PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (814519)

Clipboard (0)
None

Related Articles

1.  Alkaloid defenses of co-mimics in a putative Müllerian mimetic radiation 
Background
Polytypism in aposematic species is unlikely according to theory, but commonly seen in nature. Ranitomeya imitator is a poison frog species exhibiting polytypic mimicry of three congeneric model species (R. fantastica, R. summersi, and two morphs of R. variabilis) across four allopatric populations (a "mimetic radiation"). In order to investigate chemical defenses in this system, a key prediction of Müllerian mimicry, we analyzed the alkaloids of both models and mimics from four allopatric populations.
Results
In this study we demonstrate distinct differences in alkaloid profiles between co-mimetic species within allopatric populations. We further demonstrate that R. imitator has a greater number of distinct alkaloid types than the model species and more total alkaloids in all but one population.
Conclusions
Given that R. imitator is the more abundant species in these populations, R. imitator is likely driving the majority of predator-learned avoidance in these complexes. The success of Ranitomeya imitator as a putative advergent mimic may be a direct result of differences in alkaloid sequestration. Furthermore, we propose that automimicry within co-mimetic species is an important avenue of research.
doi:10.1186/1471-2148-14-76
PMCID: PMC4101839  PMID: 24707851
Alkaloids; Aposematism; Dendrobatids; Müllerian mimicry; Polytypism; Ranitomeya imitator
2.  Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation 
PLoS ONE  2013;8(2):e55443.
The evolution of Müllerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a “transition-zone” with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations.
doi:10.1371/journal.pone.0055443
PMCID: PMC3566184  PMID: 23405150
3.  Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. 
Examples of Müllerian mimicry, in which resemblance between unpalatable species confers mutual benefit, are rare in vertebrates. Strong comparative evidence for mimicry is found when the colour and pattern of a single species closely resemble several different model species simultaneously in different geographical regions. Todemonstrate this, it is necessary to provide compelling evidence that the putative mimics do, in fact, form a monophyletic group. We present molecular phylogenetic evidence that the poison frog Dendrobates imitator mimics three different poison frogs in different geographical regions in Peru. DNA sequences from four different mitochondrial gene regions in putative members of a single species are analysed using parsimony, maximum-likelihood and neighbour-joining methods. The resulting hypotheses of phylogenetic relationships demonstrate that the different populations of D.imitator form a monophyletic group. To our knowledge, these results provide the first evidence for a Müllerian mimetic radiation in amphibians in which a single species mimics different sympatric species in different geographical regions.
doi:10.1098/rspb.2001.1812
PMCID: PMC1088895  PMID: 11747559
4.  How to look like a mallow: evidence of floral mimicry between Turneraceae and Malvaceae 
Abundant, many-flowered plants represent reliable and rich food sources for animal pollinators, and may even sustain guilds of specialized pollinators. Contrastingly, rare plants need alternative strategies to ensure pollinators' visitation and faithfulness. Flower mimicry, i.e. the sharing of a similar flower colour and display pattern by different plant species, is a means by which a rare species can exploit a successful model and increase its pollination services. The relationship between two or more rewarding flower mimic species, or Müllerian mimicry, has been proposed as mutualistic, in contrast to the unilaterally beneficial Batesian floral mimicry. In this work, we show that two different geographical colour phenotypes of Turnera sidoides ssp. pinnatifida resemble co-flowering Malvaceae in colour as seen by bees' eyes, and that these pollinators do not distinguish between them when approaching flowers in choice tests. Main pollinators of T. sidoides are bees specialized for collecting pollen in Malvaceae. We demonstrate that the similarity between at least one of the geographical colour phenotypes of T. sidoides and co-flowering Malvaceae is adaptive, since the former obtains more pollination services when growing together with its model than when growing alone. Instead of the convergent evolution pattern attributed to Müllerian mimicry, our data rather suggest an advergent evolution pattern, because only T. sidoides seems to have evolved to be more similar to its malvaceous models.
doi:10.1098/rspb.2007.0588
PMCID: PMC2287375  PMID: 17623635
flower mimicry; Müllerian; mutualism; Malvaceae; pollination; Turneraceae
5.  The evolution of Müllerian mimicry 
Die Naturwissenschaften  2008;95(8):681-695.
It is now 130 years since Fritz Müller proposed an evolutionary explanation for the close similarity of co-existing unpalatable prey species, a phenomenon now known as Müllerian mimicry. Müller’s hypothesis was that unpalatable species evolve a similar appearance to reduce the mortality involved in training predators to avoid them, and he backed up his arguments with a mathematical model in which predators attack a fixed number (n) of each distinct unpalatable type in a given season before avoiding them. Here, I review what has since been discovered about Müllerian mimicry and consider in particular its relationship to other forms of mimicry. Müller’s specific model of associative learning involving a “fixed n” in a given season has not been supported, and several experiments now suggest that two distinct unpalatable prey types may be just as easy to learn to avoid as one. Nevertheless, Müller’s general insight that novel unpalatable forms have higher mortality than common unpalatable forms as a result of predation has been well supported by field experiments. From its inception, there has been a heated debate over the nature of the relationship between Müllerian co-mimics that differ in their level of defence. There is now a growing awareness that this relationship can be mediated by many factors, including synergistic effects between co-mimics that differ in their mode of defence, rates of generalisation among warning signals and concomitant changes in prey density as mimicry evolves. I highlight areas for future enquiry, including the possibility of Müllerian mimicry systems based on profitability rather than unprofitability and the co-evolution of defence.
doi:10.1007/s00114-008-0403-y
PMCID: PMC2443389  PMID: 18542902
Müllerian mimicry; Anti-apostatic selection; Warning signals; Predation
6.  Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in the Heliconius melpomene Clade 
PLoS Genetics  2010;6(2):e1000794.
Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are “hotspots” for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by ∼100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.
Author Summary
The diversity of wing patterns in Heliconius butterflies is a longstanding example of both Müllerian mimicry and adaptive radiation. The genetic regions controlling such patterns are “hotspots” for adaptive evolution, with small regions of the genome controlling major changes in wing pattern. Across multiple hybrid zones in Heliconius melpomene and related species, we no find no strong population signal of recent selection. Nonetheless, we find significant associations between genetic variation and wing pattern at multiple sites. This suggests patterning alleles are relatively old, and might be a better model for most natural adaptation, in contrast to the simple genetic basis of recent human-induced selection such as pesticide resistance. Strikingly, across the region controlling the red forewing band, a very strong association with phenotype implicates three genes as potentially being involved in control of wing pattern. One of these, a kinesin gene, shows parallel differences in expression levels between divergent forms in the two mimetic species, making it a strong candidate for control of wing pattern. These results show that mimicry involves parallel changes in gene expression and strongly suggest a role for this gene in control of wing pattern.
doi:10.1371/journal.pgen.1000794
PMCID: PMC2816687  PMID: 20140188
7.  Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies 
PLoS ONE  2012;7(5):e36464.
The unpalatable and warning-patterned butterflies Heliconius erato and Heliconius melpomene provide the best studied example of mutualistic Müllerian mimicry, thought–but rarely demonstrated–to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of H. erato and H. melpomene, and this was initially hailed as one of the most striking known cases of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of H. erato and H. melpomene, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of H. erato and H. melpomene. Cophylogenetic historical reconstructions support repeated codivergence of mimetic populations, from the base of the sampled radiations. Pairwise distance correlation tests, based on our coalescent analyses plus recently published AFLP and wing colour pattern gene data, also suggest that the phylogenies of H. erato and H. melpomene show significant topological congruence. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of H. erato and H. melpomene occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. Our results suggest that differences in within-species genetic divergence are the result of a greater overall effective population size for H. erato relative to H. melpomene and do not imply incongruence in the timing of their phylogenetic radiations. Repeated codivergence between Müllerian co-mimics, predicted to exert mutual selection pressures, strongly suggests coevolution. Our results therefore support a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change.
doi:10.1371/journal.pone.0036464
PMCID: PMC3346731  PMID: 22586474
8.  Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry 
PLoS ONE  2008;3(10):e3411.
Background
Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator–prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry).
Methodology/Principal Findings
We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a “Pavlovian” predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic.
Conclusions/Significance
Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant.
doi:10.1371/journal.pone.0003411
PMCID: PMC2565832  PMID: 18923676
9.  Mutualistic Interactions Drive Ecological Niche Convergence in a Diverse Butterfly Community 
PLoS Biology  2008;6(12):e300.
Ecological communities are structured in part by evolutionary interactions among their members. A number of recent studies incorporating phylogenetics into community ecology have upheld the paradigm that competition drives ecological divergence among species of the same guild. However, the role of other interspecific interactions, in particular positive interactions such as mutualism, remains poorly explored. We characterized the ecological niche and inferred phylogenetic relationships among members of a diverse community of neotropical Müllerian mimetic butterflies. Müllerian mimicry is one of the best studied examples of mutualism, in which unpalatable species converge in wing pattern locally to advertize their toxicity to predators. We provide evidence that mutualistic interactions can drive convergence along multiple ecological axes, outweighing both phylogeny and competition in shaping community structure. Our findings imply that ecological communities are adaptively assembled to a much greater degree than commonly suspected. In addition, our results show that phenotype and ecology are strongly linked and support the idea that mimicry can cause ecological speciation through multiple cascading effects on species' biology.
Author Summary
What governs the composition of communities of species? Competition promotes divergence in behavior and habitat, allowing species to co-exist. But the effects of other interactions, such as mutualism, are less well understood. We examined the interplay between mutualistic interactions, common ancestry and competition in mimetic butterflies, one of the best studied examples of mutualism, in which species converge in wing pattern to advertize their toxicity to predators. We showed that mutualism drives convergence in flight height and forest habitat, and that these effects outweigh common ancestry (which should lead related species to be more similar) and competition (which promotes ecological divergence). Our findings imply that species that benefit from one another might evolve to form more tightly knit local communities, suggesting that adaptation is a more important process affecting community composition than is commonly suspected. Our results also support the idea that mimicry can cause speciation, through its multiple cascading effects on species' biology.
Müllerian mimicry, a classic mutualism, is associated with microhabitat convergence in tropical butterflies, outweighing both common ancestry and competition. Positive interactions may thus be more important in community assembly than commonly assumed.
doi:10.1371/journal.pbio.0060300
PMCID: PMC2592358  PMID: 19055316
10.  Wright's Shifting Balance Theory and the Diversification of Aposematic Signals 
PLoS ONE  2012;7(3):e34028.
Despite accumulating evidence for selection within natural systems, the importance of random genetic drift opposing Wright's and Fisher's views of evolution continue to be a subject of controversy. The geographical diversification of aposematic signals appears to be a suitable system to assess the factors involved in the process of adaptation since both theories were independently proposed to explain this phenomenon. In the present study, the effects of drift and selection were assessed from population genetics and predation experiments on poison-dart frogs, Ranitomaya imitator, of Northern Peru. We specifically focus on the transient zone between two distinct aposematic signals. In contrast to regions where high predation maintains a monomorphic aposematic signal, the transient zones are characterized by lowered selection and a high phenotypic diversity. As a result, the diversification of phenotypes may occur via genetic drift without a significant loss of fitness. These new phenotypes may then colonize alternative habitats if successfully recognized and avoided by predators. This study highlights the interplay between drift and selection as determinant processes in the adaptive diversification of aposematic signals. Results are consistent with the expectations of the Wright's shifting balance theory and represent, to our knowledge, the first empirical demonstration of this highly contested theory in a natural system.
doi:10.1371/journal.pone.0034028
PMCID: PMC3314693  PMID: 22470509
11.  Tasting the difference: do multiple defence chemicals interact in Müllerian mimicry? 
Müllerian mimicry, where two unpalatable species share a warning pattern, is classically believed to be a form of mutualism, where the species involved share the cost of predator education. The evolutionary dynamics of Müllerian mimicry have recently become a controversial subject, after mathematical models have shown that if minor alterations are made to assumptions about the way in which predators learn and forget about unpalatable prey, this textbook case of mutualism may not be mutualistic at all. An underlying assumption of these models is that Müllerian mimics possess the same defence chemical. However, some Müllerian mimics are known to possess different defence chemicals. Using domestic chicks as predators and coloured crumbs flavoured with either the same or different unpalatable chemicals as prey, we provide evidence that two defence chemicals can interact to enhance predator learning and memory. This indicates that Müllerian mimics that possess different defence chemicals are better protected than those that share a single defence chemical. These data provide insight into how multiple defence chemicals are perceived by birds, and how they influence the way birds learn and remember warningly coloured prey. They highlight the importance of considering how different toxins in mimicry rings can interact in the evolution and maintenance of Müllerian mimicry and could help to explain the remarkable variation in chemical defences found within and between species.
doi:10.1098/rspb.2004.2953
PMCID: PMC1634974  PMID: 15705561
taste; perception; novelty; domestic chick; learning; memory
12.  A Conserved Supergene Locus Controls Colour Pattern Diversity in Heliconius Butterflies 
PLoS Biology  2006;4(10):e303.
We studied whether similar developmental genetic mechanisms are involved in both convergent and divergent evolution. Mimetic insects are known for their diversity of patterns as well as their remarkable evolutionary convergence, and they have played an important role in controversies over the respective roles of selection and constraints in adaptive evolution. Here we contrast three butterfly species, all classic examples of Müllerian mimicry. We used a genetic linkage map to show that a locus, Yb, which controls the presence of a yellow band in geographic races of Heliconius melpomene, maps precisely to the same location as the locus Cr, which has very similar phenotypic effects in its co-mimic H. erato. Furthermore, the same genomic location acts as a “supergene”, determining multiple sympatric morphs in a third species, H. numata. H. numata is a species with a very different phenotypic appearance, whose many forms mimic different unrelated ithomiine butterflies in the genus Melinaea. Other unlinked colour pattern loci map to a homologous linkage group in the co-mimics H. melpomene and H. erato, but they are not involved in mimetic polymorphism in H. numata. Hence, a single region from the multilocus colour pattern architecture of H. melpomene and H. erato appears to have gained control of the entire wing-pattern variability in H. numata, presumably as a result of selection for mimetic “supergene” polymorphism without intermediates. Although we cannot at this stage confirm the homology of the loci segregating in the three species, our results imply that a conserved yet relatively unconstrained mechanism underlying pattern switching can affect mimicry in radically different ways. We also show that adaptive evolution, both convergent and diversifying, can occur by the repeated involvement of the same genomic regions.
In an intriguing example of adaptive evolution, genetic linkage analysis identifies a conserved region in distantly relatedHeliconius butterfly species that controls the diverse effects of wing patterning and mimicry.
doi:10.1371/journal.pbio.0040303
PMCID: PMC1570757  PMID: 17002517
13.  Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? 
Bird species in the genus Pitohui are chemically defended by a potent neurotoxic alkaloid in their skin and feathers. The two most toxic pitohui species, the hooded pitohui (Pitohui dichrous) and the variable pitohui (Pitohui kirhocephalus), are sometimes strikingly patterned and, in certain portions of their geographical ranges, both species share a nearly identical colour pattern, whereas in other areas they do not. Müllerian mimicry (the mutual resemblance of two chemically defended prey species) is common in some other animal groups and Pitohui birds have been suggested as one of the most likely cases in birds. Here, we examine pitohui plumage evolution in the context of a well-supported molecular phylogeny and use a maximum likelihood approach to test for convergent evolution in coloration. We show that the 'mimetic' phenotype is ancestral to both species and that the resemblance in most races is better explained by a shared ancestry. One large clade of P. kirhocephalus lost this mimetic phenotype early in their evolution and one race nested deep within this clade appears to have re-evolved this phenotype. These latter findings are consistent with the hypothesis that Müllerian mimicry is driving the evolution for a similar colour pattern between P. dichrous, but only in this one clade of P. kirhocephalus
doi:10.1098/rspb.2001.1717
PMCID: PMC1088837  PMID: 11571042
14.  Evidence for a Müllerian mimetic radiation in Asian pitvipers 
Müllerian mimicry, in which toxic species gain mutual protection from shared warning signals, is poorly understood in vertebrates, reflecting a paucity of examples. Indirect evidence for mimicry is found if monophyletic species or clades show parallel geographic variation in warning patterns. Here, we evaluate a hypothesis of Müllerian mimicry for the pitvipers in Southeast Asia using a phylogeny derived from DNA sequences from four combined mitochondrial regions. Mantel matrix correlation tests show that conspicuous red colour pattern elements are significantly associated with sympatric and parapatric populations in four genera. To our knowledge, this represents the first evidence of a Müllerian mimetic radiation in vipers. The putative mimetic patterns are rarely found in females. This appears paradoxical in light of the Müllerian prediction of monomorphism, but may be explained by divergent selection pressures on the sexes, which have different behaviours. We suggest that biased predation on active males causes selection for protective warning coloration, whereas crypsis is favoured in relatively sedentary females.
doi:10.1098/rspb.2005.3418
PMCID: PMC1560257  PMID: 16600892
Müllerian mimicry; sex-limited; mitochondrial DNA phylogeny; green pitviper; Trimeresurus; hypothesis testing
15.  Geographic Variation of Melanisation Patterns in a Hornet Species: Genetic Differences, Climatic Pressures or Aposematic Constraints? 
PLoS ONE  2014;9(4):e94162.
Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism.
doi:10.1371/journal.pone.0094162
PMCID: PMC3989226  PMID: 24740142
16.  Hybridization promotes color polymorphism in the aposematic harlequin poison frog, Oophaga histrionica 
Ecology and Evolution  2013;3(13):4388-4400.
Whether hybridization can be a mechanism that drives phenotypic diversity is a widely debated topic in evolutionary biology. In poison frogs (Dendrobatidae), assortative mating has been invoked to explain how new color morphs persist despite the expected homogenizing effects of natural selection. Here, we tested the complementary hypothesis that new morphs arise through hybridization between different color morphs. Specifically, we (1) reconstructed the phylogenetic relationships among the studied populations of a dart-poison frog to provide an evolutionary framework, (2) tested whether microsatellite allele frequencies of one putative hybrid population of the polymorphic frog O. histrionica are intermediate between O. histrionica and O. lehmanni, and (3) conducted mate-choice experiments to test whether putatively intermediate females prefer homotypic males over males from the other two populations. Our findings are compatible with a hybrid origin for the new morph and emphasize the possibility of hybridization as a mechanism generating variation in polymorphic species. Moreover, because coloration in poison frogs is aposematic and should be heavily constrained, our findings suggest that hybridization can produce phenotypic novelty even in systems where phenotypes are subject to strong stabilizing selection.
doi:10.1002/ece3.794
PMCID: PMC3856739  PMID: 24340180
Admixture; aposematism; coloration; hybridization; microsatellites; phenotypic variation; phylogenetics; poison frogs
17.  Versatile Aggressive Mimicry of Cicadas by an Australian Predatory Katydid 
PLoS ONE  2009;4(1):e4185.
Background
In aggressive mimicry, a predator or parasite imitates a signal of another species in order to exploit the recipient of the signal. Some of the most remarkable examples of aggressive mimicry involve exploitation of a complex signal-response system by an unrelated predator species.
Methodology/Principal Findings
We have found that predatory Chlorobalius leucoviridis katydids (Orthoptera: Tettigoniidae) can attract male cicadas (Hemiptera: Cicadidae) by imitating the species-specific wing-flick replies of sexually receptive female cicadas. This aggressive mimicry is accomplished both acoustically, with tegminal clicks, and visually, with synchronized body jerks. Remarkably, the katydids respond effectively to a variety of complex, species-specific Cicadettini songs, including songs of many cicada species that the predator has never encountered.
Conclusions/Significance
We propose that the versatility of aggressive mimicry in C. leucoviridis is accomplished by exploiting general design elements common to the songs of many acoustically signaling insects that use duets in pair-formation. Consideration of the mechanism of versatile mimicry in C. leucoviridis may illuminate processes driving the evolution of insect acoustic signals, which play a central role in reproductive isolation of populations and the formation of species.
doi:10.1371/journal.pone.0004185
PMCID: PMC2615208  PMID: 19142230
18.  Prey community structure affects how predators select for Müllerian mimicry 
Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create ‘simple community pockets’ where accurate mimicry is selected for.
doi:10.1098/rspb.2011.2360
PMCID: PMC3321702  PMID: 22237908
aposematism; avoidance learning; Batesian mimicry; generalization
19.  Locomotor mimicry in Heliconius butterflies: contrast analyses of flight morphology and kinematics 
Müllerian mimicry is a mutualism involving the evolutionary convergence of colour patterns of prey on a warning signal to predators. Behavioural mimicry presumably adds complexity to the signal and makes it more difficult for Batesian mimics to parasitize it. To date, no one has quantified behavioural mimicry in Müllerian mimicry groups. However, morphological similarities among members of mimicry groups suggested that pitching oscillations of the body and wing-beat frequency (WBF) might converge with colour pattern. I compared the morphology and kinematics of four Heliconius species, which comprised two mimicry pairs. Because the mimics arose from two distinct lineages, the relative contributions of mimicry and phylogeny to variation in the species' morphologies and kinematics were examined. The positions of the centre of body mass and centre of wing mass and wing shape diverged among species within lineages, and converged among species within mimicry groups. WBF converged within mimicry groups, and it was coupled with body pitching frequency. However, body-pitching frequency was too variable to distinguish mimicry groups. Convergence in WBF may be due, at least in part, to biomechanical consequences of similarities in wing length, wing shape or the centre of wing mass among co-mimics. Nevertheless, convergence in WBF among passion-vine butterflies serves as the first evidence of behavioural mimicry in a mutualistic context.
doi:10.1098/rstb.1999.0372
PMCID: PMC1692477
20.  Polyphyly and gene flow between non-sibling Heliconius species 
BMC Biology  2006;4:11.
Background
The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), whose distributions overlap in Central and Northwestern South America.
Results
In these taxa, we sequenced 30–45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII), and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi), mannose-6-phosphate isomerase (Mpi) and cubitus interruptus (Ci) genes. A fifth gene, dopa decarboxylase (Ddc) produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene.
Conclusion
Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow.
doi:10.1186/1741-7007-4-11
PMCID: PMC1481601  PMID: 16630334
21.  Neural correlates of individual differences in manual imitation fidelity 
Imitation is crucial for social learning, and so it is important to identify what determines between-subject variability in imitation fidelity. This might help explain what makes some people, like those with social difficulties such as in autism spectrum disorder (ASD), significantly worse at performance on these tasks than others. A novel paradigm was developed to provide objective measures of imitation fidelity in which participants used a touchscreen to imitate videos of a model drawing different shapes. Comparisons between model and participants' kinematic data provided three measures of imitative fidelity. We hypothesized that imitative ability would predict variation in BOLD signal whilst performing a simple imitation task in the MRI-scanner. In particular, an overall measure of accuracy (correlation between model and imitator) would predict activity in the overarching imitation system, whereas bias would be subject to more general aspects of motor control. Participants lying in the MRI-scanner were instructed to imitate different grips on a handle, or to watch someone or a circle moving the handle. Our hypothesis was partly confirmed as correlation between model and imitator was mediated by somatosensory cortex but also ventromedial prefrontal cortex, and bias was mediated mainly by cerebellum but also by the medial frontal and parietal cortices and insula. We suggest that this variance differentially reflects cognitive functions such as feedback-sensitivity and reward-dependent learning, contributing significantly to variability in individuals' imitative abilities as characterized by objective kinematic measures.
doi:10.3389/fnint.2012.00091
PMCID: PMC3472215  PMID: 23087625
manual imitation; fMRI BOLD; mirror neuron areas; kinematics; correlated activity
22.  A single origin of Batesian mimicry among hybridizing populations of admiral butterflies (Limenitis arthemis) rejects an evolutionary reversion to the ancestral phenotype 
Batesian mimicry is a fundamental example of adaptive phenotypic evolution driven by strong natural selection. Given the potentially dramatic impacts of selection on individual fitness, it is important to understand the conditions under which mimicry is maintained versus lost. Although much empirical and theoretical work has been devoted to the maintenance of Batesian mimicry, there are no conclusive examples of its loss in natural populations. Recently, it has been proposed that non-mimetic populations of the polytypic Limenitis arthemis species complex represent an evolutionary loss of Batesian mimicry, and a reversion to the ancestral phenotype. Here, we evaluate this conclusion using segregating amplified fragment length polymorphism markers to investigate the history and fate of mimicry among forms of the L. arthemis complex and closely related Nearctic Limenitis species. In contrast to the previous finding, our results support a single origin of mimicry within the L. arthemis complex and the retention of the ancestral white-banded form in non-mimetic populations. Our finding is based on a genome-wide sampling approach to phylogeny reconstruction that highlights the challenges associated with inferring the evolutionary relationships among recently diverged species or populations (i.e. incomplete lineage sorting, introgressive hybridization and/or selection).
doi:10.1098/rspb.2009.0256
PMCID: PMC2686656  PMID: 19369265
wing pattern evolution; mimicry; amplified fragment length polymorphism; Limenitis; phylogeny; gene flow
23.  De novo establishment of wild-type song culture in the zebra finch 
Nature  2009;459(7246):564-568.
What sort of culture would evolve in an island colony of naive founders? This question cannot be studied experimentally in humans. We performed the analogous experiment using socially learned birdsong. Culture is typically viewed as consisting of traits inherited epigenetically, via social learning. However, cultural diversity has species-typical constraints1, presumably of genetic origin. A celebrated, if contentious, example is whether a universal grammar constrains syntactic diversity in human languages2. Oscine songbirds exhibit song learning and provide biologically tractable models of culture: members of a species show individual variation in song3 and geographically separated groups have local song dialects 4,5. Different species exhibit distinct song cultures6,7, suggestive of genetic constraints8,9. Absent such constraints, innovations and copying errors should cause unbounded variation over multiple generations or geographical distance, contrary to observations9. We asked if wild-type song culture might emerge over multiple generations in an isolated colony founded by isolates, and if so, how this might happen and what type of social environment is required10. Zebra finch isolates, unexposed to singing males during development, produce song with characteristics that differ from the wild-type song found in laboratory11 or natural colonies. In tutoring lineages starting from isolate founders, we quantified alterations in song across tutoring generations in two social environments: tutor-pupil pairs in sound-isolated chambers and an isolated semi-natural colony. In both settings, juveniles imitated the isolate tutors, but changed certain characteristics of the songs. These alterations accumulated over learning generations. Consequently, songs evolved toward the wild-type in 3–4 generations. Thus, species-typical song culture can appear de novo. Our study has parallels with language change and evolution12,13. In analogy to models in quantitative genetics14,15, we model song culture as a multi-generational phenotype, partly encoded genetically in an isolate founding population, influenced by environmental variables, and taking multiple generations to emerge.
doi:10.1038/nature07994
PMCID: PMC2693086  PMID: 19412161
24.  Imitating the neighbours: vocal dialect matching in a mimic–model system 
Biology Letters  2006;2(3):367-370.
Vocal mimicry provides a unique system for investigating song learning and cultural evolution in birds. Male lyrebirds produce complex vocal displays that include extensive and accurate mimicry of many other bird species. We recorded and analysed the songs of the Albert's lyrebird (Menura alberti) and its most commonly imitated model species, the satin bowerbird (Ptilonorhynchus violaceus), at six sites in southeast Queensland, Australia. We show that each population of lyrebirds faithfully reproduces the song of the local population of bowerbirds. Within a population, lyrebirds show less variation in song structure than the available variation in the songs of the models. These results provide the first quantitative evidence for dialect matching in the songs of two species that have no direct ecological relationship.
doi:10.1098/rsbl.2006.0502
PMCID: PMC1686190  PMID: 17148405
vocal mimicry; dialect matching; cultural transmission; song learning; lyrebirds
25.  Müllerian Mimicry as a Result of Codivergence between Velvet Ants and Spider Wasps 
PLoS ONE  2014;9(11):e112942.
Recent studies have delineated a large Nearctic Müllerian mimicry complex in Dasymutilla velvet ants. Psorthaspis spider wasps live in areas where this mimicry complex is found and are phenotypically similar to Dasymutilla. We tested the idea that Psorthaspis spider wasps are participating in the Dasymutilla mimicry complex and that they codiverged with Dasymutilla. We performed morphometric analyses and human perception tests, and tabulated distributional records to determine the fit of Psorthaspis to the Dasymutilla mimicry complex. We inferred a dated phylogeny using nuclear molecular markers (28S, elongation factor 1-alpha, long-wavelength rhodopsin and wingless) for Psorthaspis species and compared it to a dated phylogeny of Dasymutilla. We tested for codivergence between the two groups using two statistical analyses. Our results show that Psorthaspis spider wasps are morphologically similar to the Dasymutilla mimicry rings. In addition, our tests indicate that Psorthaspis and Dasymutilla codiverged to produce similar color patterns. This study expands the breadth of the Dasymutilla Müllerian mimicry complex and provides insights about how codivergence influenced the evolution of mimicry in these groups.
doi:10.1371/journal.pone.0112942
PMCID: PMC4232588  PMID: 25396424

Results 1-25 (814519)