PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1146720)

Clipboard (0)
None

Related Articles

1.  Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer 
Executive Summary
In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.
Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.
The following reports can be publicly accessed at the MAS website at: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.html
Gene Expression Profiling for Guiding Adjuvant Chemotherapy Decisions in Women with Early Breast Cancer: An Evidence-Based Analysis
Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based Analysis
K-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis
Objective
The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa®) or erlotinib (Tarceva®) in patients with advanced non-small cell lung cancer (NSCLC).
Clinical Need: Target Population and Condition
With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer deaths in Ontario. Those with unresectable or advanced disease are commonly treated with concurrent chemoradiation or platinum-based combination chemotherapy. Although response rates to cytotoxic chemotherapy for advanced NSCLC are approximately 30 to 40%, all patients eventually develop resistance and have a median survival of only 8 to 10 months. Treatment for refractory or relapsed disease includes single-agent treatment with docetaxel, pemetrexed or EGFR-targeting TKIs (gefitinib, erlotinib). TKIs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at the tyrosine kinase (TK) domain, thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Gefitinib and erlotinib have been shown to be either non-inferior or superior to chemotherapy in the first- or second-line setting (gefitinib), or superior to placebo in the second- or third-line setting (erlotinib).
Certain patient characteristics (adenocarcinoma, non-smoking history, Asian ethnicity, female gender) predict for better survival benefit and response to therapy with TKIs. In addition, the current body of evidence shows that somatic mutations in the EGFR gene are the most robust biomarkers for EGFR-targeting therapy selection. Drugs used in this therapy, however, can be costly, up to C$ 2000 to C$ 3000 per month, and they have only approximately a 10% chance of benefiting unselected patients. For these reasons, the predictive value of EGFR mutation testing for TKIs in patients with advanced NSCLC needs to be determined.
The Technology: EGFR mutation testing
The EGFR gene sequencing by polymerase chain reaction (PCR) assays is the most widely used method for EGFR mutation testing. PCR assays can be performed at pathology laboratories across Ontario. According to experts in the province, sequencing is not currently done in Ontario due to lack of adequate measurement sensitivity. A variety of new methods have been introduced to increase the measurement sensitivity of the mutation assay. Some technologies such as single-stranded conformational polymorphism, denaturing high-performance liquid chromatography, and high-resolution melting analysis have the advantage of facilitating rapid mutation screening of large numbers of samples with high measurement sensitivity but require direct sequencing to confirm the identity of the detected mutations. Other techniques have been developed for the simple, but highly sensitive detection of specific EGFR mutations, such as the amplification refractory mutations system (ARMS) and the peptide nucleic acid-locked PCR clamping. Others selectively digest wild-type DNA templates with restriction endonucleases to enrich mutant alleles by PCR. Experts in the province of Ontario have commented that currently PCR fragment analysis for deletion and point mutation conducts in Ontario, with measurement sensitivity of 1% to 5%.
Research Questions
In patients with locally-advanced or metastatic NSCLC, what is the clinical effectiveness of EGFR mutation testing for prediction of response to treatment with TKIs (gefitinib, erlotinib) in terms of progression-free survival (PFS), objective response rates (ORR), overall survival (OS), and quality of life (QoL)?
What is the impact of EGFR mutation testing on overall clinical decision-making for patients with advanced or metastatic NSCLC?
What is the cost-effectiveness of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the first-line setting?
What is the budget impact of EGFR mutation testing in selecting patients with advanced NSCLC for treatment with gefitinib or erlotinib in the second- or third-line setting?
Methods
A literature search was performed on March 9, 2010 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, OVID EMBASE, Wiley Cochrane, CINAHL, Centre for Reviews and Dissemination/International Agency for Health Technology Assessment for studies published from January 1, 2004 until February 28, 2010 using the following terms:
Non-Small-Cell Lung Carcinoma
Epidermal Growth Factor Receptor
An automatic literature update program also extracted all papers published from February 2010 until August 2010. Abstracts were reviewed by a single reviewer and for those studies meeting the eligibility criteria full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with unknown eligibility were reviewed with a second clinical epidemiologist, and then a group of epidemiologists, until consensus was established. The quality of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
The inclusion criteria were as follows:
Population: patients with locally advanced or metastatic NSCLC (stage IIIB or IV)
Procedure: EGFR mutation testing before treatment with gefitinib or erlotinib
Language: publication in English
Published health technology assessments, guidelines, and peer-reviewed literature (abstracts, full text, conference abstract)
Outcomes: progression-free survival (PFS), Objective response rate (ORR), overall survival (OS), quality of life (QoL).
The exclusion criteria were as follows:
Studies lacking outcomes specific to those of interest
Studies focused on erlotinib maintenance therapy
Studies focused on gefitinib or erlotinib use in combination with cytotoxic agents or any other drug
Grey literature, where relevant, was also reviewed.
Outcomes of Interest
PFS
ORR determined by means of the Response Evaluation Criteria in Solid Tumours (RECIST)
OS
QoL
Quality of Evidence
The quality of the Phase II trials and observational studies was based on the method of subject recruitment and sampling, possibility of selection bias, and generalizability to the source population. The overall quality of evidence was assessed as high, moderate, low or very low according to the GRADE Working Group criteria.
Summary of Findings
Since the last published health technology assessment by Blue Cross Blue Shield Association in 2007 there have been a number of phase III trials which provide evidence of predictive value of EGFR mutation testing in patients who were treated with gefitinib compared to chemotherapy in the first- or second-line setting. The Iressa Pan Asian Study (IPASS) trial showed the superiority of gefitinib in terms of PFS in patients with EGFR mutations versus patients with wild-type EGFR (Hazard ratio [HR], 0.48, 95%CI; 0.36-0.64 versus HR, 2.85; 95%CI, 2.05-3.98). Moreover, there was a statistically significant increased ORR in patients who received gefitinib and had EGFR mutations compared to patients with wild-type EGFR (71% versus 1%). The First-SIGNAL trial in patients with similar clinical characteristics as IPASS as well as the NEJ002 and WJTOG3405 trials that included only patients with EGFR mutations, provide confirmation that gefitinib is superior to chemotherapy in terms of improved PFS or higher ORR in patients with EGFR mutations. The INTEREST trial further indicated that patients with EGFR mutations had prolonged PFS and higher ORR when treated with gefitinib compared with docetaxel.
In contrast, there is still a paucity of strong evidence regarding the predictive value of EGFR mutation testing for response to erlotinib in the second- or third-line setting. The BR.21 trial randomized 731 patients with NSCLC who were refractory or intolerant to prior first- or second-line chemotherapy to receive erlotinib or placebo. While the HR of 0.61 (95%CI, 0.51-0.74) favored erlotinib in the overall population, this was not a significant in the subsequent retrospective subgroup analysis. A retrospective evaluation of 116 of the BR.21 tumor samples demonstrated that patients with EGFR mutations had significantly higher ORRs when treated with erlotinib compared with placebo (27% versus 7%; P=0.03). However, erlotinib did not confer a significant survival benefit compared with placebo in patients with EGFR mutations (HR, 0.55; 95%CI, 0.25-1.19) versus wild-type (HR, 0.74; 95%CI, 0.52-1.05). The interaction between EGFR mutation status and erlotinib use was not significant (P=0.47). The lack of significance could be attributable to a type II error since there was a low sample size that was available for subgroup analysis.
A series of phase II studies have examined the clinical effectiveness of erlotinib in patients known to have EGFR mutations. Evidence from these studies has consistently shown that erlotinib yields a very high ORR (typically 70% vs. 4%) and a prolonged PFS (9 months vs. 2 months) in patients with EGFR mutations compared with patients with wild-type EGFR. Although having a prolonged PFS and higher respond in EGFR mutated patients might be due to a better prognostic profile regardless of the treatment received. In the absence of a comparative treatment or placebo control group, it is difficult to determine if the observed differences in survival benefit in patients with EGFR mutation is attributed to prognostic or predictive value of EGFR mutation status.
Conclusions
Based on moderate quality of evidence, patients with locally advanced or metastatic NSCLC with adenocarcinoma histology being treated with gefitinib in the first-line setting are highly likely to benefit from gefitinib if they have EGFR mutations compared to those with wild-type EGFR. This advantage is reflected in improved PFS, ORR and QoL in patients with EGFR mutation who are being treated with gefitinib relative to patients treated with chemotherapy.
Based on low quality of evidence, in patients with locally advanced or metastatic NSCLC who are being treated with erlotinib, the identification of EGFR mutation status selects those who are most likely to benefit from erlotinib relative to patients treated with placebo in the second or third-line setting.
PMCID: PMC3377519  PMID: 23074402
2.  Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain 
PLoS Medicine  2006;3(12):e485.
Background
Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.
Methods and Findings
Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.
Conclusions
Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.
Ingo Mellinghoff and colleagues sequenced theEGFR gene in glioblastoma samples and cell lines and identified missense mutations in the extracellular domain that suggest a new mechanism for EGFR activation.
Editors' Summary
Background.
Normally, cell division (which produces new cells) and cell death are finely balanced to keep the tissues and organs of the human body in working order. But sometimes, cells acquire changes (mutations) in their genetic material that allow them to divide uncontrollably to form cancers—life-threatening, disorganized masses of cells. Cancer treatments often involve drugs that kill rapidly dividing cells but, although these hit cancer cells hardest, they also damage some normal tissues. Now, though, some of the specific changes that allow cancer cells to divide uncontrollably have been identified and drugs that attack only these abnormal cells are being developed. One of these—erlotinib—inhibits the activity of epidermal growth factor receptor (EGFR), a “receptor tyrosine kinase” that sits in the cell membrane. The interaction of epidermal growth factor (EGF)—a messenger protein—with the extracellular portion (or domain) of EGFR activates its intracellular part (a kinase enzyme). This adds phosphate groups to tyrosine (an amino acid) in proteins that form part of a signaling cascade that tells cells to divide. Cancer cells often have alterations in EGFR signaling. Some have extra copies of the EGFR gene (EGFR amplification); others make a short version of EGFR that is always active because it lacks the extracellular domain that binds EGF; yet others contain EGFR that is permanently active because of mutations in its kinase domain.
Why Was This Study Done?
Erlotinib can help only patients whose tumor growth is dependent on EGFR signaling. To identify these patients it is necessary to have a detailed catalog of the mutations that occur in EGFR in tumors and to know which mutations drive uncontrolled cell growth. In this study, the researchers have catalogued and characterized the mutations in EGFR that occur in glioblastoma, a deadly type of brain tumor. The researchers chose this tumor type for their study because EGFR amplification and loss of the extracellular domain of EGFR are both common in glioblastomas and because about one in five patients with glioblastoma responds well to EGFR kinase inhibitors.
What Did the Researchers Do and Find?
The researchers sequenced the whole coding sequence of the EGFR gene in more than 100 glioblastomas. Nearly 15% of the tumors contained missense mutations—changes that alter the amino acid sequence of EGFR. Only one tumor had a mutation in the EGFR kinase domain; the rest had mutations in its extracellular domain. To test whether these newly identified mutations might contribute to cancer development (oncogenesis), the researchers introduced mutated or normal EGFR genes into nontumorigenic mouse cells. Only the cells that contained the mutated EGFR genes formed tumors when injected into mice, indicating that the nontumorigenic cells had been “transformed” into cancer cells by the mutated EGFR genes. Finally, the researchers showed that EGFR containing the extracellular missense mutations had kinase activity in the absence of EGF when expressed in human and mouse cells, and that the growth of cells transformed by expression of the mutated genes was sensitive to erlotinib.
What Do These Findings Mean?
These findings identify missense mutations in the extracellular domain of EGFR as a new way to oncogenically activate this protein. Until now researchers have concentrated on the kinase domain of this and other receptor tyrosine kinases in their search for oncogenic mutations, but the results of this study suggest that future searches should be much broader. The distribution of EGFR missense mutations in glioblastoma contrasts with that in lung cancer, in which alterations in EGFR signaling are also implicated in cancer development but all the oncogenic mutations are in the kinase domain. Fortunately, EGFR kinase inhibitors like erlotinib have broad activity: They inhibit the growth of cells transformed by the expression of EGFR containing extracellular domain mutations or kinase mutations, or by the expression of the short EGFR variant. This bodes well for the use of these drugs in patients with glioblastoma. However, before these inhibitors become a standard part of cancer treatments, sensitive techniques need to be developed to analyze tumors for these mutations so that the patients who will benefit from these targeted therapies can be identified.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030485.
MedlinePlus encyclopedia entries on cancer and on brain tumors
US National Cancer Institute information for patients and professionals on brain tumors
Wikipedia pages on protein kinases, epidermal growth factor receptor, and erlotinib (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0030485
PMCID: PMC1702556  PMID: 17177598
3.  Next Generation MUT-MAP, a High-Sensitivity High-Throughput Microfluidics Chip-Based Mutation Analysis Panel 
PLoS ONE  2014;9(3):e90761.
Molecular profiling of tumor tissue to detect alterations, such as oncogenic mutations, plays a vital role in determining treatment options in oncology. Hence, there is an increasing need for a robust and high-throughput technology to detect oncogenic hotspot mutations. Although commercial assays are available to detect genetic alterations in single genes, only a limited amount of tissue is often available from patients, requiring multiplexing to allow for simultaneous detection of mutations in many genes using low DNA input. Even though next-generation sequencing (NGS) platforms provide powerful tools for this purpose, they face challenges such as high cost, large DNA input requirement, complex data analysis, and long turnaround times, limiting their use in clinical settings. We report the development of the next generation mutation multi-analyte panel (MUT-MAP), a high-throughput microfluidic, panel for detecting 120 somatic mutations across eleven genes of therapeutic interest (AKT1, BRAF, EGFR, FGFR3, FLT3, HRAS, KIT, KRAS, MET, NRAS, and PIK3CA) using allele-specific PCR (AS-PCR) and Taqman technology. This mutation panel requires as little as 2 ng of high quality DNA from fresh frozen or 100 ng of DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Mutation calls, including an automated data analysis process, have been implemented to run 88 samples per day. Validation of this platform using plasmids showed robust signal and low cross-reactivity in all of the newly added assays and mutation calls in cell line samples were found to be consistent with the Catalogue of Somatic Mutations in Cancer (COSMIC) database allowing for direct comparison of our platform to Sanger sequencing. High correlation with NGS when compared to the SuraSeq500 panel run on the Ion Torrent platform in a FFPE dilution experiment showed assay sensitivity down to 0.45%. This multiplexed mutation panel is a valuable tool for high-throughput biomarker discovery in personalized medicine and cancer drug development.
doi:10.1371/journal.pone.0090761
PMCID: PMC3962342  PMID: 24658394
4.  Signature-Based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma 
PLoS Medicine  2007;4(4):e122.
Background
The presence of tumor-specific mutations in the cancer genome represents a potential opportunity for pharmacologic intervention to therapeutic benefit. Unfortunately, many classes of oncoproteins (e.g., transcription factors) are not amenable to conventional small-molecule screening. Despite the identification of tumor-specific somatic mutations, most cancer therapy still utilizes nonspecific, cytotoxic drugs. One illustrative example is the treatment of Ewing sarcoma. Although the EWS/FLI oncoprotein, present in the vast majority of Ewing tumors, was characterized over ten years ago, it has never been exploited as a target of therapy. Previously, this target has been intractable to modulation with traditional small-molecule library screening approaches. Here we describe a gene expression–based approach to identify compounds that induce a signature of EWS/FLI attenuation. We hypothesize that screening small-molecule libraries highly enriched for FDA-approved drugs will provide a more rapid path to clinical application.
Methods and Findings
A gene expression signature for the EWS/FLI off state was determined with microarray expression profiling of Ewing sarcoma cell lines with EWS/FLI-directed RNA interference. A small-molecule library enriched for FDA-approved drugs was screened with a high-throughput, ligation-mediated amplification assay with a fluorescent, bead-based detection. Screening identified cytosine arabinoside (ARA-C) as a modulator of EWS/FLI. ARA-C reduced EWS/FLI protein abundance and accordingly diminished cell viability and transformation and abrogated tumor growth in a xenograft model. Given the poor outcomes of many patients with Ewing sarcoma and the well-established ARA-C safety profile, clinical trials testing ARA-C are warranted.
Conclusions
We demonstrate that a gene expression–based approach to small-molecule library screening can identify, for rapid clinical testing, candidate drugs that modulate previously intractable targets. Furthermore, this is a generic approach that can, in principle, be applied to the identification of modulators of any tumor-associated oncoprotein in the rare pediatric malignancies, but also in the more common adult cancers.
Todd Golub and colleagues show that a gene expression-based screen of small-molecule libraries can identify candidate drugs that modulate cancer-associated oncoproteins.
Editors' Summary
Background.
Cancer occurs when cells accumulate genetic changes (mutations) that allow them to divide uncontrollably and to travel throughout the body (metastasize). Chemotherapy, a mainstay of cancer treatments, works by killing rapidly dividing cells. Because some normal tissues also contain dividing cells and are therefore sensitive to chemotherapy drugs, it is hard to treat cancer without causing serious side effects. In recent years, however, researchers have identified some of the mutations that drive the growth of cancer cells. This raises the possibility of designing drugs that kill only cancer cells by specifically targeting “oncoproteins” (the abnormal proteins generated by mutations that transform normal cells into cancer cells). Some “targeted” drugs have already reached the clinic, but unfortunately medicinal chemists do not know how to inhibit the function of many classes of oncoproteins with the small organic molecules that make the best medicines. One oncoprotein in this category is EWS/FLI. This contains part of a protein called EWS fused to part of a transcription factor (a protein that controls cell behavior by telling the cell which proteins to make) called FLI. About 80% of patients with Ewing sarcoma (the second commonest childhood cancer of bone and soft tissue) have the mutation responsible for EWS/FLI expression. Localized Ewing sarcoma can be treated with nontargeted chemotherapy (often in combination with surgery and radiotherapy), but treatment for recurrent or metastatic disease remains very poor.
Why Was This Study Done?
Researchers have known for years that EWS/FLI expression drives the development of Ewing sarcoma by activating the expression of target genes needed for tumor formation. However, EWS/FLI has never been exploited as a target for therapy of this cancer—mainly because traditional approaches used to screen libraries of small molecules do not identify compounds that modulate the activity of transcription factors. In this study, the researchers have used a new gene expression–based, high-throughput screening (GE-HTS) approach to identify compounds that modulate the activity of EWS/FLI.
What Did the Researchers Do and Find?
The researchers used a molecular biology technique called microarray expression profiling to define a 14-gene expression signature that differentiates between Ewing sarcoma cells in which the EWS/FLI fusion protein is active and those in which it is inactive. They then used this signature to screen a library of about 1,000 chemicals (many already approved for other clinical uses) in a “ligation-mediated amplification assay.” For this, the researchers grew Ewing sarcoma cells with the test chemicals, extracted RNA from the cells, and generated a DNA copy of the RNA. They then added two short pieces of DNA (probes) specific for each signature gene to the samples. In samples that expressed a given signature gene, both probes bound and were then ligated (joined together) and amplified. Because one of each probe pair also contained a unique “capture sequence,” the signature genes expressed in each sample were finally identified by adding colored fluorescent beads, each linked to DNA complementary to a different capture sequence. The most active modulator of EWS/FLI activity identified by this GE-HTS approach was cytosine arabinoside (ARA-C). At levels achievable in people, this compound reduced the abundance of EWS/FLI protein in and the viability and cancer-like behavior of Ewing sarcoma cells growing in test tubes. ARA-C treatment also slowed the growth of Ewing sarcoma cells transplanted into mice.
What Do These Findings Mean?
These findings identify ARA-C, which is already used to treat children with some forms of leukemia, as a potent modulator of EWS/FLI activity. More laboratory experiments are needed to discover how ARA-C changes the behavior of Ewing sarcoma cells. Nevertheless, given the poor outcomes currently seen in many patients with Ewing sarcoma and the historical reluctance to test new drugs in children, these findings strongly support the initiation of clinical trials of ARA-C in children with Ewing sarcoma. These results also show that the GE-HTS approach is a powerful way to identify candidate drugs able to modulate the activity of some of the oncoproteins (including transcription factors and other previously intractable targets) that drive cancer development.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040122.
Cancerquest from Emory University, provides information on cancer biology (also includes information in Spanish, Chinese and Russian)
The MedlinePlus encyclopedia has pages on Ewing sarcoma
Information for patients and health professionals on Ewing sarcoma is available from the US National Cancer Institute
Cancerbackup offers information for patients and their parents on Ewing sarcoma
Wikipedia has pages on DNA microarrays and expression profiling (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040122
PMCID: PMC1851624  PMID: 17425403
5.  Mutations in PIK3CA are infrequent in neuroblastoma 
BMC Cancer  2006;6:177.
Background
Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported.
Methods
Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain "hot spots" where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice.
Results
We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model.
Conclusion
These data suggest that activating mutations in the Ras/Raf-MAPK/PI3K signaling cascades occur infrequently in neuroblastoma. Further, despite compelling evidence for MYC and RAS cooperation in vitro and in vivo to promote tumourigenesis, activation of RAS signal transduction does not constitute a preferred secondary pathway in neuroblastomas with MYCN deregulation in either human tumors or murine models.
doi:10.1186/1471-2407-6-177
PMCID: PMC1533846  PMID: 16822308
6.  Polymorphisms, Mutations, and Amplification of the EGFR Gene in Non-Small Cell Lung Cancers 
PLoS Medicine  2007;4(4):e125.
Background
The epidermal growth factor receptor (EGFR) gene is the prototype member of the type I receptor tyrosine kinase (TK) family and plays a pivotal role in cell proliferation and differentiation. There are three well described polymorphisms that are associated with increased protein production in experimental systems: a polymorphic dinucleotide repeat (CA simple sequence repeat 1 [CA-SSR1]) in intron one (lower number of repeats) and two single nucleotide polymorphisms (SNPs) in the promoter region, −216 (G/T or T/T) and −191 (C/A or A/A). The objective of this study was to examine distributions of these three polymorphisms and their relationships to each other and to EGFR gene mutations and allelic imbalance (AI) in non-small cell lung cancers.
Methods and Findings
We examined the frequencies of the three polymorphisms of EGFR in 556 resected lung cancers and corresponding non-malignant lung tissues from 336 East Asians, 213 individuals of Northern European descent, and seven of other ethnicities. We also studied the EGFR gene in 93 corresponding non-malignant lung tissue samples from European-descent patients from Italy and in peripheral blood mononuclear cells from 250 normal healthy US individuals enrolled in epidemiological studies including individuals of European descent, African–Americans, and Mexican–Americans. We sequenced the four exons (18–21) of the TK domain known to harbor activating mutations in tumors and examined the status of the CA-SSR1 alleles (presence of heterozygosity, repeat number of the alleles, and relative amplification of one allele) and allele-specific amplification of mutant tumors as determined by a standardized semiautomated method of microsatellite analysis. Variant forms of SNP −216 (G/T or T/T) and SNP −191 (C/A or A/A) (associated with higher protein production in experimental systems) were less frequent in East Asians than in individuals of other ethnicities (p < 0.001). Both alleles of CA-SSR1 were significantly longer in East Asians than in individuals of other ethnicities (p < 0.001). Expression studies using bronchial epithelial cultures demonstrated a trend towards increased mRNA expression in cultures having the variant SNP −216 G/T or T/T genotypes. Monoallelic amplification of the CA-SSR1 locus was present in 30.6% of the informative cases and occurred more often in individuals of East Asian ethnicity. AI was present in 44.4% (95% confidence interval: 34.1%–54.7%) of mutant tumors compared with 25.9% (20.6%–31.2%) of wild-type tumors (p = 0.002). The shorter allele in tumors with AI in East Asian individuals was selectively amplified (shorter allele dominant) more often in mutant tumors (75.0%, 61.6%–88.4%) than in wild-type tumors (43.5%, 31.8%–55.2%, p = 0.003). In addition, there was a strong positive association between AI ratios of CA-SSR1 alleles and AI of mutant alleles.
Conclusions
The three polymorphisms associated with increased EGFR protein production (shorter CA-SSR1 length and variant forms of SNPs −216 and −191) were found to be rare in East Asians as compared to other ethnicities, suggesting that the cells of East Asians may make relatively less intrinsic EGFR protein. Interestingly, especially in tumors from patients of East Asian ethnicity, EGFR mutations were found to favor the shorter allele of CA-SSR1, and selective amplification of the shorter allele of CA-SSR1 occurred frequently in tumors harboring a mutation. These distinct molecular events targeting the same allele would both be predicted to result in greater EGFR protein production and/or activity. Our findings may help explain to some of the ethnic differences observed in mutational frequencies and responses to TK inhibitors.
Masaharu Nomura and colleagues examine the distribution ofEGFR polymorphisms in different populations and find differences that might explain different responses to tyrosine kinase inhibitors in lung cancer patients.
Editors' Summary
Background.
Most cases of lung cancer—the leading cause of cancer deaths worldwide—are “non-small cell lung cancer” (NSCLC), which has a very low cure rate. Recently, however, “targeted” therapies have brought new hope to patients with NSCLC. Like all cancers, NSCLC occurs when cells begin to divide uncontrollably because of changes (mutations) in their genetic material. Chemotherapy drugs treat cancer by killing these rapidly dividing cells, but, because some normal tissues are sensitive to these agents, it is hard to kill the cancer completely without causing serious side effects. Targeted therapies specifically attack the changes in cancer cells that allow them to divide uncontrollably, so it might be possible to kill the cancer cells selectively without damaging normal tissues. Epidermal growth factor receptor (EGRF) was one of the first molecules for which a targeted therapy was developed. In normal cells, messenger proteins bind to EGFR and activate its “tyrosine kinase,” an enzyme that sticks phosphate groups on tyrosine (an amino acid) in other proteins. These proteins then tell the cell to divide. Alterations to this signaling system drive the uncontrolled growth of some cancers, including NSCLC.
Why Was This Study Done?
Molecules that inhibit the tyrosine kinase activity of EGFR (for example, gefitinib) dramatically shrink some NSCLCs, particularly those in East Asian patients. Tumors shrunk by tyrosine kinase inhibitors (TKIs) often (but not always) have mutations in EGFR's tyrosine kinase. However, not all tumors with these mutations respond to TKIs, and other genetic changes—for example, amplification (multiple copies) of the EGFR gene—also affect tumor responses to TKIs. It would be useful to know which genetic changes predict these responses when planning treatments for NSCLC and to understand why the frequency of these changes varies between ethnic groups. In this study, the researchers have examined three polymorphisms—differences in DNA sequences that occur between individuals—in the EGFR gene in people with and without NSCLC. In addition, they have looked for associations between these polymorphisms, which are present in every cell of the body, and the EGFR gene mutations and allelic imbalances (genes occur in pairs but amplification or loss of one copy, or allele, often causes allelic imbalance in tumors) that occur in NSCLCs.
What Did the Researchers Do and Find?
The researchers measured how often three EGFR polymorphisms (the length of a repeat sequence called CA-SSR1, and two single nucleotide variations [SNPs])—all of which probably affect how much protein is made from the EGFR gene—occurred in normal tissue and NSCLC tissue from East Asians and individuals of European descent. They also looked for mutations in the EGFR tyrosine kinase and allelic imbalance in the tumors, and then determined which genetic variations and alterations tended to occur together in people with the same ethnicity. Among many associations, the researchers found that shorter alleles of CA-SSR1 and the minor forms of the two SNPs occurred less often in East Asians than in individuals of European descent. They also confirmed that EGFR kinase mutations were more common in NSCLCs in East Asians than in European-descent individuals. Furthermore, mutations occurred more often in tumors with allelic imbalance, and in tumors where there was allelic imbalance and an EGFR mutation, the mutant allele was amplified more often than the wild-type allele.
What Do These Findings Mean?
The researchers use these associations between gene variants and tumor-associated alterations to propose a model to explain the ethnic differences in mutational frequencies and responses to TKIs seen in NSCLC. They suggest that because of the polymorphisms in the EGFR gene commonly seen in East Asians, people from this ethnic group make less EGFR protein than people from other ethnic groups. This would explain why, if a threshold level of EGFR is needed to drive cells towards malignancy, East Asians have a high frequency of amplified EGFR tyrosine kinase mutations in their tumors—mutation followed by amplification would be needed to activate EGFR signaling. This model, though speculative, helps to explain some clinical findings, such as the frequency of EGFR mutations and of TKI sensitivity in NSCLCs in East Asians. Further studies of this type in different ethnic groups and in different tumors, as well as with other genes for which targeted therapies are available, should help oncologists provide personalized cancer therapies for their patients.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040125.
US National Cancer Institute information on lung cancer and on cancer treatment for patients and professionals
MedlinePlus encyclopedia entries on NSCLC
Cancer Research UK information for patients about all aspects of lung cancer, including treatment with TKIs
Wikipedia pages on lung cancer, EGFR, and gefitinib (note that Wikipedia is a free online encyclopedia that anyone can edit)
doi:10.1371/journal.pmed.0040125
PMCID: PMC1876407  PMID: 17455987
7.  Novel Somatic Mutations to PI3K Pathway Genes in Metastatic Melanoma 
PLoS ONE  2012;7(8):e43369.
Background
BRAFV600 inhibitors have offered a new gateway for better treatment of metastatic melanoma. However, the overall efficacy of BRAFV600 inhibitors has been lower than expected in clinical trials, and many patients have shown resistance to the drug’s effect. We hypothesized that somatic mutations in the Phosphoinositide 3-Kinase (PI3K) pathway, which promotes proliferation and survival, may coincide with BRAFV600 mutations and contribute to chemotherapeutic resistance.
Methods
We performed a somatic mutation profiling study using the 454 FLX pyrosequencing platform in order to identify candidate cancer genes within the MAPK and PI3K pathways of melanoma patients. Somatic mutations of theses candidate cancer genes were then confirmed using Sanger sequencing.
Results
As expected, BRAFV600 mutations were seen in 51% of the melanomas, whereas NRAS mutations were seen in 19% of the melanomas. However, PI3K pathway mutations, though more heterogeneous, were present in 41% of the melanoma, with PTEN being the highest mutated PI3K gene in melanomas (22%). Interestingly, several novel PI3K pathway mutations were discovered in MTOR, IRS4, PIK3R1, PIK3R4, PIK3R5, and NFKB1. PI3K pathway mutations co-occurred with BRAFV600 mutations in 17% of the tumors and co-occurred with 9% of NRAS mutant tumors, implying cooperativity between these pathways in terms of melanoma progression.
Conclusions
These novel PI3K pathway somatic mutations could provide alternative survival and proliferative pathways for metastatic melanoma cells. They therefore may be potential chemotherapeutic targets for melanoma patients who exhibit resistance to BRAFV600 inhibitors.
doi:10.1371/journal.pone.0043369
PMCID: PMC3422312  PMID: 22912864
8.  Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast 
The Journal of Pathology  2014;232(5):553-565.
Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray-based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC-NSTs, and recurrent mutations affecting mitogen-activated protein kinase family genes and NBPF10. RNA-sequencing analysis identified 17 high-confidence fusion genes, eight of which were validated and two of which were in-frame. No recurrent fusions were identified in an independent series of MPCs and IC-NSTs. Forced expression of in-frame fusion genes (SLC2A1–FAF1 and BCAS4–AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out-of-frame rearrangements was found in one MPC and in 13% of HER2-positive breast cancers, identified through a re-analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild-type CDK12 in a CDK12-null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.
doi:10.1002/path.4325
PMCID: PMC4013428  PMID: 24395524
breast cancer; micropapillary; RNA sequencing; fusion transcripts; somatic mutation profiling; CDK12; PARP inhibitors
9.  CDK4 T172 Phosphorylation Is Central in a CDK7-Dependent Bidirectional CDK4/CDK2 Interplay Mediated by p21 Phosphorylation at the Restriction Point 
PLoS Genetics  2013;9(5):e1003546.
Cell cycle progression, including genome duplication, is orchestrated by cyclin-dependent kinases (CDKs). CDK activation depends on phosphorylation of their T-loop by a CDK–activating kinase (CAK). In animals, the only known CAK for CDK2 and CDK1 is cyclin H-CDK7, which is constitutively active. Therefore, the critical activation step is dephosphorylation of inhibitory sites by Cdc25 phosphatases rather than unrestricted T-loop phosphorylation. Homologous CDK4 and CDK6 bound to cyclins D are master integrators of mitogenic/oncogenic signaling cascades by initiating the inactivation of the central oncosuppressor pRb and cell cycle commitment at the restriction point. Unlike the situation in CDK1 and CDK2 cyclin complexes, and in contrast to the weak but constitutive T177 phosphorylation of CDK6, we have identified the T-loop phosphorylation at T172 as the highly regulated step determining CDK4 activity. Whether both CDK4 and CDK6 phosphorylations are catalyzed by CDK7 remains unclear. To answer this question, we took a chemical-genetics approach by using analogue-sensitive CDK7(as/as) mutant HCT116 cells, in which CDK7 can be specifically inhibited by bulky adenine analogs. Intriguingly, CDK7 inhibition prevented activating phosphorylations of CDK4/6, but for CDK4 this was at least partly dependent on its binding to p21cip1. In response to CDK7 inhibition, p21-binding to CDK4 increased concomitantly with disappearance of the most abundant phosphorylation of p21, which we localized at S130 and found to be catalyzed by both CDK4 and CDK2. The S130A mutation of p21 prevented the activating CDK4 phosphorylation, and inhibition of CDK4/6 and CDK2 impaired phosphorylations of both p21 and p21-bound CDK4. Therefore, specific CDK7 inhibition revealed the following: a crucial but partly indirect CDK7 involvement in phosphorylation/activation of CDK4 and CDK6; existence of CDK4-activating kinase(s) other than CDK7; and novel CDK7-dependent positive feedbacks mediated by p21 phosphorylation by CDK4 and CDK2 to sustain CDK4 activation, pRb inactivation, and restriction point passage.
Author Summary
In the cell cycle, duplication of all the cellular components and subsequent cell division are governed by a family of protein kinases associated with cyclins (CDKs). Related CDK4 and CDK6 bound to cyclins D are the first CDKs to be activated in response to cell proliferation signals. They thus play a central role in the cell multiplication decision, especially in most cancer cells in which CDK4 activity is highly deregulated. We have identified the activating T172 phosphorylation instead of cyclin D expression as the highly regulated step determining CDK4 activation. This finding contrasts with the prevalent view that the only identified metazoan CDK-activating kinase, CDK7, is constitutively active. By using human cells genetically engineered for specific chemical inhibition of CDK7, we found that CDK7 activity was indeed required for CDK4 activation. However, this dependence was conditioned by CDK4 binding to the CDK inhibitory protein p21, which increased in response to CDK7 inhibition. Further investigation revealed that CDK7 inhibition affects a major phosphorylation of p21, which we found to be required for CDK4 activation and performed by CDK4 itself and CDK2. Thus, depending on CDK7 activity, CDK4 and CDK2 facilitate CDK4 activation, generating novel positive feedbacks involved in the cell cycle decision.
doi:10.1371/journal.pgen.1003546
PMCID: PMC3667761  PMID: 23737759
10.  Detecting the spectrum of multigene mutations in non-small cell lung cancer by Snapshot assay 
Chinese Journal of Cancer  2014;33(7):346-350.
As molecular targets continue to be identified and more targeted inhibitors are developed for personalized treatment of non-small cell lung cancer (NSCLC), multigene mutation determination will be needed for routine oncology practice and for clinical trials. In this study, we evaluated the sensitivity and specificity of multigene mutation testing by using the Snapshot assay in NSCLC. We retrospectively reviewed a cohort of 110 consecutive NSCLC specimens for which epidermal growth factor receptor (EGFR) mutation testing was performed between November 2011 and December 2011 using Sanger sequencing. Using the Snapshot assay, mutation statuses were detected for EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS), phosphoinositide-3-kinase catalytic alpha polypeptide (PIK3CA), v-Raf murine sarcoma viral oncogene homolog B1 (BRAF), v-ras neuroblastoma viral oncogene homolog (NRAS), dual specificity mitogen activated protein kinase kinase 1 (MEK1), phosphatase and tensin homolog (PTEN), and human epidermal growth factor receptor 2 (HER2) in patient specimens and cell line DNA. Snapshot data were compared to Sanger sequencing data. Of the 110 samples, 51 (46.4%) harbored at least one mutation. The mutation frequency in adenocarcinoma specimens was 55.6%, and the frequencies of EGFR, KRAS, PIK3CA, PTEN, and MEK1 mutations were 35.5%, 9.1%, 3.6%, 0.9%, and 0.9%, respectively. No mutation was found in the HER2, NRAS, or BRAF genes. Three of the 51 mutant samples harbored double mutations: two PIK3CA mutations coexisted with KRAS or EGFR mutations, and another KRAS mutation coexisted with a PTEN mutation. Among the 110 samples, 47 were surgical specimens, 60 were biopsy specimens, and 3 were cytological specimens; the corresponding mutation frequencies were 51.1%, 41.7%, and 66.7%, respectively (P = 0.532). Compared to Sanger sequencing, Snapshot specificity was 98.4% and sensitivity was 100% (positive predictive value, 97.9%; negative predictive value, 100%). The Snapshot assay is a sensitive and easily customized assay for multigene mutation testing in clinical practice.
doi:10.5732/cjc.013.10195
PMCID: PMC4110467  PMID: 24823994
Non-small cell lung cancer; multigene mutation; Snapshot assay; Sanger sequencing
11.  ‘Druggable’ alterations detected by Ion Torrent in metastatic colorectal cancer patients 
Oncology Letters  2014;7(6):1761-1766.
The frequency and poor prognosis of patients with metastatic colorectal cancer (mCRC) emphasizes the requirement for improved biomarkers for use in the treatment and prognosis of mCRC. In the present study, somatic variants in exonic regions of key cancer genes were identified in mCRC patients. Formalin-fixed, paraffin-embedded tissues obtained by biopsy of the metastases of mCRC patients were collected, and the DNA was extracted and sequenced using the Ion Torrent Personal Genome Machine. For the targeted amplification of known cancer genes, the Ion AmpliSeq™ Cancer Panel, which is designed to detect 739 Catalogue of Somatic Mutations in Cancer (COSMIC) mutations in 604 loci from 46 oncogenes and tumor suppressor genes using as little as 10 ng of input DNA, was used. The sequencing results were then analyzed using the Ampliseq™ Variant Caller plug-in within the Ion Torrent Suite software. In addition, Ingenuity Pathway software was used to perform a pathway analysis. The Cox regression analysis was also conducted to investigate the potential correlation between alteration numbers and clinical factors, including response rate, disease-free survival and overall survival. Among 10 specimens, 65 genetic alterations were identified in 24 genes following the exclusion of germline mutations using the SNP database, whereby 41% of the alterations were also present in the COSMIC database. No clinical factors were found to significantly correlate with the alteration numbers in the patients by statistical analysis. However, pathway analysis identified ‘colorectal cancer metastasis signaling’ as the most commonly mutated canonical pathway. This analysis further revealed mutated genes in the Wnt, phosphoinositide 3-kinase (PI3K)/AKT and transforming growth factor (TGF)-β/SMAD signaling pathways. Notably, 11 genes, including the expected APC, BRAF, KRAS, PIK3CA and TP53 genes, were mutated in at least two samples. Notably, 90% (9/10) of mCRC patients harbored at least one ‘druggable’ alteration (range, 1–6 alterations) that has been linked to a clinical treatment option or is currently being investigated in clinical trials of novel targeted therapies. These results indicated that DNA sequencing of key oncogenes and tumor suppressors enables the identification of ‘druggable’ alterations for individual colorectal cancer patients.
doi:10.3892/ol.2014.2047
PMCID: PMC4049685  PMID: 24932229
druggable alterations; Ion Torrrent; metastasic colorectal cancer; formalin-fixed paraffin-embedded
12.  Intratumoral heterogeneity in a minority of ovarian low-grade serous carcinomas 
BMC Cancer  2014;14:982.
Background
Ovarian low-grade serous carcinoma (LGSC) has fewer mutations than ovarian high-grade serous carcinoma (HGSC) and a less aggressive clinical course. However, an overwhelming majority of LGSC patients do not respond to conventional chemotherapy resulting in a poor long-term prognosis comparable to women diagnosed with HGSC. KRAS and BRAF mutations are common in LGSC, leading to clinical trials targeting the MAPK pathway. We assessed the stability of targetable somatic mutations over space and/or time in LGSC, with a view to inform stratified treatment strategies and clinical trial design.
Methods
Eleven LGSC cases with primary and recurrent paired samples were identified (stage IIB-IV). Tumor DNA was isolated from 1–4 formalin-fixed paraffin-embedded tumor blocks from both the primary and recurrence (n = 37 tumor and n = 7 normal samples). Mutational analysis was performed using the Ion Torrent AmpliSeqTM Cancer Panel, with targeted validation using Fluidigm-MiSeq, Sanger sequencing and/or Raindance Raindrop digital PCR.
Results
KRAS (3/11), BRAF (2/11) and/or NRAS (1/11) mutations were identified in five unique cases. A novel, non-synonymous mutation in SMAD4 was observed in one case. No somatic mutations were detected in the remaining six cases. In two cases with a single matched primary and recurrent sample, two KRAS hotspot mutations (G12V, G12R) were both stable over time. In three cases with multiple samplings from both the primary and recurrent surgery some mutations (NRAS Q61R, BRAF V600E, SMAD4 R361G) were stable across all samples, while others (KRAS G12V, BRAF G469V) were unstable.
Conclusions
Overall, the majority of cases with detectable somatic mutations showed mutational stability over space and time while one of five cases showed both temporal and spatial mutational instability in presumed drivers of disease. Investigation of additional cases is required to confirm whether mutational heterogeneity in a minority of LGSC is a general phenomenon that should be factored into the design of clinical trials and stratified treatment for this patient population.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-982) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-982
PMCID: PMC4320586  PMID: 25523272
Heterogeneity; Low-grade cancer; Ovarian serous carcinoma; Mutation; KRAS; BRAF; NRAS; SMAD4
13.  Improving Melanoma Classification by Integrating Genetic and Morphologic Features 
PLoS Medicine  2008;5(6):e120.
Background
In melanoma, morphology-based classification systems have not been able to provide relevant information for selecting treatments for patients whose tumors have metastasized. The recent identification of causative genetic alterations has revealed mutations in signaling pathways that offer targets for therapy. Identifying morphologic surrogates that can identify patients whose tumors express such alterations (or functionally equivalent alterations) would be clinically useful for therapy stratification and for retrospective analysis of clinical trial data.
Methodology/Principal Findings
We defined and assessed a panel of histomorphologic measures and correlated them with the mutation status of the oncogenes BRAF and NRAS in a cohort of 302 archival tissues of primary cutaneous melanomas from an academic comprehensive cancer center. Melanomas with BRAF mutations showed distinct morphological features such as increased upward migration and nest formation of intraepidermal melanocytes, thickening of the involved epidermis, and sharper demarcation to the surrounding skin; and they had larger, rounder, and more pigmented tumor cells (all p-values below 0.0001). By contrast, melanomas with NRAS mutations could not be distinguished based on these morphological features. Using simple combinations of features, BRAF mutation status could be predicted with up to 90.8% accuracy in the entire cohort as well as within the categories of the current World Health Organization (WHO) classification. Among the variables routinely recorded in cancer registries, we identified age < 55 y as the single most predictive factor of BRAF mutation in our cohort. Using age < 55 y as a surrogate for BRAF mutation in an independent cohort of 4,785 patients of the Southern German Tumor Registry, we found a significant survival benefit (p < 0.0001) for patients who, based on their age, were predicted to have BRAF mutant melanomas in 69% of the cases. This group also showed a different pattern of metastasis, more frequently involving regional lymph nodes, compared to the patients predicted to have no BRAF mutation and who more frequently displayed satellite, in-transit metastasis, and visceral metastasis (p < 0.0001).
Conclusions
Refined morphological classification of primary melanomas can be used to improve existing melanoma classifications by forming subgroups that are genetically more homogeneous and likely to differ in important clinical variables such as outcome and pattern of metastasis. We expect this information to improve classification and facilitate stratification for therapy as well as retrospective analysis of existing trial data.
Boris Bastian and colleagues present a refined morphological classification of primary melanomas that can be used to improve existing melanoma classifications by defining genetically homogeneous subgroups.
Editors' Summary
Background.
Skin cancers—the most commonly diagnosed cancers worldwide—are usually caused by exposure to ultraviolet (UV) radiation in sunlight. UV radiation damages the DNA in skin cells and can introduce permanent genetic changes (mutations) into the skin cells that allow them to divide uncontrollably to form a tumor, a disorganized mass of cells. Because there are many different cell types in the skin, there are many types of skin cancer. The most dangerous type—melanoma—develops when genetic changes occur in melanocytes, the cells that produce the skin pigment melanin. Although only 4% of skin cancers are melanomas, 80% of skin cancer deaths are caused by melanomas. The first signs of a melanoma are often a change in the appearance or size of a mole (a pigmented skin blemish that is also called a nevus) or a newly arising pigmented lesion that looks different from the other moles (an “ugly duckling”). If this early sign is noticed and the melanoma is diagnosed before it has spread from the skin into other parts of the body, surgery can sometimes provide a cure. But, for more advanced melanomas, the outlook is generally poor. Although radiation therapy, chemotherapy, or immunotherapy (drugs that stimulate the immune system to kill the cancer cells) can prolong the life expectancy of some patients, these treatments often fail to remove all of the cancer cells.
Why Was This Study Done?
Now, however, scientists have identified some of the genetic alterations that cause melanoma. For example, they know that many melanomas carry mutations in either the BRAF gene or the NRAS gene, and that the proteins made from these mutated genes (“oncogenes”) help cancer cells to grow uncontrollably. The hope is that targeted drugs designed to block the activity of oncogenic BRAF or NRAS might stop the growth of those melanomas that make these altered proteins. But how can the patients with these specific tumors be identified in the clinic? The expression of altered proteins is likely to affect the microscopic growth patterns (“histomorphology”) of melanomas. However, the current histomorphology-based classification system for melanomas, which distinguishes four main types of melanoma, does not help clinicians choose the best treatment for their patients. In this study, the researchers have tried to improve melanoma classification by looking for correlations between histomorphological features and genetic alterations in a large collection of melanomas.
What Did the Researchers Do and Find?
The researchers examined several histomorphological features in more than 300 melanoma samples and used statistical methods to correlate these features with the mutation status of BRAF and NRAS in the tumors. They found that some individual histomorphological features were strongly associated with the BRAF (but not the NRAS) mutation status of the tumors. For example, melanomas with BRAF mutations had more melanocytes in the upper layers of the epidermis (the outermost layer of the skin) than did those without BRAF mutations (melanocytes usually live at the bottom of the epidermis). Then, by combining several individual histomorphological features, the researchers built a model that correctly predicted the BRAF mutation status of more than 90% of the melanomas. They also found that, among the variables routinely recorded in cancer registries, being younger than 55 years old was the single most predictive factor for BRAF mutations. Finally, in another large group of patients with melanoma, the researchers found that those patients predicted to have a BRAF mutation on the basis of their age survived longer than those patients predicted not to have a BRAF mutation using the same criterion.
What Do These Findings Mean?
These findings suggest that an improved classification of melanomas that combines an analysis of known genetic factors with histomorphological features might divide melanomas into subgroups that are likely to differ in terms of their clinical outcome and responses to targeted therapies when they become available. Additional studies are needed to investigate whether the histomorphological features identified here can be readily assessed in clinical settings and whether different observers will agree on the scoring of these features. The classification model defined by the researchers also needs to be validated and refined in independent groups of patients. Nevertheless, these findings represent an important first step toward helping clinicians improve outcomes for patients with melanoma.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050120.
A related PLoS Medicine Research in Translation article is available
The MedlinePlus encyclopedia provides information for patients about melanoma
The US National Cancer Institute provides information for patients and health professionals about melanoma (in English and Spanish)
Cancer Research UK also provides detailed information about the causes, diagnosis, and treatment of melanoma
doi:10.1371/journal.pmed.0050120
PMCID: PMC2408611  PMID: 18532874
14.  Using genetics and genomics strategies to personalize therapy for cancer: focus on melanoma 
Biochemical pharmacology  2010;80(5):755-761.
Individualizing therapeutic selection for patients is a major goal in cancer treatment today. This goal is best facilitated by understanding both an individual’s inherited genetic variation and the somatic genetic changes arising during cancer development. Clinical decision making based on inherited genetic variation is done for those patients with cancer susceptibility syndromes and more generally to personalize drug dosing. Personalized medicine based on genetic and genomic changes within tumors is being applied more widely, with increased use of therapies targeted to somatic mutations and amplifications. Somatic mutations associated with resistance also are being used to select against therapies. Somatic point mutation testing being used clinically includes direct sequencing, short sequencing and single nucleotide interrogation. Single amplifications are commonly assessed using FISH or CISH; high through-put assessment of amplifications and deletions is done mainly on a research basis. Melanomas contain complex mutational profiles that allow them to be sub-grouped by their genetic and genomic profile, each of which then can be evaluated pre-clinically to determine their response to targeted therapies. BRAF V600E mutations are the most commonly found in melanoma; specific inhibitors of mutant BRAF have been developed and are currently in clinical trials. In addition, other melanoma sub-groups have been identified genetically, which respond to other inhibitors. These studies focus on somatic genetic changes in cancer, which can be targeted directly by therapies. However in the future, personalized medicine will use a combination of inherited and somatic genetics to select the optimal tailored therapy for each patient.
doi:10.1016/j.bcp.2010.04.017
PMCID: PMC2897934  PMID: 20412787
personalized medicine; melanoma; targeted therapy; mutation detection; somatic genetics
15.  Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma 
PLoS Genetics  2014;10(2):e1004135.
Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.
Author Summary
Cholangiocarcinoma is a cancer that affects the bile ducts. Unfortunately, many patients diagnosed with cholangiocarcinoma have disease that cannot be treated with surgery or has spread to other parts of the body, thus severely limiting treatment options. New advances in drug treatment have enabled treatment of these cancers with “targeted therapy” that exploits an error in the normal functioning of a tumor cell, compared to other cells in the body, thus allowing only tumor cells to be killed by the drug. We sought to identify changes in the genetic material of cholangiocarcinoma patient tumors in order to identify potential errors in cellular functioning by utilizing cutting edge genetic sequencing technology. We identified three patient tumors possessing an FGFR2 gene that was aberrantly fused to another gene. Two of these patients were able to receive targeted therapy for FGFR2 with resulting tumor shrinkage. A fourth tumor contained an error in a gene that controls a very important cellular mechanism in cancer, termed epidermal growth factor pathway (EGFR). This patient received therapy targeting this mechanism and also demonstrated response to treatment. Thus, we have been able to utilize cutting edge technology with targeted drug treatment to personalize medical treatment for cancer in cholangiocarcinoma patients.
doi:10.1371/journal.pgen.1004135
PMCID: PMC3923676  PMID: 24550739
16.  Pilot Studies for Personalized Cancer Medicine: Focusing on the Patient for Treatment Selection 
The Oncologist  2013;18(11):1180-1188.
Pilot studies are paving the way for clinical trials that are designed to empirically test the concept of personalized cancer medicine. This paper describes lessons learned from the first pilot initiatives of personalized cancer medicine and how this knowledge is being used to design novel clinical trials.
Learning Objectives
Describe approaches to individualized cancer treatment that are showing promise in clinical trials.Identify barriers that exist to designing studies that provide individual, rather than aggregate, results.
Advances in diagnostics and targeted therapies during the past decade have changed how oncology is viewed. “Stratified medicine” has emerged from the accumulated evidence garnered from matching targeted therapies with tumor molecular aberrations. Concomitantly, current knowledge derived from large-scale, massively parallel sequencing technologies and global research initiatives such as the international 1000 Genomes Project, the Cancer Genome Atlas, the International Cancer Genome Consortium, and publicly available catalogs such as the Catalogue of Somatic Mutations in Cancer and Genomics of Drug Sensitivity in Cancer have illuminated the utility of understanding the molecular basis of cancer through genome analysis. In addition, multiple collaborative efforts are widening the possibility of universally personalizing cancer care. Although several key challenges of personalized cancer medicine (PCM) need to be addressed, some pilot studies are transforming the way we analyze tumor tissue molecular aberrations, design clinical trials, and measure treatment efficacy. Taken together, these pilot studies are paving the way for clinical trials that are designed to empirically test the concept of PCM. In this paper, we describe lessons learned from the first pilot initiatives of PCM and how this knowledge is being used to design novel clinical trials.
doi:10.1634/theoncologist.2013-0135
PMCID: PMC3825301  PMID: 24136009
Personalized medicine; Genomics; Pilot studies; Phase I clinical trials
17.  Characteristics of Lung Cancers Harboring NRAS Mutations 
Purpose
We sought to determine the frequency and clinical characteristics of patients with lung cancer harboring NRAS mutations. We used preclinical models to identify targeted therapies likely to be of benefit against NRAS mutant lung cancer cells.
Patients and Methods
We reviewed clinical data from patients whose lung cancers were identified at 6 institutions or reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) to harbor NRAS mutations. 6 NRAS mutant cell lines were screened for sensitivity against inhibitors of multiple kinases (i.e. EGFR, ALK, MET, IGF-1R, BRAF, PI3K and MEK).
Results
Among 4562 patients with lung cancers tested, NRAS mutations were present in 30 (0.7%; 95% confidence interval, 0.45% to 0.94%); 28 of these had no other driver mutations. 83% had adenocarcinoma histology with no significant differences in gender. While 95% of patients were former or current smokers, smoking-related G:C>T:A transversions were significantly less frequent in NRAS mutated lung tumors compared to KRAS-mutant NSCLCs (NRAS: 13% (4/30), KRAS: 66% (1772/2733), p<0.00000001). 5 of 6 NRAS mutant cell lines were sensitive to the MEK inhibitors, selumetinib and trametinib, but not to other inhibitors tested.
Conclusion
NRAS mutations define a distinct subset of lung cancers (~1%) with potential sensitivity to MEK inhibitors. While NRAS mutations are more common in current/former smokers, the types of mutations are not those classically associated with smoking.
doi:10.1158/1078-0432.CCR-12-3173
PMCID: PMC3643999  PMID: 23515407
NRAS mutation; EGFR mutation; KRAS mutation; lung cancer; non-small cell lung cancer; driver mutation; MEK inhibitor; erlotinib; gefitinib; crizotinib
18.  Particled Mica, STB-HO has chemopreventive potential via G1 arrest, and inhibition of proliferation and vascular endothelial growth factor receptor 2 in HCT colorectal cancer cells 
Background
Though Mica, a thin and sheet like mineral, has been used as a mineral medicine for treatment of bleeding, dysentery and inflammation in traditional medicine including Ayurveda, the biological evidences of Mica were not clearly elucidated so far. Thus, in the present study, the antitumor mechanism of particled Mica (STB-HO) was examined in colorectal cancers.
Methods
Athymic nude mice were inoculated with HCT116 colon cancer cells and orally administered STB-HO daily for 41 days, and HCT116 and human umbilical vein endothelial cells (HUVECs) were treated with STB-HO for 0 ~ 24 hours to perform immunoblotting, cytotoxicity assay, FACs analysis and measurement of matrix metalloproteinase 9 (MMP-9) secretion and other experiments. Significant differences of all date were evaluated using Student’s t-test and a Turkey-Kramer multiple-comparison post test.
Results
STB-HO significantly suppressed the tumor volume and weight in athymic nude mice inoculated with HCT116 cells at a dose of 100 mg/kg. Thus, the in vivo antitumor mechanism of STB-HO was to elucidated in vitro as well. STB-HO exerted cytotoxicity in HCT116, SW620 and HCT15 colorectal cancer cells. Also, STB-HO increased G1 cell population in a time and concentration dependent manner, enhanced the expression of p21, p27, p53 as cyclin dependent kinase (CDK) inhibitors, attenuated the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and also reduced the production of vascular endothelial growth factor (VEGF) and matrix metalloproteinase 9 (MMP-9) in HCT116 cells. Consistently, STB-HO suppressed the phosphorylation of VEGFR2 in HCT116, SW620 and HCT15 cells. Also, STB-HO inhibited the VEGF mediated proliferation and also attenuated the phosphorylation of VEGFR2 and Akt in human umbilical vein endothelial cells (HUVECs).
Conclusions
Collectively, these findings suggest that STB-HO has chemopreventive potential via G1 arrest and inhibition of proliferation and VEGFR2 in HCT116 colorectal cancer cells.
doi:10.1186/1472-6882-13-189
PMCID: PMC3765551  PMID: 23883349
Mica; VEGFR; Colon cancer; G1 arrest; Cell proliferation
19.  Concurrent AURKA and MYCN Gene Amplifications Are Harbingers of Lethal Treatment-Related Neuroendocrine Prostate Cancer1 2 
Neoplasia (New York, N.Y.)  2013;15(1):1-10.
Neuroendocrine prostate cancer (NEPC), also referred to as anaplastic prostate cancer, is a lethal tumor that most commonly arises in late stages of prostate adenocarcinoma (PCA) with predilection to metastasize to visceral organs. In the current study, we explore for evidence that Aurora kinase A (AURKA) and N-myc (MYCN) gene abnormalities are harbingers of treatment-related NEPC (t-NEPC). We studied primary prostate tissue from 15 hormone naïve PCAs, 51 castration-resistant prostate cancers, and 15 metastatic tumors from 72 patients at different stages of disease progression to t-NEPC, some with multiple specimens. Histologic evaluation, immunohistochemistry, and fluorescence in situ hybridization were performed and correlated with clinical variables. AURKA amplification was identified in overall 65% of PCAs (hormone naïve and treated) from patients that developed t-NEPC and in 86% of metastases. Concurrent amplification of MYCN was present in 70% of primary PCAs, 69% of treated PCAs, and 83% of metastases. In contrast, in an unselected PCA cohort, AURKA and MYCN amplifications were identified in only 5% of 169 cases. When metastatic t-NEPC was compared to primary PCA from the same patients, there was 100% concordance of ERG rearrangement, 100% concordance of AURKA amplification, and 60% concordance of MYCN amplification. In tumors with mixed features, there was also 100% concordance of ERG rearrangement and 94% concordance of AURKA and MYCN co-amplification between areas of NEPC and adenocarcinoma. AURKA and MYCN amplifications may be prognostic and predictive biomarkers, as they are harbingers of tumors at risk of progressing to t-NEPC after hormonal therapy.
PMCID: PMC3556934  PMID: 23358695
20.  Intra-tumor Genetic Heterogeneity and Mortality in Head and Neck Cancer: Analysis of Data from The Cancer Genome Atlas 
PLoS Medicine  2015;12(2):e1001786.
Background
Although the involvement of intra-tumor genetic heterogeneity in tumor progression, treatment resistance, and metastasis is established, genetic heterogeneity is seldom examined in clinical trials or practice. Many studies of heterogeneity have had prespecified markers for tumor subpopulations, limiting their generalizability, or have involved massive efforts such as separate analysis of hundreds of individual cells, limiting their clinical use. We recently developed a general measure of intra-tumor genetic heterogeneity based on whole-exome sequencing (WES) of bulk tumor DNA, called mutant-allele tumor heterogeneity (MATH). Here, we examine data collected as part of a large, multi-institutional study to validate this measure and determine whether intra-tumor heterogeneity is itself related to mortality.
Methods and Findings
Clinical and WES data were obtained from The Cancer Genome Atlas in October 2013 for 305 patients with head and neck squamous cell carcinoma (HNSCC), from 14 institutions. Initial pathologic diagnoses were between 1992 and 2011 (median, 2008). Median time to death for 131 deceased patients was 14 mo; median follow-up of living patients was 22 mo. Tumor MATH values were calculated from WES results. Despite the multiple head and neck tumor subsites and the variety of treatments, we found in this retrospective analysis a substantial relation of high MATH values to decreased overall survival (Cox proportional hazards analysis: hazard ratio for high/low heterogeneity, 2.2; 95% CI 1.4 to 3.3). This relation of intra-tumor heterogeneity to survival was not due to intra-tumor heterogeneity’s associations with other clinical or molecular characteristics, including age, human papillomavirus status, tumor grade and TP53 mutation, and N classification. MATH improved prognostication over that provided by traditional clinical and molecular characteristics, maintained a significant relation to survival in multivariate analyses, and distinguished outcomes among patients having oral-cavity or laryngeal cancers even when standard disease staging was taken into account. Prospective studies, however, will be required before MATH can be used prognostically in clinical trials or practice. Such studies will need to examine homogeneously treated HNSCC at specific head and neck subsites, and determine the influence of cancer therapy on MATH values. Analysis of MATH and outcome in human-papillomavirus-positive oropharyngeal squamous cell carcinoma is particularly needed.
Conclusions
To our knowledge this study is the first to combine data from hundreds of patients, treated at multiple institutions, to document a relation between intra-tumor heterogeneity and overall survival in any type of cancer. We suggest applying the simply calculated MATH metric of heterogeneity to prospective studies of HNSCC and other tumor types.
In this study, Rocco and colleagues examine data collected as part of a large, multi-institutional study, to validate a measure of tumor heterogeneity called MATH and determine whether intra-tumor heterogeneity is itself related to mortality.
Editors’ Summary
Background
Normally, the cells in human tissues and organs only reproduce (a process called cell division) when new cells are needed for growth or to repair damaged tissues. But sometimes a cell somewhere in the body acquires a genetic change (mutation) that disrupts the control of cell division and allows the cell to grow continuously. As the mutated cell grows and divides, it accumulates additional mutations that allow it to grow even faster and eventually from a lump, or tumor (cancer). Other mutations subsequently allow the tumor to spread around the body (metastasize) and destroy healthy tissues. Tumors can arise anywhere in the body—there are more than 200 different types of cancer—and about one in three people will develop some form of cancer during their lifetime. Many cancers can now be successfully treated, however, and people often survive for years after a diagnosis of cancer before, eventually, dying from another disease.
Why Was This Study Done?
The gradual acquisition of mutations by tumor cells leads to the formation of subpopulations of cells, each carrying a different set of mutations. This “intra-tumor heterogeneity” can produce tumor subclones that grow particularly quickly, that metastasize aggressively, or that are resistant to cancer treatments. Consequently, researchers have hypothesized that high intra-tumor heterogeneity leads to worse clinical outcomes and have suggested that a simple measure of this heterogeneity would be a useful addition to the cancer staging system currently used by clinicians for predicting the likely outcome (prognosis) of patients with cancer. Here, the researchers investigate whether a measure of intra-tumor heterogeneity called “mutant-allele tumor heterogeneity” (MATH) is related to mortality (death) among patients with head and neck squamous cell carcinoma (HNSCC)—cancers that begin in the cells that line the moist surfaces inside the head and neck, such as cancers of the mouth and the larynx (voice box). MATH is based on whole-exome sequencing (WES) of tumor and matched normal DNA. WES uses powerful DNA-sequencing systems to determine the variations of all the coding regions (exons) of the known genes in the human genome (genetic blueprint).
What Did the Researchers Do and Find?
The researchers obtained clinical and WES data for 305 patients who were treated in 14 institutions, primarily in the US, after diagnosis of HNSCC from The Cancer Genome Atlas, a catalog established by the US National Institutes of Health to map the key genomic changes in major types and subtypes of cancer. They calculated tumor MATH values for the patients from their WES results and retrospectively analyzed whether there was an association between the MATH values and patient survival. Despite the patients having tumors at various subsites and being given different treatments, every 10% increase in MATH value corresponded to an 8.8% increased risk (hazard) of death. Using a previously defined MATH-value cutoff to distinguish high- from low-heterogeneity tumors, compared to patients with low-heterogeneity tumors, patients with high-heterogeneity tumors were more than twice as likely to die (a hazard ratio of 2.2). Other statistical analyses indicated that MATH provided improved prognostic information compared to that provided by established clinical and molecular characteristics and human papillomavirus (HPV) status (HPV-positive HNSCC at some subsites has a better prognosis than HPV-negative HNSCC). In particular, MATH provided prognostic information beyond that provided by standard disease staging among patients with mouth or laryngeal cancers.
What Do These Findings Mean?
By using data from more than 300 patients treated at multiple institutions, these findings validate the use of MATH as a measure of intra-tumor heterogeneity in HNSCC. Moreover, they provide one of the first large-scale demonstrations that intra-tumor heterogeneity is clinically important in the prognosis of any type of cancer. Before the MATH metric can be used in clinical trials or in clinical practice as a prognostic tool, its ability to predict outcomes needs to be tested in prospective studies that examine the relation between MATH and the outcomes of patients with identically treated HNSCC at specific head and neck subsites, that evaluate the use of MATH for prognostication in other tumor types, and that determine the influence of cancer treatments on MATH values. Nevertheless, these findings suggest that MATH should be considered as a biomarker for survival in HNSCC and other tumor types, and raise the possibility that clinicians could use MATH values to decide on the best treatment for individual patients and to choose patients for inclusion in clinical trials.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001786.
The US National Cancer Institute (NCI) provides information about cancer and how it develops and about head and neck cancer (in English and Spanish)
Cancer Research UK, a not-for-profit organization, provides general information about cancer and how it develops, and detailed information about head and neck cancer; the Merseyside Regional Head and Neck Cancer Centre provides patient stories about HNSCC
Wikipedia provides information about tumor heterogeneity, and about whole-exome sequencing (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
Information about The Cancer Genome Atlas is available
A PLOS Blog entry by Jessica Wapner explains more about MATH
doi:10.1371/journal.pmed.1001786
PMCID: PMC4323109  PMID: 25668320
21.  Routine Multiplex Mutational Profiling of Melanomas Enables Enrollment in Genotype-Driven Therapeutic Trials 
PLoS ONE  2012;7(4):e35309.
Purpose
Knowledge of tumor mutation status is becoming increasingly important for the treatment of cancer, as mutation-specific inhibitors are being developed for clinical use that target only sub-populations of patients with particular tumor genotypes. Melanoma provides a recent example of this paradigm. We report here development, validation, and implementation of an assay designed to simultaneously detect 43 common somatic point mutations in 6 genes (BRAF, NRAS, KIT, GNAQ, GNA11, and CTNNB1) potentially relevant to existing and emerging targeted therapies specifically in melanoma.
Methods
The test utilizes the SNaPshot method (multiplex PCR, multiplex primer extension, and capillary electrophoresis) and can be performed rapidly with high sensitivity (requiring 5–10% mutant allele frequency) and minimal amounts of DNA (10–20 nanograms). The assay was validated using cell lines, fresh-frozen tissue, and formalin-fixed paraffin embedded tissue. Clinical characteristics and the impact on clinical trial enrollment were then assessed for the first 150 melanoma patients whose tumors were genotyped in the Vanderbilt molecular diagnostics lab.
Results
Directing this test to a single disease, 90 of 150 (60%) melanomas from sites throughout the body harbored a mutation tested, including 57, 23, 6, 3, and 2 mutations in BRAF, NRAS, GNAQ, KIT, and CTNNB1, respectively. Among BRAF V600 mutations, 79%, 12%, 5%, and 4% were V600E, V600K, V600R, and V600M, respectively. 23 of 54 (43%) patients with mutation harboring metastatic disease were subsequently enrolled in genotype-driven trials.
Conclusion
We present development of a simple mutational profiling screen for clinically relevant mutations in melanoma. Adoption of this genetically-informed approach to the treatment of melanoma has already had an impact on clinical trial enrollment and prioritization of therapy for patients with the disease.
doi:10.1371/journal.pone.0035309
PMCID: PMC3335021  PMID: 22536370
22.  Genetic and Structural Variation in the Gastric Cancer Kinome Revealed through Targeted Deep Sequencing 
Cancer research  2010;71(1):29-39.
Genetic alterations in kinases have been linked to multiple human pathologies. To explore the landscape of kinase genetic variation in gastric cancer (GC), we used targeted, paired-end deep sequencing to analyze 532 protein and phosphoinositide kinases in 14 GC cell lines. We identified 10,604 single-nucleotide variants (SNV) in kinase exons including greater than 300 novel nonsynonymous SNVs. Family-wise analysis of the nonsynonymous SNVs revealed a significant enrichment in mitogen-activated protein kinase (MAPK)-related genes (P < 0.01), suggesting a preferential involvement of this kinase family in GC. A potential antioncogenic role for MAP2K4, a gene exhibiting recurrent alterations in 2 lines, was functionally supported by siRNA knockdown and overexpression studies in wild-type and MAP2K4 variant lines. The deep sequencing data also revealed novel, large-scale structural rearrangement events involving kinases including gene fusions involving CDK12 and the ERBB2 receptor tyrosine kinase in MKN7 cells. Integrating SNVs and copy number alterations, we identified Hs746T as a cell line exhibiting both splice-site mutations and genomic amplification of MET, resulting in MET protein overexpression. When applied to primary GCs, we identified somatic mutations in 8 kinases, 4 of which were recurrently altered in both primary tumors and cell lines (MAP3K6, STK31, FER, and CDKL5). These results demonstrate that how targeted deep sequencing approaches can deliver unprecedented multilevel characterization of a medically and pharmacologically relevant gene family. The catalog of kinome genetic variants assembled here may broaden our knowledge on kinases and provide useful information on genetic alterations in GC.
doi:10.1158/0008-5472.CAN-10-1749
PMCID: PMC3719377  PMID: 21097718
23.  Mutational Analysis of EGFR and Related Signaling Pathway Genes in Lung Adenocarcinomas Identifies a Novel Somatic Kinase Domain Mutation in FGFR4 
PLoS ONE  2007;2(5):e426.
Background
Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.
Methodology/Principal Findings
We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC) specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16) of FGFR4 (Glu681Lys), identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr) in a lung adenocarcinoma cell line.
Conclusions/Significance
This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.
doi:10.1371/journal.pone.0000426
PMCID: PMC1855985  PMID: 17487277
24.  A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes 
BMC Cancer  2010;10:101.
Background
An increasing number of studies show that genetic markers can aid in refining prognostic information and predicting the benefit from systemic therapy. Our goal was to develop a high throughput, cost-effective and simple methodology for the detection of clinically relevant hot spot mutations in colon cancer.
Methods
The Maldi-Tof mass spectrometry platform and OncoCarta panel from Sequenom were used to profile 239 colon cancers and 39 metastatic lymph nodes from NSABP clinical trial C-07 utilizing routinely processed FFPET (formalin-fixed paraffin-embedded tissue).
Results
Among the 238 common hot-spot cancer mutations in 19 genes interrogated by the OncoCarta panel, mutations were detected in 7 different genes at 26 different nucleotide positions in our colon cancer samples. Twenty-four assays that detected mutations in more than 1% of the samples were reconfigured into a new multiplexed panel, termed here as ColoCarta. Mutation profiling was repeated on 32 mutant samples using ColoCarta and the results were identical to results with OncoCarta, demonstrating that this methodology was reproducible. Further evidence demonstrating the validity of the data was the fact that the mutation frequencies of the most common colon cancer mutations were similar to the COSMIC (Catalog of Somatic Mutations in Cancer) database. The frequencies were 43.5% for KRAS, 20.1% for PIK3CA, and 12.1% for BRAF. In addition, infrequent mutations in NRAS, AKT1, ABL1, and MET were detected. Mutation profiling of metastatic lymph nodes and their corresponding primary tumors showed that they were 89.7% concordant. All mutations found in the lymph nodes were also found in the corresponding primary tumors, but in 4 cases a mutation was present in the primary tumor only.
Conclusions
This study describes a high throughput technology that can be used to interrogate DNAs isolated from routinely processed FFPET and identifies the specific mutations that are common to colon cancer. The development of this technology and the ColoCarta panel may provide a mechanism for rapid screening of mutations in clinically relevant genes like KRAS, PIK3CA, and BRAF.
Trial Registration
ClinicalTrials.gov: NSABP C-07: NCT00004931
doi:10.1186/1471-2407-10-101
PMCID: PMC2845115  PMID: 20233444
25.  DNA-Mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT): A Catalog of Clinically Relevant Cancer Mutations to Enable Genome-Directed Anticancer Therapy 
Purpose
Tumor gene mutation status is becoming increasingly important in the treatment of patients with cancer. A comprehensive catalog of tumor gene–response outcomes from individual patients is needed, especially for actionable mutations and rare variants. We created a proof-of-principle database [DNA-mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT)], starting with lung cancer-associated EGF receptor (EGFR) mutations, to provide a resource for clinicians to prioritize treatment decisions based on a patient’s tumor mutations at the point of care.
Methods
A systematic search of literature published between June 2005 and May 2011 was conducted through PubMed to identify patient-level, mutation–drug response in patients with non–small cell lung cancer (NSCLC) with EGFR mutant tumors. Minimum inclusion criteria included patient’s EGFR mutation, corresponding treatment, and an associated radiographic outcome.
Results
A total of 1,021 patients with 1,070 separate EGFR tyrosine kinase inhibitor therapy responses from 116 different publications were included. About 188 unique EGFR mutations occurring in 207 different combinations were identified: 149 different mutation combinations were associated with disease control and 42 were associated with disease progression. Four secondary mutations, in 16 different combinations, were associated with acquired resistance.
Conclusions
As tumor sequencing becomes more common in oncology, this comprehensive electronic catalog can enable genome-directed anticancer therapy. DIRECT will eventually encompass all tumor mutations associated with clinical outcomes on targeted therapies. Users can make specific queries at http:// www.mycancergenome.org/about/direct to obtain clinically relevant data associated with various mutations.
doi:10.1158/1078-0432.CCR-12-1894
PMCID: PMC4121886  PMID: 23344264

Results 1-25 (1146720)