PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1332329)

Clipboard (0)
None

Related Articles

1.  Evidence Based Medicine – New Approaches and Challenges 
Acta Informatica Medica  2008;16(4):219-225.
CONFLICT OF INTEREST: NONE DECLARED
Evidence based medicine (EBM) is the conscientious, explicit, judicious and reasonable use of modern, best evidence in making decisions about the care of individual patients. EBM integrates clinical experience and patient values with the best available research information. It is a movement which aims to increase the use of high quality clinical research in clinical decision making. EBM requires new skills of the clinician, including efficient literature-searching, and the application of formal rules of evidence in evaluating the clinical literature. The practice of evidence-based medicine is a process of lifelong, self-directed, problem-based learning in which caring for one’s own patients creates the need for clinically important information about diagnosis, prognosis, therapy and other clinical and health care issues. It is not “cookbook” with recipes, but its good application brings cost-effective and better health care. The key difference between evidence-based medicine and traditional medicine is not that EBM considers the evidence while the latter does not. Both take evidence into account; however, EBM demands better evidence than has traditionally been used. One of the greatest achievements of evidence-based medicine has been the development of systematic reviews and meta-analyses, methods by which researchers identify multiple studies on a topic, separate the best ones and then critically analyze them to come up with a summary of the best available evidence. The EBM-oriented clinicians of tomorrow have three tasks: a) to use evidence summaries in clinical practice; b) to help develop and update selected systematic reviews or evidence-based guidelines in their area of expertise; and c) to enrol patients in studies of treatment, diagnosis and prognosis on which medical practice is based.
doi:10.5455/aim.2008.16.219-225
PMCID: PMC3789163  PMID: 24109156
Evidence Based Medicine; health; patients; decision making
2.  Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety 
Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine.
In late 2007, at the behest of the US Congress, the Institute of Medicine embarked on a year-long examination of the scientific evidence linking resident physician sleep deprivation with clinical performance deficits and medical errors. The Institute of Medicine’s report, entitled “Resident duty hours: Enhancing sleep, supervision and safety”, published in January 2009, recommended new limits on resident physician work hours and workload, increased supervision, a heightened focus on resident physician safety, training in structured handovers and quality improvement, more rigorous external oversight of work hours and other aspects of residency training, and the identification of expanded funding sources necessary to implement the recommended reforms successfully and protect the public and resident physicians themselves from preventable harm.
Given that resident physicians comprise almost a quarter of all physicians who work in hospitals, and that taxpayers, through Medicare and Medicaid, fund graduate medical education, the public has a deep investment in physician training. Patients expect to receive safe, high-quality care in the nation’s teaching hospitals. Because it is their safety that is at issue, their voices should be central in policy decisions affecting patient safety. It is likewise important to integrate the perspectives of resident physicians, policy makers, and other constituencies in designing new policies. However, since its release, discussion of the Institute of Medicine report has been largely confined to the medical education community, led by the Accreditation Council for Graduate Medical Education (ACGME).
To begin gathering these perspectives and developing a plan to implement safer work hours for resident physicians, a conference entitled “Enhancing sleep, supervision and safety: What will it take to implement the Institute of Medicine recommendations?” was held at Harvard Medical School on June 17–18, 2010. This White Paper is a product of a diverse group of 26 representative stakeholders bringing relevant new information and innovative practices to bear on a critical patient safety problem. Given that our conference included experts from across disciplines with diverse perspectives and interests, not every recommendation was endorsed by each invited conference participant. However, every recommendation made here was endorsed by the majority of the group, and many were endorsed unanimously. Conference members participated in the process, reviewed the final product, and provided input before publication. Participants provided their individual perspectives, which do not necessarily represent the formal views of any organization.
In September 2010 the ACGME issued new rules to go into effect on July 1, 2011. Unfortunately, they stop considerably short of the Institute of Medicine’s recommendations and those endorsed by this conference. In particular, the ACGME only applied the limitation of 16 hours to first-year resident physicans. Thus, it is clear that policymakers, hospital administrators, and residency program directors who wish to implement safer health care systems must go far beyond what the ACGME will require. We hope this White Paper will serve as a guide and provide encouragement for that effort.
Resident physician workload and supervision
By the end of training, a resident physician should be able to practice independently. Yet much of resident physicians’ time is dominated by tasks with little educational value. The caseload can be so great that inadequate reflective time is left for learning based on clinical experiences. In addition, supervision is often vaguely defined and discontinuous. Medical malpractice data indicate that resident physicians are frequently named in lawsuits, most often for lack of supervision. The recommendations are: The ACGME should adjust resident physicians workload requirements to optimize educational value. Resident physicians as well as faculty should be involved in work redesign that eliminates nonessential and noneducational activity from resident physician dutiesMechanisms should be developed for identifying in real time when a resident physician’s workload is excessive, and processes developed to activate additional providersTeamwork should be actively encouraged in delivery of patient care. Historically, much of medical training has focused on individual knowledge, skills, and responsibility. As health care delivery has become more complex, it will be essential to train resident and attending physicians in effective teamwork that emphasizes collective responsibility for patient care and recognizes the signs, both individual and systemic, of a schedule and working conditions that are too demanding to be safeHospitals should embrace the opportunities that resident physician training redesign offers. Hospitals should recognize and act on the potential benefits of work redesign, eg, increased efficiency, reduced costs, improved quality of care, and resident physician and attending job satisfactionAttending physicians should supervise all hospital admissions. Resident physicians should directly discuss all admissions with attending physicians. Attending physicians should be both cognizant of and have input into the care patients are to receive upon admission to the hospitalInhouse supervision should be required for all critical care services, including emergency rooms, intensive care units, and trauma services. Resident physicians should not be left unsupervised to care for critically ill patients. In settings in which the acuity is high, physicians who have completed residency should provide direct supervision for resident physicians. Supervising physicians should always be physically in the hospital for supervision of resident physicians who care for critically ill patientsThe ACGME should explicitly define “good” supervision by specialty and by year of training. Explicit requirements for intensity and level of training for supervision of specific clinical scenarios should be providedCenters for Medicare and Medicaid Services (CMS) should use graduate medical education funding to provide incentives to programs with proven, effective levels of supervision. Although this action would require federal legislation, reimbursement rules would help to ensure that hospitals pay attention to the importance of good supervision and require it from their training programs
Resident physician work hours
Although the IOM “Sleep, supervision and safety” report provides a comprehensive review and discussion of all aspects of graduate medical education training, the report’s focal point is its recommendations regarding the hours that resident physicians are currently required to work. A considerable body of scientific evidence, much of it cited by the Institute of Medicine report, describes deteriorating performance in fatigued humans, as well as specific studies on resident physician fatigue and preventable medical errors.
The question before this conference was what work redesign and cultural changes are needed to reform work hours as recommended by the Institute of Medicine’s evidence-based report? Extensive scientific data demonstrate that shifts exceeding 12–16 hours without sleep are unsafe. Several principles should be followed in efforts to reduce consecutive hours below this level and achieve safer work schedules. The recommendations are: Limit resident physician work hours to 12–16 hour maximum shiftsA minimum of 10 hours off duty should be scheduled between shiftsResident physician input into work redesign should be actively solicitedSchedules should be designed that adhere to principles of sleep and circadian science; this includes careful consideration of the effects of multiple consecutive night shifts, and provision of adequate time off after night work, as specified in the IOM reportResident physicians should not be scheduled up to the maximum permissible limits; emergencies frequently occur that require resident physicians to stay longer than their scheduled shifts, and this should be anticipated in scheduling resident physicians’ work shiftsHospitals should anticipate the need for iterative improvement as new schedules are initiated; be prepared to learn from the initial phase-in, and change the plan as neededAs resident physician work hours are redesigned, attending physicians should also be considered; a potential consequence of resident physician work hour reduction and increased supervisory requirements may be an increase in work for attending physicians; this should be carefully monitored, and adjustments to attending physician work schedules made as needed to prevent unsafe work hours or working conditions for this group“Home call” should be brought under the overall limits of working hours; work load and hours should be monitored in each residency program to ensure that resident physicians and fellows on home call are getting sufficient sleepMedicare funding for graduate medical education in each hospital should be linked with adherence to the Institute of Medicine limits on resident physician work hours
Moonlighting by resident physicians
The Institute of Medicine report recommended including external as well as internal moonlighting in working hour limits. The recommendation is: All moonlighting work hours should be included in the ACGME working hour limits and actively monitored. Hospitals should formalize a moonlighting policy and establish systems for actively monitoring resident physician moonlighting
Safety of resident physicians
The “Sleep, supervision and safety” report also addresses fatigue-related harm done to resident physicians themselves. The report focuses on two main sources of physical injury to resident physicians impaired by fatigue, ie, needle-stick exposure to blood-borne pathogens and motor vehicle crashes. Providing safe transportation home for resident physicians is a logistical and financial challenge for hospitals. Educating physicians at all levels on the dangers of fatigue is clearly required to change driving behavior so that safe hospital-funded transport home is used effectively. Fatigue-related injury prevention (including not driving while drowsy) should be taught in medical school and during residency, and reinforced with attending physicians; hospitals and residency programs must be informed that resident physicians’ ability to judge their own level of impairment is impaired when they are sleep deprived; hence, leaving decisions about the capacity to drive to impaired resident physicians is not recommendedHospitals should provide transportation to all resident physicians who report feeling too tired to drive safely; in addition, although consecutive work should not exceed 16 hours, hospitals should provide transportation for all resident physicians who, because of unforeseen reasons or emergencies, work for longer than consecutive 24 hours; transportation under these circumstances should be automatically provided to house staff, and should not rely on self-identification or request
Training in effective handovers and quality improvement
Handover practice for resident physicians, attendings, and other health care providers has long been identified as a weak link in patient safety throughout health care settings. Policies to improve handovers of care must be tailored to fit the appropriate clinical scenario, recognizing that information overload can also be a problem. At the heart of improving handovers is the organizational effort to improve quality, an effort in which resident physicians have typically been insufficiently engaged. The recommendations are: Hospitals should train attending and resident physicians in effective handovers of careHospitals should create uniform processes for handovers that are tailored to meet each clinical setting; all handovers should be done verbally and face-to-face, but should also utilize written toolsWhen possible, hospitals should integrate hand-over tools into their electronic medical records (EMR) systems; these systems should be standardized to the extent possible across residency programs in a hospital, but may be tailored to the needs of specific programs and services; federal government should help subsidize adoption of electronic medical records by hospitals to improve signoutWhen feasible, handovers should be a team effort including nurses, patients, and familiesHospitals should include residents in their quality improvement and patient safety efforts; the ACGME should specify in their core competency requirements that resident physicians work on quality improvement projects; likewise, the Joint Commission should require that resident physicians be included in quality improvement and patient safety programs at teaching hospitals; hospital administrators and residency program directors should create opportunities for resident physicians to become involved in ongoing quality improvement projects and root cause analysis teams; feedback on successful quality improvement interventions should be shared with resident physicians and broadly disseminatedQuality improvement/patient safety concepts should be integral to the medical school curriculum; medical school deans should elevate the topics of patient safety, quality improvement, and teamwork; these concepts should be integrated throughout the medical school curriculum and reinforced throughout residency; mastery of these concepts by medical students should be tested on the United States Medical Licensing Examination (USMLE) stepsFederal government should support involvement of resident physicians in quality improvement efforts; initiatives to improve quality by including resident physicians in quality improvement projects should be financially supported by the Department of Health and Human Services
Monitoring and oversight of the ACGME
While the ACGME is a key stakeholder in residency training, external voices are essential to ensure that public interests are heard in the development and monitoring of standards. Consequently, the Institute of Medicine report recommended external oversight and monitoring through the Joint Commission and Centers for Medicare and Medicaid Services (CMS). The recommendations are: Make comprehensive fatigue management a Joint Commission National Patient Safety Goal; fatigue is a safety concern not only for resident physicians, but also for nurses, attending physicians, and other health care workers; the Joint Commission should seek to ensure that all health care workers, not just resident physicians, are working as safely as possibleFederal government, including the Centers for Medicare and Medicaid Services and the Agency for Healthcare Research and Quality, should encourage development of comprehensive fatigue management programs which all health systems would eventually be required to implementMake ACGME compliance with working hours a “ condition of participation” for reimbursement of direct and indirect graduate medical education costs; financial incentives will greatly increase the adoption of and compliance with ACGME standards
Future financial support for implementation
The Institute of Medicine’s report estimates that $1.7 billion (in 2008 dollars) would be needed to implement its recommendations. Twenty-five percent of that amount ($376 million) will be required just to bring hospitals into compliance with the existing 2003 ACGME rules. Downstream savings to the health care system could potentially result from safer care, but these benefits typically do not accrue to hospitals and residency programs, who have been asked historically to bear the burden of residency reform costs. The recommendations are: The Institute of Medicine should convene a panel of stakeholders, including private and public funders of health care and graduate medical education, to lay down the concrete steps necessary to identify and allocate the resources needed to implement the recommendations contained in the IOM “Resident duty hours: Enhancing sleep, supervision and safety” report. Conference participants suggested several approaches to engage public and private support for this initiativeEfforts to find additional funding to implement the Institute of Medicine recommendations should focus more broadly on patient safety and health care delivery reform; policy efforts focused narrowly upon resident physician work hours are less likely to succeed than broad patient safety initiatives that include residency redesign as a key componentHospitals should view the Institute of Medicine recommendations as an opportunity to begin resident physician work redesign projects as the core of a business model that embraces safety and ultimately saves resourcesBoth the Secretary of Health and Human Services and the Director of the Centers for Medicare and Medicaid Services should take the Institute of Medicine recommendations into consideration when promulgating rules for innovation grantsThe National Health Care Workforce Commission should consider the Institute of Medicine recommendations when analyzing the nation’s physician workforce needs
Recommendations for future research
Conference participants concurred that convening the stakeholders and agreeing on a research agenda was key. Some observed that some sectors within the medical education community have been reluctant to act on the data. Several logical funders for future research were identified. But above all agencies, Centers for Medicare and Medicaid Services is the only stakeholder that funds graduate medical education upstream and will reap savings downstream if preventable medical errors are reduced as a result of reform of resident physician work hours.
doi:10.2147/NSS.S19649
PMCID: PMC3630963  PMID: 23616719
resident; hospital; working hours; safety
3.  Interactions between Non-Physician Clinicians and Industry: A Systematic Review 
PLoS Medicine  2013;10(11):e1001561.
In a systematic review of studies of interactions between non-physician clinicians and industry, Quinn Grundy and colleagues found that many of the issues identified for physicians' industry interactions exist for non-physician clinicians.
Please see later in the article for the Editors' Summary
Background
With increasing restrictions placed on physician–industry interactions, industry marketing may target other health professionals. Recent health policy developments confer even greater importance on the decision making of non-physician clinicians. The purpose of this systematic review is to examine the types and implications of non-physician clinician–industry interactions in clinical practice.
Methods and Findings
We searched MEDLINE and Web of Science from January 1, 1946, through June 24, 2013, according to PRISMA guidelines. Non-physician clinicians eligible for inclusion were: Registered Nurses, nurse prescribers, Physician Assistants, pharmacists, dieticians, and physical or occupational therapists; trainee samples were excluded. Fifteen studies met inclusion criteria. Data were synthesized qualitatively into eight outcome domains: nature and frequency of industry interactions; attitudes toward industry; perceived ethical acceptability of interactions; perceived marketing influence; perceived reliability of industry information; preparation for industry interactions; reactions to industry relations policy; and management of industry interactions. Non-physician clinicians reported interacting with the pharmaceutical and infant formula industries. Clinicians across disciplines met with pharmaceutical representatives regularly and relied on them for practice information. Clinicians frequently received industry “information,” attended sponsored “education,” and acted as distributors for similar materials targeted at patients. Clinicians generally regarded this as an ethical use of industry resources, and felt they could detect “promotion” while benefiting from industry “information.” Free samples were among the most approved and common ways that clinicians interacted with industry. Included studies were observational and of varying methodological rigor; thus, these findings may not be generalizable. This review is, however, the first to our knowledge to provide a descriptive analysis of this literature.
Conclusions
Non-physician clinicians' generally positive attitudes toward industry interactions, despite their recognition of issues related to bias, suggest that industry interactions are normalized in clinical practice across non-physician disciplines. Industry relations policy should address all disciplines and be implemented consistently in order to mitigate conflicts of interest and address such interactions' potential to affect patient care.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Making and selling health care goods (including drugs and devices) and services is big business. To maximize the profits they make for their shareholders, companies involved in health care build relationships with physicians by providing information on new drugs, organizing educational meetings, providing samples of their products, giving gifts, and holding sponsored events. These relationships help to keep physicians informed about new developments in health care but also create the potential for causing harm to patients and health care systems. These relationships may, for example, result in increased prescription rates of new, heavily marketed medications, which are often more expensive than their generic counterparts (similar unbranded drugs) and that are more likely to be recalled for safety reasons than long-established drugs. They may also affect the provision of health care services. Industry is providing an increasingly large proportion of routine health care services in many countries, so relationships built up with physicians have the potential to influence the commissioning of the services that are central to the treatment and well-being of patients.
Why Was This Study Done?
As a result of concerns about the tension between industry's need to make profits and the ethics underlying professional practice, restrictions are increasingly being placed on physician–industry interactions. In the US, for example, the Physician Payments Sunshine Act now requires US manufacturers of drugs, devices, and medical supplies that participate in federal health care programs to disclose all payments and gifts made to physicians and teaching hospitals. However, other health professionals, including those with authority to prescribe drugs such as pharmacists, Physician Assistants, and nurse practitioners are not covered by this legislation or by similar legislation in other settings, even though the restructuring of health care to prioritize primary care and multidisciplinary care models means that “non-physician clinicians” are becoming more numerous and more involved in decision-making and medication management. In this systematic review (a study that uses predefined criteria to identify all the research on a given topic), the researchers examine the nature and implications of the interactions between non-physician clinicians and industry.
What Did the Researchers Do and Find?
The researchers identified 15 published studies that examined interactions between non-physician clinicians (Registered Nurses, nurse prescribers, midwives, pharmacists, Physician Assistants, and dieticians) and industry (corporations that produce health care goods and services). They extracted the data from 16 publications (representing 15 different studies) and synthesized them qualitatively (combined the data and reached word-based, rather than numerical, conclusions) into eight outcome domains, including the nature and frequency of interactions, non-physician clinicians' attitudes toward industry, and the perceived ethical acceptability of interactions. In the research the authors identified, non-physician clinicians reported frequent interactions with the pharmaceutical and infant formula industries. Most non-physician clinicians met industry representatives regularly, received gifts and samples, and attended educational events or received educational materials (some of which they distributed to patients). In these studies, non-physician clinicians generally regarded these interactions positively and felt they were an ethical and appropriate use of industry resources. Only a minority of non-physician clinicians felt that marketing influenced their own practice, although a larger percentage felt that their colleagues would be influenced. A sizeable proportion of non-physician clinicians questioned the reliability of industry information, but most were confident that they could detect biased information and therefore rated this information as reliable, valuable, or useful.
What Do These Findings Mean?
These and other findings suggest that non-physician clinicians generally have positive attitudes toward industry interactions but recognize issues related to bias and conflict of interest. Because these findings are based on a small number of studies, most of which were undertaken in the US, they may not be generalizable to other countries. Moreover, they provide no quantitative assessment of the interaction between non-physician clinicians and industry and no information about whether industry interactions affect patient care outcomes. Nevertheless, these findings suggest that industry interactions are normalized (seen as standard) in clinical practice across non-physician disciplines. This normalization creates the potential for serious risks to patients and health care systems. The researchers suggest that it may be unrealistic to expect that non-physician clinicians can be taught individually how to interact with industry ethically or how to detect and avert bias, particularly given the ubiquitous nature of marketing and promotional materials. Instead, they suggest, the environment in which non-physician clinicians practice should be structured to mitigate the potentially harmful effects of interactions with industry.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001561.
This study is further discussed in a PLOS Medicine Perspective by James S. Yeh and Aaron S. Kesselheim
The American Medical Association provides guidance for physicians on interactions with pharmaceutical industry representatives, information about the Physician Payments Sunshine Act, and a toolkit for preparing Physician Payments Sunshine Act reports
The International Council of Nurses provides some guidance on industry interactions in its position statement on nurse-industry relations
The UK General Medical Council provides guidance on financial and commercial arrangements and conflicts of interest as part of its good medical practice website, which describes what is required of all registered doctors in the UK
Understanding and Responding to Pharmaceutical Promotion: A Practical Guide is a manual prepared by Health Action International and the World Health Organization that schools of medicine and pharmacy can use to train students how to recognize and respond to pharmaceutical promotion.
The Institute of Medicine's Report on Conflict of Interest in Medical Research, Education, and Practice recommends steps to identify, limit, and manage conflicts of interest
The University of California, San Francisco, Office of Continuing Medical Education offers a course called Marketing of Medicines
doi:10.1371/journal.pmed.1001561
PMCID: PMC3841103  PMID: 24302892
4.  Towards evidence‐based medicine for paediatricians 
To give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions that are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format that has been successfully developed by Kevin Mackway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, although they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor to search the grey, unpublished literature. What Archimedes offers is practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and obtaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question (http://www.cebm.net). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as the number needed to treat), books by Sackett4 and Moyer5 may help. To pull the information together, a commentary is provided, but to make it all much more accessible, a box provides the clinical bottom lines.
Electronics‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include the following.
Can steroids be used to reduce post tonsillectomy pain?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the instructions for authors at www.archdischild.com. Three topics are covered in this issue of the journal:
Is teething the cause of minor ailments?
Should steroid creams be used in cases of labial fusion?
Does erythromycin cause pyloric stenosis?
References
1 Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
2 Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3 Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4 Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5 Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
Can: doing, using and replicating evidence‐based child health
The practice of evidence‐based child health is said to be the five‐step way of asking questions, acquiring information, appraising the evidence, applying the results and assessing our performance.
If the truth be known, for the vast majority of the time, most of us perform our clinical practice replicating what we have done previously. Most of the time this is based on the combination of excellent education, skilled interpretation of clinical findings, and good discussions with children and families. We hope that the education we rely on was (and remains) based on the best available scientific evidence. If it is, we are practising a form of “micro‐evidence‐based healthcare (EBHC)” (doing just step 4).
Sometimes, we question our knowledge (or more uncomfortably, someone does this for us), and will head off to top up our understanding of an area. This “using” mode, if we use well‐appraised resources to supply our thirst for information, will also promote the practice of evidence‐based care. This midi‐EBHC asks us to go through steps 1, 2 and 4.
Occasionally, we also actually need to go through the entire process of getting “down and dirty” with the primary research and appraising it to influence our practice. Maxi‐EBHC is considerably more demanding in time, but largely more satisfying intellectually.
If we reframe the practice of EBHC as using the family and child values, the best evidence, and our clinical expertise, then we can do it by micro‐methods, midi‐methods or maxi‐methods, and choose the most appropriate approach for the situation we confront.
Acknowledgement
I thank Dr Sharon Straus, Director of the Center for Evidence‐based Medicine, University of Toronto, Toronto, Ontario, Canada.
doi:10.1136/adc.2006.110080
PMCID: PMC2083440
5.  “Push” versus “Pull” for mobilizing pain evidence into practice across different health professions: A protocol for a randomized trial 
Background
Optimizing pain care requires ready access and use of best evidence within and across different disciplines and settings. The purpose of this randomized trial is to determine whether a technology-based “push” of new, high-quality pain research to physicians, nurses, and rehabilitation and psychology professionals results in better knowledge and clinical decision making around pain, when offered in addition to traditional “pull” evidence technology. A secondary objective is to identify disciplinary variations in response to evidence and differences in the patterns of accessing research evidence.
Methods
Physicians, nurses, occupational/physical therapists, and psychologists (n = 670) will be randomly allocated in a crossover design to receive a pain evidence resource in one of two different ways. Evidence is extracted from medical, nursing, psychology, and rehabilitation journals; appraised for quality/relevance; and sent out (PUSHed) to clinicians by email alerts or available for searches of the accumulated database (PULL). Participants are allocated to either PULL or PUSH + PULL in a randomized crossover design. The PULL intervention has a similar interface but does not send alerts; clinicians can only go to the site and enter search terms to retrieve evidence from the cumulative and continuously updated online database. Upon entry to the trial, there is three months of access to PULL, then random allocation. After six months, crossover takes place. The study ends with a final three months of access to PUSH + PULL. The primary outcomes are uptake and application of evidence. Uptake will be determined by embedded tracking of what research is accessed during use of the intervention. A random subset of 30 participants/ discipline will undergo chart-stimulated recall to assess the nature and depth of evidence utilization in actual case management at baseline and 9 months. A different random subset of 30 participants/ discipline will be tested for their skills in accessing evidence using a standardized simulation test (final 3 months). Secondary outcomes include usage and self-reported evidence-based practice attitudes and behaviors measured at baseline, 3, 9, 15 and 18 months.
Discussion
The trial will inform our understanding of information preferences and behaviors across disciplines/practice settings. If this intervention is effective, sustained support will be sought from professional/health system initiatives with an interest in optimizing pain management.
Trial registration
Registered as NCT01348802 on clinicaltrials.gov.
doi:10.1186/1748-5908-7-115
PMCID: PMC3520813  PMID: 23176444
Knowledge translation; Evidence-based healthcare; Implementation science; Health informatics; Pain; Physician; Rehabilitation; Nursing; Psychology
6.  Evidence-Based Medicine: What Is It and How Does It Apply to Athletic Training? 
Journal of Athletic Training  2004;39(1):83-87.
Objective:
To introduce the concept of evidence-based medicine (EBM) to athletic trainers. This overview provides information on how EBM can affect the clinical practice of athletic training and enhance the care given to patients.
Data Sources:
We searched the MEDLINE and CINHAL bibliographic databases using the terms evidence-based medicine and best practice and the online Index to Abstracts of Cochrane Reviews by group (injury, musculoskeletal injuries, and musculoskeletal) to identify reviews on topics pertinent to athletic training.
Data Synthesis:
Evidence-based medical practice has 5 components: defining a clinically relevant question, searching for the best evidence, appraising the quality of the evidence, applying the evidence to clinical practice, and evaluating the process. Evidence-based medicine integrates the research evidence, clinician's expertise, and patient's preferences to guide clinical decision making. Critical to this effort is the availability of quality research on the effectiveness of sports medicine techniques. Athletic training outcomes research is lagging behind that of other health care professions.
Recommendations:
Athletic trainers need to embrace the critical-thinking skills to assess the medical literature and incorporate it into their clinical practice. The profession should encourage more clinically related research and enhance the scientific foundation of athletic training. Evidence-based medicine provides an important next step in the growth of the athletic training profession.
PMCID: PMC385266  PMID: 15085215
best practice; clinical research
7.  Towards evidence based medicine for paediatricians 
In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, through they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching,2 and gaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best quality evidence to answer the question.4 A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as number needed to treat, NNT) books by Sackett5 and Moyer6 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal:
Does neonatal BCG vaccination protect against tuberculous meningitis?
Does dexamethasone reduce the risk of extubation failure in ventilated children?
Should metformin be prescribed to overweight adolescents in whom dietary/behavioural modifications have not helped?
REFERENCES
1. Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2. Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3. Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4. http://cebm.jr2.ox.ac.uk/docs/levels.htm (accessed July 2002).
5. Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
6. Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
How to read your journals
Most people have their journals land, monthly, weekly, or quarterly, on their desk, courtesy of their professional associations. Then they sit, gathering dust and guilt, for a period of time. When the layer of either is too great for comfort (or the desk space is needed for some proper work), the wrapper is removed and the journal scanned. But does how people read reflect their information needs or their entertainment requirements?
It is not uncommon to find people straying from the editorial introduction to the value added sections (like obituaries, Lucina‐like summary pages, and end‐of‐article fillers) rather than face the impenetrable science that sits between them. I think that this is probably unhelpful, and would urge readers to do one more thing before placing the journal in the recycling. Scan the table of contents; if it mentions a systematic review or a randomised trial, then read at least the title and the abstract's conclusions. If you agree, pat yourself warmly on the back for being evidence based and up‐to‐date. If you disagree, ask if it will make any impact on your clinical (or personal) life. If it might, run through the methods and quickly appraise them. Does it supply higher quality evidence than that you already possess? If it does, it's worth reading. If it doesn't, don't bother too much.
There are new innovations which might aid the tedious task of consuming research effort. The on‐line Précis section of the Archives provides a highly readable version of the contents page to whet one's appetite. Finally, it's worth mentioning that evidence based summary materials (like Archimedes, or Journal Watch) are always worth reading—and if you didn't think that you wouldn't be here, would you?
PMCID: PMC2082933
Archimedes; evidence based medicine
8.  Competency Revalidation Study of Specialty Practice in Sports Physical Therapy 
Purpose
The primary purpose of this study was to revalidate the competencies that define the practice of sports physical therapy. Additionally, the study allowed for the comparison of responses of board certified specialists in sports physical therapy to respondents who were not specialists.
Methods
A survey instrument based the on American Board of Physical Therapy Specialties practice analysis template and The Guide to Physical Therapist Practice was developed by the Sports Specialty Council and a panel of subject matter experts in sports physical therapy. The instrument was sent to 630 physical therapists, 315 of whom were board certified specialists in sports physical therapy and 315 of whom were randomly selected members of the Sports Physical Therapy Section who were not board certified specialists in sports physical therapy. Two hundred and thirty seven subjects returned completed surveys for a 41% response rate. One hundred and fifty eight respondents were sports specialists
Results
The survey results were reviewed by the Sports Specialty Council and another panel of subject matter experts. Using a defined decision making process, the results were used to determine the competencies that define the specialty practice of sports physical therapy. Survey results were also used to develop the sports physical therapy specialty board examination blue print. A number of significant comparisons between the specialists and non-specialists were identified.
Conclusion
The competency revalidation process culminated in the publication of the Sports Physical Therapy Description of Specialty Practice. This document serves to guide the process related to the attainment and maintenance of the board certified clinical specialist in sports physical therapy.
PMCID: PMC2953335  PMID: 21509106
9.  The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview 
PLoS Medicine  2011;8(1):e1000387.
Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care.
Background
There is considerable international interest in exploiting the potential of digital solutions to enhance the quality and safety of health care. Implementations of transformative eHealth technologies are underway globally, often at very considerable cost. In order to assess the impact of eHealth solutions on the quality and safety of health care, and to inform policy decisions on eHealth deployments, we undertook a systematic review of systematic reviews assessing the effectiveness and consequences of various eHealth technologies on the quality and safety of care.
Methods and Findings
We developed novel search strategies, conceptual maps of health care quality, safety, and eHealth interventions, and then systematically identified, scrutinised, and synthesised the systematic review literature. Major biomedical databases were searched to identify systematic reviews published between 1997 and 2010. Related theoretical, methodological, and technical material was also reviewed. We identified 53 systematic reviews that focused on assessing the impact of eHealth interventions on the quality and/or safety of health care and 55 supplementary systematic reviews providing relevant supportive information. This systematic review literature was found to be generally of substandard quality with regards to methodology, reporting, and utility. We thematically categorised eHealth technologies into three main areas: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. We found that despite support from policymakers, there was relatively little empirical evidence to substantiate many of the claims made in relation to these technologies. Whether the success of those relatively few solutions identified to improve quality and safety would continue if these were deployed beyond the contexts in which they were originally developed, has yet to be established. Importantly, best practice guidelines in effective development and deployment strategies are lacking.
Conclusions
There is a large gap between the postulated and empirically demonstrated benefits of eHealth technologies. In addition, there is a lack of robust research on the risks of implementing these technologies and their cost-effectiveness has yet to be demonstrated, despite being frequently promoted by policymakers and “techno-enthusiasts” as if this was a given. In the light of the paucity of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, it is vital that future eHealth technologies are evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle. Such evaluation should be characterised by careful attention to socio-technical factors to maximise the likelihood of successful implementation and adoption.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
There is considerable international interest in exploiting the potential of digital health care solutions, often referred to as eHealth—the use of information and communication technologies—to enhance the quality and safety of health care. Often accompanied by large costs, any large-scale expenditure on eHealth—such as electronic health records, picture archiving and communication systems, ePrescribing, associated computerized provider order entry systems, and computerized decision support systems—has tended to be justified on the grounds that these are efficient and cost-effective means for improving health care. In 2005, the World Health Assembly passed an eHealth resolution (WHA 58.28) that acknowledged, “eHealth is the cost-effective and secure use of information and communications technologies in support of health and health-related fields, including health-care services, health surveillance, health literature, and health education, knowledge and research,” and urged member states to develop and implement eHealth technologies. Since then, implementing eHealth technologies has become a main priority for many countries. For example, England has invested at least £12.8 billion in a National Programme for Information Technology for the National Health Service, and the Obama administration in the United States has committed to a US$38 billion eHealth investment in health care.
Why Was This Study Done?
Despite the wide endorsement of and support for eHealth, the scientific basis of its benefits—which are repeatedly made and often uncritically accepted—remains to be firmly established. A robust evidence-based perspective on the advantages on eHealth could help to suggest priority areas that have the greatest potential for benefit to patients and also to inform international eHealth deliberations on costs. Therefore, in order to better inform the international community, the authors systematically reviewed the published systematic review literature on eHealth technologies and evaluated the impact of these technologies on the quality and safety of health care delivery.
What Did the Researchers Do and Find?
The researchers divided eHealth technologies into three main categories: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. Then, implementing methods based on those developed by the Cochrane Collaboration and the NHS Service Delivery and Organisation Programme, the researchers used detailed search strategies and maps of health care quality, safety, and eHealth interventions to identify relevant systematic reviews (and related theoretical, methodological, and technical material) published between 1997 and 2010. Using these techniques, the researchers retrieved a total of 46,349 references from which they identified 108 reviews. The 53 reviews that the researchers finally selected (and critically reviewed) provided the main evidence base for assessing the impact of eHealth technologies in the three categories selected.
In their systematic review of systematic reviews, the researchers included electronic health records and picture archiving communications systems in their evaluation of category 1, computerized provider (or physician) order entry and e-prescribing in category 2, and all clinical information systems that, when used in the context of eHealth technologies, integrate clinical and demographic patient information to support clinician decision making in category 3.
The researchers found that many of the clinical claims made about the most commonly used eHealth technologies were not substantiated by empirical evidence. The evidence base in support of eHealth technologies was weak and inconsistent and importantly, there was insubstantial evidence to support the cost-effectiveness of these technologies. For example, the researchers only found limited evidence that some of the many presumed benefits could be realized; importantly, they also found some evidence that introducing these new technologies may on occasions also generate new risks such as prescribers becoming over-reliant on clinical decision support for e-prescribing, or overestimate its functionality, resulting in decreased practitioner performance.
What Do These Findings Mean?
The researchers found that despite the wide support for eHealth technologies and the frequently made claims by policy makers when constructing business cases to raise funds for large-scale eHealth projects, there is as yet relatively little empirical evidence to substantiate many of the claims made about eHealth technologies. In addition, even for the eHealth technology tools that have proven to be successful, there is little evidence to show that such tools would continue to be successful beyond the contexts in which they were originally developed. Therefore, in light of the lack of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, the authors say that future eHealth technologies should be evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle, and include socio-technical factors to maximize the likelihood of successful implementation and adoption in a given context. Furthermore, it is equally important that eHealth projects that have already been commissioned are subject to rigorous, multidisciplinary, and independent evaluation.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000387.
The authors' broader study is: Car J, Black A, Anandan C, Cresswell K, Pagliari C, McKinstry B, et al. (2008) The Impact of eHealth on the Quality and Safety of Healthcare. Available at: http://www.haps.bham.ac.uk/publichealth/cfhep/001.shtml
More information is available on the World Health Assembly eHealth resolution
The World Health Organization provides information at the Global Observatory on eHealth, as well as a global insight into eHealth developments
The European Commission provides Information on eHealth in Europe and some examples of good eHealth practice
More information is provided on NHS Connecting for Health
doi:10.1371/journal.pmed.1000387
PMCID: PMC3022523  PMID: 21267058
10.  Towards evidence based medicine for paediatricians 
In order to give the best care to patients and families, paediatricians need to integrate the highest quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format which has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, though they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and gaining answers.3) A brief report of the search used follows—this has been performed in a hierarchical way, to search for the best‐quality evidence to answer the question. (http://www.cebm.net). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal, and the measures of effect (such as number needed to treat), books by Sackett et al4 and Moyer et al5 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Electronic‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include:
When is a second course of indomethacin effective for PDA in neonates?
Does delayed cord clamping prevent sepsis?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still hasn't been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal:
In children aged <3 years does procalcitonin help exclude serious bacterial infection in fever without focus?
Does avoidance of breast feeding reduce mother‐to‐infant transmission of hepatitis C virus infection?
Should children under treatment for juvenile idiopathic arthritis receive flu vaccination?
CAN gambling with other people's children
When we use tests to “rule out” a condition, we generally accept that we are left with a small risk of being wrong. (I think we have all discharged a child with an “upper respiratory tract infection” on a Friday to be greeted with them on antibiotics for pneumonia the following Monday.) How much faith we place in a test result is a product of two things: our initial assumption about the likelihood of the diagnosis (pretest probability) and our opinion as to how effective the test is (accuracy), but our actions do not just reflect these factors.
For instance, a well, afebrile child with a scattering of petechiae over its wrist 8 hours before, is unlikely to have meningococcal disease. If you perform a couple of tests, you can find that it has a low C‐reactive protein and a normal full blood count. What we do with this varies widely; some people would treat this with 48 h of antibiotics, others would discharge the patient home.
It is interesting to reflect on two things: first, what chance of meningococcal disease would you put on this clinical picture (before the test), and what about with the test results? What about your colleagues? You may be surprised by how widely this varies. Second, even those who have the same estimates of risk of disease may have different preferred actions (depending on their attitude to risk).
In looking at the diagnostic test for the ruling out of a disease, we can make our arguments more useful by having some data on the assumptions we make, and then transparently discussing our attitudes to risk. It is only after doing this that we can really decide if a test is good enough for us, regardless of how accurate it might be.
References
1Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health. Issue 1. London: BMJ Books, 2000.
PMCID: PMC2083694  PMID: 17376947
11.  Internet-Based Device-Assisted Remote Monitoring of Cardiovascular Implantable Electronic Devices 
Executive Summary
Objective
The objective of this Medical Advisory Secretariat (MAS) report was to conduct a systematic review of the available published evidence on the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted remote monitoring systems (RMSs) for therapeutic cardiac implantable electronic devices (CIEDs) such as pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. The MAS evidence-based review was performed to support public financing decisions.
Clinical Need: Condition and Target Population
Sudden cardiac death (SCD) is a major cause of fatalities in developed countries. In the United States almost half a million people die of SCD annually, resulting in more deaths than stroke, lung cancer, breast cancer, and AIDS combined. In Canada each year more than 40,000 people die from a cardiovascular related cause; approximately half of these deaths are attributable to SCD.
Most cases of SCD occur in the general population typically in those without a known history of heart disease. Most SCDs are caused by cardiac arrhythmia, an abnormal heart rhythm caused by malfunctions of the heart’s electrical system. Up to half of patients with significant heart failure (HF) also have advanced conduction abnormalities.
Cardiac arrhythmias are managed by a variety of drugs, ablative procedures, and therapeutic CIEDs. The range of CIEDs includes pacemakers (PMs), implantable cardioverter-defibrillators (ICDs), and cardiac resynchronization therapy (CRT) devices. Bradycardia is the main indication for PMs and individuals at high risk for SCD are often treated by ICDs.
Heart failure (HF) is also a significant health problem and is the most frequent cause of hospitalization in those over 65 years of age. Patients with moderate to severe HF may also have cardiac arrhythmias, although the cause may be related more to heart pump or haemodynamic failure. The presence of HF, however, increases the risk of SCD five-fold, regardless of aetiology. Patients with HF who remain highly symptomatic despite optimal drug therapy are sometimes also treated with CRT devices.
With an increasing prevalence of age-related conditions such as chronic HF and the expanding indications for ICD therapy, the rate of ICD placement has been dramatically increasing. The appropriate indications for ICD placement, as well as the rate of ICD placement, are increasingly an issue. In the United States, after the introduction of expanded coverage of ICDs, a national ICD registry was created in 2005 to track these devices. A recent survey based on this national ICD registry reported that 22.5% (25,145) of patients had received a non-evidence based ICD and that these patients experienced significantly higher in-hospital mortality and post-procedural complications.
In addition to the increased ICD device placement and the upfront device costs, there is the need for lifelong follow-up or surveillance, placing a significant burden on patients and device clinics. In 2007, over 1.6 million CIEDs were implanted in Europe and the United States, which translates to over 5.5 million patient encounters per year if the recommended follow-up practices are considered. A safe and effective RMS could potentially improve the efficiency of long-term follow-up of patients and their CIEDs.
Technology
In addition to being therapeutic devices, CIEDs have extensive diagnostic abilities. All CIEDs can be interrogated and reprogrammed during an in-clinic visit using an inductive programming wand. Remote monitoring would allow patients to transmit information recorded in their devices from the comfort of their own homes. Currently most ICD devices also have the potential to be remotely monitored. Remote monitoring (RM) can be used to check system integrity, to alert on arrhythmic episodes, and to potentially replace in-clinic follow-ups and manage disease remotely. They do not currently have the capability of being reprogrammed remotely, although this feature is being tested in pilot settings.
Every RMS is specifically designed by a manufacturer for their cardiac implant devices. For Internet-based device-assisted RMSs, this customization includes details such as web application, multiplatform sensors, custom algorithms, programming information, and types and methods of alerting patients and/or physicians. The addition of peripherals for monitoring weight and pressure or communicating with patients through the onsite communicators also varies by manufacturer. Internet-based device-assisted RMSs for CIEDs are intended to function as a surveillance system rather than an emergency system.
Health care providers therefore need to learn each application, and as more than one application may be used at one site, multiple applications may need to be reviewed for alarms. All RMSs deliver system integrity alerting; however, some systems seem to be better geared to fast arrhythmic alerting, whereas other systems appear to be more intended for remote follow-up or supplemental remote disease management. The different RMSs may therefore have different impacts on workflow organization because of their varying frequency of interrogation and methods of alerts. The integration of these proprietary RM web-based registry systems with hospital-based electronic health record systems has so far not been commonly implemented.
Currently there are 2 general types of RMSs: those that transmit device diagnostic information automatically and without patient assistance to secure Internet-based registry systems, and those that require patient assistance to transmit information. Both systems employ the use of preprogrammed alerts that are either transmitted automatically or at regular scheduled intervals to patients and/or physicians.
The current web applications, programming, and registry systems differ greatly between the manufacturers of transmitting cardiac devices. In Canada there are currently 4 manufacturers—Medtronic Inc., Biotronik, Boston Scientific Corp., and St Jude Medical Inc.—which have regulatory approval for remote transmitting CIEDs. Remote monitoring systems are proprietary to the manufacturer of the implant device. An RMS for one device will not work with another device, and the RMS may not work with all versions of the manufacturer’s devices.
All Internet-based device-assisted RMSs have common components. The implanted device is equipped with a micro-antenna that communicates with a small external device (at bedside or wearable) commonly known as the transmitter. Transmitters are able to interrogate programmed parameters and diagnostic data stored in the patients’ implant device. The information transfer to the communicator can occur at preset time intervals with the participation of the patient (waving a wand over the device) or it can be sent automatically (wirelessly) without their participation. The encrypted data are then uploaded to an Internet-based database on a secure central server. The data processing facilities at the central database, depending on the clinical urgency, can trigger an alert for the physician(s) that can be sent via email, fax, text message, or phone. The details are also posted on the secure website for viewing by the physician (or their delegate) at their convenience.
Research Questions
The research directions and specific research questions for this evidence review were as follows:
To identify the Internet-based device-assisted RMSs available for follow-up of patients with therapeutic CIEDs such as PMs, ICDs, and CRT devices.
To identify the potential risks, operational issues, or organizational issues related to Internet-based device-assisted RM for CIEDs.
To evaluate the safety, acceptability, and effectiveness of Internet-based device-assisted RMSs for CIEDs such as PMs, ICDs, and CRT devices.
To evaluate the safety, effectiveness, and cost-effectiveness of Internet-based device-assisted RMSs for CIEDs compared to usual outpatient in-office monitoring strategies.
To evaluate the resource implications or budget impact of RMSs for CIEDs in Ontario, Canada.
Research Methods
Literature Search
The review included a systematic review of published scientific literature and consultations with experts and manufacturers of all 4 approved RMSs for CIEDs in Canada. Information on CIED cardiac implant clinics was also obtained from Provincial Programs, a division within the Ministry of Health and Long-Term Care with a mandate for cardiac implant specialty care. Various administrative databases and registries were used to outline the current clinical follow-up burden of CIEDs in Ontario. The provincial population-based ICD database developed and maintained by the Institute for Clinical Evaluative Sciences (ICES) was used to review the current follow-up practices with Ontario patients implanted with ICD devices.
Search Strategy
A literature search was performed on September 21, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cumulative Index to Nursing & Allied Health Literature (CINAHL), the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from 1950 to September 2010. Search alerts were generated and reviewed for additional relevant literature until December 31, 2010. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.
Inclusion Criteria
published between 1950 and September 2010;
English language full-reports and human studies;
original reports including clinical evaluations of Internet-based device-assisted RMSs for CIEDs in clinical settings;
reports including standardized measurements on outcome events such as technical success, safety, effectiveness, cost, measures of health care utilization, morbidity, mortality, quality of life or patient satisfaction;
randomized controlled trials (RCTs), systematic reviews and meta-analyses, cohort and controlled clinical studies.
Exclusion Criteria
non-systematic reviews, letters, comments and editorials;
reports not involving standardized outcome events;
clinical reports not involving Internet-based device assisted RM systems for CIEDs in clinical settings;
reports involving studies testing or validating algorithms without RM;
studies with small samples (<10 subjects).
Outcomes of Interest
The outcomes of interest included: technical outcomes, emergency department visits, complications, major adverse events, symptoms, hospital admissions, clinic visits (scheduled and/or unscheduled), survival, morbidity (disease progression, stroke, etc.), patient satisfaction, and quality of life.
Summary of Findings
The MAS evidence review was performed to review available evidence on Internet-based device-assisted RMSs for CIEDs published until September 2010. The search identified 6 systematic reviews, 7 randomized controlled trials, and 19 reports for 16 cohort studies—3 of these being registry-based and 4 being multi-centered. The evidence is summarized in the 3 sections that follow.
1. Effectiveness of Remote Monitoring Systems of CIEDs for Cardiac Arrhythmia and Device Functioning
In total, 15 reports on 13 cohort studies involving investigations with 4 different RMSs for CIEDs in cardiology implant clinic groups were identified in the review. The 4 RMSs were: Care Link Network® (Medtronic Inc,, Minneapolis, MN, USA); Home Monitoring® (Biotronic, Berlin, Germany); House Call 11® (St Jude Medical Inc., St Pauls, MN, USA); and a manufacturer-independent RMS. Eight of these reports were with the Home Monitoring® RMS (12,949 patients), 3 were with the Care Link® RMS (167 patients), 1 was with the House Call 11® RMS (124 patients), and 1 was with a manufacturer-independent RMS (44 patients). All of the studies, except for 2 in the United States, (1 with Home Monitoring® and 1 with House Call 11®), were performed in European countries.
The RMSs in the studies were evaluated with different cardiac implant device populations: ICDs only (6 studies), ICD and CRT devices (3 studies), PM and ICD and CRT devices (4 studies), and PMs only (2 studies). The patient populations were predominately male (range, 52%–87%) in all studies, with mean ages ranging from 58 to 76 years. One study population was unique in that RMSs were evaluated for ICDs implanted solely for primary prevention in young patients (mean age, 44 years) with Brugada syndrome, which carries an inherited increased genetic risk for sudden heart attack in young adults.
Most of the cohort studies reported on the feasibility of RMSs in clinical settings with limited follow-up. In the short follow-up periods of the studies, the majority of the events were related to detection of medical events rather than system configuration or device abnormalities. The results of the studies are summarized below:
The interrogation of devices on the web platform, both for continuous and scheduled transmissions, was significantly quicker with remote follow-up, both for nurses and physicians.
In a case-control study focusing on a Brugada population–based registry with patients followed-up remotely, there were significantly fewer outpatient visits and greater detection of inappropriate shocks. One death occurred in the control group not followed remotely and post-mortem analysis indicated early signs of lead failure prior to the event.
Two studies examined the role of RMSs in following ICD leads under regulatory advisory in a European clinical setting and noted:
– Fewer inappropriate shocks were administered in the RM group.
– Urgent in-office interrogations and surgical revisions were performed within 12 days of remote alerts.
– No signs of lead fracture were detected at in-office follow-up; all were detected at remote follow-up.
Only 1 study reported evaluating quality of life in patients followed up remotely at 3 and 6 months; no values were reported.
Patient satisfaction was evaluated in 5 cohort studies, all in short term follow-up: 1 for the Home Monitoring® RMS, 3 for the Care Link® RMS, and 1 for the House Call 11® RMS.
– Patients reported receiving a sense of security from the transmitter, a good relationship with nurses and physicians, positive implications for their health, and satisfaction with RM and organization of services.
– Although patients reported that the system was easy to implement and required less than 10 minutes to transmit information, a variable proportion of patients (range, 9% 39%) reported that they needed the assistance of a caregiver for their transmission.
– The majority of patients would recommend RM to other ICD patients.
– Patients with hearing or other physical or mental conditions hindering the use of the system were excluded from studies, but the frequency of this was not reported.
Physician satisfaction was evaluated in 3 studies, all with the Care Link® RMS:
– Physicians reported an ease of use and high satisfaction with a generally short-term use of the RMS.
– Physicians reported being able to address the problems in unscheduled patient transmissions or physician initiated transmissions remotely, and were able to handle the majority of the troubleshooting calls remotely.
– Both nurses and physicians reported a high level of satisfaction with the web registry system.
2. Effectiveness of Remote Monitoring Systems in Heart Failure Patients for Cardiac Arrhythmia and Heart Failure Episodes
Remote follow-up of HF patients implanted with ICD or CRT devices, generally managed in specialized HF clinics, was evaluated in 3 cohort studies: 1 involved the Home Monitoring® RMS and 2 involved the Care Link® RMS. In these RMSs, in addition to the standard diagnostic features, the cardiac devices continuously assess other variables such as patient activity, mean heart rate, and heart rate variability. Intra-thoracic impedance, a proxy measure for lung fluid overload, was also measured in the Care Link® studies. The overall diagnostic performance of these measures cannot be evaluated, as the information was not reported for patients who did not experience intra-thoracic impedance threshold crossings or did not undergo interventions. The trial results involved descriptive information on transmissions and alerts in patients experiencing high morbidity and hospitalization in the short study periods.
3. Comparative Effectiveness of Remote Monitoring Systems for CIEDs
Seven RCTs were identified evaluating RMSs for CIEDs: 2 were for PMs (1276 patients) and 5 were for ICD/CRT devices (3733 patients). Studies performed in the clinical setting in the United States involved both the Care Link® RMS and the Home Monitoring® RMS, whereas all studies performed in European countries involved only the Home Monitoring® RMS.
3A. Randomized Controlled Trials of Remote Monitoring Systems for Pacemakers
Two trials, both multicenter RCTs, were conducted in different countries with different RMSs and study objectives. The PREFER trial was a large trial (897 patients) performed in the United States examining the ability of Care Link®, an Internet-based remote PM interrogation system, to detect clinically actionable events (CAEs) sooner than the current in-office follow-up supplemented with transtelephonic monitoring transmissions, a limited form of remote device interrogation. The trial results are summarized below:
In the 375-day mean follow-up, 382 patients were identified with at least 1 CAE—111 patients in the control arm and 271 in the remote arm.
The event rate detected per patient for every type of CAE, except for loss of atrial capture, was higher in the remote arm than the control arm.
The median time to first detection of CAEs (4.9 vs. 6.3 months) was significantly shorter in the RMS group compared to the control group (P < 0.0001).
Additionally, only 2% (3/190) of the CAEs in the control arm were detected during a transtelephonic monitoring transmission (the rest were detected at in-office follow-ups), whereas 66% (446/676) of the CAEs were detected during remote interrogation.
The second study, the OEDIPE trial, was a smaller trial (379 patients) performed in France evaluating the ability of the Home Monitoring® RMS to shorten PM post-operative hospitalization while preserving the safety of conventional management of longer hospital stays.
Implementation and operationalization of the RMS was reported to be successful in 91% (346/379) of the patients and represented 8144 transmissions.
In the RM group 6.5% of patients failed to send messages (10 due to improper use of the transmitter, 2 with unmanageable stress). Of the 172 patients transmitting, 108 patients sent a total of 167 warnings during the trial, with a greater proportion of warnings being attributed to medical rather than technical causes.
Forty percent had no warning message transmission and among these, 6 patients experienced a major adverse event and 1 patient experienced a non-major adverse event. Of the 6 patients having a major adverse event, 5 contacted their physician.
The mean medical reaction time was faster in the RM group (6.5 ± 7.6 days vs. 11.4 ± 11.6 days).
The mean duration of hospitalization was significantly shorter (P < 0.001) for the RM group than the control group (3.2 ± 3.2 days vs. 4.8 ± 3.7 days).
Quality of life estimates by the SF-36 questionnaire were similar for the 2 groups at 1-month follow-up.
3B. Randomized Controlled Trials Evaluating Remote Monitoring Systems for ICD or CRT Devices
The 5 studies evaluating the impact of RMSs with ICD/CRT devices were conducted in the United States and in European countries and involved 2 RMSs—Care Link® and Home Monitoring ®. The objectives of the trials varied and 3 of the trials were smaller pilot investigations.
The first of the smaller studies (151 patients) evaluated patient satisfaction, achievement of patient outcomes, and the cost-effectiveness of the Care Link® RMS compared to quarterly in-office device interrogations with 1-year follow-up.
Individual outcomes such as hospitalizations, emergency department visits, and unscheduled clinic visits were not significantly different between the study groups.
Except for a significantly higher detection of atrial fibrillation in the RM group, data on ICD detection and therapy were similar in the study groups.
Health-related quality of life evaluated by the EuroQoL at 6-month or 12-month follow-up was not different between study groups.
Patients were more satisfied with their ICD care in the clinic follow-up group than in the remote follow-up group at 6-month follow-up, but were equally satisfied at 12- month follow-up.
The second small pilot trial (20 patients) examined the impact of RM follow-up with the House Call 11® system on work schedules and cost savings in patients randomized to 2 study arms varying in the degree of remote follow-up.
The total time including device interrogation, transmission time, data analysis, and physician time required was significantly shorter for the RM follow-up group.
The in-clinic waiting time was eliminated for patients in the RM follow-up group.
The physician talk time was significantly reduced in the RM follow-up group (P < 0.05).
The time for the actual device interrogation did not differ in the study groups.
The third small trial (115 patients) examined the impact of RM with the Home Monitoring® system compared to scheduled trimonthly in-clinic visits on the number of unplanned visits, total costs, health-related quality of life (SF-36), and overall mortality.
There was a 63.2% reduction in in-office visits in the RM group.
Hospitalizations or overall mortality (values not stated) were not significantly different between the study groups.
Patient-induced visits were higher in the RM group than the in-clinic follow-up group.
The TRUST Trial
The TRUST trial was a large multicenter RCT conducted at 102 centers in the United States involving the Home Monitoring® RMS for ICD devices for 1450 patients. The primary objectives of the trial were to determine if remote follow-up could be safely substituted for in-office clinic follow-up (3 in-office visits replaced) and still enable earlier physician detection of clinically actionable events.
Adherence to the protocol follow-up schedule was significantly higher in the RM group than the in-office follow-up group (93.5% vs. 88.7%, P < 0.001).
Actionability of trimonthly scheduled checks was low (6.6%) in both study groups. Overall, actionable causes were reprogramming (76.2%), medication changes (24.8%), and lead/system revisions (4%), and these were not different between the 2 study groups.
The overall mean number of in-clinic and hospital visits was significantly lower in the RM group than the in-office follow-up group (2.1 per patient-year vs. 3.8 per patient-year, P < 0.001), representing a 45% visit reduction at 12 months.
The median time from onset of first arrhythmia to physician evaluation was significantly shorter (P < 0.001) in the RM group than in the in-office follow-up group for all arrhythmias (1 day vs. 35.5 days).
The median time to detect clinically asymptomatic arrhythmia events—atrial fibrillation (AF), ventricular fibrillation (VF), ventricular tachycardia (VT), and supra-ventricular tachycardia (SVT)—was also significantly shorter (P < 0.001) in the RM group compared to the in-office follow-up group (1 day vs. 41.5 days) and was significantly quicker for each of the clinical arrhythmia events—AF (5.5 days vs. 40 days), VT (1 day vs. 28 days), VF (1 day vs. 36 days), and SVT (2 days vs. 39 days).
System-related problems occurred infrequently in both groups—in 1.5% of patients (14/908) in the RM group and in 0.7% of patients (3/432) in the in-office follow-up group.
The overall adverse event rate over 12 months was not significantly different between the 2 groups and individual adverse events were also not significantly different between the RM group and the in-office follow-up group: death (3.4% vs. 4.9%), stroke (0.3% vs. 1.2%), and surgical intervention (6.6% vs. 4.9%), respectively.
The 12-month cumulative survival was 96.4% (95% confidence interval [CI], 95.5%–97.6%) in the RM group and 94.2% (95% confidence interval [CI], 91.8%–96.6%) in the in-office follow-up group, and was not significantly different between the 2 groups (P = 0.174).
The CONNECT Trial
The CONNECT trial, another major multicenter RCT, involved the Care Link® RMS for ICD/CRT devices in a15-month follow-up study of 1,997 patients at 133 sites in the United States. The primary objective of the trial was to determine whether automatically transmitted physician alerts decreased the time from the occurrence of clinically relevant events to medical decisions. The trial results are summarized below:
Of the 575 clinical alerts sent in the study, 246 did not trigger an automatic physician alert. Transmission failures were related to technical issues such as the alert not being programmed or not being reset, and/or a variety of patient factors such as not being at home and the monitor not being plugged in or set up.
The overall mean time from the clinically relevant event to the clinical decision was significantly shorter (P < 0.001) by 17.4 days in the remote follow-up group (4.6 days for 172 patients) than the in-office follow-up group (22 days for 145 patients).
– The median time to a clinical decision was shorter in the remote follow-up group than in the in-office follow-up group for an AT/AF burden greater than or equal to 12 hours (3 days vs. 24 days) and a fast VF rate greater than or equal to 120 beats per minute (4 days vs. 23 days).
Although infrequent, similar low numbers of events involving low battery and VF detection/therapy turned off were noted in both groups. More alerts, however, were noted for out-of-range lead impedance in the RM group (18 vs. 6 patients), and the time to detect these critical events was significantly shorter in the RM group (same day vs. 17 days).
Total in-office clinic visits were reduced by 38% from 6.27 visits per patient-year in the in-office follow-up group to 3.29 visits per patient-year in the remote follow-up group.
Health care utilization visits (N = 6,227) that included cardiovascular-related hospitalization, emergency department visits, and unscheduled clinic visits were not significantly higher in the remote follow-up group.
The overall mean length of hospitalization was significantly shorter (P = 0.002) for those in the remote follow-up group (3.3 days vs. 4.0 days) and was shorter both for patients with ICD (3.0 days vs. 3.6 days) and CRT (3.8 days vs. 4.7 days) implants.
The mortality rate between the study arms was not significantly different between the follow-up groups for the ICDs (P = 0.31) or the CRT devices with defribillator (P = 0.46).
Conclusions
There is limited clinical trial information on the effectiveness of RMSs for PMs. However, for RMSs for ICD devices, multiple cohort studies and 2 large multicenter RCTs demonstrated feasibility and significant reductions in in-office clinic follow-ups with RMSs in the first year post implantation. The detection rates of clinically significant events (and asymptomatic events) were higher, and the time to a clinical decision for these events was significantly shorter, in the remote follow-up groups than in the in-office follow-up groups. The earlier detection of clinical events in the remote follow-up groups, however, was not associated with lower morbidity or mortality rates in the 1-year follow-up. The substitution of almost all the first year in-office clinic follow-ups with RM was also not associated with an increased health care utilization such as emergency department visits or hospitalizations.
The follow-up in the trials was generally short-term, up to 1 year, and was a more limited assessment of potential longer term device/lead integrity complications or issues. None of the studies compared the different RMSs, particularly the different RMSs involving patient-scheduled transmissions or automatic transmissions. Patients’ acceptance of and satisfaction with RM were reported to be high, but the impact of RM on patients’ health-related quality of life, particularly the psychological aspects, was not evaluated thoroughly. Patients who are not technologically competent, having hearing or other physical/mental impairments, were identified as potentially disadvantaged with remote surveillance. Cohort studies consistently identified subgroups of patients who preferred in-office follow-up. The evaluation of costs and workflow impact to the health care system were evaluated in European or American clinical settings, and only in a limited way.
Internet-based device-assisted RMSs involve a new approach to monitoring patients, their disease progression, and their CIEDs. Remote monitoring also has the potential to improve the current postmarket surveillance systems of evolving CIEDs and their ongoing hardware and software modifications. At this point, however, there is insufficient information to evaluate the overall impact to the health care system, although the time saving and convenience to patients and physicians associated with a substitution of in-office follow-up by RM is more certain. The broader issues surrounding infrastructure, impacts on existing clinical care systems, and regulatory concerns need to be considered for the implementation of Internet-based RMSs in jurisdictions involving different clinical practices.
PMCID: PMC3377571  PMID: 23074419
12.  Towards evidence‐based medicine for paediatricians 
To give the best care to patients and families, paediatricians need to integrate the highest‐quality scientific evidence with clinical expertise and the opinions of the family.1Archimedes seeks to assist practising clinicians by providing “evidence‐based” answers to common questions which are not at the forefront of research but are at the core of practice. In doing this, we are adapting a format that has been successfully developed by Kevin Macaway‐Jones and the group at the Emergency Medicine Journal—“BestBets”.
A word of warning. The topic summaries are not systematic reviews, although they are as exhaustive as a practising clinician can produce. They make no attempt to statistically aggregate the data, nor search the grey, unpublished literature. What Archimedes offers are practical, best evidence‐based answers to practical, clinical questions.
The format of Archimedes may be familiar. A description of the clinical setting is followed by a structured clinical question. (These aid in focusing the mind, assisting searching2 and gaining answers.3) A brief report of the search used follows—this has been carried out in a hierarchical way, to search for the best‐quality evidence to answer the question (http://www.cebm.net/levels_of_evidence.asp). A table provides a summary of the evidence and key points of the critical appraisal. For further information on critical appraisal and the measures of effect (such as number needed to treat), books by Sackett et al4 and Moyer et al5 may help. To pull the information together, a commentary is provided. But to make it all much more accessible, a box provides the clinical bottom lines.
Electronic‐only topics that have been published on the BestBets site (www.bestbets.org) and may be of interest to paediatricians include:
Are meningeal irritation signs reliable in diagnosing meningitis in children?
Is immobilisation effective in Osgood‐Schlatter's disease?
Do all children presenting to the emergency department with a needlestick injury require PEP for HIV to reduce HIV transmission?
Readers wishing to submit their own questions—with best evidence answers—are encouraged to review those already proposed at www.bestbets.org. If your question still has not been answered, feel free to submit your summary according to the Instructions for Authors at www.archdischild.com. Three topics are covered in this issue of the journal.
Is lumbar puncture necessary for evaluation of early neonatal sepsis?
Does the use of calamine or antihistamine provide symptomatic relief from pruritus in children with varicella zoster infection?
Is supplementary iron useful when preterm infants are treated with erythropoietin?
Is more research needed?
“More research is needed” is a phrase you might have read before. But is more research really needed? Two situations are offered to us in Archimedes this month where clinical questions are, as yet, unanswered. Is iron supplementation really necessary for premature infants treated with erythropoietin, and do antihistamines and calamine lotion help in children with chicken pox? How can we decide if these questions really do “need” research? It may be worth thinking of how likely benefits and harms may be, what the importance of these outcomes are and finally, how much would you consider reasonable to pay for the answer? For example, what chance is there that antihistamines work in chickenpox? What is the chance that side effects will occur? What is the relative severity of side effects versus the delight of being itch free? If we pay for research and spend hours and hours of time pressing through the increasing regulatory frameworks for clinical trials to define the answer to this question, what will be the opportunity cost? What would we fail to do by looking at this? The same questions can be asked of iron supplementation in premature infants, the salvage treatment of relapsing systemic histocytosis or the promotion of car‐seat use in low‐income families. Such value judgements are important; they will have different answers from different perspectives; they will be subject to political influences from pressure groups; being aware of them might stop us from frequently expounding “more research is needed”.
References
1Moyer VA, Ellior EJ. Preface. In: Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
2Richardson WS, Wilson MC, Nishikawa J, et al. The well‐built clinical question: a key to evidence‐based decisions. ACP J Club 1995;123:A12–13.
3Bergus GR, Randall CS, Sinift SD, et al. Does the structure of clinical questions affect the outcome of curbside consultations with specialty colleagues? Arch Fam Med 2000;9:541–7.
4Sackett DL, Starus S, Richardson WS, et al. Evidence‐based medicine. How to practice and teach EBM. San Diego: Harcourt‐Brace, 2000.
5Moyer VA, Elliott EJ, Davis RL, et al, eds. Evidence based pediatrics and child health, Issue 1. London: BMJ Books, 2000.
doi:10.1136/adc.2006.105379
PMCID: PMC2083019
13.  COMPETENCY REVALIDATION STUDY OF SPECIALTY PRACTICE IN SPORTS PHYSICAL THERAPY 
Background and Purpose:
Every ten years the American Board of Physical Therapy Specialties conducts a practice analysis to revalidate and revise the description of specialty practice for sports physical therapy (SPT). The primary purpose of this paper is to describe the process and results of the most recent analysis, which defines the competencies that distinguish the subspecialty practice of (SPT). Additionally, the study allowed for the comparison of responses of board certified specialists in SPT to respondents who were not specialists while reflecting on demographic changes and evolving trends since the previous analysis of this physical therapy specialty practice was conducted 10 years ago.
Methods
A survey instrument based on guidelines from the American Board of Physical Therapy Specialties was developed by the Sports Specialty Council (SSC) and a panel of subject matter experts (SME) in SPT to re‐evaluate contemporary practice. The instrument was pilot tested and following revisions, was sent to 1780 physical therapists, 930 of whom were board certified specialists in SPT and 850 of whom were randomly selected members of the Sports Physical Therapy Section (SPTS) who were not board certified specialists in SPT. 414 subjects returned completed surveys for a 23% response rate. 235 of the respondents were known to be board certified sports specialists, 120 did not indicate their specialty status, and 35 were non‐specialists in SPT. All were members of the SPTS of the American Physical Therapy Association. The survey responses were analyzed using descriptive statistics. Univariate comparisons were performed using parametric and nonparametric statistical tests in order to evaluate differences between specialist and non‐specialist item responses.
Results
The survey results were reviewed by the SSC and a panel of SME. Using a defined decision making process, the results were used to determine the competencies that define the specialty practice of SPT. Survey results were also used to develop the SPT specialty board examination blueprint and define the didactic curriculum required of accredited SPT residency programs. A number of significant comparisons between the specialists and non‐specialists were identified.
Conclusion
The competency revalidation process culminated in the publication of the 4th edition of the Sports Physical Therapy Description of Specialty Practice in November of 2013. This document serves to guide the process related to the attainment and maintenance of the board certified clinical specialization in SPT. In anticipation of the continued evolution of this specialty practice, this process will be repeated every 10 years to reassess the characteristics of these providers and the factors they consider critically important and unique to the practice of SPT.
PMCID: PMC4275200  PMID: 25540711
Continued Competence; Practice Validation; Sports Certified Specialist; Sports Physical Therapy Clinical Specialization
14.  How Evidence-Based Are the Recommendations in Evidence-Based Guidelines? 
PLoS Medicine  2007;4(8):e250.
Background
Treatment recommendations for the same condition from different guideline bodies often disagree, even when the same randomized controlled trial (RCT) evidence is cited. Guideline appraisal tools focus on methodology and quality of reporting, but not on the nature of the supporting evidence. This study was done to evaluate the quality of the evidence (based on consideration of its internal validity, clinical relevance, and applicability) underlying therapy recommendations in evidence-based clinical practice guidelines.
Methods and Findings
A cross-sectional analysis of cardiovascular risk management recommendations was performed for three different conditions (diabetes mellitus, dyslipidemia, and hypertension) from three pan-national guideline panels (from the United States, Canada, and Europe). Of the 338 treatment recommendations in these nine guidelines, 231 (68%) cited RCT evidence but only 105 (45%) of these RCT-based recommendations were based on high-quality evidence. RCT-based evidence was downgraded most often because of reservations about the applicability of the RCT to the populations specified in the guideline recommendation (64/126 cases, 51%) or because the RCT reported surrogate outcomes (59/126 cases, 47%).
Conclusions
The results of internally valid RCTs may not be applicable to the populations, interventions, or outcomes specified in a guideline recommendation and therefore should not always be assumed to provide high-quality evidence for therapy recommendations.
From an analysis of cardiovascular risk-management recommendations in guidelines produced by pan-national panels, McAlister and colleagues concluded that fewer than half were based on high-quality evidence.
Editors' Summary
Background.
Until recently, doctors largely relied on their own experience to choose the best treatment for their patients. Faced with a patient with high blood pressure (hypertension), for example, the doctor had to decide whether to recommend lifestyle changes or to prescribe drugs to reduce the blood pressure. If he or she chose the latter, he or she then had to decide which drug to prescribe, set a target blood pressure, and decide how long to wait before changing the prescription if this target was not reached. But, over the past decade, numerous clinical practice guidelines have been produced by governmental bodies and medical associations to help doctors make treatment decisions like these. For each guideline, experts have searched the medical literature for the current evidence about the diagnosis and treatment of a disease, evaluated the quality of that evidence, and then made recommendations based on the best evidence available.
Why Was This Study Done?
The recommendations made in different clinical practice guidelines vary, in part because they are based on evidence of varying quality. To help clinicians decide which recommendations to follow, some guidelines indicate the strength of their recommendations by grading them, based on the methods used to collect the underlying evidence. Thus, a randomized clinical trial (RCT)—one in which patients are randomly allocated to different treatments without the patient or clinician knowing the allocation—provides higher-quality evidence than a nonrandomized trial. Similarly, internally valid trials—in which the differences between patient groups are solely due to their different treatments and not to other aspects of the trial—provide high-quality evidence. However, grading schemes rarely consider the size of studies and whether they have focused on clinical or so-called “surrogate” measures. (For example, an RCT of a treatment to reduce heart or circulation [“cardiovascular”] problems caused by high blood pressure might have death rate as a clinical measure; a surrogate endpoint would be blood pressure reduction.) Most guidelines also do not consider how generalizable (applicable) the results of a trial are to the populations, interventions, and outcomes specified in the guideline recommendation. In this study, the researchers have investigated the quality of the evidence underlying recommendations for cardiovascular risk management in nine evidence-based clinical practice guides using these additional criteria.
What Did the Researchers Do and Find?
The researchers extracted the recommendations for managing cardiovascular risk from the current US, Canadian, and European guidelines for the management of diabetes, abnormal blood lipid levels (dyslipidemia), and hypertension. They graded the quality of evidence for each recommendation using the Canadian Hypertension Education Program (CHEP) grading scheme, which considers the type of study, its internal validity, its clinical relevance, and how generally applicable the evidence is considered to be. Of 338 evidence-based recommendations, two-thirds were based on evidence collected in internally valid RCTs, but only half of these RCT-based recommendations were based on high-quality evidence. The evidence underlying 64 of the guideline recommendations failed to achieve a high CHEP grade because the RCT data were collected in a population of people with different characteristics to those covered by the guideline. For example, a recommendation to use spironolactone to reduce blood pressure in people with hypertension was based on an RCT in which the participants initially had congestive heart failure with normal blood pressure. Another 59 recommendations were downgraded because they were based on evidence from RCTs that had not focused on clinical measures of effectiveness.
What Do These Findings Mean?
These findings indicate that although most of the recommendations for cardiovascular risk management therapies in the selected guidelines were based on evidence collected in internally valid RCTs, less than one-third were based on high-quality evidence applicable to the populations, treatments, and outcomes specified in guideline recommendations. A limitation of this study is that it analyzed a subset of recommendations in only a few guidelines. Nevertheless, the findings serve to warn clinicians that evidence-based guidelines are not necessarily based on high-quality evidence. In addition, they emphasize the need to make the evidence base underlying guideline recommendations more transparent by using an extended grading system like the CHEP scheme. If this were done, the researchers suggest, it would help clinicians apply guideline recommendations appropriately to their individual patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040250.
• Wikipedia contains pages on evidence-based medicine and on clinical practice guidelines (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
• The National Guideline Clearinghouse provides information on US national guidelines
• The Guidelines International Network promotes the systematic development and application of clinical practice guidelines
• Information is available on the Canadian Hypertension Education Program (CHEP) (in French and English)
• See information on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group, an organization that has developed an grading scheme similar to the CHEP scheme (in English, Spanish, French, German, and Italian)
doi:10.1371/journal.pmed.0040250
PMCID: PMC1939859  PMID: 17683197
15.  Eurocan plus report: feasibility study for coordination of national cancer research activities 
Summary
The EUROCAN+PLUS Project, called for by the European Parliament, was launched in October 2005 as a feasibility study for coordination of national cancer research activities in Europe. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people, the largest Europe–wide consultation ever conducted in the field of cancer research.
Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
It is essential to include the patients’ voice in the establishment of priority areas in cancer research at the present time. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community is evident. A top priority should be the development of translational research (in its widest form), leading to the development of effective and innovative cancer treatments and preventive strategies. Translational research ranges from bench–to–bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
The EUROCAN+PLUS Project recommends the creation of a small, permanent and independent European Cancer Initiative (ECI). This should be a model structure and was widely supported at both General Assemblies of the project. The ECI should assume responsibility for stimulating innovative cancer research and facilitating processes, becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ organizations, European institutions, Member States, industry and small and medium enterprises (SMEs), putting into practice solutions aimed at alleviating barriers to collaboration and coordination of cancer research activities in the European Union, and dealing with legal and regulatory issues. The development of an effective ECI will require time, but this entity should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co–operation between comprehensive cancer centres and basic research laboratories throughout Europe and (3) networking between funding bodies at the European level.
The European Parliament and its instruments have had a major influence in cancer control in Europe, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
Executive Summary
Cancer is one of the biggest public health crises facing Europe in the 21st century—one for which Europe is currently not prepared nor preparing itself. Cancer is a major cause of death in Europe with two million casualties and three million new cases diagnosed annually, and the situation is set to worsen as the population ages.
These facts led the European Parliament, through the Research Directorate-General of the European Commission, to call for initiatives for better coordination of cancer research efforts in the European Union. The EUROCAN+PLUS Project was launched in October 2005 as a feasibility study for coordination of national cancer research activities. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people. In this respect, the Project became the largest Europe-wide consultation ever conducted in the field of cancer research, implicating researchers, cancer centres and hospitals, administrators, healthcare professionals, funding agencies, industry, patients’ organizations and patients.
The Project first identified barriers impeding research and collaboration in research in Europe. Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain the formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
In addition, there is a shortage of leadership, a multiplicity of institutions each focusing on its own agenda, sub–optimal contact with industry, inadequate training, non–existent career paths, low personnel mobility in research especially among clinicians and inefficient funding—all conspiring against efficient collaboration in cancer care and research. European cancer research today does not have a functional translational research continuum, that is the process that exploits biomedical research innovations and converts them into prevention methods, diagnostic tools and therapies. Moreover, epidemiological research is not integrated with other types of cancer research, and the implementation of the European Directives on Clinical Trials 1 and on Personal Data Protection 2 has further slowed the innovation process in Europe. Furthermore, large inequalities in health and research exist between the EU–15 and the New Member States.
The picture is not entirely bleak, however, as the European cancer research scene presents several strengths, such as excellent basic research and clinical research and innovative etiological research that should be better exploited.
When considering recommendations, several priority dimensions had to be retained. It is essential that proposals include actions and recommendations that can benefit all Member States of the European Union and not just States with the elite centres. It is also essential to have a broader patient orientation to help provide the knowledge to establish cancer control possibilities when we exhaust what can be achieved by the implementation of current knowledge. It is vital that the actions proposed can contribute to the Lisbon Strategy to make Europe more innovative and competitive in (cancer) research.
The Project participants identified six areas for which consensus solutions should be implemented in order to obtain better coordination of cancer research activities. The required solutions are as follows. The proactive management of innovation, detection, facilitation of collaborations and maintenance of healthy competition within the European cancer research community.The establishment of an exchange portal of information for health professionals, patients and policy makers.The provision of guidance for translational and clinical research including the establishment of a translational research platform involving comprehensive cancer centres and cancer research centres.The coordination of calls and financial management of cancer research projects.The construction of a ‘one–stop shop’ as a contact interface between the industry, small and medium enterprises, scientists and other stakeholders.The support of greater involvement of healthcare professionals in translational research and multidisciplinary training.
In the course of the EUROCAN+PLUS consultative process, several key collaborative projects emerged between the various groups and institutes engaged in the consultation. There was a collaboration network established with Europe’s leading Comprehensive Cancer Centres; funding was awarded for a closer collaboration of Owners of Cancer Registries in Europe (EUROCOURSE); there was funding received from FP7 for an extensive network of leading Biological Resource Centres in Europe (BBMRI); a Working Group identified the special needs of Central, Eastern and South–eastern Europe and proposed a remedy (‘Warsaw Declaration’), and the concept of developing a one–stop shop for dealing with academia and industry including the Innovative Medicines Initiative (IMI) was discussed in detail.
Several other dimensions currently lacking were identified. There is an absolute necessity to include the patients’ voice in the establishment of priority areas in cancer research at the present time. It was a salutary lesson when it was recognized that all that is known about the quality of life of the cancer patient comes from the experience of a tiny proportion of cancer patients included in a few clinical trials. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community was evident. A top priority should be the development of translational research (in its widest form) and the development of effective and innovative cancer treatments and preventative strategies in the European Union. Translational research ranges from bench-to-bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
Having taken note of the barriers and the solutions and having examined relevant examples of existing European organizations in the field, it was agreed during the General Assembly of 19 November 2007 that the EUROCAN+PLUS Project had to recommend the creation of a small, permanent and neutral ECI. This should be a model structure and was widely supported at both General Assemblies of the project. The proposal is based on the successful model of the European Molecular Biology Organisation (EMBO), and its principal aims include providing a forum where researchers from all backgrounds and from all countries can meet with members of other specialities including patients, nurses, clinicians, funders and scientific administrators to develop priority programmes to make Europe more competitive in research and more focused on the cancer patient.
The ECI should assume responsibility for: stimulating innovative cancer research and facilitating processes;becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ and organizations;European institutions, Member States, industry and small and medium enterprises;putting into practice the aforementioned solutions aimed at alleviating barriers and coordinating cancer research activities in the EU;dealing with legal and regulatory issues.
Solutions implemented through the ECI will lead to better coordination and collaboration throughout Europe, more efficient use of resources, an increase in Europe’s attractiveness to the biomedical industry and better quality of cancer research and education of health professionals.
The Project considered that European legal instruments currently available were inadequate for addressing many aspects of the barriers identified and for the implementation of effective, lasting solutions. Therefore, the legal environment that could shelter an idea like the ECI remains to be defined but should be done so as a priority. In this context, the initiative of the European Commission for a new legal entity for research infrastructure might be a step in this direction. The development of an effective ECI will require time, but this should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass: (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co-operation between comprehensive cancer centres and basic research laboratories throughout Europe; (3) networking between funding bodies at the European level. Another topic deserving immediate attention is the creation of a European database on cancer research projects and cancer research facilities.
Despite enormous progress in cancer control in Europe during the past two decades, there was an increase of 300,000 in the number of new cases of cancer diagnosed between 2004 and 2006. The European Parliament and its instruments have had a major influence in cancer control, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
doi:10.3332/ecancer.2011.84
PMCID: PMC3234055  PMID: 22274749
16.  National Collegiate Athletic Association Injury Surveillance System Commentaries: Introduction and Methods 
Journal of Athletic Training  2007;42(2):173-182.
Objective: To describe the history and methods of the National Collegiate Athletic Association (NCAA) Injury Surveillance System (ISS) as a complement to the sport-specific chapters that follow.
Background: The NCAA has maintained the ISS for intercollegiate athletics since 1982. The primary goal of the ISS is to collect injury and exposure data from a representative sample of NCAA institutions in a variety of sports. Relevant data are then shared with the appropriate NCAA sport and policy committees to provide a foundation for evidence-based decision making with regard to health and safety issues.
Description: The ISS monitors formal team activities, numbers of participants, and associated time-loss athletic injuries from the first day of formal preseason practice to the final postseason contest for 16 collegiate sports. In this special issue of the Journal of Athletic Training, injury information in 15 collegiate sports from the period covering 1988–1989 to 2003–2004 is evaluated.
Conclusions: Athletic trainers and the NCAA have collaborated for 25 years through the NCAA ISS to create the largest ongoing collegiate sports injury database in the world. Data collection through the ISS, followed by annual review via the NCAA sport rules and sports medicine committee structure, is a unique mechanism that has led to significant advances in health and safety policy within and beyond college athletics. The publication of this special issue and the evolution of an expanded Web-based ISS enhance the opportunity to apply the health and safety decision-making process at the level of the individual athletic trainer and institution.
PMCID: PMC1941300  PMID: 21714302
athletics; sports; exposures; athletic injuries; injury mechanisms; injury rates; injury surveillance; practices; games
17.  Caregiver- and Patient-Directed Interventions for Dementia 
Executive Summary
In early August 2007, the Medical Advisory Secretariat began work on the Aging in the Community project, an evidence-based review of the literature surrounding healthy aging in the community. The Health System Strategy Division at the Ministry of Health and Long-Term Care subsequently asked the secretariat to provide an evidentiary platform for the ministry’s newly released Aging at Home Strategy.
After a broad literature review and consultation with experts, the secretariat identified 4 key areas that strongly predict an elderly person’s transition from independent community living to a long-term care home. Evidence-based analyses have been prepared for each of these 4 areas: falls and fall-related injuries, urinary incontinence, dementia, and social isolation. For the first area, falls and fall-related injuries, an economic model is described in a separate report.
Please visit the Medical Advisory Secretariat Web site, http://www.health.gov.on.ca/english/providers/program/mas/mas_about.html, to review these titles within the Aging in the Community series.
Aging in the Community: Summary of Evidence-Based Analyses
Prevention of Falls and Fall-Related Injuries in Community-Dwelling Seniors: An Evidence-Based Analysis
Behavioural Interventions for Urinary Incontinence in Community-Dwelling Seniors: An Evidence-Based Analysis
Caregiver- and Patient-Directed Interventions for Dementia: An Evidence-Based Analysis
Social Isolation in Community-Dwelling Seniors: An Evidence-Based Analysis
The Falls/Fractures Economic Model in Ontario Residents Aged 65 Years and Over (FEMOR)
This report features the evidence-based analysis on caregiver- and patient-directed interventions for dementia and is broken down into 4 sections:
Introduction
Caregiver-Directed Interventions for Dementia
Patient-Directed Interventions for Dementia
Economic Analysis of Caregiver- and Patient-Directed Interventions for Dementia
Caregiver-Directed Interventions for Dementia
Objective
To identify interventions that may be effective in supporting the well-being of unpaid caregivers of seniors with dementia living in the community.
Clinical Need: Target Population and Condition
Dementia is a progressive and largely irreversible syndrome that is characterized by a loss of cognitive function severe enough to impact social or occupational functioning. The components of cognitive function affected include memory and learning, attention, concentration and orientation, problem-solving, calculation, language, and geographic orientation. Dementia was identified as one of the key predictors in a senior’s transition from independent community living to admission to a long-term care (LTC) home, in that approximately 90% of individuals diagnosed with dementia will be institutionalized before death. In addition, cognitive decline linked to dementia is one of the most commonly cited reasons for institutionalization.
Prevalence estimates of dementia in the Ontario population have largely been extrapolated from the Canadian Study of Health and Aging conducted in 1991. Based on these estimates, it is projected that there will be approximately 165,000 dementia cases in Ontario in the year 2008, and by 2010 the number of cases will increase by nearly 17% over 2005 levels. By 2020 the number of cases is expected to increase by nearly 55%, due to a rise in the number of people in the age categories with the highest prevalence (85+). With the increase in the aging population, dementia will continue to have a significant economic impact on the Canadian health care system. In 1991, the total costs associated with dementia in Canada were $3.9 billion (Cdn) with $2.18 billion coming from LTC.
Caregivers play a crucial role in the management of individuals with dementia because of the high level of dependency and morbidity associated with the condition. It has been documented that a greater demand is faced by dementia caregivers compared with caregivers of persons with other chronic diseases. The increased burden of caregiving contributes to a host of chronic health problems seen among many informal caregivers of persons with dementia. Much of this burden results from managing the behavioural and psychological symptoms of dementia (BPSD), which have been established as a predictor of institutionalization for elderly patients with dementia.
It is recognized that for some patients with dementia, an LTC facility can provide the most appropriate care; however, many patients move into LTC unnecessarily. For individuals with dementia to remain in the community longer, caregivers require many types of formal and informal support services to alleviate the stress of caregiving. These include both respite care and psychosocial interventions. Psychosocial interventions encompass a broad range of interventions such as psychoeducational interventions, counseling, supportive therapy, and behavioural interventions.
Assuming that 50% of persons with dementia live in the community, a conservative estimate of the number of informal caregivers in Ontario is 82,500. Accounting for the fact that 29% of people with dementia live alone, this leaves a remaining estimate of 58,575 Ontarians providing care for a person with dementia with whom they reside.
Description of Interventions
The 2 main categories of caregiver-directed interventions examined in this review are respite care and psychosocial interventions. Respite care is defined as a break or relief for the caregiver. In most cases, respite is provided in the home, through day programs, or at institutions (usually 30 days or less). Depending on a caregiver’s needs, respite services will vary in delivery and duration. Respite care is carried out by a variety of individuals, including paid staff, volunteers, family, or friends.
Psychosocial interventions encompass a broad range of interventions and have been classified in various ways in the literature. This review will examine educational, behavioural, dementia-specific, supportive, and coping interventions. The analysis focuses on behavioural interventions, that is, those designed to help the caregiver manage BPSD. As described earlier, BPSD are one of the most challenging aspects of caring for a senior with dementia, causing an increase in caregiver burden. The analysis also examines multicomponent interventions, which include at least 2 of the above-mentioned interventions.
Methods of Evidence-Based Analysis
A comprehensive search strategy was used to identify systematic reviews and randomized controlled trials (RCTs) that examined the effectiveness of interventions for caregivers of dementia patients.
Questions
Section 2.1
Are respite care services effective in supporting the well-being of unpaid caregivers of seniors with dementia in the community?
Do respite care services impact on rates of institutionalization of these seniors?
Section 2.2
Which psychosocial interventions are effective in supporting the well-being of unpaid caregivers of seniors with dementia in the community?
Which interventions reduce the risk for institutionalization of seniors with dementia?
Outcomes of Interest
any quantitative measure of caregiver psychological health, including caregiver burden, depression, quality of life, well-being, strain, mastery (taking control of one’s situation), reactivity to behaviour problems, etc.;
rate of institutionalization; and
cost-effectiveness.
Assessment of Quality of Evidence
The quality of the evidence was assessed as High, Moderate, Low, or Very low according to the GRADE methodology and GRADE Working Group. As per GRADE the following definitions apply:
Summary of Findings
Conclusions in Table 1 are drawn from Sections 2.1 and 2.2 of the report.
Summary of Conclusions on Caregiver-Directed Interventions
There is limited evidence from RCTs that respite care is effective in improving outcomes for those caring for seniors with dementia.
There is considerable qualitative evidence of the perceived benefits of respite care.
Respite care is known as one of the key formal support services for alleviating caregiver burden in those caring for dementia patients.
Respite care services need to be tailored to individual caregiver needs as there are vast differences among caregivers and patients with dementia (severity, type of dementia, amount of informal/formal support available, housing situation, etc.)
There is moderate- to high-quality evidence that individual behavioural interventions (≥ 6 sessions), directed towards the caregiver (or combined with the patient) are effective in improving psychological health in dementia caregivers.
There is moderate- to high-quality evidence that multicomponent interventions improve caregiver psychosocial health and may affect rates of institutionalization of dementia patients.
RCT indicates randomized controlled trial.
Patient-Directed Interventions for Dementia
Objective
The section on patient-directed interventions for dementia is broken down into 4 subsections with the following questions:
3.1 Physical Exercise for Seniors with Dementia – Secondary Prevention
What is the effectiveness of physical exercise for the improvement or maintenance of basic activities of daily living (ADLs), such as eating, bathing, toileting, and functional ability, in seniors with mild to moderate dementia?
3.2 Nonpharmacologic and Nonexercise Interventions to Improve Cognitive Functioning in Seniors With Dementia – Secondary Prevention
What is the effectiveness of nonpharmacologic interventions to improve cognitive functioning in seniors with mild to moderate dementia?
3.3 Physical Exercise for Delaying the Onset of Dementia – Primary Prevention
Can exercise decrease the risk of subsequent cognitive decline/dementia?
3.4 Cognitive Interventions for Delaying the Onset of Dementia – Primary Prevention
Does cognitive training decrease the risk of cognitive impairment, deterioration in the performance of basic ADLs or instrumental activities of daily living (IADLs),1 or incidence of dementia in seniors with good cognitive and physical functioning?
Clinical Need: Target Population and Condition
Secondary Prevention2
Exercise
Physical deterioration is linked to dementia. This is thought to be due to reduced muscle mass leading to decreased activity levels and muscle atrophy, increasing the potential for unsafe mobility while performing basic ADLs such as eating, bathing, toileting, and functional ability.
Improved physical conditioning for seniors with dementia may extend their independent mobility and maintain performance of ADL.
Nonpharmacologic and Nonexercise Interventions
Cognitive impairments, including memory problems, are a defining feature of dementia. These impairments can lead to anxiety, depression, and withdrawal from activities. The impact of these cognitive problems on daily activities increases pressure on caregivers.
Cognitive interventions aim to improve these impairments in people with mild to moderate dementia.
Primary Prevention3
Exercise
Various vascular risk factors have been found to contribute to the development of dementia (e.g., hypertension, hypercholesterolemia, diabetes, overweight).
Physical exercise is important in promoting overall and vascular health. However, it is unclear whether physical exercise can decrease the risk of cognitive decline/dementia.
Nonpharmacologic and Nonexercise Interventions
Having more years of education (i.e., a higher cognitive reserve) is associated with a lower prevalence of dementia in crossectional population-based studies and a lower incidence of dementia in cohorts followed longitudinally. However, it is unclear whether cognitive training can increase cognitive reserve or decrease the risk of cognitive impairment, prevent or delay deterioration in the performance of ADLs or IADLs or reduce the incidence of dementia.
Description of Interventions
Physical exercise and nonpharmacologic/nonexercise interventions (e.g., cognitive training) for the primary and secondary prevention of dementia are assessed in this review.
Evidence-Based Analysis Methods
A comprehensive search strategy was used to identify systematic reviews and RCTs that examined the effectiveness, safety and cost effectiveness of exercise and cognitive interventions for the primary and secondary prevention of dementia.
Questions
Section 3.1: What is the effectiveness of physical exercise for the improvement or maintenance of ADLs in seniors with mild to moderate dementia?
Section 3.2: What is the effectiveness of nonpharmacologic/nonexercise interventions to improve cognitive functioning in seniors with mild to moderate dementia?
Section 3.3: Can exercise decrease the risk of subsequent cognitive decline/dementia?
Section 3.4: Does cognitive training decrease the risk of cognitive impairment, prevent or delay deterioration in the performance of ADLs or IADLs, or reduce the incidence of dementia in seniors with good cognitive and physical functioning?
Assessment of Quality of Evidence
The quality of the evidence was assessed as High, Moderate, Low, or Very low according to the GRADE methodology. As per GRADE the following definitions apply:
Summary of Findings
Table 2 summarizes the conclusions from Sections 3.1 through 3.4.
Summary of Conclusions on Patient-Directed Interventions*
Previous systematic review indicated that “cognitive training” is not effective in patients with dementia.
A recent RCT suggests that CST (up to 7 weeks) is effective for improving cognitive function and quality of life in patients with dementia.
Regular leisure time physical activity in midlife is associated with a reduced risk of dementia in later life (mean follow-up 21 years).
Regular physical activity in seniors is associated with a reduced risk of cognitive decline (mean follow-up 2 years).
Regular physical activity in seniors is associated with a reduced risk of dementia (mean follow-up 6–7 years).
Evidence that cognitive training for specific functions (memory, reasoning, and speed of processing) produces improvements in these specific domains.
Limited inconclusive evidence that cognitive training can offset deterioration in the performance of self-reported IADL scores and performance assessments.
1° indicates primary; 2°, secondary; CST, cognitive stimulation therapy; IADL, instrumental activities of daily living; RCT, randomized controlled trial.
Benefit/Risk Analysis
As per the GRADE Working Group, the overall recommendations consider 4 main factors:
the trade-offs, taking into account the estimated size of the effect for the main outcome, the confidence limits around those estimates, and the relative value placed on the outcome;
the quality of the evidence;
translation of the evidence into practice in a specific setting, taking into consideration important factors that could be expected to modify the size of the expected effects such as proximity to a hospital or availability of necessary expertise; and
uncertainty about the baseline risk for the population of interest.
The GRADE Working Group also recommends that incremental costs of health care alternatives should be considered explicitly alongside the expected health benefits and harms. Recommendations rely on judgments about the value of the incremental health benefits in relation to the incremental costs. The last column in Table 3 reflects the overall trade-off between benefits and harms (adverse events) and incorporates any risk/uncertainty (cost-effectiveness).
Overall Summary Statement of the Benefit and Risk for Patient-Directed Interventions*
Economic Analysis
Budget Impact Analysis of Effective Interventions for Dementia
Caregiver-directed behavioural techniques and patient-directed exercise programs were found to be effective when assessing mild to moderate dementia outcomes in seniors living in the community. Therefore, an annual budget impact was calculated based on eligible seniors in the community with mild and moderate dementia and their respective caregivers who were willing to participate in interventional home sessions. Table 4 describes the annual budget impact for these interventions.
Annual Budget Impact (2008 Canadian Dollars)
Assumed 7% prevalence of dementia aged 65+ in Ontario.
Assumed 8 weekly sessions plus 4 monthly phone calls.
Assumed 12 weekly sessions plus biweekly sessions thereafter (total of 20).
Assumed 2 sessions per week for first 5 weeks. Assumed 90% of seniors in the community with dementia have mild to moderate disease. Assumed 4.5% of seniors 65+ are in long-term care, and the remainder are in the community. Assumed a rate of participation of 60% for both patients and caregivers and of 41% for patient-directed exercise. Assumed 100% compliance since intervention administered at the home. Cost for trained staff from Ministry of Health and Long-Term Care data source. Assumed cost of personal support worker to be equivalent to in-home support. Cost for recreation therapist from Alberta government Website.
Note: This budget impact analysis was calculated for the first year after introducing the interventions from the Ministry of Health and Long-Term Care perspective using prevalence data only. Prevalence estimates are for seniors in the community with mild to moderate dementia and their respective caregivers who are willing to participate in an interventional session administered at the home setting. Incidence and mortality rates were not factored in. Current expenditures in the province are unknown and therefore were not included in the analysis. Numbers may change based on population trends, rate of intervention uptake, trends in current programs in place in the province, and assumptions on costs. The number of patients was based on patients likely to access these interventions in Ontario based on assumptions stated below from the literature. An expert panel confirmed resource consumption.
PMCID: PMC3377513  PMID: 23074509
18.  Primary Care Research Team Assessment (PCRTA): development and evaluation. 
BACKGROUND: Since the early 1990s the United Kingdom (UK) Department of Health has explicitly promoted a research and development (R&D) strategy for the National Health Service (NHS). General practitioners (GPs) and other members of the primary care team are in a unique position to undertake research activity that will complement and inform the research undertaken by basic scientists and hospital-based colleagues and lead directly to a better evidence base for decision making by primary care professionals. Opportunities to engage in R&D in primary care are growing and the scope for those wishing to become involved is finally widening. Infrastructure funding for research-active practices and the establishment of a range of support networks have helped to improve the research capacity and blur some of the boundaries between academic departments and clinical practice. This is leading to a supportive environment for primary care research. There is thus a need to develop and validate nationally accepted quality standards and accreditation of performance to ensure that funders, collaborators and primary care professionals can deliver high quality primary care research. Several strategies have been described in national policy documents in order to achieve an improvement in teaching and clinical care, as well as enhancing research capacity in primary care. The development of both research practices and primary care research networks has been recognised as having an important contribution to make in enabling health professionals to devote more protected time to undertake research methods training and to undertake research in a service setting. The recognition and development of primary care research has also brought with it an emphasis on quality and standards, including an approach to the new research governance framework. PRIMARY CARE RESEARCH TEAM ASSESSMENT: In 1998, the NHS Executive South and West, and later the London Research and Development Directorate, provided funding for a pilot project based at the Royal College of General Practitioners (RCGP) to develop a scheme to accredit UK general practices undertaking primary care R&D. The pilot began with initial consultation on the development of the process, as well as the standards and criteria for assessment. The resulting assessment schedule allowed for assessment at one of two levels: Collaborative Research Practice (Level I), with little direct experience of gaining project or infrastructure funding Established Research Practice (Level II), with more experience of research funding and activity and a sound infrastructure to allow for growth in capacity. The process for assessment of practices involved the assessment of written documentation, followed by a half-day assessment visit by a multidisciplinary team of three assessors. IMPLEMENTATION--THE PILOT PROJECT: Pilot practices were sampled in two regions. Firstly, in the NHS Executive South West Region, where over 150 practices expressed an interest in participating. From these a purposive sample of 21 practices was selected, providing a range of research and service activity. A further seven practices were identified and included within the project through the East London and Essex Network of Researchers (ELENoR). Many in this latter group received funding and administrative support and advice from ELENoR in order to prepare written submissions for assessment. Some sample loss was encountered within the pilot project, which was attributable largely to conflicting demands on participants' time. Indeed, the preparation of written submissions within the South West coincided with the introduction of primary care groups (PCGs) in April 1999, which several practices cited as having a major impact on their participation in the pilot project. A final sample of 15 practices (nine in the South West and six through ELENoR) underwent assessment through the pilot project. EVALUATION: A formal evaluation of the Primary Care Research Team Assessment (PCRTA) pilot was undertaken by an independent researcher (FM). This was supplemented with feedback from the assessment team members. The qualitative aspect of the evaluation, which included face-to-face and telephone interviews with assessors, lead researchers and other practice staff within the pilot research practices, as well as members of the project management group, demonstrated a positive view of the pilot scheme. Several key areas were identified in relation to particular strengths of research practices and areas for development including: Strengths Level II practices were found to have a strong primary care team ethos in research. Level II practices tended to have a greater degree of strategic thinking in relation to research. Development areas Level I practices were found to lack a clear and explicit research strategy. Practices at both levels had scope to develop their communication processes for dissemination of research and also for patient involvement. Practices at both levels needed mechanisms for supporting professional development in research methodology. The evaluation demonstrated that practices felt that they had gained from their participation and assessors felt that the scheme had worked well. Some specific issues were raised by different respondents within the qualitative evaluation relating to consistency of interpretation of standards and also the possible overlap of the assessment scheme with other RCGP quality initiatives. NATIONAL IMPLEMENTATION OF THE PRIMARY CARE RESEARCH TEAM ASSESSMENT: The pilot project has been very successful and recommendations have been made to progress to a UK scheme. Management and review of the scheme will remain largely the same, with a few changes focusing on the assessment process and support for practices entering the scheme. Specific changes include: development of the support and mentoring role of the primary care research networks increased peer and external support and mentoring for research practices undergoing assessment development of assessor training in line with other schemes within the RCGP Assessment Network work to ensure consistency across RCGP accreditation schemes in relation to key criteria, thereby facilitating comparable assessment processes refinement of the definition of the two groups, with Level I practices referred to as Collaborators and Level II practices as Investigator-Led. The project has continued to generate much enthusiasm and support and continues to reflect current policy. Indeed, recent developments include the proposed new funding arrangements for primary care R&D, which refer to the RCGP assessment scheme and recognise it as a key component in the future R&D agenda. The assessment scheme will help primary care trusts (PCTs) and individual practices to prepare and demonstrate their approach to research governance in a systematic way. It will also provide a more explicit avenue for primary care trusts to explore local service and development priorities identified within health improvement programmes and the research priorities set nationally for the NHS.
PMCID: PMC2560501  PMID: 12049028
19.  The Role of Massage in Sports Performance and Rehabilitation: Current Evidence and Future Direction 
Background
Massage is a popular treatment choice of athletes, coaches, and sports physical therapists. Despite its purported benefits and frequent use, evidence demonstrating its efficacy is scarce.
Purpose
To identify current literature relating to sports massage and its role in effecting an athlete's psychological readiness, in enhancing sports performance, in recovery from exercise and competition, and in the treatment of sports related musculoskeletal injuries.
Methods
Electronic databases were used to identify papers relevant to this review. The following keywords were searched: massage, sports injuries, athletic injuries, physical therapy, rehabilitation, delayed onset muscle soreness, sports psychology, sports performance, sports massage, sports recovery, soft tissue mobilization, deep transverse friction massage, pre-event, and post exercise.
Results
Research studies pertaining to the following general categories were identified and reviewed: pre-event (physiological and psychological variables), sports performance, recovery, and rehabilitation.
Discussion
Despite the fact clinical research has been performed, a poor appreciation exists for the appropriate clinical use of sports massage.
Conclusion
Additional studies examining the physiological and psychological effects of sports massage are necessary in order to assist the sports physical therapist in developing and implementing clinically significant evidence based programs or treatments.
PMCID: PMC2953308  PMID: 21509135
sports massage; sports rehabilitation; sports performance; sports recovery
20.  A Cluster Randomized Clinical Trial to Improve Prescribing Patterns in Ambulatory Pediatrics 
PLoS Clinical Trials  2007;2(5):e25.
Objectives:
Having shown previously that an electronic prescription writer and decision support system improved pediatric prescribing behavior for otitis media in an academic clinic setting, we assessed whether point-of-care delivery of evidence could demonstrate similar effects for a wide range of other common pediatric conditions.
Design:
Cluster randomized controlled trial.
Setting:
A teaching clinic/clinical practice site and a primary care pediatric clinic serving a rural and semi-urban patient mix.
Participants:
A total of 36 providers at the teaching clinic/practice site and eight providers at the private primary pediatric clinic.
Intervention:
An evidence-based message system that presented real-time evidence to providers based on prescribing practices for acute otitis media, allergic rhinitis, sinusitis, constipation, pharyngitis, croup, urticaria, and bronchiolitis.
Outcome measures:
The proportion of prescriptions dispensed in accordance with evidence.
Results:
The proportion of prescriptions dispensed in accordance with evidence improved four percentage points, from 38% at baseline to 42% following the intervention. The control group improved by one percentage point, from 39% at baseline to 40% at trial's conclusion. The adjusted difference between the intervention and control groups was 8% (95% confidence interval 1%, 15%). Intervention effectiveness did not decrease with time.
Conclusion:
For common pediatric outpatient conditions, a point-of-care evidence-based prescription writer and decision support system was associated with significant improvements in prescribing practices.
Editorial Commentary
Background: Computerized systems for managing health-care information, such as medical records and prescriptions, have the potential to improve medical care. These improvements could come about as a result of embedding software within a medical record system that alerts clinicians to evidence that is relevant to the care they are providing. For example, such a system might deliver a pop-up reminder that informs a clinician about a potential prescribing error, or that the prescription ordered is not supported by recent evidence. Systematic reviews of randomized controlled trials evaluating the benefits of such systems have shown that computerized feedback and reminder systems can improve clinician behavior. However, much of this evidence comes from academic clinics caring for adults, and there is not very much evidence available on children or from community-based, nonacademic clinical practices. The researchers here wanted to evaluate whether a computerized system providing clinical decision support at the time of electronic prescribing could improve prescribing in pediatric primary care. In order to test this, the researchers carried out a cluster randomized trial. This means that individual health-care providers were randomized to receive evidence-based prompts via the computerized system or not, depending on which arm of the trial they were randomized to, but outcome data for the trial were collected at the level of the individual patient's prescription. Pop-up prompts were provided for eight medical conditions common in pediatric primary care, and alerted the provider to a summary of the evidence that supported or refuted the prescription that the provider was about to make. The primary outcome in the trial was the change in proportion of prescriptions dispensed in accordance with evidence, over the course of the trial.
What the trial shows: In the trial, 36 pediatric health-care providers were randomized at one site, where the trial was carried out over 50 months, and eight at another, where the trial lasted for 18 months. At the start of the trial, 38% of prescriptions in the intervention group were in accordance with the evidence, and 39% of prescriptions in the control group. At the end of the trial, 42% of prescriptions in the intervention group were in accordance with evidence, as compared to 40% of prescriptions in the control group. The difference in prescribing behavior change over the course of the trial between intervention and control groups was statistically significant, once adjusted for the clustering of data by the individual providers.
Strengths and limitations: In this trial, health-care providers were randomized, rather than patients. This method (cluster randomization) is probably the most appropriate method to carry out a trial such as this, because it reduces the chance of contamination (i.e., that patients not assigned to the intervention might receive some of its benefits). One limitation is the small number of providers that were recruited into the trial; another is that many of these in fact practiced or had recently practiced in academic medicine rather than community-based, nonacademic clinical practices. This limits the ability to generalize from these findings to a nonacademic setting. Finally, the trial was planned with the intention of evaluating the ability of computerized systems to achieve health-care provider behavior change. Therefore, data were analyzed by lumping together outcomes for many different medical conditions. This means that the computerized prompt system may not necessarily have been that successful in achieving improvements in prescribing for any individual condition.
Contribution to the evidence: Systematic reviews of the effectiveness of computerized decision support systems of this kind have found some evidence that such systems can improve the behavior of health-care providers. This study adds data showing that the reminder system studied here resulted in moderate improvements in prescribing within a pediatric primary care setting.
doi:10.1371/journal.pctr.0020025
PMCID: PMC1876598  PMID: 17525793
21.  Positron Emission Tomography for the Assessment of Myocardial Viability 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.
A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.
The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Objective
The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined:
the diagnostic accuracy of FDG PET for predicting functional recovery;
the impact of PET viability imaging on prognosis (mortality and other patient outcomes); and
the contribution of PET viability imaging to treatment decision making and subsequent patient outcomes.
Clinical Need: Condition and Target Population
Left Ventricular Systolic Dysfunction and Heart Failure
Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality.
In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD)1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997.
Treatment Options
In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure.
Myocardial Viability
Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically:
dobutamine echocardiography (echo),
stress echo with contrast,
SPECT using either technetium or thallium,
cardiac magnetic resonance imaging (cardiac MRI), and
positron emission tomography (PET).
Dobutamine Echocardiography
Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 – 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability.
Stress Echocardiography with Contrast
Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium.
SPECT
SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images.
The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%.
There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%.
Cardiac Magnetic Resonance Imaging
Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery.
Cardiac Positron Emission Tomography
Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG).
During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution.
Evidence-Based Analysis
Research Questions
What is the diagnostic accuracy of PET for detecting myocardial viability?
What is the prognostic value of PET viability imaging (mortality and other clinical outcomes)?
What is the contribution of PET viability imaging to treatment decision making?
What is the safety of PET viability imaging?
Literature Search
A literature search was performed on July 17, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 to July 16, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. In addition, published systematic reviews and health technology assessments were reviewed for relevant studies published before 2004. Reference lists of included studies were also examined for any additional relevant studies not already identified. The quality of the body of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies:
English language full-reports
Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies
Patients with chronic, known CAD
PET imaging using FDG for the purpose of detecting viable myocardium
Criteria applying to diagnostic accuracy studies:
Assessment of functional recovery ≥3 months after revascularization
Raw data available to calculate sensitivity and specificity
Gold standard: prediction of global or regional functional recovery
Criteria applying to prognosis studies:
Mortality studies that compare revascularized patients with non-revascularized patients and patients with viable and non-viable myocardium
Exclusion Criteria
Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies:
PET perfusion imaging
< 20 patients
< 18 years of age
Patients with non-ischemic heart disease
Animal or phantom studies
Studies focusing on the technical aspects of PET
Studies conducted exclusively in patients with acute myocardial infarction (MI)
Duplicate publications
Criteria applying to diagnostic accuracy studies
Gold standard other than functional recovery (e.g., PET or cardiac MRI)
Assessment of functional recovery occurs before patients are revascularized
Outcomes of Interest
Diagnostic accuracy studies
Sensitivity and specificity
Positive and negative predictive values (PPV and NPV)
Positive and negative likelihood ratios
Diagnostic accuracy
Adverse events
Prognosis studies
Mortality rate
Functional status
Exercise capacity
Quality of Life
Influence on PET viability imaging on physician decision making
Statistical Methods
Pooled estimates of sensitivity and specificity were calculated using a bivariate, binomial generalized linear mixed model. Statistical significance was defined by P values less than 0.05, where “false discovery rate” adjustments were made for multiple hypothesis testing. Using the bivariate model parameters, summary receiver operating characteristic (sROC) curves were produced. The area under the sROC curve was estimated by numerical integration with a cubic spline (default option). Finally, pooled estimates of mortality rates were calculated using weighted means.
Quality of Evidence
The quality of evidence assigned to individual diagnostic studies was determined using the QUADAS tool, a list of 14 questions that address internal and external validity, bias, and generalizibility of diagnostic accuracy studies. Each question is scored as “yes”, “no”, or “unclear”. The quality of the body of evidence was then assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
A total of 40 studies met the inclusion criteria and were included in this review: one health technology assessment, two systematic reviews, 22 observational diagnostic accuracy studies, and 16 prognosis studies. The available PET viability imaging literature addresses two questions: 1) what is the diagnostic accuracy of PET imaging for the assessment; and 2) what is the prognostic value of PET viability imaging. The diagnostic accuracy studies use regional or global functional recovery as the reference standard to determine the sensitivity and specificity of the technology. While regional functional recovery was most commonly used in the studies, global functional recovery is more important clinically. Due to differences in reporting and thresholds, however, it was not possible to pool global functional recovery.
Functional recovery, however, is a surrogate reference standard for viability and consequently, the diagnostic accuracy results may underestimate the specificity of PET viability imaging. For example, regional functional recovery may take up to a year after revascularization depending on whether it is stunned or hibernating tissue, while many of the studies looked at regional functional recovery 3 to 6 months after revascularization. In addition, viable tissue may not recover function after revascularization due to graft patency or re-stenosis. Both issues may lead to false positives and underestimate specificity. Given these limitations, the prognostic value of PET viability imaging provides the most direct and clinically useful information. This body of literature provides evidence on the comparative effectiveness of revascularization and medical therapy in patients with viable myocardium and patients without viable myocardium. In addition, the literature compares the impact of PET-guided treatment decision making with SPECT-guided or standard care treatment decision making on survival and cardiac events (including cardiac mortality, MI, hospital stays, unintended revascularization, etc).
The main findings from the diagnostic accuracy and prognosis evidence are:
Based on the available very low quality evidence, PET is a useful imaging modality for the detection of viable myocardium. The pooled estimates of sensitivity and specificity for the prediction of regional functional recovery as a surrogate for viable myocardium are 91.5% (95% CI, 88.2% – 94.9%) and 67.8% (95% CI, 55.8% – 79.7%), respectively.
Based the available very low quality of evidence, an indirect comparison of pooled estimates of sensitivity and specificity showed no statistically significant difference in the diagnostic accuracy of PET viability imaging for regional functional recovery using perfusion/metabolism mismatch with FDG PET plus either a PET or SPECT perfusion tracer compared with metabolism imaging with FDG PET alone.
FDG PET + PET perfusion metabolism mismatch: sensitivity, 89.9% (83.5% – 96.4%); specificity, 78.3% (66.3% – 90.2%);
FDG PET + SPECT perfusion metabolism mismatch: sensitivity, 87.2% (78.0% – 96.4%); specificity, 67.1% (48.3% – 85.9%);
FDG PET metabolism: sensitivity, 94.5% (91.0% – 98.0%); specificity, 66.8% (53.2% – 80.3%).
Given these findings, further higher quality studies are required to determine the comparative effectiveness and clinical utility of metabolism and perfusion/metabolism mismatch viability imaging with PET.
Based on very low quality of evidence, patients with viable myocardium who are revascularized have a lower mortality rate than those who are treated with medical therapy. Given the quality of evidence, however, this estimate of effect is uncertain so further higher quality studies in this area should be undertaken to determine the presence and magnitude of the effect.
While revascularization may reduce mortality in patients with viable myocardium, current moderate quality RCT evidence suggests that PET-guided treatment decisions do not result in statistically significant reductions in mortality compared with treatment decisions based on SPECT or standard care protocols. The PARR II trial by Beanlands et al. found a significant reduction in cardiac events (a composite outcome that includes cardiac deaths, MI, or hospital stay for cardiac cause) between the adherence to PET recommendations subgroup and the standard care group (hazard ratio, .62; 95% confidence intervals, 0.42 – 0.93; P = .019); however, this post-hoc sub-group analysis is hypothesis generating and higher quality studies are required to substantiate these findings.
The use of FDG PET plus SPECT to determine perfusion/metabolism mismatch to assess myocardial viability increases the radiation exposure compared with FDG PET imaging alone or FDG PET combined with PET perfusion imaging (total-body effective dose: FDG PET, 7 mSv; FDG PET plus PET perfusion tracer, 7.6 – 7.7 mSV; FDG PET plus SPECT perfusion tracer, 16 – 25 mSv). While the precise risk attributed to this increased exposure is unknown, there is increasing concern regarding lifetime multiple exposures to radiation-based imaging modalities, although the incremental lifetime risk for patients who are older or have a poor prognosis may not be as great as for healthy individuals.
PMCID: PMC3377573  PMID: 23074393
22.  A Descriptive Study of the Practice Patterns of Massage New Zealand Massage Therapists 
Background:
Massage therapy has grown in popularity, yet little is known globally or in New Zealand about massage therapists and their practices.
Purpose and Setting:
The aims of this study were to describe the practice patterns of trained Massage New Zealand massage therapists in New Zealand private practice, with regard to therapist characteristics; practice modes and settings, and therapy characteristics; referral patterns; and massage therapy as an occupation.
Research Design and Participants:
A survey questionnaire was mailed to 66 trained massage therapist members of Massage New Zealand who were recruiting massage clients for a concurrent study of massage therapy culture.
Results:
Most massage therapists were women (83%), NZ European (76%), and holders of a massage diploma qualification (89%). Massage therapy was both a full- (58%) and part-time (42%) occupation, with the practice of massage therapy being the only source of employment for 70% of therapists. Nearly all therapists (94%) practiced massage for more than 40 weeks in the year, providing a median of 16 – 20 hours of direct client care per week. Most massage therapists worked in a “solo practice” (58%) and used a wide and active referral network. Almost all therapists treated musculoskeletal symptoms: the most common client issues or conditions treated were back pain/problem (99%), neck/shoulder pain/problem (99%), headache or migraine (99%), relaxation and stress reduction (96%), and regular recovery or maintenance massage (89%). The most frequent client fee per treatment was NZ$60 per hour in a clinic and NZ$1 per minute at a sports event or in the workplace. Therapeutic massage, relaxation massage, sports massage, and trigger-point therapy were the most common styles of massage therapy offered. Nearly all massage therapists (99%) undertook client assessment; 95% typically provided self-care recommendations; and 32% combined other complementary and alternative medicine therapies with their massage consultations.
Conclusions:
This study provides new information about the practice of massage therapy by trained massage therapists. It will help to inform the massage industry and other health care providers, potential funders, and policymakers about the provision of massage therapy in the NZ health care system.
PMCID: PMC3088528  PMID: 21589692
Complementary and alternative therapies; massage therapy; New Zealand; integrative care; practice patterns
23.  Cost-Effectiveness of Interventions to Promote Physical Activity: A Modelling Study 
PLoS Medicine  2009;6(7):e1000110.
Linda Cobiac and colleagues model the costs and health outcomes associated with interventions to improve physical activity in the population, and identify specific interventions that are likely to be cost-saving.
Background
Physical inactivity is a key risk factor for chronic disease, but a growing number of people are not achieving the recommended levels of physical activity necessary for good health. Australians are no exception; despite Australia's image as a sporting nation, with success at the elite level, the majority of Australians do not get enough physical activity. There are many options for intervention, from individually tailored advice, such as counselling from a general practitioner, to population-wide approaches, such as mass media campaigns, but the most cost-effective mix of interventions is unknown. In this study we evaluate the cost-effectiveness of interventions to promote physical activity.
Methods and Findings
From evidence of intervention efficacy in the physical activity literature and evaluation of the health sector costs of intervention and disease treatment, we model the cost impacts and health outcomes of six physical activity interventions, over the lifetime of the Australian population. We then determine cost-effectiveness of each intervention against current practice for physical activity intervention in Australia and derive the optimal pathway for implementation. Based on current evidence of intervention effectiveness, the intervention programs that encourage use of pedometers (Dominant) and mass media-based community campaigns (Dominant) are the most cost-effective strategies to implement and are very likely to be cost-saving. The internet-based intervention program (AUS$3,000/DALY), the GP physical activity prescription program (AUS$12,000/DALY), and the program to encourage more active transport (AUS$20,000/DALY), although less likely to be cost-saving, have a high probability of being under a AUS$50,000 per DALY threshold. GP referral to an exercise physiologist (AUS$79,000/DALY) is the least cost-effective option if high time and travel costs for patients in screening and consulting an exercise physiologist are considered.
Conclusions
Intervention to promote physical activity is recommended as a public health measure. Despite substantial variability in the quantity and quality of evidence on intervention effectiveness, and uncertainty about the long-term sustainability of behavioural changes, it is highly likely that as a package, all six interventions could lead to substantial improvement in population health at a cost saving to the health sector.
Please see later in the article for Editors' Summary
Editors' Summary
Background
The human body needs regular physical activity throughout life to stay healthy. Physical activity—any bodily movement produced by skeletal muscles that uses energy—helps to maintain a healthy body weight and to prevent or delay heart disease, stroke, type 2 diabetes, colon cancer, and breast cancer. In addition, physically active people feel better and live longer than physically inactive people. For an adult, 30 minutes of moderate physical activity—walking briskly, gardening, swimming, or cycling—at least five times a week is sufficient to promote and maintain health. But at least 60% of the world's population does not do even this modest amount of physical activity. The daily lives of people in both developed and developing countries are becoming increasingly sedentary. People are sitting at desks all day instead of doing manual labor; they are driving to work in cars instead of walking or cycling; and they are participating less in physical activities during their leisure time.
Why Was This Study Done?
In many countries, the chronic diseases that are associated with physical inactivity are now a major public-health problem; globally, physical inactivity causes 1.9 million deaths per year. Clearly, something has to be done about this situation. Luckily, there is no shortage of interventions designed to promote physical activity, ranging from individual counseling from general practitioners to mass-media campaigns. But which intervention or package of interventions will produce the optimal population health benefits relative to cost? Although some studies have examined the cost-effectiveness of individual interventions, different settings for analysis and use of different methods and assumptions make it difficult to compare results and identify which intervention approaches should be give priority by policy makers. Furthermore, little is known about the cost-effectiveness of packages of interventions. In this study, the researchers investigate the cost-effectiveness in Australia (where physical inactivity contributes to 10% of deaths) of a package of interventions designed to promote physical activity in adults using a standardized approach (ACE-Prevention) to the assessment of the cost-effectiveness of health-care interventions.
What Did the Researchers Do and Find?
The researchers selected six interventions for their study: general practitioner “prescription” of physical activity; general practitioner referral to an exercise physiologist; a mass-media campaign to promote physical activity; the TravelSmart car use reduction program; a campaign to encourage the use of pedometers to increase physical activity; and an internet-based program. Using published data on the effects of physical activity on the amount of illness and death caused by breast and colon cancer, heart disease, stroke, and type 2 diabetes and on the effectiveness of each intervention, the researchers calculated the health outcomes of each intervention in disability-adjusted life years (DALY; a year of healthy life lost because of premature death or disability) averted over the lifetime of the Australian population. They also calculated the costs associated with each intervention offset by the costs associated with the five conditions listed above. These analyses showed that the pedometer program and the mass-media campaign were likely to be the most cost-effective interventions. These interventions were also most likely to be cost-saving. Referral to an exercise physiologist was the least cost-effective intervention. The other three interventions, though unlikely to be cost-saving, were likely to be cost-effective. Finally, a package of all six interventions would be cost-effective and would avert 61,000 DALYs, a third of what could be achieved if every Australian did 30 minutes of physical activity five times a week.
What Do These Findings Mean?
As in all modeling studies, these findings depend on the quality of the data and on the assumptions included by the researchers in their calculations. Unfortunately, there was substantial variability in the quantity and quality of evidence on the effectiveness of each intervention and uncertainty about the long-term effects of each intervention. Nevertheless, the findings presented in this study suggest that the assessment of the cost-effectiveness of a combination of interventions designed to promote physical activity might provide policy makers with some guidance about the best way to reduce the burden of disease caused by physical inactivity. More specifically, for Australia, these findings suggest that the package of the six interventions considered here is likely to provide a cost-effective way to substantially improve the health of the nation.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000110.
The World Health Organization provides information about physical activity and health (in several languages); it also provides an explanation of DALYs
The US Centers for Disease Control and Prevention provides information on physical activity for different age groups and for health professionals
The UK National Health Service information source Choices also explains the benefits of regular physical activity
MedlinePlus has links to other resources about exercise and physical fitness (in English and Spanish)
The University of Queensland Web site has more information on ACE-Prevention (Assessing Cost-Effectiveness Prevention)
doi:10.1371/journal.pmed.1000110
PMCID: PMC2700960  PMID: 19597537
24.  A Novel Brief Therapy for Patients Who Attempt Suicide: A 24-months Follow-Up Randomized Controlled Study of the Attempted Suicide Short Intervention Program (ASSIP) 
PLoS Medicine  2016;13(3):e1001968.
Background
Attempted suicide is the main risk factor for suicide and repeated suicide attempts. However, the evidence for follow-up treatments reducing suicidal behavior in these patients is limited. The objective of the present study was to evaluate the efficacy of the Attempted Suicide Short Intervention Program (ASSIP) in reducing suicidal behavior. ASSIP is a novel brief therapy based on a patient-centered model of suicidal behavior, with an emphasis on early therapeutic alliance.
Methods and Findings
Patients who had recently attempted suicide were randomly allocated to treatment as usual (n = 60) or treatment as usual plus ASSIP (n = 60). ASSIP participants received three therapy sessions followed by regular contact through personalized letters over 24 months. Participants considered to be at high risk of suicide were included, 63% were diagnosed with an affective disorder, and 50% had a history of prior suicide attempts. Clinical exclusion criteria were habitual self-harm, serious cognitive impairment, and psychotic disorder. Study participants completed a set of psychosocial and clinical questionnaires every 6 months over a 24-month follow-up period.
The study represents a real-world clinical setting at an outpatient clinic of a university hospital of psychiatry. The primary outcome measure was repeat suicide attempts during the 24-month follow-up period. Secondary outcome measures were suicidal ideation, depression, and health-care utilization. Furthermore, effects of prior suicide attempts, depression at baseline, diagnosis, and therapeutic alliance on outcome were investigated.
During the 24-month follow-up period, five repeat suicide attempts were recorded in the ASSIP group and 41 attempts in the control group. The rates of participants reattempting suicide at least once were 8.3% (n = 5) and 26.7% (n = 16). ASSIP was associated with an approximately 80% reduced risk of participants making at least one repeat suicide attempt (Wald χ21 = 13.1, 95% CI 12.4–13.7, p < 0.001). ASSIP participants spent 72% fewer days in the hospital during follow-up (ASSIP: 29 d; control group: 105 d; W = 94.5, p = 0.038). Higher scores of patient-rated therapeutic alliance in the ASSIP group were associated with a lower rate of repeat suicide attempts. Prior suicide attempts, depression, and a diagnosis of personality disorder at baseline did not significantly affect outcome. Participants with a diagnosis of borderline personality disorder (n = 20) had more previous suicide attempts and a higher number of reattempts.
Key study limitations were missing data and dropout rates. Although both were generally low, they increased during follow-up. At 24 months, the group difference in dropout rate was significant: ASSIP, 7% (n = 4); control, 22% (n = 13). A further limitation is that we do not have detailed information of the co-active follow-up treatment apart from participant self-reports every 6 months on the setting and the duration of the co-active treatment.
Conclusions
ASSIP, a manual-based brief therapy for patients who have recently attempted suicide, administered in addition to the usual clinical treatment, was efficacious in reducing suicidal behavior in a real-world clinical setting. ASSIP fulfills the need for an easy-to-administer low-cost intervention. Large pragmatic trials will be needed to conclusively establish the efficacy of ASSIP and replicate our findings in other clinical settings.
Trial registration
ClinicalTrials.gov NCT02505373
In a randomized controlled trial, Konrad Michel and colleagues test the efficacy of a manual-based therapy intended to prevent repeat suicide attempts.
Editors' Summary
Background
Suicide is a serious public health problem. Over 800,000 people worldwide die by suicide every year. In the US, one suicide death occurs approximately every 12 minutes. While the causes of suicide are complex, the goals of suicide prevention are simple—reduce factors that increase risk, and increase factors that promote resilience or coping. Factors that increase suicide risk include family history of suicide, family history of child abuse, previous suicide attempts, history of mental disorders (particularly depression), history of alcohol and substance abuse, and access to lethal means. Factors that are protective against suicide include effective clinical care for mental, physical, and substance abuse disorders; connectedness to family and community; and problem solving and conflict resolution skills. A previous suicide attempt is the main risk factor for repeat attempts and for completed suicide. Fifteen to 25 percent of people who attempt suicide make another attempt, and five to ten percent eventually die by suicide.
Why Was This Study Done?
A number of suicide prevention treatments have been developed. Most of them involve therapy sessions and personal follow-up. While some of them have been shown to work in clinical trials—often with participants who have made a previous suicide attempt—few interventions have proven to be effective consistently in different settings. For this study, the researchers developed a treatment called Attempted Suicide Short Intervention Program (ASSIP) composed of three therapy sessions shortly after the suicide attempt and follow-up over two years with personalized mailed letters. They wanted the therapy part to be short, in order to provide a treatment that would allow a psychiatric service to cope with the large number of patients seen in the emergency department after a suicide attempt. The therapeutic elements of the treatment emphasized building an early therapeutic alliance, which would then serve as a basis (“anchoring”) for long-term outreach contact through regular letters. The therapy sessions and letters follow a detailed script, which the researchers developed into a manual that includes a step-by-step description of the highly structured treatment, checklists, handouts, and standardized letters for use by health professionals in various clinical settings. This study was done to test whether ASSIP can reduce suicidal behavior in addition to routine treatment.
What Did the Researchers Do and Find?
The researchers carried out a randomized clinical trial testing ASSIP in people who had attempted suicide (the majority by intentional overdosing) and been admitted to the emergency department of the Bern University General Hospital in Switzerland. Participants were randomly assigned to two groups. The treatment group received ASSIP in addition to treatment as usual (inpatient, day patient, and outpatient care as deemed appropriate by the hospital clinicians); the control group received a single structured assessment interview plus treatment as usual. The study objective was to evaluate—with follow-up questionnaires and health-care data—whether ASSIP can reduce the rate of repeated suicide attempt in the 24 months after a suicide attempt. The researchers also compared suicidal ideation (i.e., whether and how often participants had suicidal thoughts), levels of depression, and how often people were hospitalized between the two groups.
A total of 120 patients who had recently attempted suicide were randomly allocated to treatment as usual or treatment as usual plus ASSIP. The 60 ASSIP participants received three therapy sessions followed by regular contact over 24 months. During the first therapy session, the patient was prompted to tell the story of how he or she had reached the point of attempting suicide. Narrative interviewing is a key element of ASSIP’s patient-centered collaborative approach. The first session was videotaped, and parts were watched and discussed by patient and therapist during the second session, to recreate the experience of psychological pain and analyze how stress developed into suicidal action. During the final session, therapist and patient developed a list of long-term goals, warning signs, and safety strategies. These were printed and given to the patient in a credit-card-sized folded leaflet along with a list of telephone help numbers. Patients were told to carry both items at all times and to use them in the event of an emotional crisis. Over the subsequent two years, patients received six letters from their therapist reminding them of the risk of future suicidal crises and the importance of the collaboratively developed safety strategies.
During the 24 months of follow-up, one death by suicide occurred in each group, five repeat suicide attempts were recorded in the ASSIP group, and 41 repeat suicide attempts were recorded in the control group. ASSIP was associated with an approximately 80% reduced risk of repeat suicide attempt. In addition, ASSIP participants spent 72% fewer days in the hospital during follow-up. There was no difference in patient-reported suicidal ideation or in levels of depression.
What Do these Findings Mean?
The results show that ASSIP, administered in addition to the usual clinical treatment, was able to reduce suicidal behavior over 24 months in patients who had recently attempted suicide. The addition of ASSIP to usual treatment directly or its effect on repeat attempts might also reduce health care costs. The absence of effects on suicidal thoughts and depression is consistent with ASSIP’s objective to help people cope with crises as opposed to eliminating them. The study’s findings in a real-world clinical setting (a university hospital in the Swiss capital) are promising. They justify further testing in large clinical trials and diverse settings to answer conclusively whether and where ASSIP can reduce repeat suicide attempts, prevent deaths from suicide, and reduce health-care costs.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001968.
National Action Alliance for Suicide Prevention has information on research prioritization for suicide prevention
There is also a supplemental issue of the American Journal of Preventive Medicine focused on research about suicide prevention
More information about suicide is available from ZEROSuicide http://zerosuicide.sprc.org/ and the Suicide Prevention Resource Center http://www.sprc.org/
The US Centers for Disease Control and Prevention has information on suicide
The UK Mental Health Foundation also has information on suicide
The page “About Suicide” from the American Foundation for Suicide Prevention has information on warning signs, risk factors, and statistics
The US National Suicide Prevention Lifeline offers help and information
The Bern University Hospital of Psychiatry has a page describing ASSIP for patients (in German)
The Finnish Association for Mental Health has a page describing ASSIP (in English)
doi:10.1371/journal.pmed.1001968
PMCID: PMC4773217  PMID: 26930055
25.  Uncovering Treatment Burden as a Key Concept for Stroke Care: A Systematic Review of Qualitative Research 
PLoS Medicine  2013;10(6):e1001473.
In a systematic review of qualitative research, Katie Gallacher and colleagues examine the evidence related to treatment burden after stroke from the patient perspective.
Please see later in the article for the Editors' Summary
Background
Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.
Methods and Findings
The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.
Conclusions
Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems.
Systematic Review Registration
International Prospective Register of Systematic Reviews CRD42011001123
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, 15 million people have a stroke. About 5 million of these people die within a few days, and another 5 million are left disabled. Stroke occurs when the blood supply of the brain is suddenly interrupted by a blood vessel in the brain being blocked by a blood clot (ischemic stroke) or bursting (hemorrhagic stroke). Deprived of the oxygen normally carried to them by the blood, the brain cells near the blockage die. The symptoms of stroke depend on which part of the brain is damaged but include sudden weakness or paralysis along one side of the body, vision loss in one or both eyes, and confusion or trouble speaking or understanding speech. Anyone experiencing these symptoms should seek immediate medical attention because prompt treatment can limit the damage to the brain. In the longer term, post-stroke rehabilitation can help individuals overcome the physical disabilities caused by stroke, and drugs that thin the blood, reduce blood pressure and reduce cholesterol (major risk factors for stroke) alongside behavioral counseling can reduce the risk of a second stroke.
Why Was This Study Done?
Treatment for, and rehabilitation from, stroke is a lengthy process that requires considerable personal investment from the patient. The term “treatment burden” describes the self-care practices that patients with stroke and other chronic diseases must perform to follow the complicated management strategies that have been developed for these conditions. Unfortunately, treatment burden can overwhelm patients. They may be unable to cope with the multiple demands placed on them by health-care providers and systems for their self-care, a situation that leads to poor adherence to therapies and poor outcomes. For example, patients may find it hard to complete all the exercises designed to help them regain full movement of their limbs after a stroke. Treatment burden has been poorly examined in relation to stroke. Here, the researchers identify and describe the treatment burden in stroke by undertaking a systematic review (a study that uses predefined criteria to identify all the literature on a given topic) of qualitative studies on the patient experience of stroke management. Qualitative studies collect non-quantitative data so, for example, a qualitative study on stroke treatment might ask people how the treatment made them feel whereas a quantitative study might compare clinical outcomes between those receiving and not receiving the treatment.
What Did the Researchers Do and Find?
The researchers identified 69 qualitative studies dealing with the experiences of stroke management of adult patients and analyzed the data in these papers using framework synthesis—an approach that divides data into thematic categories. Specifically, the researchers used a coding framework informed by normalization process theory, a sociological theory of the implementation, embedding and integration of tasks and practices; embedding is the process of making tasks and practices a routine part of everyday life and integration refers to sustaining these embedded practices. The researchers identified four main areas of treatment burden for stroke: making sense of stroke management and planning care; interacting with others, including health care professionals, family and other patients with stroke; enacting management strategies (including enduring institutional admissions, managing stroke in the community, reintegrating into society and adjusting to life after stroke); and reflecting on management to make decisions about self-care. Moreover, they identified problems in all these areas, including inadequate provision of information, poor communication with health-care providers, and unsatisfactory inpatient care.
What Do These Findings Mean?
These findings show that stroke management is extremely demanding for patients and is influenced by both the micro and macro organization of health services. At the micro organizational level, fragmented care and poor communication between patients and clinicians and between health-care providers can mean patients are ill equipped to organize their care and develop coping strategies, which makes adherence to management strategies less likely. At the macro organizational level, it can be hard for patients to obtain the practical and financial help they need to manage their stroke in the community. Overall, these findings suggest that care provision for stroke needs to be transformed so that the needs of patients rather than the needs of health-care systems are prioritized. Further work is required, however, to understand how the patient experience of treatment burden is affected by the clinical characteristics of stroke, by disability level, and by other co-existing diseases. By undertaking such work, it should be possible to generate a patient-reported outcome measure of treatment burden that, if used by policy makers and health-care providers, has the potential to improve the quality of stroke care.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001473.
The US National Institute of Neurological Disorders and Stroke provides information about all aspects of stroke (in English and Spanish); its Know Stroke site provides educational materials about stroke prevention, treatment, and rehabilitation including personal stories (in English and Spanish); the US National Institutes of Health SeniorHealth website has additional information about stroke
The Internet Stroke Center provides detailed information about stroke for patients, families, and health professionals (in English and Spanish)
The UK National Health Service Choices website also provides information about stroke for patients and their families, including personal stories
MedlinePlus has links to additional resources about stroke (in English and Spanish)
The UK not-for-profit website Healthtalkonline provides personal stories about stroke
Wikipedia provides information on the burden of treatment and on the normalization process theory (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
doi:10.1371/journal.pmed.1001473
PMCID: PMC3692487  PMID: 23824703

Results 1-25 (1332329)