied by recordingsingle-channel currents using the patch-clamp technique. Perturbations tothe wild-type receptor were either series of different mutations at individualpositions or series of different agonists. Based on the obtained `snapshot'of the gating reaction at the transition state, and aware of the lack ofinformation about the rest of the energy profile, the most parsimoniousmechanism seems to be one where opening proceeds asynchronously, withthe low-to-high affinity change at the binding sites preceding the completeopening of the distant pore.
PMCID: PMC3456670  PMID: 23345774
Brønsted plots; ion channels; nicotinic receptors; transition state
23.  Spectroscopic Analysis of Benzylidene Anabaseine Complexes with Acetylcholine Binding Proteins as Models for Ligand–Nicotinic Receptor Interactions† 
Biochemistry  2006;45(29):8894-8902.
The discovery of the acetylcholine binding proteins (AChBPs) has provided critical soluble surrogates for examining structure and ligand interactions with nicotinic receptors and related pentameric ligand-gated ion channels. The multiple marine and freshwater sources of AChBP constitute a protein family with substantial sequence divergence and selectivity in ligand recognition for analyzing structure–activity relationships. The purification of AChBP in substantial quantities in the absence of a detergent enables one to conduct spectroscopic studies of the ligand–AChBP complexes. To this end, we have examined the interaction of a congeneric series of benzylidene-ring substituted anabaseines with AChBPs from Lymnaea, Aplysia, and Bulinus species and correlated their binding energetics with spectroscopic changes associated with ligand binding. The anabaseines display agonist activity on the α7 nicotinic receptor, a homomeric receptor with sequences similar to those of the AChBPs. Substituted anabaseines show absorbance and fluorescence properties sensitive to the protonation state, relative permittivity (dielectric constant), and the polarizability of the surrounding solvent or the proximal residues in the binding site. Absorbance difference spectra reveal that a single protonation state of the ligand binds to AChBP and that the bound ligand experiences a solvent environment with a high degree of polarizability. Changes in the fluorescence quantum yield of the bound ligand reflect the rigidification of the ring system of the bound ligand. Hence, the spectral properties of the bound ligand allow a description of the electronic character of the bound state of the ligand within its aromatic binding pocket and provide information complementary to that of crystal structures in defining the determinants of interaction.
PMCID: PMC3222595  PMID: 16846232
24.  Inhibition Mechanism of the Acetylcholine Receptor by α-Neurotoxins as Revealed by Normal-Mode Dynamics† 
Biochemistry  2008;47(13):4065-4070.
The nicotinic acetylcholine receptor (AChR) is the prototype of ligand-gated ion channels. Here, we calculate the dynamics of the muscle AChR using normal modes. The calculations reveal a twist-like gating motion responsible for channel opening. The ion channel diameter is shown to increase with this twist motion. Strikingly, the twist motion and the increase in channel diameter are not observed for the AChR in complex with two α-bungarotoxin (αBTX) molecules. The toxins seems to lock together neighboring receptor subunits, thereby inhibiting channel opening. Interestingly, one αBTX molecule suffices to prevent the twist motion. These results shed light on the gating mechanism of the AChR and present a complementary inhibition mechanism by snake-venom-derived α-neurotoxins.
PMCID: PMC2750825  PMID: 18327915
25.  Experimental autoimmune myasthenia gravis in the mouse 
Myasthenia gravis (MG) is a T cell-dependent antibody-mediated autoimmune neuromuscular disease. Antibodies to the nicotinic acetylcholine receptor (AChR) destroy the AChR, thus leading to defective neuromuscular transmission of electrical impulse and to muscle weakness. This unit is a practical guide to the induction and evaluation of experimental autoimmune myasthenia gravis (EAMG) in the mouse, the animal model for MG. Protocols are provided for the extraction and purification of AChR from the electric organs of Torpedo californica, or eel. The purified receptor is used as an immunogen to induce autoimmunity to AChR, thus causing EAMG. The defect in neuromuscular transmission can also be measured quantitatively by electromyography. In addition, EAMG is frequently characterized by the presence of serum antibodies to AChR, which are measured by radioimmunoassay and by a marked antibody-mediated reduction in the number of muscle AChRs. AChR extracted from mouse muscle is used in measuring serum antibody levels and for quantifying muscle AChR content. Another hallmark of the disease is complement and IgG deposits located at the neuromuscular junction, which can be visualized by immunofluorescence techniques.
PMCID: PMC3249402  PMID: 18432738
myasthenia gravis; experimental autoimmune myasthenia gravis; acetylcholine receptor; neuromuscular junction

Results 1-25 (652187)