Search tips
Search criteria

Results 1-25 (1038776)

Clipboard (0)

Related Articles

1.  Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand 
Bioconjugate Chemistry  2014;25(10):1847-1854.
The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities.
PMCID: PMC4198106  PMID: 25248077
2.  Expression and functional role of adenosine receptors in regulating inflammatory responses in human synoviocytes 
British Journal of Pharmacology  2010;160(1):101-115.
Background and purpose:
Adenosine is an endogenous modulator, interacting with four G-protein coupled receptors (A1, A2A, A2B and A3) and acts as a potent inhibitor of inflammatory processes in several tissues. So far, the functional effects modulated by adenosine receptors on human synoviocytes have not been investigated in detail. We evaluated mRNA, the protein levels, the functional role of adenosine receptors and their pharmacological modulation in human synoviocytes.
Experimental approach:
mRNA, Western blotting, saturation and competition binding experiments, cyclic AMP, p38 mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB activation, tumour necrosis factor α (TNF-α) and interleukin-8 (IL-8) release were assessed in human synoviocytes isolated from patients with osteoarthritis.
Key results:
mRNA and protein for A1, A2A, A2B and A3 adenosine receptors are expressed in human synoviocytes. Standard adenosine agonists and antagonists showed affinity values in the nanomolar range and were coupled to stimulation or inhibition of adenylyl cyclase. Activation of A2A and A3 adenosine receptors inhibited p38 MAPK and NF-κB pathways, an effect abolished by selective adenosine antagonists. A2A and A3 receptor agonists decreased TNF-α and IL-8 production. The phosphoinositide 3-kinase or Gs pathways were involved in the functional responses of A3 or A2A adenosine receptors. Synoviocyte A1 and A2B adenosine receptors were not implicated in the inflammatory process whereas stimulation of A2A and A3 adenosine receptors was closely associated with a down-regulation of the inflammatory status.
Conclusions and implications:
These results indicate that A2A and A3 adenosine receptors may represent a potential target in therapeutic modulation of joint inflammation.
PMCID: PMC2860211  PMID: 20331607
adenosine receptors; human synoviocytes; mRNA; Western blotting; receptor binding; cAMP; MAPK p38; NF-κB; TNF-α; IL-8
3.  Pharmacological analysis of the activity of the adenosine uptake inhibitor, dipyridamole, on the sinoatrial and atrioventricular nodes of the guinea-pig 
British Journal of Pharmacology  1998;124(4):729-741.
Dipyridamole potentiates the effects of adenosine on the heart by inhibiting adenosine uptake. The effects of dipyridamole on both adenosine and N-ethylcarboxamidoadenosine (NECA) concentration-effect (E/[A]) curves were compared on the AV node, in guinea-pig isolated perfused hearts, and on the SA node, in isolated right atria, by measuring dromotropic and chronotropic responses, respectively. In the absence of dipyridamole, adenosine was significantly more potent on the AV node than SA node (AV p[A]50=4.95±0.10, SA p[A]50=3.62±0.10). In contrast, NECA and adenosine in the presence of dipyridamole were approximately equiactive in the two assays (NECA: AV p[A]50=7.07±0.07; SA p[A]50=7.30±0.08; adenosine: AV p[A]50=6.49±0.08; SA p[A]50=6.27±0.05). Dipyridamole was significantly more potent in enhancing the effects of adenosine on the SA node than on the AV node (pKi values estimated by Kenakin's method (1981): AV node=8.18±0.14; SA node=8.75±0.08).The difference in pKi values did not appear to be due to dipyridamole expressing other actions because concentrations of dipyridamole which saturated the adenosine transporter had no effect on the NECA E/[A] curves in either assay. However, the test of another assumption of Kenakin's method, that adenosine taken up into cells is pharmacologically inactive, failed on the AV node assay because a significant potentiating interaction was found between adenosine and NECA. The interaction was concentration-dependent, reciprocal to the extent that pre-incubation with either agonist potentiated the other and was concluded to be due to an intracellular action of adenosine as the potentiation disappeared in the presence of dipyridamole.An explanatory model was developed to account for the data obtained using existing pharmacological concepts of ligand action in isolated tissue bioassays. In the model, adenosine, but not NECA, was assumed to be subject to saturable agonist uptake, an uptake which was competitively blocked by dipyridamole. Adenosine and NECA were assumed to act extracellularly at adenosine A1-receptors. In the AV node, but not the SA node, the adenosine transported into the cells was assumed to potentiate the effects of adenosine A1-receptor activation. For the AV node assay, the model predicted that potentiation of adenosine by uptake blockade is offset by a simultaneous decrease in potentiation due to the intracellular action of adenosine. All of the experimental data obtained in the study could be accounted for by the model including the apparent differences in potency of adenosine in the absence of dipyridamole and the pKi values for dipyridamole.
PMCID: PMC1565447  PMID: 9690865
Atrioventricular node; sinoatrial node; adenosine receptor; adenosine uptake
4.  Adenosine signaling in normal and sickle erythrocytes and beyond 
Microbes and infection / Institut Pasteur  2012;14(10):10.1016/j.micinf.2012.05.005.
Sickle cell disease (SCD) is a debilitating hemolytic genetic disorder with high morbidity and mortality affecting millions of individuals worldwide. Although SCD was discovered more than a century ago, no effective mechanism-based prevention and treatment are available due to poorly understood molecular basis of sickling, the fundamental pathogenic process of the disease. SCD patients constantly face hypoxia. One of the best-known signaling molecules to be induced under hypoxic conditions is adenosine. Recent studies demonstrate that hypoxia-mediated elevated adenosine signaling plays an important role in normal erythrocyte physiology. In contrast, elevated adenosine signaling contributes to sickling and multiple life threatening complications including tissue damage, pulmonary dysfunction and priapism. Here, we summarize recent research on the role of adenosine signaling in normal and sickle erythrocytes, progression of the disease and therapeutic implications.
In normal erythrocytes, both genetic and pharmacological studies demonstrate that adenosine can enhance 2,3-bisphosphoglycerate (2,3-BPG) production via A2B receptor (ADORA2B) activation, suggesting that elevated adenosine has an unrecognized role in normal erythrocytes to promote O2 release and prevent acute ischemic tissue injury. However, in sickle erythrocytes, the beneficial role of excessive adenosine-mediated 2,3-BPG induction becomes detrimental by promoting deoxygenation, polymerization of sickle hemoglobin and subsequent sickling. Additionally, adenosine signaling via the A2A receptor (ADORA2A) on invariant natural killer T (iNKT) cells inhibits iNKT cell activation and attenuates pulmonary dysfunction in SCD mice. Finally, elevated adenosine coupled with ADORA2BR activation is responsible for priapism, a dangerous complication seen in SCD.
Overall, the research reviewed here reveals a differential role of elevated adenosine in normal erythrocytes, sickle erythrocytes, iNK cells and progression of disease. Thus, adenosine signaling represents a potentially important therapeutic target for the treatment and prevention of disease.
PMCID: PMC3842013  PMID: 22634345
sickle cell disease; malaria; adenosine; adenosine A2B receptor; 2,3-diphosphoglycerate; adenosine deaminase
5.  Treating lung inflammation with agonists of the adenosine A2A receptor: promises, problems and potential solutions 
British Journal of Pharmacology  2008;155(4):463-474.
Adenosine A2A receptor agonists may be important regulators of inflammation. Such conclusions have come from studies demonstrating that, (i) adenosine A2A agonists exhibit anti-inflammatory properties in vitro and in vivo, (ii) selective A2A antagonists enhance inflammation in vivo and, (iii) knock outs of this receptor aggravate inflammation in a wide variety of in vivo models. Inflammation is a hallmark of asthma and COPD and adenosine has long been suggested to be involved in disease pathology. Two recent publications, however, suggested that an inhaled adenosine A2A receptor agonist (GW328267X) did not affect either the early and late asthmatic response or symptoms associated with allergic rhinitis suggesting that the rationale for treating inflammation with an adenosine A2A receptor agonist may be incorrect. A barrier to fully investigating the role of adenosine A2A receptor agonists as anti-inflammatory agents in the lung is the side effect profile due to systemic exposure, even with inhalation. Unless strategies can be evolved to limit the systemic exposure of inhaled adenosine A2A receptor agonists, the promise of treating lung inflammation with such agents may never be fully explored. Using strategies similar to that devised to improve the therapeutic index of inhaled corticosteroids, UK371,104 was identified as a selective agonist of the adenosine A2A receptor that has a lung focus of pharmacological activity following delivery to the lung in a pre clinical in vivo model of lung function. Lung-focussed agents such as UK371,104 may be suitable for assessing the anti-inflammatory potential of inhaled adenosine A2A receptor agonists.
PMCID: PMC2579671  PMID: 18846036
lung inflammation; adenosine receptors; adenosine A2A receptor agonists; inhalation UK371,104
6.  John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors☆ 
We establish structure activity relationships of extracellular nucleosides and nucleotides at G protein-coupled receptors (GPCRs), e.g. adenosine receptors (ARs) and P2Y receptors (P2YRs), respectively. We synthesize selective agents for use as pharmacological probes and potential therapeutic agents (e.g. A3AR agonists for neuropathic pain). Detailed structural information derived from the X-ray crystallographic structures within these families enables the design of novel ligands, guides modification of known agonists and antagonists, and helps predict polypharmacology. Structures were recently reported for the P2Y12 receptor (P2Y12R), an anti-thrombotic target. Comparison of agonist-bound and antagonist-bound P2Y12R indicates unprecedented structural plasticity in the outer portions of the transmembrane (TM) domains and the extracellular loops. Nonphosphate-containing ligands of the P2YRs, such as the selective P2Y14R antagonist PPTN, are desired for bioavailability and increased stability. Also, A2AAR structures are effectively applied to homology modeling of closely related A1AR and A3AR, which are not yet crystallized. Conformational constraint of normally flexible ribose with bicyclic analogues increased the ligand selectivity. Comparison of rigid A3AR agonist congeners allows the exploration of interaction of specific regions of the nucleoside analogues with the target and off-target GPCRs, such as biogenic amine receptors. Molecular modeling predicts plasticity of the A3AR at TM2 to accommodate highly rigidified ligands. Novel fluorescent derivatives of high affinity GPCR ligands are useful tool compounds for characterization of receptors and their oligomeric assemblies. Fluorescent probes are useful for characterization of GPCRs in living cells by flow cytometry and other methods. Thus, 3D knowledge of receptor binding and activation facilitates drug discovery.
PMCID: PMC4423517  PMID: 25973142
GPCR; Medicinal chemistry; Purines; X-ray structures; Nucleosides; Nucleotides; Polypharmacology
7.  Adenosine and the Auditory System 
Current Neuropharmacology  2009;7(3):246-256.
Adenosine is a signalling molecule that modulates cellular activity in the central nervous system and peripheral organs via four G protein-coupled receptors designated A1, A2A, A2B, and A3. This review surveys the literature on the role of adenosine in auditory function, particularly cochlear function and its protection from oxidative stress. The specific tissue distribution of adenosine receptors in the mammalian cochlea implicates adenosine signalling in sensory transduction and auditory neurotransmission although functional studies have demonstrated that adenosine stimulates cochlear blood flow, but does not alter the resting and sound-evoked auditory potentials. An interest in a potential otoprotective role for adenosine has recently evolved, fuelled by the capacity of A1 adenosine receptors to prevent cochlear injury caused by acoustic trauma and ototoxic drugs. The balance between A1 and A2A receptors is conceived as critical for cochlear response to oxidative stress, which is an underlying mechanism of the most common inner ear pathologies (e.g. noise-induced and age-related hearing loss, drug ototoxicity). Enzymes involved in adenosine metabolism, adenosine kinase and adenosine deaminase, are also emerging as attractive targets for controlling oxidative stress in the cochlea. Other possible targets include ectonucleotidases that generate adenosine from extracellular ATP, and nucleoside transporters, which regulate adenosine concentrations on both sides of the plasma membrane. Developments of selective adenosine receptor agonists and antagonists that can cross the blood-cochlea barrier are bolstering efforts to develop therapeutic interventions aimed at ameliorating cochlear injury. Manipulations of the adenosine signalling system thus hold significant promise in the therapeutic management of oxidative stress in the cochlea.
PMCID: PMC2769008  PMID: 20190966
Adenosine; adenosine receptors; cochlea; hearing; deafness; oxidative stress; noise; ototoxicity.
8.  Adenosine A2A receptors in Parkinson’s disease treatment 
Purinergic Signalling  2008;4(4):305-312.
Latest results on the action of adenosine A2A receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson’s disease. Basal ganglia possess high levels of adenosine A2A receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra. Experiments with animal models of Parkinson’s disease indicate that adenosine A2A receptors are strongly involved in the regulation of the central nervous system. Co-localization of adenosine A2A and dopaminergic D2 receptors in striatum creates a milieu for antagonistic interaction between adenosine and dopamine. The experimental data prove that the best improvement of mobility in patients with Parkinson’s disease could be achieved with simultaneous activation of dopaminergic D2 receptors and inhibition of adenosine A2A receptors. In animal models of Parkinson’s disease, the use of selective antagonists of adenosine A2A receptors, such as istradefylline, led to the reversibility of movement dysfunction. These compounds might improve mobility during both monotherapy and co-administration with L-DOPA and dopamine receptor agonists. The use of adenosine A2A receptor antagonists in combination therapy enables the reduction of the L-DOPA doses, as well as a reduction of side effects. In combination therapy, the adenosine A2A receptor antagonists might be used in both moderate and advanced stages of Parkinson’s disease. The long-lasting administration of adenosine A2A receptor antagonists does not decrease the patient response and does not cause side effects typical of L-DOPA therapy. It was demonstrated in various animal models that inhibition of adenosine A2A receptors not only decreases the movement disturbance, but also reveals a neuroprotective activity, which might impede or stop the progression of the disease. Recently, clinical trials were completed on the use of istradefylline (KW-6002), an inhibitor of adenosine A2A receptors, as an anti-Parkinson drug.
PMCID: PMC2583202  PMID: 18438720
Parkinson’s disease; Adenosine; Adenosine receptors; Dopamine receptors; Neuroprotection
9.  Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization 
British Journal of Pharmacology  2014;171(5):1102-1113.
The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs-protein-coupled adenosine receptors (A2A and A2B), or inhibit AC activity, in the case of Gi/o-coupled adenosine receptors (A1 and A3). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1- and A3-receptor allosteric modulators on in vivo pharmacology.
Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit
PMCID: PMC3952791  PMID: 24024783
adenosine; allosterism; receptor; PCR; dimerization; biased signalling
10.  Adenosine: An Old Drug Newly Discovered 
Anesthesiology  2009;111(4):904-915.
Over decades, anesthesiologists have used intravenous adenosine as mainstay therapy for diagnosing or treating supraventricular tachycardia in the perioperative setting. More recently, specific adenosine receptor therapeutics or gene-targeted mice deficient in extracellular adenosine production or individual adenosine receptors became available. These models enabled physicians and scientists to learn more about the biological functions of extracellular nucleotide metabolism and adenosine signaling. Such functions include specific signaling effects through adenosine receptors expressed by many mammalian tissues, for example vascular endothelia, myocytes, heptocytes, intestinal epithelia or immune cells. At present, pharmacological approaches to modulate extracellular adenosine signaling are evaluated for their potential use in perioperative medicine, including attenuation of acute lung injury, renal, intestinal, hepatic and myocardial ischemia, or vascular leakage. If these laboratory studies can be translated into clinical practice, adenosine receptor based therapeutics may become an integral pharmacological component of daily anesthesiology practice.
PMCID: PMC2797575  PMID: 19741501
11.  Adenosine receptors in rat basophilic leukaemia cells: transductional mechanisms and effects on 5-hydroxytryptamine release. 
British Journal of Pharmacology  1992;105(2):405-411.
1. The presence of adenosine receptors linked to adenylate cyclase activity and their functional role in calcium-evoked 5-hydroxytryptamine (5-HT) release was investigated in rat basophilic leukaemia (RBL) cells, a widely used model for studying the molecular mechanisms responsible for stimulus-secretion coupling. 2. In [3H]-5-HT-loaded cells triggered to release by the calcium ionophore A23187, a biphasic modulation of 5-HT secretion was induced by adenosine analogues, with inhibition of stimulated release at nM and potentiation at microM concentrations, suggesting the presence of adenosine receptor subtypes mediating opposite effects on calcium-dependent release. This was also confirmed by results obtained with other agents interfering with adenosine pharmacology, such as adenosine deaminase and the non-selective A1/A2 antagonist 8-phenyl-theophylline. 3. Similar biphasic dose-response curves were obtained with a variety of adenosine analogues on basal adenylate cyclase activity in RBL cells, with inhibition and stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production at nM and microM concentrations, respectively. The rank order of potency of adenosine analogues for inhibition and stimulation of adenylate cyclase activity and the involvement of G-proteins in modulation of cyclic AMP levels suggested the presence of cyclase-linked A1 high-affinity and A2-like low-affinity adenosine receptor subtypes. However, the atypical antagonism profile displayed by adenosine receptor xanthine antagonists on cyclase stimulation suggested that the A2-like receptor expressed by RBL cells might represent a novel cyclase-coupled A2 receptor subtype.(ABSTRACT TRUNCATED AT 250 WORDS)
PMCID: PMC1908671  PMID: 1313728
12.  Functional characterization of an endogenous Xenopus oocyte adenosine receptor 
British Journal of Pharmacology  2002;135(2):313-322.
To investigate the effects of adenosine on endogenous Xenopus oocyte receptors, we analysed defolliculated oocytes injected with mRNAs for the G protein-activated inwardly rectifying K+ (GIRK) channels.In oocytes injected with mRNAs for either GIRK1/GIRK2 or GIRK1/GIRK4 subunits, application of adenosine or ATP reversibly induced inward K+ currents, although ATP was less potent than adenosine. The responses were attenuated by caffeine, a non-selective adenosine receptor antagonist. Furthermore, in uninjected oocytes from the same donor, adenosine produced no significant current.The endogenous receptor was activated by two selective A1 adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and N6-cyclohexyladenosine (CHA), and antagonized by a selective A1 adenosine receptor antagonist, 1,3-dipropyl-8-cyclopenylxanthine (DPCPX) at moderate nanomolar concentrations, but insensitive to micromolar concentrations of selective A2A and A3 adenosine receptor agonists, 2-[p-(2-carbonyl-ethyl)-phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680) and N6-(3-iodobenzyl)-5′-(N-methylcarbamoyl)adenosine (IB-MECA), respectively. However, the pharmacological characteristics of the receptor were different from those of the cloned Xenopus A1 adenosine receptor and previously proposed adenosine receptors.The adenosine-induced GIRK currents were abolished by injection of pertussis toxin and CPA inhibited forskolin-stimulated cyclic AMP accumulation.We conclude that an adenosine receptor on the Xenopus oocyte membrane can activate GIRK channels and inhibit adenylyl cyclase via Gi/o proteins. Moreover, our results suggest the existence of an endogenous adenosine receptor with the unique pharmacological characteristics. As the receptor was activated by nanomolar concentrations of adenosine, which is a normal constituent of extracellular fluid, the receptor may be involved in some effects through the Gi/o protein signalling pathways in ovarian physiology.
PMCID: PMC1573140  PMID: 11815366
Adenosine receptor; Gi/o protein; G protein-activated inwardly rectifying K+ (GIRK) channel; Xenopus oocyte
13.  Effect of A2B Adenosine Receptor Gene Ablation on Proinflammatory Adenosine Signaling in Mast Cells1 
Pharmacological studies suggest that A2B adenosine receptors mediate proinflammatory effects of adenosine in human mast cells in part by up-regulating production of Th2 cytokines and angiogenic factors. This concept has been recently challenged by the finding that mast cells cultured from bone marrow-derived mast cells (BMMCs) of A2B knockout mice display an enhanced degranulation in response to FcεRI stimulation. This finding was interpreted as evidence of anti-inflammatory functions of A2B receptors and it was suggested that antagonists with inverse agonist activity could promote activation of mast cells. In this report, we demonstrate that genetic ablation of the A2B receptor protein has two distinct effects on BMMCs, one is the previously reported enhancement of Ag-induced degranulation, which is unrelated to adenosine signaling; the other is the loss of adenosine signaling via this receptor subtype that up-regulates IL-13 and vascular endothelial growth factor secretion. Genetic ablation of A2B receptors had no effect on A3 adenosine receptor-dependent potentiation of Ag-induced degranulation in mouse BMMCs, but abrogated A2B adenosine receptor-dependent stimulation of IL-13 and vascular endothelial growth factor secretion. Adenosine receptor antagonists MRS1706 and DPCPX with known inverse agonist activity at the A2B subtype inhibited IL-13 secretion induced by the adenosine analog NECA, but did not mimic the enhanced Ag-induced degranulation observed in A2B knockout BMMCs. Thus, our study confirmed the proinflammatory role of adenosine signaling via A2B receptors and the anti-inflammatory actions of A2B antagonists in mouse BMMCs.
PMCID: PMC3628765  PMID: 18490720
14.  The Role of the Adenosinergic Pathway in Immunosuppression Mediated by Human Regulatory T Cells (Treg) 
Current medicinal chemistry  2011;18(34):5217-5223.
Tumor-induced dysfunction of immune cells is a common problem in cancer. Tumors induce immune suppression by many different mechanisms, including accumulation of regulatory T cells (Treg). Adaptive Treg (Tr1) generated in the tumor microenvironment express CD39 and CD73 ectonucleotidases, produce adenosine and are COX2+PGE2+. Adenosine and PGE2 produced by Tr1 or tumor cells bind to their respective receptors on the surface of T effector cells (Teff) and cooperate in up-regulating cytosolic 3′5′-cAMP levels utilizing adenylyl cyclase isoform 7 (AC-7). In Teff, increased cAMP mediates suppression of anti-tumor functions. Treg, in contrast to Teff, seem to require high cAMP levels for mediating suppression. This differential requirement of Treg and Teff for cAMP offers an opportunity for pharmacologic interventions using selected inhibitors of the adenosine/PGE2 pathways. Blocking of adenosine/PGE2 production by Tr1 or blocking binding of these factors to their receptors on T cells or inhibition of cAMP synthesis in Teff all represent novel therapeutic strategies that used in combination with conventional therapies could restore anti-tumor functions of Teff. At the same time, these inhibitors could disarm Tr1 cells by depriving them of the factors promoting their generation and activity or by down-regulating 3′5′-cAMP levels. Thus, the pharmacologic control of Treg-Teff interactions offers a novel strategy for restoration of anti-tumor Teff functions and silencing of Treg. Used in conjunction with anti-cancer drugs or with immune therapies, this strategy has a potential to improve therapeutic effects by preventing or reversing tumor-induced immune suppression.
PMCID: PMC3721332  PMID: 22087822
Adenosine; anti-tumor immunity; effector T cells (Teff); pharmacologic inhibitors; prostaglandin E2 (PGE2); regulatory T cells (Treg)
15.  Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling 
Brain research  2006;1129(1):1-14.
Adenosine A2A receptors are predominantly expressed in the dendrites of enkephalin-positive γ-aminobutyric acidergic medium spiny neurons in the striatum. Evidence indicates that these receptors modulate striatal dopaminergic neurotransmission and regulate motor control, vigilance, alertness, and arousal. Although the physiological and behavioral correlates of adenosine A2A receptor signaling have been extensively studied using a combination of pharmacological and genetic tools, relatively little is known about the signal transduction pathways that mediate the diverse biological functions attributed to this adenosine receptor subtype. Using a candidate approach based on the coupling of these receptors to adenylate cyclase-activating G proteins, a number of membranal, cytosolic, and nuclear phosphoproteins regulated by PKA were evaluated as potential mediators of adenosine A2A receptor signaling in the striatum. Specifically, the adenosine A2A receptor agonist, CGS 21680, was used to determine whether the phosphorylation state of each of the following PKA targets is responsive to adenosine A2A receptor stimulation in this tissue: Ser40 of tyrosine hydroxylase, Ser9 of synapsin, Ser897 of the NR1 subunit of the N-methyl-D-aspartate-type glutamate receptor, Ser845 of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor, Ser94 of spinophilin, Thr34 of the dopamine- and cAMP-regulated phosphoprotein, Mr32,000, Ser133 of the cAMP-response element-binding protein, Thr286 of Ca2+/calmodulin-dependent protein kinase II, and Thr202/Tyr204 and Thr183/Tyr185 of the p44 and p42 isoforms, respectively, of mitogen-activated protein kinase. Although the substrates studied differed considerably in their responsiveness to selective adenosine A2A receptor activation, the phosphorylation state of all postsynaptic PKA targets was up-regulated in a time- and dose-dependent manner by treatment with CGS 21680, whereas presynaptic PKA substrates were unresponsive to this agent, consistent with the postsynaptic localization of adenosine A2A receptors. Finally, the phosphorylation state of these proteins was further assessed in vivo by systemic administration of caffeine.
Section: Cellular and Molecular Biology of Nervous Systems
PMCID: PMC1847645  PMID: 17157277
Caffeine; Striatum; Adenosine A2A receptor PKA; MAPK; Signal transduction
16.  Adenosine inhibits and potentiates IgE-dependent histamine release from human basophils by an A2-receptor mediated mechanism. 
British Journal of Pharmacology  1983;80(4):719-726.
Adenosine added to human basophils before anti-IgE challenge inhibited histamine release, whereas addition after challenge potentiated release. Peak responses for the two effects occurred 15 min before and after challenge respectively. The effects of adenosine on histamine secretion were dose-related over concentration ranges of 1-100 microM for inhibition and 0.01-1 microM for potentiation. The capacity of adenosine to inhibit and potentiate histamine secretion was inversely related to the strength of immunological challenge. The ability of theophylline (50 microM) to inhibit and dipyridamole (1 microM) to enhance slightly adenosine-induced responses, and the differing pharmacological effect of 2',5'-dideoxyadenosine suggested that adenosine's effects on basophil histamine secretion were mediated by stimulation of cell surface adenosine receptors. The order of potency of adenosine and its analogues L- and D- N6-phenylisopropyladenosine (PIA) and 5'-N-ethylcarboxamideadenosine (NECA) in inhibiting and potentiating IgE-dependent histamine release from basophils indicated that both responses were mediated by stimulation of the adenosine A2-receptor subtype. The capacity of adenosine to cause a transient increase of cyclic AMP levels in 40-70% basophil-enriched leucocytes confirmed the association between stimulation of A2-receptors and activation of adenylate cyclase.
PMCID: PMC2045046  PMID: 6085948
17.  Involvement of Peripheral Adenosine A2 Receptors in Adenosine A1 Receptor–Mediated Recovery of Respiratory Motor Function After Upper Cervical Spinal Cord Hemisection 
In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated through central adenosine A1 receptor antagonism to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although respiration is modulated by central and peripheral mechanisms, putative involvement of peripheral adenosine A2 receptors in functional recovery in our model is untested. The objective of this study was to assess the effects of peripherally located adenosine A2 receptors on recovery of respiratory function after cervical (C2) spinal cord hemisection.
Respiratory activity was electrophysiologically assessed (under standardized recording conditions) in C2-hemisected adult rats with the carotid bodies intact (H-CBI; n =12) or excised (H-CBE; n =12). Animals were administered the adenosine A2 receptor agonist, CGS-21680, followed by the A1 receptor antagonist, 1, 3-dipropyl-8-cyclopentylxanthine (DPCPX), or administered DPCPX alone. Recovered respiratory activity, characterized as drug-induced activity in the previously quiescent left phrenic nerve of C2-hemisected animals in H-CBI and H-CBE rats, was compared. Recovered respiratory activity was calculated by dividing drug-induced activity in the left phrenic nerve by activity in the right phrenic nerve.
Administration of CGS-21680 before DPCPX (n = 6) in H-CBI rats induced a significantly greater recovery (58.5 ± 3.6%) than when DPCPX (42.6 ± 4.6%) was administered (n = 6) alone. In H-CBE rats, prior administration of CGS-21680 (n = 6) did not enhance recovery over that induced by DPCPX (n = 6) alone. Recovery in H-CBE rats amounted to 39.7 ± 3.7% and 38.4 + 4.2%, respectively.
Our results suggest that adenosine A2 receptors located in the carotid bodies can enhance the magnitude of adenosine A1 receptor–mediated recovery of respiratory function after C2 hemisection. We conclude that a novel approach of targeting peripheral and central adenosine receptors can be therapeutically beneficial in alleviating compromised respiratory function after cervical spinal cord injury.
PMCID: PMC1864794  PMID: 16572566
Cervical spinal cord hemisection; Carotid bodies; Adenosine A1 and A2 receptors; Respiratory function
18.  Study of A2A adenosine receptor gene deficient mice reveals that adenosine analogue CGS 21680 possesses no A2A receptor-unrelated lymphotoxicity 
British Journal of Pharmacology  2000;131(1):43-50.
Cell surface A2A adenosine receptor (A2AR) mediated signalling affects a variety of important processes and adenosine analogues possess promising pharmacological properties.Demonstrating the receptor specificity of potentially lymphotoxic adenosine-based drugs facilitates their development for clinical applications.To distinguish between the receptor-dependent and -independent lymphotoxicity and apoptotic activity of adenosine and its analogues we used lymphocytes from A2AR-deficient mice.Comparison of A2AR-expressing (+/+) and A2AR-deficient (−/−) cells in cyclic AMP accumulation assays confirmed that the A2AR agonist CGS 21680 is indeed selective for A2A receptors in T-lymphocytes.Incubation of A2AR-expressing thymocytes with extracellular adenosine or CGS 21680 in vitro results in the death of about 7–15% of thymocytes. In contrast, no death was induced in parallel assays in cells from A2AR-deficient mice, providing genetic evidence that CGS 21680 does not display adenosine receptor-independent intracellular cytotoxicity.The A2A receptor-specific lymphotoxicity of CGS 21680 is also demonstrated in a long-term (6-day) in vitro model of thymocyte positive selection where addition of A2AR antagonist ZM 241,385 did block the effects of CGS 21680, allowing the survival of T cells.The use of cells from adenosine receptor-deficient animals is proposed as a part of the screening process for potential adenosine-based drugs for their receptor-independent cytotoxicity and lymphotoxicity.
PMCID: PMC1572291  PMID: 10960067
Adenosine; purinergic receptors; T-lymphocytes; cytotoxicity
19.  Homeostatic Control of Synaptic Activity by Endogenous Adenosine is Mediated by Adenosine Kinase 
Cerebral Cortex (New York, NY)  2012;24(1):67-80.
Extracellular adenosine, a key regulator of neuronal excitability, is metabolized by astrocyte-based enzyme adenosine kinase (ADK). We hypothesized that ADK might be an upstream regulator of adenosine-based homeostatic brain functions by simultaneously affecting several downstream pathways. We therefore studied the relationship between ADK expression, levels of extracellular adenosine, synaptic transmission, intrinsic excitability, and brain-derived neurotrophic factor (BDNF)-dependent synaptic actions in transgenic mice underexpressing or overexpressing ADK. We demonstrate that ADK: 1) Critically influences the basal tone of adenosine, evaluated by microelectrode adenosine biosensors, and its release following stimulation; 2) determines the degree of tonic adenosine-dependent synaptic inhibition, which correlates with differential plasticity at hippocampal synapses with low release probability; 3) modulates the age-dependent effects of BDNF on hippocampal synaptic transmission, an action dependent upon co-activation of adenosine A2A receptors; and 4) influences GABAA receptor-mediated currents in CA3 pyramidal neurons. We conclude that ADK provides important upstream regulation of adenosine-based homeostatic function of the brain and that this mechanism is necessary and permissive to synaptic actions of adenosine acting on multiple pathways. These mechanistic studies support previous therapeutic studies and implicate ADK as a promising therapeutic target for upstream control of multiple neuronal signaling pathways crucial for a variety of neurological disorders.
PMCID: PMC3862265  PMID: 22997174
adenosine; brain-derived neurotrophic factor; GABA; homeostasis; transgenic mice
20.  The Reno-Vascular A2B Adenosine Receptor Protects the Kidney from Ischemia 
PLoS Medicine  2008;5(6):e137.
Acute renal failure from ischemia significantly contributes to morbidity and mortality in clinical settings, and strategies to improve renal resistance to ischemia are urgently needed. Here, we identified a novel pathway of renal protection from ischemia using ischemic preconditioning (IP).
Methods and Findings
For this purpose, we utilized a recently developed model of renal ischemia and IP via a hanging weight system that allows repeated and atraumatic occlusion of the renal artery in mice, followed by measurements of specific parameters or renal functions. Studies in gene-targeted mice for each individual adenosine receptor (AR) confirmed renal protection by IP in A1−/−, A2A−/−, or A3AR−/− mice. In contrast, protection from ischemia was abolished in A2BAR−/− mice. This protection was associated with corresponding changes in tissue inflammation and nitric oxide production. In accordance, the A2BAR-antagonist PSB1115 blocked renal protection by IP, while treatment with the selective A2BAR-agonist BAY 60–6583 dramatically improved renal function and histology following ischemia alone. Using an A2BAR-reporter model, we found exclusive expression of A2BARs within the reno-vasculature. Studies using A2BAR bone-marrow chimera conferred kidney protection selectively to renal A2BARs.
These results identify the A2BAR as a novel therapeutic target for providing potent protection from renal ischemia.
Using gene-targeted mice, Holger Eltzschig and colleagues identify the A2B adenosine receptor as a novel therapeutic target for providing protection from renal ischemia.
Editors' Summary
Throughout life, the kidneys perform the essential task of filtering waste products and excess water from the blood to make urine. Each kidney contains about a million small structures called nephrons, each of which contains a filtration unit consisting of a glomerulus (a small blood vessel) intertwined with a urine-collecting tube called a tubule. If the nephrons stop working for any reason, the rate at which the blood is filtered (the glomerular filtration rate or GFR) decreases and dangerous amounts of waste products such as creatinine build up in the blood. Most kidney diseases destroy the nephrons slowly over years, producing an irreversible condition called chronic renal failure. But the kidneys can also stop working suddenly because of injury or poisoning. One common cause of “acute” renal failure in hospital patients is ischemia—an inadequate blood supply to an organ that results in the death of part of that organ. Heart surgery and other types of surgery in which the blood supply to the kidneys is temporarily disrupted are associated with high rates of acute renal failure.
Why Was This Study Done?
Although the kidneys usually recover from acute failure within a few weeks if the appropriate intensive treatment (for example, dialysis) is provided, acute renal failure after surgery can be fatal. Thus, new strategies to protect the kidneys from ischemia are badly needed. Like other organs, the kidneys can be protected from lethal ischemia by pre-exposure to several short, nonlethal episodes of ischemia. It is not clear how this “ischemic preconditioning” increases renal resistance to ischemia but some data suggest that the protection of tissues from ischemia might involve a signaling molecule called extracellular adenosine. This molecule binds to proteins called receptors on the surface of cells and sends signals into them that change their behavior. There are four different adenosine receptor—A1AR, A2AAR, A2BAR, and A3AR—and in this study, the researchers use ischemic preconditioning as an experimental strategy to investigate which of these receptors protects the kidneys from ischemia in mice, information that might provide clues about how to protect the kidneys from ischemia.
What Did the Researchers Do and Find?
The researchers first asked whether ischemic preconditioning protects the kidneys of mice strains that lack the genes for individual adenosine receptors (A1AR−/−, A2AAR−/−, A2BAR−/−, and A3AR−/− mice) from subsequent ischemia. Using a hanging-weight system, they intermittently blocked the renal artery of these mice before exposing them to a longer period of renal ischemia. Twenty-four hours later, they assessed the renal function of the mice by measuring their blood creatinine levels, GFRs, and urine production. Ischemic preconditioning protected all the mice from ischemia-induced loss of kidney function except the A2BAR−/− mice. It also prevented ischemia-induced structural damage and inflammation in the kidneys of wild-type but not A2BAR−/− mice. These results suggest that A2BAR may help to protect the kidneys from ischemia. Consistent with this idea, ischemic preconditioning did not prevent ischemia-induced renal damage in wild-type mice treated with a compound that specifically blocks the activity of A2BAR. However, wild-type mice (but not A2BAR−/− mice) treated with an A2BAR agonist (which activates the receptor) retained their kidney function after renal ischemia without ischemic preconditioning. Finally, the researchers report that A2BAR has to be present on the blood vessels in the kidney to prevent ischemia-induced acute renal failure.
What Do These Findings Mean?
These findings suggest that the protection of the kidneys from ischemia and the renal resistance to ischemia that is provided by ischemic preconditioning involve adenosine signaling through A2BAR. They also suggest that adenosine might provide protection against ischemia-induced damage by blocking inflammation in the kidney although other possible mechanisms of action need to be investigated. Importantly, these findings suggest that A2BAR might be a therapeutic target for the prevention of renal ischemia. However, results obtained in animals do not always reflect the situation in people, so before A2BAR agonists can be used to reduce the chances of patients developing acute renal failure after surgery, these results need confirming in people and the safety of A2BAR agonists need to be thoroughly investigated.
Additional Information.
Please access these Web sites via the online version of this summary at
The US National Institute of Diabetes and Digestive and Kidney Diseases provides information on how the kidneys work and what can go wrong with them, including a list of links to further information about kidney disease
The MedlinePlus encyclopedia has a page on acute kidney failure (in English and Spanish)
Wikipedia has pages on acute renal failure, ischemia, ischemic preconditioning, and adenosine (note that Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
PMCID: PMC2504049  PMID: 18578565
21.  2012 Philip S. Portoghese Medicinal Chemistry Lectureship: Structure-Based Approaches to Ligands for G Protein-Coupled Adenosine and P2Y Receptors, From Small Molecules to Nanoconjugates +  
Journal of medicinal chemistry  2013;56(10):3749-3767.
Adenosine receptor (ARs) and P2Y receptors (P2YRs) that respond to extracellular nucleosides/tides are associated with new directions for therapeutics. The X-ray structures of the A 2A AR complexes with agonists and antagonists are examined in relationship to the G protein-coupled receptor (GPCR) superfamily and applied to drug discovery. Much of the data on AR ligand structure from early SAR studies, now is explainable from the A 2A AR X-ray crystallography. The ligand-receptor interactions in related GPCR complexes can be identified by means of modeling approaches, e.g. molecular docking. Thus, molecular recognition in binding and activation processes has been studied effectively using homology modeling and applied to ligand design. Virtual screening has yielded new nonnucleoside AR antagonists, and existing ligands have been improved with knowledge of the receptor interactions. New agonists are being explored for CNS and peripheral therapeutics based on in vivo activity, such as chronic neuropathic pain. Ligands for receptors more distantly related to the X-ray template, i.e. P2YRs, have been introduced and are mainly used as pharmacological tools for elucidating the physiological role of extracellular nucleotides. Other ligand tools for drug discovery include fluorescent probes, radioactive probes, multivalent probes, and functionalized nanoparticles.
PMCID: PMC3701956  PMID: 23597047
G protein-coupled receptor ;  purines ;  molecular modeling ;  adenosine receptor ;  P2Y receptor
22.  Tonic activity of the rat adipocyte A1-adenosine receptor 
British Journal of Pharmacology  2002;135(6):1457-1466.
Adipocyte A1-adenosine receptors (A1 AdoR) tonically inhibit adenylyl cyclase and lipolysis. Three potential explanations for tonic activity of A1AdoR of rat epididymal adipocytes were investigated: high affinity of adenosine for the receptor, efficient coupling of receptor activation to response, and spontaneous activity of the receptor in the absence of agonist.The affinity of adenosine for the adipocyte A1AdoR was determined as 4.6 μM by analysis of effects of an irreversible receptor antagonist on agonist concentration-response relationships. In contrast, the potency of adenosine to decrease cyclic AMP in isolated adipocytes was 1.4 nM.Occupancy by agonist of the A1AdoR was efficiently coupled to functional response (decrease of adipocyte cyclic AMP content). Activation by adenosine of less than 1% of A1AdoRs caused a near-maximal decrease of cyclic AMP in adipocytes. Thus the receptor reserve for adenosine to decrease cyclic AMP content of adipocytes was greater than 99%.Affinities and receptor reserves for other A1AdoR agonists were determined. Agonists appeared to differ more in their affinity for the receptor than in their intrinsic efficacy to activate it.A1AdoRs were inactive in the absence of agonist.It is concluded that adipocyte A1AdoR are tonically activated by endogenous adenosine at nanomolar concentrations. The expression of a high density of A1AdoR that are efficiently coupled to a functional response enables the adipocyte to respond with high sensitivity to the low-affinity agonist, adenosine. Adipocytes may be a model for cells whose functions are tonically modulated by adenosine present in the interstitium of well-oxygenated tissues.
PMCID: PMC1573251  PMID: 11906959
Adipocyte; adenosine; receptor reserve; cyclic AMP; A1-adenosine receptor; CVT-2759; FSCPX
23.  Adenosine and Ischemic Preconditioning 
Current pharmaceutical design  1999;5(12):1029-1041.
Adenosine is released in large amounts during myocardial ischemia and is capable of exerting potent cardioprotective effects in the heart. Although these observations on adenosine have been known for a long time, how adenosine acts to achieve its anti-ischemic effect remains incompletely understood. However, recent advances on the chemistry and pharmacology of adenosine receptor ligands have provided important and novel information on the function of adenosine receptor subtypes in the cardiovascular system. The development of model systems for the cardiac actions of adenosine has yielded important insights into its mechanism of action and have begun to elucidate the sequence of signalling events from receptor activation to the actual exertion of its cardioprotective effect. The present review will focus on the adenosine receptors that mediate the potent anti-ischemic effect of adenosine, new ligands at the receptors, potential molecular signalling mechanisms downstream of the receptor, mediators for cardioprotection, and possible clinical applications in cardiovascular disorders.
PMCID: PMC3561763  PMID: 10607860
24.  Anti-inflammatory effects of adenosine N1-oxide 
Adenosine is a potent endogenous anti-inflammatory and immunoregulatory molecule. Despite its promise, adenosine’s extremely short half-life in blood limits its clinical application. Here, we examined adenosine N1-oxide (ANO), which is found in royal jelly. ANO is an oxidized product of adenosine at the N1 position of the adenine base moiety. We found that it is refractory to adenosine deaminase-mediated conversion to inosine. We further examined the anti-inflammatory activities of ANO in vitro and in vivo.
The effect of ANO on pro-inflammatory cytokine secretion was examined in mouse peritoneal macrophages and the human monocytic cell line THP-1, and compared with that of adenosine, synthetic adenosine receptor (AR)-selective agonists and dipotassium glycyrrhizate (GK2). The anti-inflammatory activity of ANO in vivo was examined in an LPS-induced endotoxin shock model in mice.
ANO inhibited secretion of inflammatory mediators at much lower concentrations than adenosine and GK2 when used with peritoneal macrophages and THP-1 cells that were stimulated by LPS plus IFN-γ. The potent anti-inflammatory activity of ANO could not be solely accounted for by its refractoriness to adenosine deaminase. ANO was superior to the synthetic A1 AR-selective agonist, 2-chloro-N6-cyclopentyladenosine (CCPA), A2A AR-selective agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5’-N-ethylcarboxamideadenosine hydrochloride (CGS21680), and A3 AR-selective agonist, N6-(3-iodobenzyl)adenosine-5’-N-methyluronamide (IB-MECA), in suppressing the secretion of a broad spectrum of pro-inflammatory cytokines by peritoneal macrophages. The capacities of ANO to inhibit pro-inflammatory cytokine production by THP-1 cells were comparable with those of CCPA and IB-MECA. Reflecting its potent anti-inflammatory effects in vitro, intravenous administration of ANO significantly reduced lethality of LPS-induced endotoxin shock. A significant increase in survival rate was also observed by oral administration of ANO. Mechanistic analysis suggested that the up-regulation of the anti-inflammatory transcription factor c-Fos was, at least in part, involved in the ANO-induced suppression of pro-inflammatory cytokine secretion.
Our data suggest that ANO, a naturally occurring molecule that is structurally close to adenosine but is functionally more potent, presents potential strategies for the treatment of inflammatory disorders.
PMCID: PMC4308844  PMID: 25632271
Adenosine; Anti-inflammatory effect; Pro-inflammatory cytokines; Adenosine receptor agonists; Endotoxin shock
25.  Reciprocal modulation of anti-IgE induced histamine release from human mast cells by A1 and A2B adenosine receptors 
British Journal of Pharmacology  2011;164(2b):807-819.
Adenosine is believed to participate in the pathological development of asthma through a mast cell-dependent mechanism. Our study aimed to pharmacologically characterize the functions of adenosine receptor (AR) subtypes (A1, A2A, A2B and A3) in primary human cultured mast cells (HCMC).
HCMC were derived from progenitor stem cells in buffy coat and the effects of adenosine receptor ligands on basal and IgE-dependent histamine release were evaluated.
Adenosine and analogues alone did not induce HCMC degranulation. When HCMC were activated by anti-IgE after 10 min pre-incubation with adenosine, a biphasic effect on histamine release was observed with enhancement of HCMC activation at low concentrations of adenosine (10−9–10−7 mol·L−1) and inhibition at higher concentrations (10−6–10−4 mol·L−1). The potentiating action was mimicked by A1 AR agonists CCPA and 2'MeCCPA, and inhibited by the A1 AR antagonist PSB36. In contrast, the inhibitory action of adenosine was mimicked by the non-specific A2 AR agonist CV1808 and attenuated by A2B AR antagonists PSB1115 and MRS1760. The non-selective AR antagonist CGS15943 attenuated both the potentiating and inhibitory actions.
We have defined for the first time the contribution of A1 and A2B ARs, respectively, to the potentiating and inhibitory action of adenosine on human mast cell activation. With reference to the current trend of developing novel anti-asthmatic agents from AR ligands, our results suggest that inhibition of human mast cell activation would be a mechanism for A1 AR antagonists, but not A2B AR antagonists.
PMCID: PMC3188912  PMID: 21506953
Adenosine; anti-IgE; asthma; histamine; human mast cells

Results 1-25 (1038776)