Search tips
Search criteria

Results 1-25 (854213)

Clipboard (0)

Related Articles

1.  Analysis of Associations between Behavioral Traits and Four Types of Aggression in Shiba Inu 
Canine aggression is one of the behavioral problems for which veterinary behaviorists are most frequently consulted. Despite this, the classification of canine aggression is controversial, and there are several classification methodologies. While the etiology of canine aggression differs among the types of aggression, the behavioral background underlying aggression is not well understood. Behavior trait-based evaluation of canine aggression would improve the effectiveness and efficiency of managing canine aggression problems. We developed a questionnaire addressing 14 behavioral items and items related to four types of canine aggression (owner-, child-, stranger- and dog-directed aggression) in order to examine the associations between behavioral traits and aggression in Shiba Inu. A total of 400 Shiba Inu owners recruited through dog events (n=134) and veterinary hospitals (n=266) completed the questionnaire. Factor analysis sorted the behavioral items from both the event and clinic samples into four factors: “sociability with humans,” “reactivity to stimuli,” “chase proneness” and “fear of sounds.” While “reactivity to stimuli” correlated significantly positively with all of the four types of aggression (P=0.007 to <0.001), “sociability with humans” correlated significantly negatively with child- and stranger-directed aggression (P<0.001). These results suggest that the behavioral traits involved in canine aggression differ among the types of aggression and that specific behavioral traits are frequently simultaneously involved in several types of aggression.
PMCID: PMC3942946  PMID: 23719752
aggression; behavior; canine; questionnaire
2.  "Reactivity to Stimuli” Is a Temperamental Factor Contributing to Canine Aggression 
PLoS ONE  2014;9(6):e100767.
Canine aggression is one of the most frequent problems in veterinary behavioral medicine, which in severe cases may result in relinquishment or euthanasia. As it is important to reveal underlying factors of aggression for both treatment and prevention, we recently developed a questionnaire on aggression and temperamental traits and found that “reactivity to stimuli” was associated with aggression toward owners, children, strangers, and other dogs of the Shiba Inu breed. In order to examine whether these associations were consistent in other breeds, we asked the owners of insured dogs of Anicom Insurance Inc. to complete our questionnaire. The top 17 contracted breeds were included. The questionnaire consisted of dogs' general information, four items related to aggression toward owners, children, strangers, and other dogs, and 20 other behavioral items. Aggression-related and behavioral items were rated on a five-point frequency scale. Valid responses (n = 5610) from owners of dogs aged 1 through 10 years were collected. Factor analyses on 18 behavioral items (response rate over 95%) extracted five largely consistent factors in 14 breeds: “sociability with humans,” “fear of sounds,” “chase proneness,” “reactivity to stimuli,” and “avoidance of aversive events.” By stepwise multiple regression analyses, using the Schwartz's Bayesian information criterion (BIC) method with aggression points as objective variables and general information and temperamental factor points as explanatory variables, “reactivity to stimuli,” i.e., physical reactivity to sudden movement or sound at home, was shown to be significantly associated with owner-directed aggression in 13 breeds, child-directed aggression in eight breeds, stranger-directed aggression in nine breeds, and dog-directed aggression in five breeds. These results suggest that “reactivity to stimuli” is simultaneously involved in several types of aggression. Therefore, it would be worth taking “reactivity to stimuli” into account in the treatment and prevention of canine aggression.
PMCID: PMC4074066  PMID: 24972077
3.  Dogs and Humans Share a Common Susceptibility Gene SRBD1 for Glaucoma Risk 
PLoS ONE  2013;8(9):e74372.
Glaucoma is a degenerative optic neuropathy that is associated with elevated intraocular pressure. Primary open angle glaucoma is the most common type of glaucoma in canines, and its highest incidence among dog breeds has been reported in Shiba-Inus, followed by Shih-Tzus. These breeds are known to have an abnormal iridocorneal angle and dysplastic prectinate ligament. However, the hereditary and genetic backgrounds of these dogs have not yet been clarified. In this study, we investigated the association between polymorphisms of the glaucoma candidate genes, SRBD1, ELOVL5, and ADAMTS10, and glaucoma in Shiba-Inus and Shih-Tzus. We analyzed 11 polymorphisms in these three genes using direct DNA sequencing. Three SRBD1 SNPs, rs8655283, rs22018514 and rs22018513 were significantly associated with glaucoma in Shiba-Inus, while rs22018513, a synonymous SNP in exon 4, showed the strongest association (P = 0.00039, OR = 3.03). Conditional analysis revealed that rs22018513 could account for most of the association of these SNPs with glaucoma in Shiba-Inus. In Shih-Tzus, only rs9172407 in the SRBD1 intron 1 was significantly associated with glaucoma (P = 0.0014, OR = 5.25). There were no significant associations between the ELOVL5 or ADAMTS10 polymorphisms and glaucoma in Shiba-Inus and Shih-Tzus. The results showed that SRBD1 polymorphisms play an important role in glaucoma pathology in both Shiba-Inus and Shih-Tzus. SRBD1 polymorphisms have also been associated with normal- and high-tension glaucomas in humans. Therefore, SRBD1 may be a common susceptibility gene for glaucoma in humans and dogs. We anticipate that the nucleotide sequencing data from this study can be used in genetic testing to determine for the first time, the genetic status and susceptibility of glaucoma in dogs, with high precision. Moreover, canine glaucoma resulting from SRBD1 polymorphisms could be a useful animal model to study human glaucoma.
PMCID: PMC3770690  PMID: 24040232
4.  Characterization of a dopamine transporter polymorphism and behavior in Belgian Malinois 
BMC Genetics  2013;14:45.
The Belgian Malinois dog breed (MAL) is frequently used in law enforcement and military environments. Owners have reported seizures and unpredictable behavioral changes including dogs’ eyes “glazing over,” dogs’ lack of response to environmental stimuli, and loss of behavioral inhibition including owner-directed biting behavior. Dogs with severe behavioral changes may be euthanized as they can represent a danger to humans and other dogs. In the dog, the dopamine transporter gene (DAT) contains a 38-base pair variable number tandem repeat (DAT-VNTR); alleles have either one or two copies of the 38-base pair sequence. The objective of this study was to assess frequency of DAT-VNTR alleles, and characterize the association between DAT-VNTR alleles and behavior in MAL and other breeds.
In an American sample of 280 dogs comprising 26 breeds, most breeds are predominantly homozygous for the DAT-VNTR two-tandem-repeat allele (2/2). The one-tandem-repeat allele is over-represented in American MAL (AM-MAL) (n = 144), both as heterozygotes (1/2) and homozygotes (1/1). All AM-MAL with reported seizures (n = 5) were 1/1 genotype. For AM-MAL with at least one “1” allele (1/1 or 1/2 genotype, n = 121), owners reported higher levels of attention, increased frequency of episodic aggression, and increased frequency of loss of responsiveness to environmental stimuli. In behavior observations, Belgian Military Working Dogs (MWD) with 1/1 or 1/2 genotypes displayed fewer distracted behaviors and more stress-related behaviors such as lower posture and increased yawning. Handlers’ treatment of MWD varied with DAT-VNTR genotype as did dogs’ responses to handlers’ behavior. For 1/1 or 1/2 genotype MWD, 1) lower posture after the first aversive stimulus given by handlers was associated with poorer obedience performance; 2) increased aversive stimuli during protection exercises were associated with decreased performance; 3) more aversive stimuli during obedience were associated with more aversive stimuli during protection; and 4) handlers used more aversive stimuli in protection compared with obedience exercises.
The single copy allele of DAT-VNTR is associated with owner-reported seizures, loss of responsiveness to environmental stimuli, episodic aggression, and hyper-vigilance in MAL. Behavioral changes are associated with differential treatment by handlers. Findings should be considered preliminary until replicated in a larger sample.
PMCID: PMC3680094  PMID: 23718893
Dog; Belgian Malinois; Dopamine transporter; Behavior; Seizure
5.  A Simple Repeat Polymorphism in the MITF-M Promoter Is a Key Regulator of White Spotting in Dogs 
PLoS ONE  2014;9(8):e104363.
The white spotting locus (S) in dogs is colocalized with the MITF (microphtalmia-associated transcription factor) gene. The phenotypic effects of the four S alleles range from solid colour (S) to extreme white spotting (sw). We have investigated four candidate mutations associated with the sw allele, a SINE insertion, a SNP at a conserved site and a simple repeat polymorphism all associated with the MITF-M promoter as well as a 12 base pair deletion in exon 1B. The variants associated with white spotting at all four loci were also found among wolves and we conclude that none of these could be a sole causal mutation, at least not for extreme white spotting. We propose that the three canine white spotting alleles are not caused by three independent mutations but represent haplotype effects due to different combinations of causal polymorphisms. The simple repeat polymorphism showed extensive diversity both in dogs and wolves, and allele-sharing was common between wolves and white spotted dogs but was non-existent between solid and spotted dogs as well as between wolves and solid dogs. This finding was unexpected as Solid is assumed to be the wild-type allele. The data indicate that the simple repeat polymorphism has been a target for selection during dog domestication and breed formation. We also evaluated the significance of the three MITF-M associated polymorphisms with a Luciferase assay, and found conclusive evidence that the simple repeat polymorphism affects promoter activity. Three alleles associated with white spotting gave consistently lower promoter activity compared with the allele associated with solid colour. We propose that the simple repeat polymorphism affects cooperativity between transcription factors binding on either flanking sides of the repeat. Thus, both genetic and functional evidence show that the simple repeat polymorphism is a key regulator of white spotting in dogs.
PMCID: PMC4130573  PMID: 25116146
6.  Molecular epidemiology of the emerging zoonosis agent Anaplasma phagocytophilum (Foggie, 1949) in dogs and ixodid ticks in Brazil 
Parasites & Vectors  2013;6:348.
Anaplasma phagocytophilum is an emerging pathogen of humans, dogs and other animals, and it is transmitted by ixodid ticks. The objective of the current study was a) detect A. phagocytophilum in dogs and ixodid ticks using real-time Polymerase Chain Reaction (qPCR); and b) Determine important variables associated to host, environment and potential tick vectors that are related to the presence of A. phagocytophilum in dogs domiciled in Rio de Janeiro, Brazil.
We tested blood samples from 398 dogs and samples from 235 ticks, including 194 Rhipicephalus sanguineus sensu lato, 15 Amblyomma cajennense, 8 Amblyomma ovale and 18 pools of Amblyomma sp. nymphs. A semi-structured questionnaire was applied by interviewing each dog owner. Deoxyribonucleic acid obtained from ticks and dog buffy coat samples were amplified by qPCR (msp2 gene). The sequencing of 16S rRNA and groESL heat shock operon genes and a phylogenetic analysis was performed. The multiple logistic regression model was created as a function of testing positive dogs for A. phagocytophilum.
Among the 398 blood samples from dogs, 6.03% were positive for A. phagocytophilum. Anaplasma phagocytophilum was detected in one A. cajennense female tick and in five R. sanguineus sensu lato ticks (four males and one female). The partial sequences of the 16S rRNA, and groESL genes obtained were highly similar to strains of A. phagocytophilum isolated from wild birds from Brazil and human pathogenic strains. The tick species collected in positive dogs were R. sanguineus sensu lato and A. cajennense, with A.cajennense being predominant. Tick infestation history (OR = 2.86, CI = 1.98-14.87), dog size (OR = 2.41, IC: 1.51-12.67), the access to forest areas (OR = 3:51, CI: 1.52-16.32), hygiene conditions of the environment in which the dogs lived (OR = 4.35, CI: 1.86-18.63) and Amblyomma sp. infestation (OR = 6.12; CI: 2.11-28.15) were associated with A. phagocytophilum infection in dogs.
This is the first report of A. phagocytophilum in ixodid ticks from Brazil. The detection of A. phagocitophylum in A. cajennense, an aggressive feeder on a wide variety of hosts, including humans, is considered a public health concern.
PMCID: PMC3874603  PMID: 24330631
Anaplasma phagocytophilum; Dogs; Ticks; Epidemiology; Emerging zoonoses
7.  Dog Behavior Co-Varies with Height, Bodyweight and Skull Shape 
PLoS ONE  2013;8(12):e80529.
Dogs offer unique opportunities to study correlations between morphology and behavior because skull shapes and body shape are so diverse among breeds. Several studies have shown relationships between canine cephalic index (CI: the ratio of skull width to skull length) and neural architecture. Data on the CI of adult, show-quality dogs (six males and six females) were sourced in Australia along with existing data on the breeds' height, bodyweight and related to data on 36 behavioral traits of companion dogs (n = 8,301) of various common breeds (n = 49) collected internationally using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). Stepwise backward elimination regressions revealed that, across the breeds, 33 behavioral traits all but one of which are undesirable in companion animals correlated with either height alone (n = 14), bodyweight alone (n = 5), CI alone (n = 3), bodyweight-and-skull shape combined (n = 2), height-and-skull shape combined (n = 3) or height-and-bodyweight combined (n = 6). For example, breed average height showed strongly significant inverse relationships (p<0.001) with mounting persons or objects, touch sensitivity, urination when left alone, dog-directed fear, separation-related problems, non-social fear, defecation when left alone, owner-directed aggression, begging for food, urine marking and attachment/attention-seeking, while bodyweight showed strongly significant inverse relationships (p<0.001) with excitability and being reported as hyperactive. Apart from trainability, all regression coefficients with height were negative indicating that, across the breeds, behavior becomes more problematic as height decreases. Allogrooming increased strongly (p<0.001) with CI and inversely with height. CI alone showed a strong significant positive relationship with self-grooming (p<0.001) but a negative relationship with chasing (p = 0.020). The current study demonstrates how aspects of CI (and therefore brain shape), bodyweight and height co-vary with behavior. The biological basis for, and significance of, these associations remain to be determined.
PMCID: PMC3864788  PMID: 24358107
8.  Polymorphism in the Tyrosine Hydroxylase (TH) Gene Is Associated with Activity-Impulsivity in German Shepherd Dogs 
PLoS ONE  2012;7(1):e30271.
We investigated the association between repeat polymorphism in intron 4 of the tyrosine hydroxylase (TH) gene and two personality traits, activity-impulsivity and inattention, in German Shepherd Dogs. The behaviour of 104 dogs was characterized by two instruments: (1) the previously validated Dog-Attention Deficit Hyperactivity Disorder Rating Scale (Dog-ADHD RS) filled in by the dog owners and (2) the newly developed Activity-impulsivity Behavioural Scale (AIBS) containing four subtests, scored by the experimenters. Internal consistency, inter-observer reliability, test-retest reliability and convergent validity were demonstrated for AIBS.
Dogs possessing at least one short allele were proved to be more active-impulsive by both instruments, compared to dogs carrying two copies of the long allele (activity-impulsivity scale of Dog-ADHD RS: p = 0.007; AIBS: p = 0.023). The results have some potential to support human studies; however, further research should reveal the molecular function of the TH gene variants, and look for the effect in more breeds.
PMCID: PMC3260259  PMID: 22272320
9.  The role of X-chromosome inactivation in female predisposition to autoimmunity 
Arthritis Research  2000;2(5):399-406.
We propose that the phenomenon of X-chromosome inactivation in females may constitute a risk factor for loss of T-cell tolerance; specifically that skewed X-chromosome inactivation in the thymus may lead to inadequate thymic deletion. Using a DNA methylation assay, we have examined the X-chromosome inactivation patterns in peripheral blood from normal females (n = 30), female patients with a variety of autoimmune diseases (n = 167). No differences between patients and controls were observed. However, locally skewed X-chromsome inactivation may exist in the thymus, and therefore the underlying hypothesis remains to be disproved.
A reduction in the sex ratio (male : female) is characteristic of most autoimmune disorders. The increased prevalence in females ranges from a modest 2:1 for multiple sclerosis [1], to approximately 10:1 for systemic lupus erythematosus [2]. This tendency toward autoimmunity in females is often ascribed to hormonal differences, because in a number of experimental disease models estrogens exacerbated disease, and androgens can inhibit disease activity [3,4]. However, human studies have failed to demonstrate a clear-cut influence of hormonal environment on disease susceptibility to lupus or other autoimmune disorders. In addition, many childhood forms of autoimmunity, such as juvenile rheumatoid arthritis, exhibit female predominance [5]. Interestingly, juvenile (type 1) diabetes is an exception to this general trend, with a sex ratio close to 1 in most studies [6]. Therefore, it is reasonable to consider alternative explanations for the increased prevalence of autoimmune diseases in human females.
A unifying feature of autoimmune disorders appears to be the loss of immunologic tolerance to self-antigens, and in many of these diseases there is evidence that T-cell tolerance has been broken. The most profound form of T-cell tolerance involves deletion of potentially self-reactive T cells during thymic selection. Thus, lack of exposure to a self-antigen in the thymus may lead to the presence of autoreactive T cells and may increase the risk of autoimmunity. An elegant example of this has recently been reported [7].
The existence of X-chromosome inactivation in females offers a potential mechanism whereby X-linked self-antigens may escape presentation in the thymus or in other peripheral sites that are involved in tolerance induction. Early in female development, one of the two X chromosomes in each cell undergoes an ordered process of inactivation, with subsequent silencing of most genes on the inactive X chromosome [8]. This phenomenon occurs at a very early embryonic stage [9], and thus all females are mosaic and may occasionally exhibit extreme skewing towards one or the other parental X chromosome. In theory, this may result in a situation in which polymorphic self-antigens on one X chromosome may fail to be expressed at sufficiently high levels in a tolerizing compartment, such as the thymus, and yet may be expressed at a considerable frequency in the peripheral soma. Thus, females may be predisposed to a situation in which they can occasionally express X-linked autoantigens in the periphery to which they have been inefficiently tolerized. Stewart [10] has recently speculated that such a mechanism may play a role in the predisposition to systemic lupus.
This hypothesis predicts that females with autoimmunity may be particularly prone to this mechanism of `inadequate tolerization' by virtue of extremely skewed X-chromosome inactivation. We therefore performed a comprehensive analysis of X-chromosome inactivation patterns in populations of females with multiple sclerosis, systemic lupus erythematosus, juvenile rheumatoid arthritis, and type 1 (insulin-dependent) diabetes mellitus, and in female control individuals. The results do not provide support for a major role for skewed X-chromosome inactivation in female predisposition to autoimmunity; however, neither is the underlying hypothesis disproved by the present data.
Materials and method:
DNA was obtained from female patients from the following sources: 45 persons with juvenile diabetes seen at the Virginia Mason Research Center in Seattle, Washington; 58 multiple sclerosis patients seen at the New York Hospital Multiple Sclerosis Center; 46 patients with systemic lupus erythematosus seen at the Hospital for Special Surgery (New York); 18 patients with juvenile rheumatoid arthritis seen at the Children's Hospital Medical Center in Cleveland. In addition, 30 healthy age-matched females were studied as normal controls.
Employing a modification of previously described methods [11], we utilized a fluorescent Hpa II/PCR assay of the androgen receptor (AR) locus to assess X-chromosome inactivation patterns. The AR gene contains a polymorphic CAG repeat, which is flanked by Hpa II sites. These Hpa II sites are methylated on the inactive X chromosome, and are unmethylated on the active X chromosome. By performing PCR amplification across this region after cutting with the methylation-sensitive enzyme Hpa II, the relative amounts of the methylated AR alleles can be quantitatively determined with a high degree of accuracy; variance on repeated assays is approximately 4% [12].
Skewing of X-chromosome inactivation is expressed as percentage deviation from equal (50:50) inactivation of the upper and lower AR alleles. Therefore, the maximal possible deviation is 50%, in which case all of the X chromosomes bearing one of the AR alleles are inactivated.
We examined X-chromosome inactivation patterns in several different populations. The results are summarized in Fig. 1. A wide range of X-inactivation skewing was observed in all five groups. Approximately 5% (nine out of 197) of individuals exhibited extreme skewing (greater than 40% deviation from a 50:50 distribution). However, there was no difference between the groups, either in the overall mean skewing, or in the fraction of individuals with extreme skewing (>40%).
Although the present study was not initiated in order to examine allelic variation in the AR gene per se, the data provide an opportunity to address this question. Excessively long CAG repeats in the AR are a rare cause of spinal-bulbar muscular atrophy [13], and AR repeat length appears to have an influence on the biology of certain tumors [14,15]. In this context, it has been shown that transcription of AR correlates inversely with repeat length [16]. We therefore compared AR repeat length in control individuals and patients with autoimmunity. No differences were observed for mean repeat length, or for maximum and minimum repeat length, among the five groups.
The reason for the female predominance in most autoimmune diseases remains obscure. The present study was initiated in order to address the hypothesis that a nonhormonal mechanism related to X inactivation might be involved. The hypothesis rests on the idea that skewing of X inactivation might lead to a deficiency of tolerance induction in the thymus, particularly with respect to polymorphic X-linked autoantigens. The hypothesis predicts that skewed X inactivation would be more prevalent in females with autoimmune diseases than in female control individuals. This was not observed.
Nevertheless, these negative data do not rule out a role for X inactivation in female predisposition to loss of tolerance. A general model for how this mechanism might operate is shown in Fig. 2. Thymocytes undergo selection in the thymic parenchyma and, in the case of negative selection, the selecting elements appear to be derived from the bone marrow and consist mainly of thymic dendritic cells. If the thymic dendritic cell population exhibits random X inactivation, it is highly likely that differentiating thymocytes will contact dendritic cells that express self-antigens on both X chromosomes. This situation is outlined schematically on the left side of Fig. 2. However, if there is extremely skewed X inactivation in the thymic dendritic cell population, a particular thymocyte might not come into contact with dendritic cells that express one of the two X chormosomes. This would lead to a situation where T cells may undergo thymic maturation without having been negatively selected for antigens that are expressed on the predominantly inactive X chromosome. This situation is shown on the right side of Fig. 2.
In order for this mechanism to be physiologically relevant, some assumptions must be made. First, defective tolerance from skewed X inactivation should only be directed at X-linked antigens that are polymorphic, and for which the individual is heterozygous. Thus, this mechanism would not be expected to lead to lack of tolerance commonly, unless there are at least several highly polymorphic X-linked autoantigens in the population that are involved in thymic deletion events. Second, if this actually leads to autoimmunity, it also predicts that the initial break in tolerance that leads to disease should involve an X-linked autoantigen that is expressed in a peripheral nontolerizing site or circumstance.
A recent report [7] has elegantly demonstrated the importance of thymic deletion events in predisposition to autoimmune disease. The proteolipid protein (PLP) autoantigen is expressed in alternatively spliced forms, which exhibit tissue specific expression. A nonspliced variant is expressed in peripheral neural tissue. However, in the thymus a splice variant results in the lack of thymic expression of an immunodominant peptide. This results in loss of tolerace of T cells to this peptide, presumably on the basis of lack of thymic deletion of thymocytes that are reactive with this antigen. Interestingly, PLP is encoded on the X chromsome. However, there is no evidence that genetic polymorphisms control the level splicing of PLP within the thymus. Nevertheless, these data illustrate the potential importance of deficiencies in thymic deletion for autoimmune T-cell reactivity.
The present results suggest that if skewed X inactivation is relevant to thymic tolerance induction, then the effect does not depend on global skewing of X-chromosome inactivation, at least in the hematopoietic compartment. In this study we examined X-inactivation patterns in peripheral blood mononuclear cells, and the results should reflect the state of X inactivation in all mesenchymal tissues, including dendritic cells. X inactivation occurs at a very early time point in development, and thus the results in one tissue should reflect the general situation in the rest of the body. However, there may be exceptions to this. We have occasionally observed differences in X-inactivation patterns between buccal mucosa (an ectodermally derived tissue) and peripheral blood in the same individiual (unpublished observations). This could be a chance event, or it may result from selection for certain X-linked alleles during embryonic development, as has been described in carriers of X-linked immunodeficiencies [17].
Another consideration is that certain tissue microenvironments may be derived from very small numbers of founder cells, and thus may exhibit skewed utilization of one or the other X chromosome, even if the tissue as a whole is not skewed. This situation could vary over time. Thus, there may be time points at which certain thymic microenvironments are populated by dendritic cells that, for stochastic reasons, all utilize the same X chromosome. This would create a `window of opportunity' in which a given thymocyte, in a given selecting location, could escape negative selection by antigens on the inactive X chromosome. The likelihood of this happening would obviously depend on the number of dendritic cells that are usually contacted by a thymocyte during thymic selection. There is limited information on this point, although Stewart [10] has theorized that this number may be as low as 15. If this is the case, then escape from thymic deletion may still occur in females who are heterozygous for a relevant X-linked antigen, even if the hematopoietic cells in general do not exhibit extreme skewing.
In conclusion, we suggest that X-chromosome inactivation needs to be considered as a potential factor in the predominance of females in most autoimmune diseases. Our inability to show an increase in X-chromosome skewing in females with autoimmunity does not eliminate this as an etiologic contributor to loss of immunologic tolerance. Future experiments must be directed at a detailed analysis of tissue patterns of X inactivation, as well as at a search for potential X-linked autoantigens.
PMCID: PMC17816  PMID: 11056674
autoimmunity; gender; immune tolerance; X chromosome
10.  Dog ecology and demography in Antananarivo, 2007 
Rabies is a widespread disease in African domestic dogs and a serious public health problem in developing countries. Canine rabies became established in Africa during the 20th century, coinciding with ecologic changes that favored its emergence in canids.
This paper reports the results of a cross-sectional study of dog ecology in the Antananarivo urban community in Madagascar.
A questionnaire survey of 1541 households was conducted in Antananarivo from October 2007 to January 2008. The study addressed both owned and unowned dogs. Various aspects of dog ecology were determined, including size of dog population, relationship between dogs and humans, rabies vaccination.
Dog ownership was common, with 79.6 to 94.1% (mean 88.9%) of households in the six arrondissements owning dogs. The mean owned dog to person ratio was 1 dog per 4.5 persons and differed between arrondissements (administrative districts), with ratios of 1:6.0 in the first arrondissement, 1:3.2 persons in the 2nd, 1:4.8 in the 3rd, 1:5.2 in the 4th, 1:5.6 in the 5th and 1:4.4 in the 6th arrondissement. Overall, there were more male dogs (61.3%) and the male/female sex ratio was estimated to be 1.52; however, mature females were more likely than males to be unowned (OR: 1.93, CI 95%; 1.39
Antananarivo has a higher density of dogs than many other urban areas in Africa. The dog population is unrestricted and inadequately vaccinated against rabies. This analysis of the dog population will enable targeted planning of rabies control efforts.
PMCID: PMC2700795  PMID: 19486516
Behavior Genetics  2007;38(1):55-66.
Aggressive behavior displays a high heritability in our study group of Golden Retriever dogs. Alterations in brain serotonin metabolism have been described in aggressive dogs before. Here, we evaluate whether four genes of the canine serotonergic system, coding for the serotonin receptors 1A, 1B, and 2A, and the serotonin transporter, could play a major role in aggression in Golden Retrievers. We performed mutation screens, linkage analysis, an association study, and a quantitative genetic analysis. There was no systematic difference between the coding DNA sequence of the candidate genes in aggressive and non-aggressive Golden Retrievers. An affecteds-only parametric linkage analysis revealed no strong major locus effect on human-directed aggression related to the candidate genes. An analysis of 41 single nucleotide polymorphisms (SNPs) in the 1 Mb regions flanking the genes in 49 unrelated human-directed aggressive and 49 unrelated non-aggressive dogs did not show association of SNP alleles, genotypes, or haplotypes with aggression at the candidate loci. We completed our analyses with a study of the effect of variation in the candidate genes on a collection of aggression-related phenotypic measures. The effects of the candidate gene haplotypes were estimated using the Restricted Maximum Likelihood method, with the haplotypes included as fixed effects in a linear animal model. We observed no effect of the candidate gene haplotypes on a range of aggression-related phenotypes, thus extending our conclusions to several types of aggressive behavior. We conclude that it is unlikely that these genes play a major role in the variation in aggression in the Golden Retrievers that we studied. Smaller phenotypic effects of these loci could not be ruled out with our sample size.
Electronic supplementary material
The online version of this article (doi:10.1007/s10519-007-9179-7) contains supplementary material, which is available to authorized users.
PMCID: PMC2226021  PMID: 18066658
Dog; Aggression; Serotonin; Candidate gene; Linkage; Association
Prospective studies to document the occurrence of canine diarrhoea and vomiting are relatively scarce in dogs, and the majority of published studies are based on information from clinical records. This study investigates the incidence risk of diarrhoea and vomiting as well as potential risk factors.
A cohort study of 585 privately owned dogs of four breeds: Newfoundland, Labrador retriever, Leonberger, and Irish wolfhound. The owners maintained a continuous log regarding housing, exercise, nutrition, and health of their dogs. Episodes of diarrhoea and vomiting were recorded in a consecutive manner in a booklet. The owners completed the questionnaires and reported information at three, four, six, 12, 18, and 24/25 months of age, called observational ages.
Associations with potential risk factors for diarrhoea and vomiting were investigated in separate generalized estimating equation analyses.
The incidence of both diarrhoea and vomiting was influenced by breed. Both diarrhoea and vomiting were relatively common in young dogs, occurring most frequently during the first months of life. After three months of age, the odds of diarrhoea were significantly lower when compared to the observational period seven weeks to three months (OR ranging from 0.31 to 0.70 depending on the period). More males than females suffered from diarrhoea (OR = 1.42). The occurrence of diarrhoea was more common in dogs that also experienced episode(s) of vomiting during the study period (OR = 5.43) and vice versa (OR = 5.50). In the majority of dogs episodes of diarrhoea and vomiting did not occur at the same time. Dogs in urban areas had higher odds (OR = 1.88) of getting diarrhoea compared to dogs living in rural areas. The occurrence of both diarrhoea and vomiting demonstrated a seasonal variation with higher incidence during the summer months.
Both diarrhoea and vomiting occurred most frequently during the first months of life. The incidence of diarrhoea and vomiting was significantly different between breeds. Diarrhoea occurred more frequently in males and in dogs living in urban areas. Also, a positive association between the occurrence of diarrhoea and vomiting in the same dog was found.
PMCID: PMC3293024  PMID: 22300688
longitudinal study; diarrhoea; vomiting; incidence; risk factors; dog
PLoS Computational Biology  2014;10(1):e1003446.
Movement interactions and the underlying social structure in groups have relevance across many social-living species. Collective motion of groups could be based on an “egalitarian” decision system, but in practice it is often influenced by underlying social network structures and by individual characteristics. We investigated whether dominance rank and personality traits are linked to leader and follower roles during joint motion of family dogs. We obtained high-resolution spatio-temporal GPS trajectory data (823,148 data points) from six dogs belonging to the same household and their owner during 14 30–40 min unleashed walks. We identified several features of the dogs' paths (e.g., running speed or distance from the owner) which are characteristic of a given dog. A directional correlation analysis quantifies interactions between pairs of dogs that run loops jointly. We found that dogs play the role of the leader about 50–85% of the time, i.e. the leader and follower roles in a given pair are dynamically interchangable. However, on a longer timescale tendencies to lead differ consistently. The network constructed from these loose leader–follower relations is hierarchical, and the dogs' positions in the network correlates with the age, dominance rank, trainability, controllability, and aggression measures derived from personality questionnaires. We demonstrated the possibility of determining dominance rank and personality traits of an individual based only on its logged movement data. The collective motion of dogs is influenced by underlying social network structures and by characteristics such as personality differences. Our findings could pave the way for automated animal personality and human social interaction measurements.
Author Summary
How does a group of family dogs decide the direction of their collective movements? Is there a leader, or is decision-making based on an egalitarian system? Is leadership related to social dominance status? We collected GPS trajectory data from an owner and her six dogs during several walks. We found that dogs adjusted their trajectories to that of the owner, that they periodically run away, then turn back and return to her in a loop. Tracks have unique features characterising individual dogs. Leading roles among the dogs are frequently interchanged, but leadership is consistent on a long timescale. Decisions about running away and turning back to the owner are not based on an egalitarian system; instead, leader dogs exert a disproportionate influence on the movement of the group. Leadership during walks is related to the dominance rank assessed in everyday agonistic situations; thus, the collective motion of a dog group is influenced by the underlying hierarchical social network. Leader/dominant dogs have a unique personality: they are more trainable, controllable, and aggressive, additionally they are older than follower/subordinate dogs. Dogs are an ideal model for understanding human social behaviour. Therefore, we address the possibility of conducting similar studies in humans, e.g. walking with children and detecting interactions between individuals.
PMCID: PMC3900374  PMID: 24465200
Canine GM1 gangliosidosis is a fatal disease in the Shiba Inu breed, which is one of the most popular traditional breeds in Japan and is maintained as a standard breed in many countries. Therefore, it is important to control and reduce the prevalence of GM1 gangliosidosis for maintaining the quality of this breed and to ensure supply of healthy dogs to prospective breeders and owners. This molecular epidemiological survey was performed to formulate an effective strategy for the control and prevention of this disease.
The survey was carried out among 590 clinically unaffected Shiba Inu dogs from the 8 districts of Japan, and a genotyping test was used to determine nation-wide and regional carrier frequencies. The number and native district of affected dogs identified in 16 years from 1997 to June 2013 were also surveyed retrospectively. Of the 590 dogs examined, 6 dogs (1.02%, 6/590) were carriers: 3 dogs (2.27%, 3/132) from the Kinki district and the other 3 dogs from the Hokkaido, Kanto, and Shikoku districts. The retrospective survey revealed 23 affected dogs, among which, 19 dogs (82.6%) were born within the last 7 years. Of the 23 affected dogs, 12 dogs (52.2%) were from the Kinki district. Pedigree analysis demonstrated that all the affected dogs and carriers with the pedigree information have a close blood relationship.
Our results showed that the current carrier frequency for GM1 gangliosidosis is on the average 1.02% in Japan and rather high in the Kinki district, which may be related to the high prevalence observed over the past 16 years in this region. This observation suggests that carrier dogs are distributed all over Japan; however, kennels in the Kinki district may face an increased risk of GM1 gangliosidosis. Therefore, for effective control and prevention of this disease, it is necessary to examine as many breeding dogs as possible from all regions of Japan, especially from kennels located in areas with high prevalence and carrier frequency.
PMCID: PMC3701567  PMID: 23819787
GM1 Gangliosidosis; Shiba Inu Dog; Molecular Epidemiology; Canine Inherited Disease
Journal of Veterinary Science  2010;11(4):345-350.
The purpose of this study was to evaluate behavior problems of the Jindo dog, the native dog of Korea, based on an owner's survey and their effect on pet relinquishment. To live a better life with their own pet and prevent relinquishment, it is important to understand the innate behavior characteristics of dog breed and the potential causes of relinquishment. Information concerning various factors and demonstration of the five most common behavior problems was collected via 189 completed questionnaires. No factors significantly affected the demonstration of behavior problem. A total 151 of 189 dogs had behavior problems (79.9%) and 38 dogs did not have behavior problems (20.1%). Among 151 dogs, 139 dogs showed single behavior problem (92.1%). They were 'excessive excitability' (46.8%), 'excessive vocalization' (30.2%), 'inappropriate elimination' (17.3%), 'destructive behavior' (4.3%), and 'aggressive behavior' (1.4%), respectively. In addition, 12 dogs showed two concurrent behavior problems (7.9%) According to the results, the relinquishment of Jindo dogs was not significantly associated with canine behavior problems, which is the single greatest risk factor of relinquishment in general. The possible reasons for potential behavior problems include improper raising, lack of socialization, and insufficient dog training classes, therefore canine behavior would be improved by owner education.
PMCID: PMC2998747  PMID: 21113105
canine behavior problem; Jindo dog; Korean native dog; relinquishment
A polymorphic tetranucleotide (GAAT)n microsatellite in the first intron of the canine tumor necrosis factor alpha (TNFA) gene was characterized in this study; 139 dogs were analyzed: 22 Beagles, 26 Chihuahuas, 20 Miniature Dachshunds, 24 Miniature Poodles, 22 Pembroke Welsh Corgis and 25 Shiba Inus. We detected the presence of the 4 alleles (GAAT)5, (GAAT)6, (GAAT)7 and (GAAT)8, including 9 of the 10 expected genotypes. The expected heterozygosity (He) and the polymorphic information content (PIC) value of this microsatellite locus varied from 0.389 to 0.749 and from 0.333 to 0.682, respectively, among the 6 breeds. The allelic frequency differed greatly among breeds, but this microsatellite marker was highly polymorphic and could be a useful marker for the canine TNFA gene.
PMCID: PMC3979939  PMID: 24042337
canine TNFA gene; tetranucleotide microsatellite
Molecular Vision  2007;13:125-132.
We analyzed the γ-crystallin genes CRYGB, CRYGC, and CRYGS in the dog and tested single nucleotide polymorphisms (SNPs) for linkage and association with primary noncongenital cataract (CAT) in the dachshund, a popular dog breed. The crystallin genes may be involved in the pathogenesis of canine CAT as shown in humans and mice.
We sequenced all exons and their flanking intronic regions of the CRYGB, CRYGC, and CRYGS genes and in addition, the complete cDNA of these three genes using lens tissue from CAT-affected and unaffected dogs of several breeds. After examining BLASTN analyses, we compared the gene structure with the predicted genes in the current dog genome assembly and the orthologs of humans and mice.
The search for SNPs within these crystallin genes revealed a total of five polymorphisms. As both CAT-affected and unaffected dogs shared identical haplotypes, there was no cosegregation of the SNP alleles with the affected animals. Expression did not differ among CAT-affected and unaffected dogs.
The polymorphisms reported for CRYGB, CRYGC, and CRYGS can be excluded as causative mutations for the CAT phenotype in the wire- and smooth-haired dachshund. The canine cataract gene orthologs described here may serve as a valuable resource for further studies in other dog breeds to develop a canine model. Many different dog breeds are affected by CAT. The use of the SNPs presented in this paper can facilitate the screening of more dog breeds.
PMCID: PMC2533037  PMID: 17327821
BMC Genetics  2005;6:34.
Pinschers and other dogs with coat color dilution show a characteristic pigmentation phenotype. The fur colors are a lighter shade, e.g. silvery grey (blue) instead of black and a sandy color (Isabella fawn) instead of red or brown. In some dogs the coat color dilution is sometimes accompanied by hair loss and recurrent skin inflammation, the so called color dilution alopecia (CDA) or black hair follicular dysplasia (BHFD). In humans and mice a comparable pigmentation phenotype without any documented hair loss is caused by mutations within the melanophilin gene (MLPH).
We sequenced the canine MLPH gene and performed a mutation analysis of the MLPH exons in 6 Doberman Pinschers and 5 German Pinschers. A total of 48 sequence variations was identified within and between the breeds. Three families of dogs showed co-segregation for at least one polymorphism in an MLPH exon and the dilute phenotype. No single polymorphism was identified in the coding sequences or at splice sites that is likely to be causative for the dilute phenotype of all dogs examined. In 18 German Pinschers a mutation in exon 7 (R199H) was consistently associated with the dilute phenotype. However, as this mutation was present in homozygous state in four dogs of other breeds with wildtype pigmentation, it seems unlikely that this mutation is truly causative for coat color dilution. In Doberman Pinschers as well as in Large Munsterlanders with BHFD, a set of single nucleotide polymorphisms (SNPs) around exon 2 was identified that show a highly significant association to the dilute phenotype.
This study provides evidence that coat color dilution is caused by one or more mutations within or near the MLPH gene in several dog breeds. The data on polymorphisms that are strongly associated with the dilute phenotype will allow the genetic testing of Pinschers to facilitate the breeding of dogs with defined coat colors and to select against Large Munsterlanders carrying BHFD.
PMCID: PMC1183202  PMID: 15960853
Background & objectives:
Recurrent spontaneous abortion (RSA) is a reproductive problem that occurs in women in reproductive age with a frequency of 1-3 per cent. Previous studies have reported high levels of serum androgens to be associated with RSAs. At the molecular level, the effect of androgens is mediated through the activation of the androgen receptor (AR). The CAG and GGN repeat polymorphisms of the AR gene are associated with the AR activity. We hypothesize that the AR CAG/GGN repeat polymorphism may be associated with levels of serum androgens. Thus, this study as undertaken to evaluate the relationship between CAG/GGN repeats in exon 1 of the AR gene in women with RSAs.
This case-control study was performed in Ningxia, PR China, including 149 women with RSAs and 210 controls. The CAG and GGN repeats of the AR gene were genotyped using a PCR-based assay and were analyzed using Peak Scanner Software v1.0 to determine the CAG/GGN repeat length.
CAG repeats ranged from 15 to 29 in the RSA patients, compared to 14 to 35 in the control group. The median value of CAG repeats was 22 for the RSA group and 24 for control group. The total AR CAG alleles (≤22 repeats), shorter AR CAG alleles (≤22 repeats), and biallelic means (≤22.5 repeats) were significantly different in the RSA group in comparison to the control group (P<0.001, P<0.01). The median value of the GGN repeats was 23 for the cases and 22 for controls. The total number of AR GGN alleles (≤23 repeats) was significantly different in the RSA group compared to the control group (P<0.5). There was no difference between the RSA group and the control groups in regards to shorter alleles, longer alleles, and biallelic means.
Interpretation & conclusions:
Our observation suggests that the CAG and GGN repeat length is shorter in women with RSAs as compared with controls and that shorter CAG and GGN repeats may be pathogenic for RSAs in Chinese women. Further studies need to be done in different ethnic populations.
PMCID: PMC4140038  PMID: 25027083
Androgen; androgen receptor gene; CAG repeats; GGN repeats; recurrent spontaneous abortion
Biological Psychiatry  2008;65(1):93-96.
There is a likely genetic component to transsexualism, and genes involved in sex steroidogenesis are good candidates. We explored the specific hypothesis that male-to-female transsexualism is associated with gene variants responsible for undermasculinization and/or feminization. Specifically, we assessed the role of disease-associated repeat length polymorphisms in the androgen receptor (AR), estrogen receptor β (ERβ), and aromatase (CYP19) genes.
Subject-control analysis included 112 male-to-female transsexuals and 258 non-transsexual males. Associations and interactions were investigated between CAG repeat length in the AR gene, CA repeat length in the ERβ gene, and TTTA repeat length in the CYP19 gene and male-to-female transsexualism.
A significant association was identified between transsexualism and the AR allele, with transsexuals having longer AR repeat lengths than non-transsexual male control subjects (p = .04). No associations for transsexualism were evident in repeat lengths for CYP19 or ERβ genes. Individuals were then classified as short or long for each gene polymorphism on the basis of control median polymorphism lengths in order to further elucidate possible combined effects. No interaction associations between the three genes and transsexualism were identified.
This study provides evidence that male gender identity might be partly mediated through the androgen receptor.
PMCID: PMC3402034  PMID: 18962445
Androgen receptor; AR; aromatase; CYP19; ERβ; estrogen receptor β; gender identity disorder; transsexualism
CAG repeat length of human miotochondrial DNA Polymerase gamma (POLG) gene is polymorphic with a major allele at 10 repeats and considered as the common allele whereas the mutant alleles (not 10/not 10 CAG repeats) were found to be associated with oligospermia / oligoasthenospermia in male infertility. To explore whether CAG trinucleotide repeat expansion in exon 1 of POLG gene is associated with spermatogenic failure.
One hundred twenty four infertile men (sperm count <20 million/ml) and 60 normozoospermic (sperm count >20 million/ml) control Indian men of Tamil Nadu, were enrolled. DNA was extracted from 10 ml of peripheral blood and from semen using standard procedures. CAG repeat expansion was analyzed by polymerase chain reaction. Amplified products were quantified by 2 % agarose gel electrophoresis and subjected to genescan analysis to ascertain the size of POLG-CAG alleles.
This analysis interestingly revealed that the common allele 10 (10-CAG repeats) was widespread in infertile and normozoospermic control men with a frequency of 79 % and 71.7 % respectively. No statistical significance was found in POLG genotypic frequency distribution between infertile men and normospermic men.
The present study confirmed no association between the POLG gene polymorphism and male infertility. Thus, if associated with infertility, the POLG gene polymorphism should be only considered as a minor possible contributing factor in infertile male patients with no impact on obtaining a pregnancy.
PMCID: PMC3800532  PMID: 23912752
Infertility; POLG; Noormospermia; Tamil Nadu
PeerJ  2014;2:e596.
Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler), an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer). A group-level psychophysiological interaction (PPI) connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications pertinent to the training and assessment of working and pet dogs.
PMCID: PMC4183953  PMID: 25289182
fMRI; Canine cognition; Animal temperament; Caudate; Neuroimaging; Comparative neuroscience; Reward systems
In dogs in the western world neoplasia constitutes the most frequently diagnosed cause of death. Although there appear to be similarities between canine and human cancers, rather little is known about the cytogenetic and molecular alterations in canine tumours. Different dog breeds are susceptible to different types of cancer, but the genetic basis of the great majority of these predispositions has yet to be discovered. In some retriever breeds there is a high incidence of soft tissue sarcomas and we have previously reported alterations of chromosomes 11 and 30 in two poorly differentiated fibrosarcomas. Here we extend our observations and present a case report on detail rearrangements on chromosome 11 as well as genetic variations in a tumour suppressor gene in normal dogs.
BAC hybridisations on metaphases of two fibrosarcomas showed complex rearrangements on chromosome 11, and loss of parts of this chromosome. Microsatellite markers on a paired tumour and blood DNA pointed to loss of heterozygosity on chromosome 11 in the CDKN2B-CDKN2A tumour suppressor gene cluster region. PCR and sequencing revealed the homozygous loss of coding sequences for these genes, except for exon 1β of CDKN2A, which codes for the N-terminus of p14ARF. For CDKN2B exon 1, two alleles were observed in DNA from blood; one of them identical to the sequence in the dog reference genome and containing 4 copies of a 12 bp repeat found only in the canine gene amongst all species so far sequenced; the other allele was shorter due to a missing copy of the repeat. Sequencing of this exon in 141 dogs from 18 different breeds revealed a polymorphic region involving a GGC triplet repeat and a GGGGACGGCGGC repeat. Seven alleles were recorded and sixteen of the eighteen breeds showed heterozygosity.
Complex chromosome rearrangements were observed on chromosome 11 in two Labrador retriever fibrosarcomas. The chromosome alterations were reflected in the loss of sequences corresponding to two tumour suppressor genes involved in cell-cycle progression. Sequencing of CDKN2B across many different breeds revealed a widespread polymorphism within the first exon of the gene, immediately before the ankyrin coding sequences.
PMCID: PMC2732616  PMID: 19643034
Risk factors associated with canine obesity include the amount of walking a dog receives. The aim of this study was to investigate the relationships between canine exercise requirements, socio-demographic factors, and dog-walking behaviors in winter in Calgary. Dog owners, from a cross-sectional study which included a random sample of adults, were asked their household income, domicile type, gender, age, education level, number and breed(s) of dog(s) owned, and frequency and time spent dog-walking in a usual week. Canine exercise requirements were found to be significantly (P < 0.05) positively associated with the minutes pet dogs were walked, as was the owner being a female. Moreover, dog walking frequency, but not minutes of dog walking, was significantly associated with residing in attached housing (i.e., apartments). Different types of dogs have different exercise requirements to maintain optimal health. Understanding the role of socio-demographic factors and dog-related characteristics such as exercise requirements on dog-walking behaviors is essential for helping veterinarians and owners develop effective strategies to prevent and manage canine obesity. Furthermore, encouraging regular dog-walking has the potential to improve the health of pet dogs, and that of their owners.
PMCID: PMC3384289  PMID: 23277705
Dogs are popular pets in many countries. Identifying differences between those who own dogs or have contact with dogs, and those who do not, is useful to those interested in the human-animal bond, human health and for provision of veterinary services. This census-based, epidemiological study aimed to investigate factors associated with dog ownership and contact with dogs, in a semi-rural community of 1278 households in Cheshire, UK.
Twenty-four percent of households were identified as dog-owning and 52% owned a pet of some type. Multivariable logistic regression suggested that households were more likely to own a dog if they had more occupants (five or more); if they had an adult female household member; or if they owned a horse. The age structure of the households was also associated with dog ownership, with households containing older children (between six and 19 years of age) and young adults (between 20 and 29 years of age), more likely to own dogs. We also found that dog owning households were more likely to be multi-dog households than single-dog if they also owned a cat or a bird, or if the household contained a person of 20–29 years old. Dog owners reported increased contact with dogs, other than their own, compared to those that did not own dogs and this contact appeared to be mainly through walking.
Some household types are more likely to own a dog than others. This study supports the suggestion that dogs are more common in families who have older children (6–19 years), as has been generally observed in other countries. Dog owners are also more likely to have contact with dogs other than their own, compared with those not owning a dog.
PMCID: PMC1852100  PMID: 17407583

Results 1-25 (854213)