Search tips
Search criteria

Results 1-25 (1489503)

Clipboard (0)

Related Articles

1.  Integrating Statistical Predictions and Experimental Verifications for Enhancing Protein-Chemical Interaction Predictions in Virtual Screening 
PLoS Computational Biology  2009;5(6):e1000397.
Predictions of interactions between target proteins and potential leads are of great benefit in the drug discovery process. We present a comprehensively applicable statistical prediction method for interactions between any proteins and chemical compounds, which requires only protein sequence data and chemical structure data and utilizes the statistical learning method of support vector machines. In order to realize reasonable comprehensive predictions which can involve many false positives, we propose two approaches for reduction of false positives: (i) efficient use of multiple statistical prediction models in the framework of two-layer SVM and (ii) reasonable design of the negative data to construct statistical prediction models. In two-layer SVM, outputs produced by the first-layer SVM models, which are constructed with different negative samples and reflect different aspects of classifications, are utilized as inputs to the second-layer SVM. In order to design negative data which produce fewer false positive predictions, we iteratively construct SVM models or classification boundaries from positive and tentative negative samples and select additional negative sample candidates according to pre-determined rules. Moreover, in order to fully utilize the advantages of statistical learning methods, we propose a strategy to effectively feedback experimental results to computational predictions with consideration of biological effects of interest. We show the usefulness of our approach in predicting potential ligands binding to human androgen receptors from more than 19 million chemical compounds and verifying these predictions by in vitro binding. Moreover, we utilize this experimental validation as feedback to enhance subsequent computational predictions, and experimentally validate these predictions again. This efficient procedure of the iteration of the in silico prediction and in vitro or in vivo experimental verifications with the sufficient feedback enabled us to identify novel ligand candidates which were distant from known ligands in the chemical space.
Author Summary
This work describes a statistical method that identifies chemical compounds binding to a target protein given the sequence of the target or distinguishes proteins to which a small molecule binds given the chemical structure of the molecule. As our method can be utilized for virtual screening that seeks for lead compounds in drug discovery, we showed the usefulness of our method in its application to the comprehensive prediction of ligands binding to human androgen receptors and in vitro experimental verification of its predictions. In contrast to most previous virtual screening studies which predict chemical compounds of interest mainly with 3D structure-based methods and experimentally verify them, we proposed a strategy to effectively feedback experimental results for subsequent predictions and applied the strategy to the second predictions followed by the second experimental verification. This feedback strategy makes full use of statistical learning methods and, in practical terms, gave a ligand candidate of interest that structurally differs from known drugs. We hope that this paper will encourage reevaluation of statistical learning methods in virtual screening and that the utilization of statistical methods with efficient feedback strategies will contribute to the acceleration of drug discovery.
PMCID: PMC2685987  PMID: 19503826
2.  Analysis of multiple compound–protein interactions reveals novel bioactive molecules 
The authors use machine learning of compound-protein interactions to explore drug polypharmacology and to efficiently identify bioactive ligands, including novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein coupled receptors and protein kinases.
We have demonstrated that machine learning of multiple compound–protein interactions is useful for efficient ligand screening and for assessing drug polypharmacology.This approach successfully identified novel scaffold-hopping compounds for two pharmaceutically important protein families: G-protein-coupled receptors and protein kinases.These bioactive compounds were not detected by existing computational ligand-screening methods in comparative studies.The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.
The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. Perturbations of biological systems by chemical probes provide broader applications not only for analysis of complex systems but also for intentional manipulations of these systems. Nevertheless, the lack of well-characterized chemical modulators has limited their use. Recently, chemical genomics has emerged as a promising area of research applicable to the exploration of novel bioactive molecules, and researchers are currently striving toward the identification of all possible ligands for all target protein families (Wang et al, 2009). Chemical genomics studies have shown that patterns of compound–protein interactions (CPIs) are too diverse to be understood as simple one-to-one events. There is an urgent need to develop appropriate data mining methods for characterizing and visualizing the full complexity of interactions between chemical space and biological systems. However, no existing screening approach has so far succeeded in identifying novel bioactive compounds using multiple interactions among compounds and target proteins.
High-throughput screening (HTS) and computational screening have greatly aided in the identification of early lead compounds for drug discovery. However, the large number of assays required for HTS to identify drugs that target multiple proteins render this process very costly and time-consuming. Therefore, interest in using in silico strategies for screening has increased. The most common computational approaches, ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS; Oprea and Matter, 2004; Muegge and Oloff, 2006; McInnes, 2007; Figure 1A), have been used for practical drug development. LBVS aims to identify molecules that are very similar to known active molecules and generally has difficulty identifying compounds with novel structural scaffolds that differ from reference molecules. The other popular strategy, SBVS, is constrained by the number of three-dimensional crystallographic structures available. To circumvent these limitations, we have shown that a new computational screening strategy, chemical genomics-based virtual screening (CGBVS), has the potential to identify novel, scaffold-hopping compounds and assess their polypharmacology by using a machine-learning method to recognize conserved molecular patterns in comprehensive CPI data sets.
The CGBVS strategy used in this study was made up of five steps: CPI data collection, descriptor calculation, representation of interaction vectors, predictive model construction using training data sets, and predictions from test data (Figure 1A). Importantly, step 1, the construction of a data set of chemical structures and protein sequences for known CPIs, did not require the three-dimensional protein structures needed for SBVS. In step 2, compound structures and protein sequences were converted into numerical descriptors. These descriptors were used to construct chemical or biological spaces in which decreasing distance between vectors corresponded to increasing similarity of compound structures or protein sequences. In step 3, we represented multiple CPI patterns by concatenating these chemical and protein descriptors. Using these interaction vectors, we could quantify the similarity of molecular interactions for compound–protein pairs, despite the fact that the ligand and protein similarity maps differed substantially. In step 4, concatenated vectors for CPI pairs (positive samples) and non-interacting pairs (negative samples) were input into an established machine-learning method. In the final step, the classifier constructed using training sets was applied to test data.
To evaluate the predictive value of CGBVS, we first compared its performance with that of LBVS by fivefold cross-validation. CGBVS performed with considerably higher accuracy (91.9%) than did LBVS (84.4%; Figure 1B). We next compared CGBVS and SBVS in a retrospective virtual screening based on the human β2-adrenergic receptor (ADRB2). Figure 1C shows that CGBVS provided higher hit rates than did SBVS. These results suggest that CGBVS is more successful than conventional approaches for prediction of CPIs.
We then evaluated the ability of the CGBVS method to predict the polypharmacology of ADRB2 by attempting to identify novel ADRB2 ligands from a group of G-protein-coupled receptor (GPCR) ligands. We ranked the prediction scores for the interactions of 826 reported GPCR ligands with ADRB2 and then analyzed the 50 highest-ranked compounds in greater detail. Of 21 commercially available compounds, 11 showed ADRB2-binding activity and were not previously reported to be ADRB2 ligands. These compounds included ligands not only for aminergic receptors but also for neuropeptide Y-type 1 receptors (NPY1R), which have low protein homology to ADRB2. Most ligands we identified were not detected by LBVS and SBVS, which suggests that only CGBVS could identify this unexpected cross-reaction for a ligand developed as a target to a peptidergic receptor.
The true value of CGBVS in drug discovery must be tested by assessing whether this method can identify scaffold-hopping lead compounds from a set of compounds that is structurally more diverse. To assess this ability, we analyzed 11 500 commercially available compounds to predict compounds likely to bind to two GPCRs and two protein kinases. Functional assays revealed that nine ADRB2 ligands, three NPY1R ligands, five epidermal growth factor receptor (EGFR) inhibitors, and two cyclin-dependent kinase 2 (CDK2) inhibitors were concentrated in the top-ranked compounds (hit rate=30, 15, 25, and 10%, respectively). We also evaluated the extent of scaffold hopping achieved in the identification of these novel ligands. One ADRB2 ligand, two NPY1R ligands, and one CDK2 inhibitor exhibited scaffold hopping (Figure 4), indicating that CGBVS can use this characteristic to rationally predict novel lead compounds, a crucial and very difficult step in drug discovery. This feature of CGBVS is critically different from existing predictive methods, such as LBVS, which depend on similarities between test and reference ligands, and focus on a single protein or highly homologous proteins. In particular, CGBVS is useful for targets with undefined ligands because this method can use CPIs with target proteins that exhibit lower levels of homology.
In summary, we have demonstrated that data mining of multiple CPIs is of great practical value for exploration of chemical space. As a predictive model, CGBVS could provide an important step in the discovery of such multi-target drugs by identifying the group of proteins targeted by a particular ligand, leading to innovation in pharmaceutical research.
The discovery of novel bioactive molecules advances our systems-level understanding of biological processes and is crucial for innovation in drug development. For this purpose, the emerging field of chemical genomics is currently focused on accumulating large assay data sets describing compound–protein interactions (CPIs). Although new target proteins for known drugs have recently been identified through mining of CPI databases, using these resources to identify novel ligands remains unexplored. Herein, we demonstrate that machine learning of multiple CPIs can not only assess drug polypharmacology but can also efficiently identify novel bioactive scaffold-hopping compounds. Through a machine-learning technique that uses multiple CPIs, we have successfully identified novel lead compounds for two pharmaceutically important protein families, G-protein-coupled receptors and protein kinases. These novel compounds were not identified by existing computational ligand-screening methods in comparative studies. The results of this study indicate that data derived from chemical genomics can be highly useful for exploring chemical space, and this systems biology perspective could accelerate drug discovery processes.
PMCID: PMC3094066  PMID: 21364574
chemical genomics; data mining; drug discovery; ligand screening; systems chemical biology
3.  Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015) 
Shay, Jerry W. | Homma, Noriko | Zhou, Ruyun | Naseer, Muhammad Imran | Chaudhary, Adeel G. | Al-Qahtani, Mohammed | Hirokawa, Nobutaka | Goudarzi, Maryam | Fornace, Albert J. | Baeesa, Saleh | Hussain, Deema | Bangash, Mohammed | Alghamdi, Fahad | Schulten, Hans-Juergen | Carracedo, Angel | Khan, Ishaq | Qashqari, Hanadi | Madkhali, Nawal | Saka, Mohamad | Saini, Kulvinder S. | Jamal, Awatif | Al-Maghrabi, Jaudah | Abuzenadah, Adel | Chaudhary, Adeel | Al Qahtani, Mohammed | Damanhouri, Ghazi | Alkhatabi, Heba | Goodeve, Anne | Crookes, Laura | Niksic, Nikolas | Beauchamp, Nicholas | Abuzenadah, Adel M. | Vaught, Jim | Budowle, Bruce | Assidi, Mourad | Buhmeida, Abdelbaset | Al-Maghrabi, Jaudah | Buhmeida, Abdelbaset | Assidi, Mourad | Merdad, Leena | Kumar, Sudhir | Miura, Sayaka | Gomez, Karen | Carracedo, Angel | Rasool, Mahmood | Rebai, Ahmed | Karim, Sajjad | Eldin, Hend F. Nour | Abusamra, Heba | Alhathli, Elham M. | Salem, Nada | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Faheem, Hossam | Agarwa, Ashok | Nieschlag, Eberhard | Wistuba, Joachim | Damm, Oliver S. | Beg, Mohd A. | Abdel-Meguid, Taha A. | Mosli, Hisham A. | Bajouh, Osama S. | Abuzenadah, Adel M. | Al-Qahtani, Mohammed H. | Coskun, Serdar | Abu-Elmagd, Muhammad | Buhmeida, Abdelbaset | Dallol, Ashraf | Al-Maghrabi, Jaudah | Hakamy, Sahar | Al-Qahtani, Wejdan | Al-Harbi, Asia | Hussain, Shireen | Assidi, Mourad | Al-Qahtani, Mohammed | Abuzenadah, Adel | Ozkosem, Burak | DuBois, Rick | Messaoudi, Safia S. | Dandana, Maryam T. | Mahjoub, Touhami | Almawi, Wassim Y. | Abdalla, S. | Al-Aama, M. Nabil | Elzawahry, Asmaa | Takahashi, Tsuyoshi | Mimaki, Sachiyo | Furukawa, Eisaku | Nakatsuka, Rie | Kurosaka, Isao | Nishigaki, Takahiko | Nakamura, Hiromi | Serada, Satoshi | Naka, Tetsuji | Hirota, Seiichi | Shibata, Tatsuhiro | Tsuchihara, Katsuya | Nishida, Toshirou | Kato, Mamoru | Mehmood, Sajid | Ashraf, Naeem Mahmood | Asif, Awais | Bilal, Muhammad | Mehmood, Malik Siddique | Hussain, Aadil | Jamal, Qazi Mohammad Sajid | Siddiqui, Mughees Uddin | Alzohairy, Mohammad A. | Al Karaawi, Mohammad A. | Nedjadi, Taoufik | Al-Maghrabi, Jaudah | Assidi, Mourad | Al-Khattabi, Heba | Al-Ammari, Adel | Al-Sayyad, Ahmed | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Zitouni, Hédia | Raguema, Nozha | Ali, Marwa Ben | Malah, Wided | Lfalah, Raja | Almawi, Wassim | Mahjoub, Touhami | Elanbari, Mohammed | Ptitsyn, Andrey | Mahjoub, Sana | El Ghali, Rabeb | Achour, Bechir | Amor, Nidhal Ben | Assidi, Mourad | N’siri, Brahim | Morjani, Hamid | Nedjadi, Taoufik | Al-Ammari, Adel | Al-Sayyad, Ahmed | Salem, Nada | Azhar, Esam | Al-Maghrabi, Jaudah | Chayeb, Vera | Dendena, Maryam | Zitouni, Hedia | Zouari-Limayem, Khedija | Mahjoub, Touhami | Refaat, Bassem | Ashshi, Ahmed M. | Batwa, Sarah A. | Ramadan, Hazem | Awad, Amal | Ateya, Ahmed | El-Shemi, Adel Galal Ahmed | Ashshi, Ahmad | Basalamah, Mohammed | Na, Youjin | Yun, Chae-Ok | El-Shemi, Adel Galal Ahmed | Ashshi, Ahmad | Basalamah, Mohammed | Na, Youjin | Yun, Chae-Ok | El-Shemi, Adel Galal | Refaat, Bassem | Kensara, Osama | Abdelfattah, Amr | Dheeb, Batol Imran | Al-Halbosiy, Mohammed M. F. | Al lihabi, Rghad Kadhim | Khashman, Basim Mohammed | Laiche, Djouhri | Adeel, Chaudhary | Taoufik, Nedjadi | Al-Afghani, Hani | Łastowska, Maria | Al-Balool, Haya H. | Sheth, Harsh | Mercer, Emma | Coxhead, Jonathan M. | Redfern, Chris P. F. | Peters, Heiko | Burt, Alastair D. | Santibanez-Koref, Mauro | Bacon, Chris M. | Chesler, Louis | Rust, Alistair G. | Adams, David J. | Williamson, Daniel | Clifford, Steven C. | Jackson, Michael S. | Singh, Mala | Mansuri, Mohmmad Shoab | Jadeja, Shahnawaz D. | Patel, Hima | Marfatia, Yogesh S. | Begum, Rasheedunnisa | Mohamed, Amal M. | Kamel, Alaa K. | Helmy, Nivin A. | Hammad, Sayda A. | Kayed, Hesham F. | Shehab, Marwa I. | El Gerzawy, Assad | Ead, Maha M. | Ead, Ola M. | Mekkawy, Mona | Mazen, Innas | El-Ruby, Mona | Shahid, S. M. A. | Jamal, Qazi Mohammad Sajid | Arif, J. M. | Lohani, Mohtashim | Imen, Moumni | Leila, Chaouch | Houyem, Ouragini | Kais, Douzi | Fethi, Chaouachi Dorra Mellouli | Mohamed, Bejaoui | Salem, Abbes | Faggad, Areeg | Gebreslasie, Amanuel T. | Zaki, Hani Y. | Abdalla, Badreldin E. | AlShammari, Maha S. | Al-Ali, Rhaya | Al-Balawi, Nader | Al-Enazi, Mansour | Al-Muraikhi, Ali | Busaleh, Fadi | Al-Sahwan, Ali | Borgio, Francis | Sayyed, Abdulazeez | Al-Ali, Amein | Acharya, Sadananda | Zaki, Maha S. | El-Bassyouni, Hala T. | Shehab, Marwa I. | Elshal, Mohammed F. | M., Kaleemuddin | Aldahlawi, Alia M. | Saadah, Omar | McCoy, J. Philip | El-Tarras, Adel E. | Awad, Nabil S. | Alharthi, Abdulla A. | Ibrahim, Mohamed M. M. | Alsehli, Haneen S. | Dallol, Ashraf | Gari, Abdullah M. | Abbas, Mohammed M. | Kadam, Roaa A. | Gari, Mazen M. | Alkaff, Mohmmed H. | Abuzenadah, Adel M. | Gari, Mamdooh A. | Abusamra, Heba | Karim, Sajjad | eldin, Hend F. Nour | Alhathli, Elham M. | Salem, Nada | Kumar, Sudhir | Al-Qahtani, Mohammed H. | Moradi, Fatima A. | Rashidi, Omran M. | Awan, Zuhier A. | Kaya, Ibrahim Hamza | Al-Harazi, Olfat | Colak, Dilek | Alkousi, Nabila A. | Athanasopoulos, Takis | Bahmaid, Afnan O. | Alhwait, Etimad A. | Gari, Mamdooh A. | Alsehli, Haneen S. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Kadam, Roaa | Dallol, Ashraf | Kalamegam, Gauthaman | Eldin, Hend F. Nour | Karim, Sajjad | Abusamra, Heba | Alhathli, Elham | Salem, Nada | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Alsayed, Salma N. | Aljohani, Fawziah H. | Habeeb, Samaher M. | Almashali, Rawan A. | Basit, Sulman | Ahmed, Samia M. | Sharma, Rakesh | Agarwal, Ashok | Durairajanayagam, Damayanthi | Samanta, Luna | Abu-Elmagd, Muhammad | Abuzenadah, Adel M. | Sabanegh, Edmund S. | Assidi, Mourad | Al-Qahtani, Mohammed | Agarwal, Ashok | Sharma, Rakesh | Samanta, Luna | Durairajanayagam, Damayanthi | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Abuzenadah, Adel M. | Sabanegh, Edmund S. | Samanta, Luna | Agarwal, Ashok | Sharma, Rakesh | Cui, Zhihong | Assidi, Mourad | Abuzenadah, Adel M. | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Alboogmi, Alaa A. | Alansari, Nuha A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Jamal, Hasan S. | Rozi, Abdullraheem | Mirza, Zeenat | Abuzenadah, Adel M. | Karim, Sajjad | Al-Qahtani, Mohammed H. | Karim, Sajjad | Schulten, Hans-Juergen | Al Sayyad, Ahmad J. | Farsi, Hasan M. A. | Al-Maghrabi, Jaudah A. | Mirza, Zeenat | Alotibi, Reem | Al-Ahmadi, Alaa | Alansari, Nuha A. | Albogmi, Alaa A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Al-Qahtani, Mohammed H. | Ebiya, Rasha A. | Darwish, Samia M. | Montaser, Metwally M. | Abusamra, Heba | Bajic, Vladimir B. | Al-Maghrabi, Jaudah | Gomaa, Wafaey | Hanbazazh, Mehenaz | Al-Ahwal, Mahmoud | Al-Harbi, Asia | Al-Qahtani, Wejdan | Hakamy, Saher | Baba, Ghali | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Al-Maghrabi, Jaudah | Al-Harbi, Abdullah | Al-Ahwal, Mahmoud | Al-Harbi, Asia | Al-Qahtani, Wejdan | Hakamy, Sahar | Baba, Ghalia | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Alhathli, Elham M. | Karim, Sajjad | Salem, Nada | Eldin, Hend Nour | Abusamra, Heba | Kumar, Sudhir | Al-Qahtani, Mohammed H. | Alyamani, Aisha A. | Kalamegam, Gauthaman | Alhwait, Etimad A. | Gari, Mamdooh A. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Alsehli, Haneen S. | Kadam, Roaa A. | Al-Qahtani, Mohammed | Gadi, Rawan | Buhmeida, Abdelbaset | Assidi, Mourad | Chaudhary, Adeel | Merdad, Leena | Alfakeeh, Saadiah M. | Alhwait, Etimad A. | Gari, Mamdooh A. | Abbas, Mohammed M. | Alkaf, Mohammed H. | Alsehli, Haneen S. | Kadam, Roaa | Kalamegam, Gauthaman | Ghazala, Rubi | Mathew, Shilu | Hamed, M. Haroon | Assidi, Mourad | Al-Qahtani, Mohammed | Qadri, Ishtiaq | Mathew, Shilu | Mira, Lobna | Shaabad, Manal | Hussain, Shireen | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Mathew, Shilu | Shaabad, Manal | Mira, Lobna | Hussain, Shireen | Assidi, Mourad | Abu-Elmagd, Muhammad | Al-Qahtani, Mohammed | Rebai, Ahmed | Assidi, Mourad | Buhmeida, Abdelbaset | Abu-Elmagd, Muhammad | Dallol, Ashraf | Shay, Jerry W. | Almutairi, Mikhlid H. | Ambers, Angie | Churchill, Jennifer | King, Jonathan | Stoljarova, Monika | Gill-King, Harrell | Assidi, Mourad | Abu-Elmagd, Muhammad | Buhmeida, Abdelbaset | Al-Qatani, Muhammad | Budowle, Bruce | Abu-Elmagd, Muhammad | Ahmed, Farid | Dallol, Ashraf | Assidi, Mourad | Almagd, Taha Abo | Hakamy, Sahar | Agarwal, Ashok | Al-Qahtani, Muhammad | Abuzenadah, Adel | Karim, Sajjad | Schulten, Hans-Juergen | Al Sayyad, Ahmad J. | Farsi, Hasan M. A. | Al-Maghrabi, Jaudah A. | Buhmaida, Abdelbaset | Mirza, Zeenat | Alotibi, Reem | Al-Ahmadi, Alaa | Alansari, Nuha A. | Albogmi, Alaa A. | Al-Quaiti, Maha M. | Ashgan, Fai T. | Bandah, Afnan | Al-Qahtani, Mohammed H. | Satar, Rukhsana | Rasool, Mahmood | Ahmad, Waseem | Nazam, Nazia | Lone, Mohamad I. | Naseer, Muhammad I. | Jamal, Mohammad S. | Zaidi, Syed K. | Pushparaj, Peter N. | Jafri, Mohammad A. | Ansari, Shakeel A. | Alqahtani, Mohammed H. | Bashier, Hanan | Al Qahtani, Abrar | Mathew, Shilu | Nour, Amal M. | Alkhatabi, Heba | Zenadah, Adel M. Abu | Buhmeida, Abdelbaset | Assidi, Mourad | Al Qahtani, Muhammed | Faheem, Muhammad | Mathew, Shilu | Mathew, Shiny | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Alhadrami, Hani A. | Dallol, Ashraf | Abuzenadah, Adel | Hussein, Ibtessam R. | Chaudhary, Adeel G. | Bader, Rima S. | Bassiouni, Randa | Alquaiti, Maha | Ashgan, Fai | Schulten, Hans | Alama, Mohamed Nabil | Al Qahtani, Mohammad H. | Lone, Mohammad I. | Nizam, Nazia | Ahmad, Waseem | Jafri, Mohammad A. | Rasool, Mahmood | Ansari, Shakeel A. | Al-Qahtani, Muhammed H. | Alshihri, Eradah | Abu-Elmagd, Muhammad | Alharbi, Lina | Assidi, Mourad | Al-Qahtani, Mohammed | Mathew, Shilu | Natesan, Peter Pushparaj | Al Qahtani, Muhammed | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Khan, Fazal | Kadam, Roaa | Ahmed, Farid | Assidi, Mourad | Sait, Khalid Hussain Wali | Anfinan, Nisreen | Al Qahtani, Mohammed | Naseer, Muhammad I. | Chaudhary, Adeel G. | Jamal, Mohammad S. | Mathew, Shilu | Mira, Lobna S. | Pushparaj, Peter N. | Ansari, Shakeel A. | Rasool, Mahmood | AlQahtani, Mohammed H. | Naseer, Muhammad I. | Chaudhary, Adeel G. | Mathew, Shilu | Mira, Lobna S. | Jamal, Mohammad S. | Sogaty, Sameera | Bassiouni, Randa I. | Rasool, Mahmood | AlQahtani, Mohammed H. | Rasool, Mahmood | Ansari, Shakeel A. | Jamal, Mohammad S. | Pushparaj, Peter N. | Sibiani, Abdulrahman M. S. | Ahmad, Waseem | Buhmeida, Abdelbaset | Jafri, Mohammad A. | Warsi, Mohiuddin K. | Naseer, Muhammad I. | Al-Qahtani, Mohammed H. | Rubi | Kumar, Kundan | Naqvi, Ahmad A. T. | Ahmad, Faizan | Hassan, Md I. | Jamal, Mohammad S. | Rasool, Mahmood | AlQahtani, Mohammed H. | Ali, Ashraf | Jarullah, Jummanah | Rasool, Mahmood | Buhmeida, Abdelbasit | Khan, Shahida | Abdussami, Ghufrana | Mahfooz, Maryam | Kamal, Mohammad A. | Damanhouri, Ghazi A. | Jamal, Mohammad S. | Jarullah, Bushra | Jarullah, Jummanah | Jarullah, Mohammad S. S. | Ali, Ashraf | Rasool, Mahmood | Jamal, Mohammad S. | Assidi, Mourad | Abu-Elmagd, Muhammad | Bajouh, Osama | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Abuzenadah, Adel | Jamal, Mohammad S. | Jarullah, Jummanah | Mathkoor, Abdulah E. A. | Alsalmi, Hashim M. A. | Oun, Anas M. M. | Damanhauri, Ghazi A. | Rasool, Mahmood | AlQahtani, Mohammed H. | Naseer, Muhammad I. | Rasool, Mahmood | Sogaty, Sameera | Chudhary, Adeel G. | Abutalib, Yousif A. | Merico, Daniele | Walker, Susan | Marshall, Christian R. | Zarrei, Mehdi | Scherer, Stephen W. | Al-Qahtani, Mohammad H. | Naseer, Muhammad I. | Faheem, Muhammad | Chaudhary, Adeel G. | Rasool, Mahmood | Kalamegam, Gauthaman | Ashgan, Fai Talal | Assidi, Mourad | Ahmed, Farid | Zaidi, Syed Kashif | Jan, Mohammed M. | Al-Qahtani, Mohammad H. | Al-Zahrani, Maryam | Lary, Sahira | Hakamy, Sahar | Dallol, Ashraf | Al-Ahwal, Mahmoud | Al-Maghrabi, Jaudah | Dermitzakis, Emmanuel | Abuzenadah, Adel | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Al-refai, Abeer A. | Saleh, Mona | Yassien, Rehab I. | Kamel, Mahmmoud | Habeb, Rabab M. | Filimban, Najlaa | Dallol, Ashraf | Ghannam, Nadia | Al-Qahtani, Mohammed | Abuzenadah, Adel Mohammed | Bibi, Fehmida | Akhtar, Sana | Azhar, Esam I. | Yasir, Muhammad | Nasser, Muhammad I. | Jiman-Fatani, Asif A. | Sawan, Ali | Lahzah, Ruaa A. | Ali, Asho | Hassan, Syed A. | Hasnain, Seyed E. | Tayubi, Iftikhar A. | Abujabal, Hamza A. | Magrabi, Alaa O. | Khan, Fazal | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abuzenada, Adel | Kumosani, Taha Abduallah | Barbour, Elie | Al-Qahtani, Mohammed | Shabaad, Manal | Mathew, Shilu | Dallol, Ashraf | Merdad, Adnan | Buhmeida, Abdelbaset | Al-Qahtani, Mohammed | Assidi, Mourad | Abu-Elmagd, Muhammad | Gauthaman, Kalamegam | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Hassan, Syed A. | Tayubi, Iftikhar A. | Aljahdali, Hani M. A. | Al Nono, Reham | Gari, Mamdooh | Alsehli, Haneen | Ahmed, Farid | Abbas, Mohammed | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Mathew, Shilu | Khan, Fazal | Rasool, Mahmood | Jamal, Mohammed Sarwar | Naseer, Muhammad Imran | Mirza, Zeenat | Karim, Sajjad | Ansari, Shakeel | Assidi, Mourad | Kalamegam, Gauthaman | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Abu-Elmagd, Muhammad | Kalamegam, Gauthaman | Kadam, Roaa | Alghamdi, Mansour A. | Shamy, Magdy | Costa, Max | Khoder, Mamdouh I. | Assidi, Mourad | Pushparaj, Peter Natesan | Gari, Mamdooh | Al-Qahtani, Mohammed | Kharrat, Najla | Belmabrouk, Sabrine | Abdelhedi, Rania | Benmarzoug, Riadh | Assidi, Mourad | Al Qahtani, Mohammed H. | Rebai, Ahmed | Dhamanhouri, Ghazi | Pushparaj, Peter Natesan | Noorwali, Abdelwahab | Alwasiyah, Mohammad Khalid | Bahamaid, Afnan | Alfakeeh, Saadiah | Alyamani, Aisha | Alsehli, Haneen | Abbas, Mohammed | Gari, Mamdooh | Mobasheri, Ali | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Faheem, Muhammad | Mathew, Shilu | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Mathew, Shilu | Faheem, Muhammad | Mathew, Shiny | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad H. | Jamal, Mohammad Sarwar | Zaidi, Syed Kashif | Khan, Raziuddin | Bhatia, Kanchan | Al-Qahtani, Mohammed H. | Ahmad, Saif | AslamTayubi, Iftikhar | Tripathi, Manish | Hassan, Syed Asif | Shrivastava, Rahul | Tayubi, Iftikhar A. | Hassan, Syed | Abujabal, Hamza A. S. | Shah, Ishani | Jarullah, Bushra | Jamal, Mohammad S. | Jarullah, Jummanah | Sheikh, Ishfaq A. | Ahmad, Ejaz | Jamal, Mohammad S. | Rehan, Mohd | Abu-Elmagd, Muhammad | Tayubi, Iftikhar A. | AlBasri, Samera F. | Bajouh, Osama S. | Turki, Rola F. | Abuzenadah, Adel M. | Damanhouri, Ghazi A. | Beg, Mohd A. | Al-Qahtani, Mohammed | Hammoudah, Sahar A. F. | AlHarbi, Khalid M. | El-Attar, Lama M. | Darwish, Ahmed M. Z. | Ibrahim, Sara M. | Dallol, Ashraf | Choudhry, Hani | Abuzenadah, Adel | Awlia, Jalaludden | Chaudhary, Adeel | Ahmed, Farid | Al-Qahtani, Mohammed | Jafri, Mohammad A. | Abu-Elmagd, Muhammad | Assidi, Mourad | Al-Qahtani, Mohammed | khan, Imran | Yasir, Muhammad | Azhar, Esam I. | Al-basri, Sameera | Barbour, Elie | Kumosani, Taha | Khan, Fazal | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abuzenada, Adel | Kumosani, Taha Abduallah | Barbour, Elie | EL Sayed, Heba M. | Hafez, Eman A. | Schulten, Hans-Juergen | Elaimi, Aisha Hassan | Hussein, Ibtessam R. | Bassiouni, Randa Ibrahim | Alwasiyah, Mohammad Khalid | Wintle, Richard F. | Chaudhary, Adeel | Scherer, Stephen W. | Al-Qahtani, Mohammed | Mirza, Zeenat | Pillai, Vikram Gopalakrishna | Karim, Sajjad | Sharma, Sujata | Kaur, Punit | Srinivasan, Alagiri | Singh, Tej P. | Al-Qahtani, Mohammed | Alotibi, Reem | Al-Ahmadi, Alaa | Al-Adwani, Fatima | Hussein, Deema | Karim, Sajjad | Al-Sharif, Mona | Jamal, Awatif | Al-Ghamdi, Fahad | Al-Maghrabi, Jaudah | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Schulten, Hans-Juergen | Al-Qahtani, Mohammed | Faheem, Muhammad | Pushparaj, Peter Natesan | Mathew, Shilu | Kumosani, Taha Abdullah | Kalamegam, Gauthaman | Al-Qahtani, Mohammed | Al-Allaf, Faisal A. | Abduljaleel, Zainularifeen | Alashwal, Abdullah | Taher, Mohiuddin M. | Bouazzaoui, Abdellatif | Abalkhail, Halah | Ba-Hammam, Faisal A. | Athar, Mohammad | Kalamegam, Gauthaman | Pushparaj, Peter Natesan | Abu-Elmagd, Muhammad | Ahmed, Farid | Sait, Khalid HussainWali | Anfinan, Nisreen | Gari, Mamdooh | Chaudhary, Adeel | Abuzenadah, Adel | Assidi, Mourad | Al-Qahtani, Mohammed | Mami, Naira Ben | Haffani, Yosr Z. | Medhioub, Mouna | Hamzaoui, Lamine | Cherif, Ameur | Azouz, Msadok | Kalamegam, Gauthaman | Khan, Fazal | Mathew, Shilu | Nasser, Mohammed Imran | Rasool, Mahmood | Ahmed, Farid | Pushparaj, Peter Natesan | Al-Qahtani, Mohammed | Turkistany, Shereen A. | Al-harbi, Lina M. | Dallol, Ashraf | Sabir, Jamal | Chaudhary, Adeel | Abuzenadah, Adel | Al-Madoudi, Basmah | Al-Aslani, Bayan | Al-Harbi, Khulud | Al-Jahdali, Rwan | Qudaih, Hanadi | Al Hamzy, Emad | Assidi, Mourad | Al Qahtani, Mohammed | Ilyas, Asad M. | Ahmed, Youssri | Gari, Mamdooh | Ahmed, Farid | Alqahtani, Mohammed | Salem, Nada | Karim, Sajjad | Alhathli, Elham M. | Abusamra, Heba | Eldin, Hend F. Nour | Al-Qahtani, Mohammed H. | Kumar, Sudhir | Al-Adwani, Fatima | Hussein, Deema | Al-Sharif, Mona | Jamal, Awatif | Al-Ghamdi, Fahad | Al-Maghrabi, Jaudah | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Al-Qahtani, Mohammed | Schulten, Hans-Juergen | Alamandi, Alaa | Alotibi, Reem | Hussein, Deema | Karim, Sajjad | Al-Maghrabi, Jaudah | Al-Ghamdi, Fahad | Jamal, Awatif | Baeesa, Saleh S. | Bangash, Mohammed | Chaudhary, Adeel | Schulten, Hans-Juergen | Al-Qahtani, Mohammed | Subhi, Ohoud | Bagatian, Nadia | Karim, Sajjad | Al-Johari, Adel | Al-Hamour, Osman Abdel | Al-Aradati, Hosam | Al-Mutawa, Abdulmonem | Al-Mashat, Faisal | Al-Maghrabi, Jaudah | Schulten, Hans-Juergen | Al-Qahtani, Mohammad | Bagatian, Nadia | Subhi, Ohoud | Karim, Sajjad | Al-Johari, Adel | Al-Hamour, Osman Abdel | Al-Mutawa, Abdulmonem | Al-Aradati, Hosam | Al-Mashat, Faisal | Al-Qahtani, Mohammad | Schulten, Hans-Juergen | Al-Maghrabi, Jaudah | shah, Muhammad W. | Yasir, Muhammad | Azhar, Esam I | Al-Masoodi, Saad | Haffani, Yosr Z. | Azouz, Msadok | Khamla, Emna | Jlassi, Chaima | Masmoudi, Ahmed S. | Cherif, Ameur | Belbahri, Lassaad | Al-Khayyat, Shadi | Attas, Roba | Abu-Sanad, Atlal | Abuzinadah, Mohammed | Merdad, Adnan | Dallol, Ashraf | Chaudhary, Adeel | Al-Qahtani, Mohammed | Abuzenadah, Adel | Bouazzi, Habib | Trujillo, Carlos | Alwasiyah, Mohammad Khalid | Al-Qahtani, Mohammed | Alotaibi, Maha | Nassir, Rami | Sheikh, Ishfaq A. | Kamal, Mohammad A. | Jiffri, Essam H. | Ashraf, Ghulam M. | Beg, Mohd A. | Aziz, Mohammad A. | Ali, Rizwan | Rasool, Mahmood | Jamal, Mohammad S. | Samman, Nusaibah | Abdussami, Ghufrana | Periyasamy, Sathish | Warsi, Mohiuddin K. | Aldress, Mohammed | Al Otaibi, Majed | Al Yousef, Zeyad | Boudjelal, Mohamed | Buhmeida, Abdelbasit | Al-Qahtani, Mohammed H. | AlAbdulkarim, Ibrahim | Ghazala, Rubi | Mathew, Shilu | Hamed, M. Haroon | Assidi, Mourad | Al-Qahtani, Mohammed | Qadri, Ishtiaq | Sheikh, Ishfaq A. | Abu-Elmagd, Muhammad | Turki, Rola F. | Damanhouri, Ghazi A. | Beg, Mohd A. | Suhail, Mohd | Qureshi, Abid | Jamal, Adil | Pushparaj, Peter Natesan | Al-Qahtani, Mohammad | Qadri, Ishtiaq | El-Readi, Mahmoud Z. | Eid, Safaa Y. | Wink, Michael | Isa, Ahmed M. | Alnuaim, Lulu | Almutawa, Johara | Abu-Rafae, Basim | Alasiri, Saleh | Binsaleh, Saleh | Nazam, Nazia | Lone, Mohamad I. | Ahmad, Waseem | Ansari, Shakeel A. | Alqahtani, Mohamed H.
BMC Genomics  2016;17(Suppl 6):487.
Table of contents
O1 Regulation of genes by telomere length over long distances
Jerry W. Shay
O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy
Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa
O3 Integration of metagenomics and metabolomics in gut microbiome research
Maryam Goudarzi, Albert J. Fornace Jr.
O4 A unique integrated system to discern pathogenesis of central nervous system tumors
Saleh Baeesa, Deema Hussain, Mohammed Bangash, Fahad Alghamdi, Hans-Juergen Schulten, Angel Carracedo, Ishaq Khan, Hanadi Qashqari, Nawal Madkhali, Mohamad Saka, Kulvinder S. Saini, Awatif Jamal, Jaudah Al-Maghrabi, Adel Abuzenadah, Adeel Chaudhary, Mohammed Al Qahtani, Ghazi Damanhouri
O5 RPL27A is a target of miR-595 and deficiency contributes to ribosomal dysgenesis
Heba Alkhatabi
O6 Next generation DNA sequencing panels for haemostatic and platelet disorders and for Fanconi anaemia in routine diagnostic service
Anne Goodeve, Laura Crookes, Nikolas Niksic, Nicholas Beauchamp
O7 Targeted sequencing panels and their utilization in personalized medicine
Adel M. Abuzenadah
O8 International biobanking in the era of precision medicine
Jim Vaught
O9 Biobank and biodata for clinical and forensic applications
Bruce Budowle, Mourad Assidi, Abdelbaset Buhmeida
O10 Tissue microarray technique: a powerful adjunct tool for molecular profiling of solid tumors
Jaudah Al-Maghrabi
O11 The CEGMR biobanking unit: achievements, challenges and future plans
Abdelbaset Buhmeida, Mourad Assidi, Leena Merdad
O12 Phylomedicine of tumors
Sudhir Kumar, Sayaka Miura, Karen Gomez
O13 Clinical implementation of pharmacogenomics for colorectal cancer treatment
Angel Carracedo, Mahmood Rasool
O14 From association to causality: translation of GWAS findings for genomic medicine
Ahmed Rebai
O15 E-GRASP: an interactive database and web application for efficient analysis of disease-associated genetic information
Sajjad Karim, Hend F Nour Eldin, Heba Abusamra, Elham M Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar
O16 The supercomputer facility “AZIZ” at KAU: utility and future prospects
Hossam Faheem
O17 New research into the causes of male infertility
Ashok Agarwa
O18 The Klinefelter syndrome: recent progress in pathophysiology and management
Eberhard Nieschlag, Joachim Wistuba, Oliver S. Damm, Mohd A. Beg, Taha A. Abdel-Meguid, Hisham A. Mosli, Osama S. Bajouh, Adel M. Abuzenadah, Mohammed H. Al-Qahtani
O19 A new look to reproductive medicine in the era of genomics
Serdar Coskun
P1 Wnt signalling receptors expression in Saudi breast cancer patients
Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Ashraf Dallol, Jaudah Al-Maghrabi, Sahar Hakamy, Wejdan Al-Qahtani, Asia Al-Harbi, Shireen Hussain, Mourad Assidi, Mohammed Al-Qahtani, Adel Abuzenadah
P2 Analysis of oxidative stress interactome during spermatogenesis: a systems biology approach to reproduction
Burak Ozkosem, Rick DuBois
P3 Interleukin-18 gene variants are strongly associated with idiopathic recurrent pregnancy loss.
Safia S Messaoudi, Maryam T Dandana, Touhami Mahjoub, Wassim Y Almawi
P4 Effect of environmental factors on gene-gene and gene-environment reactions: model and theoretical study applied to environmental interventions using genotype
S. Abdalla, M. Nabil Al-Aama
P5 Genomics and transcriptomic analysis of imatinib resistance in gastrointestinal stromal tumor
Asmaa Elzawahry, Tsuyoshi Takahashi, Sachiyo Mimaki, Eisaku Furukawa, Rie Nakatsuka, Isao Kurosaka, Takahiko Nishigaki, Hiromi Nakamura, Satoshi Serada, Tetsuji Naka, Seiichi Hirota, Tatsuhiro Shibata, Katsuya Tsuchihara, Toshirou Nishida, Mamoru Kato
P6 In-Silico analysis of putative HCV epitopes against Pakistani human leukocyte antigen background: an approach towards development of future vaccines for Pakistani population
Sajid Mehmood, Naeem Mahmood Ashraf, Awais Asif, Muhammad Bilal, Malik Siddique Mehmood, Aadil Hussain
P7 Inhibition of AChE and BuChE with the natural compounds of Bacopa monerri for the treatment of Alzheimer’s disease: a bioinformatics approach
Qazi Mohammad Sajid Jamal, Mughees Uddin Siddiqui, Mohammad A. Alzohairy, Mohammad A. Al Karaawi
P8 Her2 expression in urothelial cell carcinoma of the bladder in Saudi Arabia
Taoufik Nedjadi, Jaudah Al-Maghrabi, Mourad Assidi, Heba Al-Khattabi, Adel Al-Ammari, Ahmed Al-Sayyad, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P9 Association of angiotensinogen single nucleotide polymorphisms with Preeclampsia in patients from North Africa
Hédia Zitouni, Nozha Raguema, Marwa Ben Ali, Wided Malah, Raja Lfalah, Wassim Almawi, Touhami Mahjoub
P10 Systems biology analysis reveals relations between normal skin, benign nevi and malignant melanoma
Mohammed Elanbari, Andrey Ptitsyn
P11 The apoptotic effect of thymoquinone in Jurkat cells
Sana Mahjoub, Rabeb El Ghali, Bechir Achour, Nidhal Ben Amor, Mourad Assidi, Brahim N'siri, Hamid Morjani
P12 Sonic hedgehog contributes in bladder cancer invasion in Saudi Arabia
Taoufik Nedjadi, Adel Al-Ammari, Ahmed Al-Sayyad, Nada Salem, Esam Azhar, Jaudah Al-Maghrabi
P13 Association of Interleukin 18 gene promoter polymorphisms - 607A/C and -137 G/C with colorectal cancer onset in a sample of Tunisian population
Vera Chayeb, Maryam Dendena, Hedia Zitouni, Khedija Zouari-Limayem, Touhami Mahjoub
P14 Pathological expression of interleukin-6, -11, leukemia inhibitory factor and their receptors in tubal gestation with and without tubal cytomegalovirus infection
Bassem Refaat, Ahmed M Ashshi, Sarah A Batwa
P15 Phenotypic and genetic profiling of avian pathogenic and human diarrhegenic Escherichia coli in Egypt
Hazem Ramadan, Amal Awad, Ahmed Ateya
P16 Cancer-targeting dual gene virotherapy as a promising therapeutic strategy for treatment of hepatocellular carcinoma
Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok YUN
P17 Cancer dual gene therapy with oncolytic adenoviruses expressing TRAIL and IL-12 transgenes markedly eradicated human hepatocellular carcinoma both in vitro and in vivo
Adel Galal Ahmed El-Shemi, Ahmad Ashshi, Mohammed Basalamah, Youjin Na, Chae-Ok Yun
P18 Therapy with paricalcitol attenuates tumor growth and augments tumoricidal and anti-oncogenic effects of 5-fluorouracil on animal model of colon cancer
Adel Galal El-Shemi, Bassem Refaat, Osama Kensara, Amr Abdelfattah
P19 The effects of Rubus idaeus extract on normal human lymphocytes and cancer cell line
Batol Imran Dheeb, Mohammed M. F. Al-Halbosiy, Rghad Kadhim Al lihabi, Basim Mohammed Khashman
P20 Etanercept, a TNF-alpha inhibitor, alleviates mechanical hypersensitivity and spontaneous pain in a rat model of chemotherapy-induced neuropathic pain
Djouhri, Laiche, Chaudhary Adeel, Nedjadi, Taoufik
P21 Sleeping beauty mutagenesis system identified genes and neuronal transcription factor network involved in pediatric solid tumour (medulloblastoma)
Hani Al-Afghani, Maria Łastowska, Haya H Al-Balool, Harsh Sheth, Emma Mercer, Jonathan M Coxhead, Chris PF Redfern, Heiko Peters, Alastair D Burt, Mauro Santibanez-Koref, Chris M Bacon, Louis Chesler, Alistair G Rust, David J Adams, Daniel Williamson, Steven C Clifford, Michael S Jackson
P22 Involvement of interleukin-1 in vitiligo pathogenesis
Mala Singh, Mohmmad Shoab Mansuri, Shahnawaz D. Jadeja, Hima Patel, Yogesh S. Marfatia, Rasheedunnisa Begum
P23 Cytogenetics abnormalities in 12,884 referred population for chromosomal analysis and the role of FISH in refining the diagnosis (cytogenetic experience 2004-2013)
Amal M Mohamed, Alaa K Kamel, Nivin A Helmy, Sayda A Hammad, Hesham F Kayed, Marwa I Shehab, Assad El Gerzawy, Maha M. Ead, Ola M Ead, Mona Mekkawy, Innas Mazen, Mona El-Ruby
P24 Analysis of binding properties of angiotensin-converting enzyme 2 through in silico method
S. M. A. Shahid, Qazi Mohammad Sajid Jamal, J. M. Arif, Mohtashim Lohani
P25 Relationship of genetics markers cis and trans to the β-S globin gene with fetal hemoglobin expression in Tunisian sickle cell patients
Moumni Imen, Chaouch Leila, Ouragini Houyem, Douzi Kais, Chaouachi Dorra Mellouli Fethi, Bejaoui Mohamed, Abbes Salem
P26 Analysis of estrogen receptor alpha gene polymorphisms in breast cancer: link to genetic predisposition in Sudanese women
Areeg Faggad, Amanuel T Gebreslasie, Hani Y Zaki, Badreldin E Abdalla
P27 KCNQI gene polymorphism and its association with CVD and T2DM in the Saudi population
Maha S AlShammari, Rhaya Al-Ali, Nader Al-Balawi , Mansour Al-Enazi, Ali Al-Muraikhi, Fadi Busaleh, Ali Al-Sahwan, Francis Borgio, Abdulazeez Sayyed, Amein Al-Ali, Sadananda Acharya
P28 Clinical, neuroimaging and cytogenetic study of a patient with microcephaly capillary malformation syndrome
Maha S. Zaki, Hala T. El-Bassyouni, Marwa I. Shehab
P29 Altered expression of CD200R1 on dendritic cells of patients with inflammatory bowel diseases: in silico investigations and clinical evaluations
Mohammed F. Elshal, Kaleemuddin M., Alia M. Aldahlawi, Omar Saadah,
J. Philip McCoy
P30 Development of real time PCR diagnostic protocol specific for the Saudi Arabian H1N1 viral strains
Adel E El-Tarras, Nabil S Awad, Abdulla A Alharthi, Mohamed M M Ibrahim
P31 Identification of novel genetic variations affecting Osteoarthritis patients
Haneen S Alsehli, Ashraf Dallol, Abdullah M Gari, Mohammed M Abbas, Roaa A Kadam, Mazen M. Gari, Mohmmed H Alkaff, Adel M Abuzenadah, Mamdooh A Gari
P32 An integrated database of GWAS SNVs and their evolutionary properties
Heba Abusamra, Sajjad Karim, Hend F Nour eldin, Elham M Alhathli, Nada Salem, Sudhir Kumar, Mohammed H Al-Qahtani
P33 Familial hypercholesterolemia in Saudi Arabia: prime time for a national registry and genetic analysis
Fatima A. Moradi, Omran M. Rashidi, Zuhier A. Awan
P34 Comparative genomics and network-based analyses of early hepatocellular carcinoma
Ibrahim Hamza Kaya, Olfat Al-Harazi, Dilek Colak
P35 A TALEN-based oncolytic viral vector approach to knock out ABCB1 gene mediated chemoresistance in cancer stem cells
Nabila A Alkousi, Takis Athanasopoulos
P36 Cartilage differentiation and gene expression of synovial fluid mesenchymal stem cells derived from osteoarthritis patients
Afnan O Bahmaid, Etimad A Alhwait, Mamdooh A Gari, Haneen S Alsehli, Mohammed M Abbas, Mohammed H Alkaf, Roaa Kadam, Ashraf Dallol, Gauthaman Kalamegam
P37 E-GRASP: Adding an evolutionary component to the genome-wide repository of associations (GRASP) resource
Hend F Nour Eldin, Sajjad Karim, Heba Abusamra, Elham Alhathli, Nada Salem, Mohammed H Al-Qahtani, Sudhir Kumar
P38 Screening of AGL gene mutation in Saudi family with glycogen storage disease Type III
Salma N Alsayed, Fawziah H Aljohani, Samaher M Habeeb, Rawan A Almashali, Sulman Basit, Samia M Ahmed
P39 High throughput proteomic data suggest modulation of cAMP dependent protein kinase A and mitochondrial function in infertile patients with varicocele
Rakesh Sharma, Ashok Agarwal, Damayanthi Durairajanayagam, Luna Samanta, Muhammad Abu-Elmagd, Adel M. Abuzenadah, Edmund S. Sabanegh, Mourad Assidi, Mohammed Al-Qahtani
P40 Significant protein profile alterations in men with primary and secondary infertility
Ashok Agarwal, Rakesh Sharma, Luna Samanta, Damayanthi Durairajanayagam, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani, Adel M. Abuzenadah, Edmund S. Sabanegh
P41 Spermatozoa maturation in infertile patients involves compromised expression of heat shock proteins
Luna Samanta, Ashok Agarwal, Rakesh Sharma, Zhihong Cui, Mourad Assidi, Adel M. Abuzenadah, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P42 Array comparative genomic hybridization approach to search genomic answers for spontaneous recurrent abortion in Saudi Arabia
Alaa A Alboogmi, Nuha A Alansari, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Hasan S Jamal, Abdullraheem Rozi, Zeenat Mirza, Adel M Abuzenadah, Sajjad Karim, Mohammed H Al-Qahtani
P43 Global gene expression profiling of Saudi kidney cancer patients
Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani
P44 Downregulated StAR gene and male reproductive dysfunction caused by nifedipine and ethosuximide
Rasha A Ebiya, Samia M Darwish, Metwally M. Montaser
P45 Clustering based gene expression feature selection method: A computational approach to enrich the classifier efficiency of differentially expressed genes
Heba Abusamra, Vladimir B. Bajic
P46 Prognostic significance of Osteopontin expression profile in colorectal carcinoma
Jaudah Al-Maghrabi, Wafaey Gomaa, Mehenaz Hanbazazh, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Saher Hakamy, Ghali Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P47 High Glypican-3 expression pattern predicts longer disease-specific survival in colorectal carcinoma
Jaudah Al-Maghrabi, Abdullah Al-Harbi, Mahmoud Al-Ahwal, Asia Al-Harbi, Wejdan Al-Qahtani, Sahar Hakamy, Ghalia Baba, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P48 An evolutionary re-assessment of GWAS single nucleotide variants implicated in the Cholesterol traits
Elham M Alhathli, Sajjad Karim, Nada Salem, Hend Nour Eldin, Heba Abusamra, Sudhir Kumar, Mohammed H Al-Qahtani
P49 Derivation and characterization of human Wharton’s jelly stem cells (hWJSCs) in vitro for future therapeutic applications
Aisha A Alyamani, Gauthaman Kalamegam, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa A Kadam, Mohammed Al-Qahtani
P50 Attitudes of healthcare students toward biomedical research in the post-genomic era
Rawan Gadi, Abdelbaset Buhmeida, Mourad Assidi , Adeel Chaudhary, Leena Merdad
P51 Evaluation of the immunomodulatory effects of thymoquinone on human bone marrow mesenchymal stem cells (BM-MSCs) from osteoarthritic patients
Saadiah M Alfakeeh, Etimad A Alhwait, Mamdooh A Gari, Mohammed M Abbas, Mohammed H Alkaf, Haneen S Alsehli, Roaa Kadam, Gauthaman Kalamegam
P52 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance
Rubi Ghazala, Shilu Mathew, M.Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri
P53 Selection of flavonoids against obesity protein (FTO) using in silico and in vitro approaches
Shilu Mathew, Lobna Mira, Manal Shaabad, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P54 Computational selection and in vitro validation of flavonoids as new antidepressant agents
Shilu Mathew, Manal Shaabad, Lobna Mira, Shireen Hussain, Mourad Assidi, Muhammad Abu-Elmagd, Mohammed Al-Qahtani
P55 In Silico prediction and prioritization of aging candidate genes associated with
progressive telomere shortening
Ahmed Rebai, Mourad Assidi, Abdelbaset Buhmeida, Muhammad Abu-Elmagd, Ashraf Dallol, Jerry W Shay
P56 Identification of new cancer testis antigen genes in diverse types of malignant human tumour cells
Mikhlid H Almutairi
P57 More comprehensive forensic genetic marker analyses for accurate human remains identification using massively parallel sequencing (MPS)
Angie Ambers, Jennifer Churchill, Jonathan King, Monika Stoljarova, Harrell Gill-King, Mourad Assidi, Muhammad Abu-Elmagd, Abdelbaset Buhmeida, Muhammad Al-Qatani, Bruce Budowle
P58 Flow cytometry approach towards treatment men infertility in Saudi Arabia
Muhammad Abu-Elmagd, Farid Ahmed, Ashraf Dallol, Mourad Assidi, Taha Abo Almagd, Sahar Hakamy, Ashok Agarwal, Muhammad Al-Qahtani, Adel Abuzenadah
P59 Tissue microarray based validation of CyclinD1 expression in renal cell carcinoma of Saudi kidney patients
Sajjad Karim, Hans-Juergen Schulten, Ahmad J Al Sayyad, Hasan MA Farsi, Jaudah A Al-Maghrabi, Abdelbaset Buhmaida, Zeenat Mirza, Reem Alotibi, Alaa Al-Ahmadi, Nuha A Alansari, Alaa A Albogmi, Maha M Al-Quaiti, Fai T Ashgan, Afnan Bandah, Mohammed H Al-Qahtani
P60 Assessment of gold nanoparticles in molecular diagnostics and DNA damage studies
Rukhsana Satar, Mahmood Rasool, Waseem Ahmad, Nazia Nazam, Mohamad I Lone, Muhammad I Naseer, Mohammad S Jamal, Syed K Zaidi, Peter N Pushparaj, Mohammad A Jafri, Shakeel A Ansari, Mohammed H Alqahtani
P61 Surfing the biospecimen management and processing workflow at CEGMR Biobank
Hanan Bashier, Abrar Al Qahtani, Shilu Mathew, Amal M. Nour, Heba Alkhatabi, Adel M. Abu Zenadah, Abdelbaset Buhmeida, Mourad Assidi, Muhammed Al Qahtani
P62 Autism Spectrum Disorder: knowledge, attitude and awareness in Jeddah, Kingdom of Saudi Arabia
Muhammad Faheem, Shilu Mathew, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P63 Simultaneous genetic screening of the coagulation pathway genes using the Thromboscan targeted sequencing panel
Hani A. Alhadrami, Ashraf Dallol, Adel Abuzenadah
P64 Genome wide array comparative genomic hybridization analysis in patients with syndromic congenital heart defects
Ibtessam R. Hussein, Adeel G. Chaudhary, Rima S Bader, Randa Bassiouni, Maha Alquaiti, Fai Ashgan, Hans Schulten, Mohamed Nabil Alama, Mohammad H. Al Qahtani
P65 Toxocogenetic evaluation of 1, 2-Dichloroethane in bone marrow, blood and cells of immune system using conventional, molecular and flowcytometric approaches
Mohammad I Lone, Nazia Nizam, Waseem Ahmad, Mohammad A Jafri, Mahmood Rasool, Shakeel A Ansari, Muhammed H Al-Qahtani
P66 Molecular cytogenetic diagnosis of sexual development disorders in newborn: A case of ambiguous genitalia
Eradah Alshihri, Muhammad Abu-Elmagd, Lina Alharbi, Mourad Assidi, Mohammed Al-Qahtani
P67 Identification of disease specific gene expression clusters and pathways in hepatocellular carcinoma using In Silico methodologies
Shilu Mathew, Peter Pushparaj Natesan, Muhammed Al Qahtani
P68 Human Wharton’s Jelly stem cell conditioned medium inhibits primary ovarian cancer cells in vitro: Identification of probable targets and mechanisms using systems biology
Gauthaman Kalamegam, Peter Natesan Pushparaj, Fazal Khan, Roaa Kadam, Farid Ahmed, Mourad Assidi, Khalid Hussain Wali Sait, Nisreen Anfinan, Mohammed Al Qahtani
P69 Mutation spectrum of ASPM (Abnormal Spindle-like, Microcephaly-associated) gene in Saudi Arabian population
Muhammad I Naseer, Adeel G Chaudhary, Mohammad S Jamal, Shilu Mathew, Lobna S Mira, Peter N Pushparaj, Shakeel A Ansari, Mahmood Rasool, Mohammed H AlQahtani
P70 Identification and characterization of novel genes and mutations of primary microcephaly in Saudi Arabian population
Muhammad I Naseer, Adeel G Chaudhary, Shilu Mathew, Lobna S Mira, Mohammad S Jamal, Sameera Sogaty, Randa I Bassiouni, Mahmood Rasool, Mohammed H AlQahtani
P71 Molecular genetic analysis of hereditary nonpolyposis colorectal cancer (Lynch Syndrome) in Saudi Arabian population
Mahmood Rasool, Shakeel A Ansari, Mohammad S Jamal, Peter N Pushparaj, Abdulrahman MS Sibiani, Waseem Ahmad, Abdelbaset Buhmeida, Mohammad A Jafri, Mohiuddin K Warsi, Muhammad I Naseer, Mohammed H Al-Qahtani
P72 Function predication of hypothetical proteins from genome database of chlamydia trachomatis
Rubi, Kundan Kumar, Ahmad AT Naqvi, Faizan Ahmad, Md I Hassan, Mohammad S Jamal, Mahmood Rasool, Mohammed H AlQahtani
P73 Transcription factors as novel molecular targets for skin cancer
Ashraf Ali, Jummanah Jarullah, Mahmood Rasool, Abdelbasit Buhmeida, Shahida Khan, Ghufrana Abdussami, Maryam Mahfooz, Mohammad A Kamal, Ghazi A Damanhouri, Mohammad S Jamal
P74 An In Silico analysis of Plumbagin binding to apoptosis executioner: Caspase-3 and Caspase-7
Bushra Jarullah, Jummanah Jarullah, Mohammad SS Jarullah, Ashraf Ali, Mahmood Rasool, Mohammad S Jamal
P75 Single cell genomics applications for preimplantation genetic screening optimization: Comparative analysis of whole genome amplification technologies
Mourad Assidi, Muhammad Abu-Elmagd, Osama Bajouh, Peter Natesan Pushparaj, Mohammed Al-Qahtani, Adel Abuzenadah
P76 ZFP36 regulates miRs-34a in anti-IgM triggered immature B cells
Mohammad S Jamal, Jummanah Jarullah, Abdulah EA Mathkoor, Hashim MA Alsalmi, Anas MM Oun, Ghazi A Damanhauri, Mahmood Rasool, Mohammed H AlQahtani
P77 Identification of a novel mutation in the STAMBP gene in a family with microcephaly-capillary malformation syndrome
Muhammad I. Naseer, Mahmood Rasool, Sameera Sogaty, Adeel G. Chudhary, Yousif A. Abutalib, Daniele Merico, Susan Walker, Christian R. Marshall, Mehdi Zarrei, Stephen W. Scherer, Mohammad H. Al-Qahtani
P78 Copy number variations in Saudi patients with intellectual disability and epilepsy
Muhammad I. Naseer, Muhammad Faheem, Adeel G. Chaudhary, Mahmood Rasool, Gauthaman Kalamegam, Fai Talal Ashgan, Mourad Assidi, Farid Ahmed, Syed Kashif Zaidi, Mohammed M. Jan, Mohammad H. Al-Qahtani
P79 Prognostic significance of CD44 expression profile in colorectal carcinoma
Maryam Al-Zahrani, Sahira Lary, Sahar Hakamy, Ashraf Dallol, Mahmoud Al-Ahwal, Jaudah Al-Maghrabi, Emmanuel Dermitzakis, Adel Abuzenadah, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P80 Association of the endothelial nitric oxide synthase (eNOS) gene G894T polymorphism with hypertension risk and complications
Abeer A Al-refai, Mona Saleh, Rehab I Yassien, Mahmmoud Kamel, Rabab M Habeb
P81 SNPs array to screen genetic variation among diabetic patients
Najlaa Filimban, Ashraf Dallol, Nadia Ghannam, Mohammed Al-Qahtani, Adel Mohammed Abuzenadah
P82 Detection and genotyping of Helicobacter pylori among gastric cancer patients from Saudi Arabian population
Fehmida Bibi, Sana Akhtar, Esam I. Azhar, Muhammad Yasir, Muhammad I. Nasser, Asif A. Jiman-Fatani, Ali Sawan
P83 Antimicrobial drug resistance and molecular detection of susceptibility to Fluoroquinolones among clinical isolates of Salmonella species from Jeddah-Saudi Arabia
Ruaa A Lahzah, Asho Ali
P84 Identification of the toxic and virulence nature of MAP1138c protein of Mycobacterium avium subsp. paratuberculosis
Syed A Hassan, Seyed E Hasnain, Iftikhar A Tayubi, Hamza A Abujabal, Alaa O Magrabi
P85 In vitro and in silico evaluation of miR137 in human breast cancer
Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour, Mohammed Al-Qahtani
P86 Auruka gene is over-expressed in Saudi breast cancer
Manal Shabaad, Shilu Mathew, Ashraf Dallol, Adnan Merdad, Abdelbaset Buhmeida, Mohammed Al-Qahtani
P87 The potential of immunogenomics in personalized healthcare
Mourad Assidi, Muhammad Abu-Elmagd, Kalamegam Gauthaman, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P88 In Silico physiochemical and structural characterization of a putative ORF MAP0591 and its implication in the pathogenesis of Mycobacterium paratuberculosis in ruminants and humans
Syed A Hassan, Iftikhar A Tayubi, Hani MA Aljahdali
P89 Effects of heat shock on human bone marrow mesenchymal stem cells (BM-MSCs): Implications in regenerative medicine
Reham Al Nono, Mamdooh Gari, Haneen Alsehli, Farid Ahmed, Mohammed Abbas, Gauthaman Kalamegam, Mohammed Al-Qahtani
P90 In Silico analyses of the molecular targets of Resveratrol unravels its importance in mast cell mediated allergic responses
Shilu Mathew, Fazal Khan, Mahmood Rasool, Mohammed Sarwar Jamal, Muhammad Imran Naseer, Zeenat Mirza, Sajjad Karim, Shakeel Ansari, Mourad Assidi, Gauthaman Kalamegam, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P91 Effects of environmental particulate matter on bone-marrow mesenchymal stem cells
Muhammad Abu-Elmagd, Gauthaman Kalamegam, Roaa Kadam, Mansour A Alghamdi, Magdy Shamy, Max Costa, Mamdouh I Khoder, Mourad Assidi, Peter Natesan Pushparaj, Mamdooh Gari, Mohammed Al-Qahtani
P92 Distinctive charge clusters in human virus proteomes
Najla Kharrat, Sabrine Belmabrouk, Rania Abdelhedi, Riadh Benmarzoug, Mourad Assidi, Mohammed H. Al Qahtani, Ahmed Rebai
P93 In vitro experimental model and approach in identification of new biomarkers of inflammatory forms of arthritis
Ghazi Dhamanhouri, Peter Natesan Pushparaj, Abdelwahab Noorwali, Mohammad Khalid Alwasiyah, Afnan Bahamaid, Saadiah Alfakeeh, Aisha Alyamani, Haneen Alsehli, Mohammed Abbas, Mamdooh Gari, Ali Mobasheri, Gauthaman Kalamegam, Mohammed Al-Qahtani
P94 Molecular docking of GABAA receptor subunit γ-2 with novel anti-epileptic compounds
Muhammad Faheem, Shilu Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P95 Breast cancer knowledge, awareness, and practices among Saudi females residing in Jeddah
Shilu Mathew, Muhammad Faheem, Shiny Mathew, Peter Natesan Pushparaj, Mohammad H. Al-Qahtani
P96 Anti-inflammatory role of Sesamin by Attenuation of Iba1/TNF-α/ICAM-1/iNOS signaling in Diabetic Retinopathy
Mohammad Sarwar Jamal, Syed Kashif Zaidi, Raziuddin Khan, Kanchan Bhatia, Mohammed H. Al-Qahtani, Saif Ahmad
P97 Identification of drug lead molecule against vp35 protein of Ebola virus: An In-Silico approach
Iftikhar AslamTayubi, Manish Tripathi, Syed Asif Hassan, Rahul Shrivastava
P98 An approach to personalized medicine from SNP-calling through disease analysis using whole exome-sequencing of three sub-continental populations
Iftikhar A Tayubi, Syed Hassan, Hamza A.S Abujabal
P99 Low versus high frequency of Glucose –6 – Phosphate Dehydrogenase (G6PD) deficiency in urban against tribal population of Gujarat – A signal to natural selection
Ishani Shah, Bushra Jarullah, Mohammad S Jamal, Jummanah Jarullah
P100 Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update
Ishfaq A Sheikh, Ejaz Ahmad, Mohammad S Jamal, Mohd Rehan, Muhammad Abu-Elmagd, Iftikhar A Tayubi, Samera F AlBasri, Osama S Bajouh, Rola F Turki, Adel M Abuzenadah, Ghazi A Damanhouri, Mohd A Beg, Mohammed Al-Qahtani
P101 Prevalence of congenital heart diseases among Down syndrome cases in Saudi Arabia: role of molecular genetics in the pathogenesis
Sahar AF Hammoudah, Khalid M AlHarbi, Lama M El-Attar, Ahmed MZ Darwish
P102 Combinatorial efficacy of specific pathway inhibitors in breast cancer cells
Sara M Ibrahim, Ashraf Dallol, Hani Choudhry, Adel Abuzenadah, Jalaludden Awlia, Adeel Chaudhary, Farid Ahmed, Mohammed Al-Qahtani
P103 MiR-143 and miR-145 cluster as potential replacement medicine for the treatment of cancer
Mohammad A Jafri, Muhammad Abu-Elmagd, Mourad Assidi, Mohammed Al-Qahtani
P104 Metagenomic profile of gut microbiota during pregnancy in Saudi population
Imran khan, Muhammad Yasir, Esam I. Azhar, Sameera Al-basri, Elie Barbour, Taha Kumosani
P105 Exploration of anticancer targets of selected metabolites of Phoenix dactylifera L. using systems biological approaches
Fazal Khan, Gauthaman Kalamegam, Peter Natesan Pushparaj, Adel Abuzenada, Taha Abduallah Kumosani, Elie Barbour
P106 CD226 and CD40 gene polymorphism in susceptibility to Juvenile rheumatoid arthritis in Egyptian patients
Heba M. EL Sayed, Eman A. Hafez
P107 Paediatric exome sequencing in autism spectrum disorder ascertained in Saudi families
Hans-Juergen Schulten, Aisha Hassan Elaimi, Ibtessam R Hussein, Randa Ibrahim Bassiouni, Mohammad Khalid Alwasiyah, Richard F Wintle, Adeel Chaudhary, Stephen W Scherer, Mohammed Al-Qahtani
P108 Crystal structure of the complex formed between Phospholipase A2 and the central core hydrophobic fragment of Alzheimer’s β- amyloid peptide: a reductionist approach
Zeenat Mirza, Vikram Gopalakrishna Pillai, Sajjad Karim, Sujata Sharma, Punit Kaur, Alagiri Srinivasan, Tej P Singh, Mohammed Al-Qahtani
P109 Differential expression profiling between meningiomas from female and male patients
Reem Alotibi, Alaa Al-Ahmadi, Fatima Al-Adwani, Deema Hussein, Sajjad Karim, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani
P110 Neurospheres as models of early brain development and therapeutics
Muhammad Faheem, Peter Natesan Pushparaj, Shilu Mathew, Taha Abdullah Kumosani, Gauthaman Kalamegam, Mohammed Al-Qahtani
P111 Identification of a recurrent causative missense mutation p.(W577C) at the LDLR exon 12 in familial hypercholesterolemia affected Saudi families
Faisal A Al-Allaf, Zainularifeen Abduljaleel, Abdullah Alashwal, Mohiuddin M. Taher, Abdellatif Bouazzaoui, Halah Abalkhail, Faisal A. Ba-Hammam, Mohammad Athar
P112 Epithelial ovarian carcinoma (EOC): Systems oncological approach to identify diagnostic, prognostic and therapeutic biomarkers
Gauthaman Kalamegam, Peter Natesan Pushparaj, Muhammad Abu-Elmagd, Farid Ahmed Khalid HussainWali Sait, Nisreen Anfinan, Mamdooh Gari, Adeel Chaudhary, Adel Abuzenadah, Mourad Assidi, Mohammed Al-Qahtani
P113 Crohn’s disease phenotype in northern Tunisian population
Naira Ben Mami, Yosr Z Haffani, Mouna Medhioub, Lamine Hamzaoui, Ameur Cherif, Msadok Azouz
P114 Establishment of In Silico approaches to decipher the potential toxicity and mechanism of action of drug candidates and environmental agents
Gauthaman Kalamegam, Fazal Khan, Shilu Mathew, Mohammed Imran Nasser, Mahmood Rasool, Farid Ahmed, Peter Natesan Pushparaj, Mohammed Al-Qahtani
P115 1q Gain predicts poor prognosis marker for young breast cancer patients
Shereen A Turkistany, Lina M Al-harbi, Ashraf Dallol, Jamal Sabir, Adeel Chaudhary, Adel Abuzenadah
P116 Disorders of sex chromosomes in a diagnostic genomic medicine unit in Saudi Arabia: Prevalence, diagnosis and future guidelines
Basmah Al-Madoudi, Bayan Al-Aslani, Khulud Al-Harbi, Rwan Al-Jahdali, Hanadi Qudaih, Emad Al Hamzy, Mourad Assidi, Mohammed Al Qahtani
P117 Combination of WYE354 and Sunitinib demonstrate synergistic inhibition of acute myeloid leukemia in vitro
Asad M Ilyas, Youssri Ahmed, Mamdooh Gari, Farid Ahmed, Mohammed Alqahtani
P118 Integrated use of evolutionary information in GWAS reveals important SNPs in Asthma
Nada Salem, Sajjad Karim, Elham M Alhathli, Heba Abusamra, Hend F Nour Eldin, Mohammed H Al-Qahtani, Sudhir Kumar
P119 Assessment of BRAF, IDH1, IDH2, and EGFR mutations in a series of primary brain tumors
Fatima Al-Adwani, Deema Hussein, Mona Al-Sharif, Awatif Jamal, Fahad Al-Ghamdi, Jaudah Al-Maghrabi, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Mohammed Al-Qahtani, Hans-Juergen Schulten
P120 Expression profiles distinguish oligodendrogliomas from glioblastoma multiformes with or without oligodendroglioma component
Alaa Alamandi, Reem Alotibi, Deema Hussein, Sajjad Karim, Jaudah Al-Maghrabi, Fahad Al-Ghamdi, Awatif Jamal, Saleh S Baeesa, Mohammed Bangash, Adeel Chaudhary, Hans-Juergen Schulten, Mohammed Al-Qahtani
P121 Hierarchical clustering in thyroid goiters and hyperplastic lesions
Ohoud Subhi, Nadia Bagatian, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Hosam Al-Aradati, Abdulmonem Al-Mutawa, Faisal Al-Mashat, Jaudah Al-Maghrabi, Hans-Juergen Schulten, Mohammad Al-Qahtani
P122 Differential expression analysis in thyroiditis and papillary thyroid carcinomas with or without coexisting thyroiditis
Nadia Bagatian, Ohoud Subhi, Sajjad Karim, Adel Al-Johari, Osman Abdel Al-Hamour, Abdulmonem Al-Mutawa, Hosam Al-Aradati, Faisal Al-Mashat, Mohammad Al-Qahtani, Hans-Juergen Schulten, Jaudah Al-Maghrabi
P123 Metagenomic analysis of waste water microbiome in Sausdi Arabia
Muhammad W shah, Muhammad Yasir, Esam I Azhar, Saad Al-Masoodi
P124 Molecular characterization of Helicobacter pylori from faecal samples of Tunisian patients with gastric cancer
Yosr Z Haffani, Msadok Azouz, Emna Khamla, Chaima Jlassi, Ahmed S. Masmoudi, Ameur Cherif, Lassaad Belbahri
P125 Diagnostic application of the oncoscan© panel for the identification of hereditary cancer syndrome
Shadi Al-Khayyat, Roba Attas, Atlal Abu-Sanad, Mohammed Abuzinadah, Adnan MerdadAshraf Dallol, Adeel Chaudhary, Mohammed Al-Qahtani, Adel Abuzenadah
P126 Characterization of clinical and neurocognitive features in a family with a novel OGT gene missense mutation c. 1193G > A/ (p. Ala319Thr)
Habib Bouazzi, Carlos Trujillo, Mohammad Khalid Alwasiyah, Mohammed Al-Qahtani
P127 Case report: a rare homozygous deletion mutation of TMEM70 gene associated with 3-Methylglutaconic Aciduria and cataract in a Saudi patient
Maha Alotaibi, Rami Nassir
P128 Isolation and purification of antimicrobial milk proteins
Ishfaq A Sheikh, Mohammad A Kamal, Essam H Jiffri, Ghulam M Ashraf, Mohd A Beg
P129 Integrated analysis reveals association of ATP8B1 gene with colorectal cancer
Mohammad A Aziz, Rizwan Ali, Mahmood Rasool, Mohammad S Jamal, Nusaibah samman, Ghufrana Abdussami, Sathish Periyasamy, Mohiuddin K Warsi, Mohammed Aldress, Majed Al Otaibi, Zeyad Al Yousef, Mohamed Boudjelal, Abdelbasit Buhmeida, Mohammed H Al-Qahtani, Ibrahim AlAbdulkarim
P130 Implication of IL-10 and IL-28 polymorphism with successful anti-HCV therapy and viral clearance
Rubi Ghazala, Shilu Mathew, M. Haroon Hamed, Mourad Assidi, Mohammed Al-Qahtani, Ishtiaq Qadri
P131 Interactions of endocrine disruptor di-(2-ethylhexyl) phthalate (DEHP) and its metabolite mono-2-ethylhexyl phthalate (MEHP) with progesterone receptor
Ishfaq A Sheikh, Muhammad Abu-Elmagd, Rola F Turki, Ghazi A Damanhouri, Mohd A. Beg
P132 Association of HCV nucleotide polymorphism in the development of hepatocellular carcinoma
Mohd Suhail, Abid Qureshi, Adil Jamal, Peter Natesan Pushparaj, Mohammad Al-Qahtani, Ishtiaq Qadri
P133 Gene expression profiling by DNA microarrays in colon cancer treated with chelidonine alkaloid
Mahmoud Z El-Readi, Safaa Y Eid, Michael Wink
P134 Successful in vitro fertilization after eight failed trials
Ahmed M. Isa, Lulu Alnuaim, Johara Almutawa, Basim Abu-Rafae, Saleh Alasiri, Saleh Binsaleh
P135 Genetic sensitivity analysis using SCGE, cell cycle and mitochondrial membrane potential in OPs stressed leukocytes in Rattus norvegicus through flow cytometric input
Nazia Nazam, Mohamad I Lone, Waseem Ahmad, Shakeel A Ansari, Mohamed H Alqahtani
PMCID: PMC4959372  PMID: 27454254
4.  Towards Complete Sets of Farnesylated and Geranylgeranylated Proteins 
PLoS Computational Biology  2007;3(4):e66.
Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein–protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS) has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase ( and can be queried for verification status, type of modifying enzymes (anchor type), and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins—for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs) used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain–containing FLJ32421 (termed BROFTI), and Rab28 (short isoform) as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for the selective farnesylation of targets with an evolutionary conserved modification site.
Author Summary
Various cellular functions require reversible membrane localization of proteins. This is often facilitated by attaching lipids to the respective proteins, thus anchoring them to the membrane. For example, addition of prenyl lipid anchors (prenylation) is directed by a motif in the protein sequence that can be predicted using a recently developed method. We describe the prediction of protein prenylation in all currently known proteins. The annotated results are available as an online database: PRENbase. A ranking of the predictions is introduced, assuming that existence of a prenylation sequence motif in related proteins from different species (evolutionary conservation) relates to functional importance of the lipid anchor. We present experimental evidence for high-ranked human proteins predicted to be affected by anticancer drugs inhibiting prenylation.
PMCID: PMC1847700  PMID: 17411337
5.  Code-Assisted Discovery of TAL Effector Targets in Bacterial Leaf Streak of Rice Reveals Contrast with Bacterial Blight and a Novel Susceptibility Gene 
PLoS Pathogens  2014;10(2):e1003972.
Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.
Author Summary
Many crop and ornamental plants suffer losses due to bacterial pathogens in the genus Xanthomonas. Pathogen manipulation of host gene expression by injected proteins called TAL effectors is important in many of these diseases. A TAL effector finds its gene target(s) by virtue of structural repeats in the protein that differ one from another at two amino acids that together identify one DNA base. The number of repeats and those amino acids thereby code for the DNA sequence the protein binds. This code allows target prediction and engineering TAL effectors for custom gene activation. By combining genome-wide analysis of gene expression with TAL effector binding site prediction and verification using designer TAL effectors, we identified 19 targets of TAL effectors in bacterial leaf streak of rice, a disease of growing importance worldwide caused by X. oryzae pv. oryzicola. Among these was a sulfate transport gene that plays a major role. Comparison of true vs. false predictions using machine learning yielded a classifier that will streamline TAL effector target identification in the future. Probing the diversity and functions of such plant genes is critical to expand our knowledge of disease and defense mechanisms, and open new avenues for effective disease control.
PMCID: PMC3937315  PMID: 24586171
6.  Identification of Drosophila MicroRNA Targets 
PLoS Biology  2003;1(3):e60.
MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression by binding to target messenger RNAs and by controlling protein production or causing RNA cleavage. To date, functions have been assigned to only a few of the hundreds of identified miRNAs, in part because of the difficulty in identifying their targets. The short length of miRNAs and the fact that their complementarity to target sequences is imperfect mean that target identification in animal genomes is not possible by standard sequence comparison methods. Here we screen conserved 3′ UTR sequences from the Drosophila melanogaster genome for potential miRNA targets. The screening procedure combines a sequence search with an evaluation of the predicted miRNA–target heteroduplex structures and energies. We show that this approach successfully identifies the five previously validated let-7, lin-4, and bantam targets from a large database and predict new targets for Drosophila miRNAs. Our target predictions reveal striking clusters of functionally related targets among the top predictions for specific miRNAs. These include Notch target genes for miR-7, proapoptotic genes for the miR-2 family, and enzymes from a metabolic pathway for miR-277. We experimentally verified three predicted targets each for miR-7 and the miR-2 family, doubling the number of validated targets for animal miRNAs. Statistical analysis indicates that the best single predicted target sites are at the border of significance; thus, target predictions should be considered as tentative until experimentally validated. We identify features shared by all validated targets that can be used to evaluate target predictions for animal miRNAs. Our initial evaluation and experimental validation of target predictions suggest functions for two miRNAs. For others, the screen suggests plausible functions, such as a role for miR-277 as a metabolic switch controlling amino acid catabolism. Cross-genome comparison proved essential, as it allows reduction of the sequence search space. Improvements in genome annotation and increased availability of cDNA sequences from other genomes will allow more sensitive screens. An increase in the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection. While the screen is likely to miss some targets, our study shows that valid targets can be identified from sequence alone.
A bioinformatic approach suggests many new target genes for Drosophila microRNAs. A number of them are validated experimentally
PMCID: PMC270017  PMID: 14691535
7.  Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing 
PLoS Computational Biology  2016;12(10):e1005135.
Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at
Author Summary
High-throughput techniques have generated vast amounts of diverse omics and phenotypic data. However, these sets of data have not yet been fully explored to improve the effectiveness and efficiency of drug discovery, a process which has traditionally adopted a one-drug-one-gene paradigm. Consequently, the cost of bringing a drug to market is astounding and the failure rate is daunting. The failure of the target-based drug discovery is in large part due to the fact that a drug rarely interacts only with its intended receptor, but also generally binds to other receptors. To rationally design potent and safe therapeutics, we need to identify all the possible cellular proteins interacting with a drug in an organism. Existing experimental techniques are not sufficient to address this problem, and will benefit from computational modeling. However, it is a daunting task to reliably screen millions of chemicals against hundreds of thousands of proteins. Here, we introduce a fast and accurate method REMAP for large-scale predictions of drug-target interactions. REMAP outperforms state-of-the-art algorithms in terms of both speed and accuracy, and has been successfully applied to drug repurposing. Thus, REMAP may have broad applications in drug discovery.
PMCID: PMC5055357  PMID: 27716836
8.  A Discovery Funnel for Nucleic Acid Binding Drug Candidates 
Drug development research  2011;72(2):178-186.
Computational approaches are becoming increasingly popular for the discovery of drug candidates against a target of interest. Proteins have historically been the primary targets of many virtual screening efforts. While in silico screens targeting proteins has proven successful, other classes of targets, in particular DNA, remain largely unexplored using virtual screening methods. With the realization of the functional importance of many non-cannonical DNA structures such as G-quadruplexes, increased efforts are underway to discover new small molecules that can bind selectively to DNA structures. Here, we describe efforts to build an integrated in silico and in vitro platform for discovering compounds that may bind to a chosen DNA target. Millions of compounds are initially screened in silico for selective binding to a particular structure and ranked to identify several hundred best hits. An important element of our strategy is the inclusion of an array of possible competing structures in the in silico screen. The best hundred or so hits are validated experimentally for binding to the actual target structure by a high-throughput 96-well thermal denaturation assay to yield the top ten candidates. Finally, these most promising candidates are thoroughly characterized for binding to their DNA target by rigorous biophysical methods, including isothermal titration calorimetry, differential scanning calorimetry, spectroscopy and competition dialysis.This platform was validated using quadruplex DNA as a target and a newly discovered quadruplex binding compound with possible anti-cancer activity was discovered. Some considerations when embarking on virtual screening and in silico experiments are also discussed.
PMCID: PMC3090163  PMID: 21566705
drug discovery; in silico screening; SURFLEX-DOCK; DNA; G-quadruplex; high-throughput screening
9.  Chemical combination effects predict connectivity in biological systems 
Chemical synergies can be novel probes of biological systems.Simulated response shapes depend on target connectivity in a pathway.Experiments with yeast and cancer cells confirm simulated effects.Profiles across many combinations yield target location information.
Living organisms are built of interacting components, whose function and dysfunction can be described through dynamic network models (Davidson et al, 2002). Systems Biology involves the iterative construction of such models (Ideker et al, 2001), and may eventually improve the understanding of diseases using in silico simulations. Such simulations may eventually permit drugs to be prioritized for clinical trials, reducing potential risks and increasing the likelihood of successful outcomes. Given the complexity of biological systems, constructing realistic models will require large and diverse sets of connectivity data.
Chemical combinations provide a new window into biological connectivity. Information gleaned from targeted combinations, such as paired mutations (Tong et al, 2004), has proven to be especially useful for revealing functional interactions between components. We have been screening chemical combinations for therapeutic synergies (Borisy et al, 2003; Zimmermann et al, 2007), collecting full-dose matrices where combinations are tested in all possible pairings of serially diluted single agent doses (Figure 1). Such screens yield a variety of response surfaces with distinct shapes for combinations that work through different known mechanisms, suggesting that combination effects may contain information on the nature of functional connections between drug targets.
Simulations of biological pathways predict synergistic responses to inhibitors that depend on target connectivity. We explored theoretical predictions by simulating a metabolic pathway with pairs of inhibitors aimed at different targets with varying doses. We found that the shape of each combination response depended on how the inhibitor pair's targets were connected in the pathway (Figure 2). The predicted response shapes were robust to plausible variations in the simulated pathway that did not affect the network topology (e.g., kinetic assumptions, parameter values, and nonlinear response functions), but were very sensitive to topological alterations in the modelled network (e.g., feedback regulation or changing the type of junction at a branch point). These findings suggest that connectivity of the inhibitor targets has a major influence on combination response morphology.
The predicted shapes were experimentally confirmed in yeast combination experiments. The proliferation experiment used drugs focused on the sterol biosynthesis pathway, which is mostly linear between the targets covered in this study, and is known to be regulated by negative feedback (Gardner et al, 2001). The combinations between sterol inhibitors confirmed expectations from our simulations, showing dose-additive responses for pairs targeting the same enzyme and strong synergies across enzymes of the shape predicted in our simulations for linear pathways under negative feedback. Combinations across pathways showed much more variable responses with a trend towards less synergy on average.
Further experimental support was obtained from human cells. A combination screen of 90 annotated drugs in a human tumour cell line (HCT116) proliferation assay produced strong synergies for combinations within pathways and more variable effects between targeted functions. Synergy profiles (sets of all synergy scores involving each drug) also showed a greater degree of similarity for pairs of drugs with related targets. Finally, the most extreme outliers were dominated by inhibitors of kinases that are especially critical for HCT116 proliferation (Awwad et al, 2003), with effects that are consistent across mechanistic replicates, showing that chemical combinations can highlight biologically relevant cellular processes.
This study demonstrates the potential of chemical combinations for exploring functional connectivity in biological systems. This information complements genetic studies by providing more details through variable dosing, by directly targeting single domains of multi-domain proteins, and by probing cell types that are not amenable to mutagenesis. Responses from large chemical combination screens can be used to identify molecular targets through chemical–genetic profiling (Macdonald et al, 2006), or to directly constrain network models by means of a prediction-validation procedure (Ideker et al, 2001). This initial exploration can be extended to cover a wider range of response shapes and network topologies, as well as to combinations of three or more chemical agents. Moreover, this approach may even be applicable to non-biological systems where responses to targeted perturbations can be measured.
Efforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells. The response morphology yields detailed connectivity constraints between nearby targets, and synergy profiles across many combinations show relatedness between targets in the whole network. Constraints from chemical combinations complement genetic studies, because they probe different cellular components and can be applied to disease models that are not amenable to mutagenesis. Chemical probes also offer increased flexibility, as they can be continuously dosed, temporally controlled, and readily combined. After extending this initial study to cover a wider range of combination effects and pathway topologies, chemical combinations may be used to refine network models or to identify novel targets. This response surface methodology may even apply to non-biological systems where responses to targeted perturbations can be measured.
PMCID: PMC1828746  PMID: 17332758
chemical genetics; combinations and synergy; metabolic and regulatory networks; simulation and data analysis
10.  In Silico Molecular Comparisons of C. elegans and Mammalian Pharmacology Identify Distinct Targets That Regulate Feeding 
PLoS Biology  2013;11(11):e1001712.
This paper takes advantage of similarities between the C. elegans and human pharmacopeia to identify and validate pharmacological targets that regulate C. elegans feeding rates.
Phenotypic screens can identify molecules that are at once penetrant and active on the integrated circuitry of a whole cell or organism. These advantages are offset by the need to identify the targets underlying the phenotypes. Additionally, logistical considerations limit screening for certain physiological and behavioral phenotypes to organisms such as zebrafish and C. elegans. This further raises the challenge of elucidating whether compound-target relationships found in model organisms are preserved in humans. To address these challenges we searched for compounds that affect feeding behavior in C. elegans and sought to identify their molecular mechanisms of action. Here, we applied predictive chemoinformatics to small molecules previously identified in a C. elegans phenotypic screen likely to be enriched for feeding regulatory compounds. Based on the predictions, 16 of these compounds were tested in vitro against 20 mammalian targets. Of these, nine were active, with affinities ranging from 9 nM to 10 µM. Four of these nine compounds were found to alter feeding. We then verified the in vitro findings in vivo through genetic knockdowns, the use of previously characterized compounds with high affinity for the four targets, and chemical genetic epistasis, which is the effect of combined chemical and genetic perturbations on a phenotype relative to that of each perturbation in isolation. Our findings reveal four previously unrecognized pathways that regulate feeding in C. elegans with strong parallels in mammals. Together, our study addresses three inherent challenges in phenotypic screening: the identification of the molecular targets from a phenotypic screen, the confirmation of the in vivo relevance of these targets, and the evolutionary conservation and relevance of these targets to their human orthologs.
Author Summary
Many beneficial pharmacological interventions were first discovered by observing the effects of perturbation of intact biological systems by small organic molecules without a priori knowledge of their targets. This forward pharmacological approach has the advantage of directly identifying new pharmacological agents that are active on complex biological processes. However, because of experimental feasibility, systematic application of this approach is generally limited to small animals such as the roundworm C. elegans and zebrafish, raising the question of whether use of these animals could identify compounds that act on ortholgous mammalian targets. A significant challenge in addressing this question is the determination of the molecular identities of the compounds' targets responsible for the desired phenotypic outcomes. Here we describe a computational approach for target identification based on structural similarities of newly identified compounds to known ligand interactions with mostly mammalian targets. For several of the compounds emerging from a C. elegans phenotypic screen, we predict and confirm mammalian targets using in vitro binding assays. Using genetic and pharmacological assays, we then demonstrate that a subset of these compounds alter C. elegans feeding rates through the C. elegans counterparts of the predicted mammalian targets.
PMCID: PMC3833878  PMID: 24260022
11.  Non-canonical peroxisome targeting signals: identification of novel PTS1 tripeptides and characterization of enhancer elements by computational permutation analysis 
BMC Plant Biology  2012;12:142.
High-accuracy prediction tools are essential in the post-genomic era to define organellar proteomes in their full complexity. We recently applied a discriminative machine learning approach to predict plant proteins carrying peroxisome targeting signals (PTS) type 1 from genome sequences. For Arabidopsis thaliana 392 gene models were predicted to be peroxisome-targeted. The predictions were extensively tested in vivo, resulting in a high experimental verification rate of Arabidopsis proteins previously not known to be peroxisomal.
In this study, we experimentally validated the predictions in greater depth by focusing on the most challenging Arabidopsis proteins with unknown non-canonical PTS1 tripeptides and prediction scores close to the threshold. By in vivo subcellular targeting analysis, three novel PTS1 tripeptides (QRL>, SQM>, and SDL>) and two novel tripeptide residues (Q at position −3 and D at pos. -2) were identified. To understand why, among many Arabidopsis proteins carrying the same C-terminal tripeptides, these proteins were specifically predicted as peroxisomal, the residues upstream of the PTS1 tripeptide were computationally permuted and the changes in prediction scores were analyzed. The newly identified Arabidopsis proteins were found to contain four to five amino acid residues of high predicted targeting enhancing properties at position −4 to −12 in front of the non-canonical PTS1 tripeptide. The identity of the predicted targeting enhancing residues was unexpectedly diverse, comprising besides basic residues also proline, hydroxylated (Ser, Thr), hydrophobic (Ala, Val), and even acidic residues.
Our computational and experimental analyses demonstrate that the plant PTS1 tripeptide motif is more diverse than previously thought, including an increasing number of non-canonical sequences and allowed residues. Specific targeting enhancing elements can be predicted for particular sequences of interest and are far more diverse in amino acid composition and positioning than previously assumed. Machine learning methods become indispensable to predict which specific proteins, among numerous candidate proteins carrying the same non-canonical PTS1 tripeptide, contain sufficient enhancer elements in terms of number, positioning and total strength to cause peroxisome targeting.
PMCID: PMC3487989  PMID: 22882975
12.  Improving compound–protein interaction prediction by building up highly credible negative samples 
Bioinformatics  2015;31(12):i221-i229.
Motivation: Computational prediction of compound–protein interactions (CPIs) is of great importance for drug design and development, as genome-scale experimental validation of CPIs is not only time-consuming but also prohibitively expensive. With the availability of an increasing number of validated interactions, the performance of computational prediction approaches is severely impended by the lack of reliable negative CPI samples. A systematic method of screening reliable negative sample becomes critical to improving the performance of in silico prediction methods.
Results: This article aims at building up a set of highly credible negative samples of CPIs via an in silico screening method. As most existing computational models assume that similar compounds are likely to interact with similar target proteins and achieve remarkable performance, it is rational to identify potential negative samples based on the converse negative proposition that the proteins dissimilar to every known/predicted target of a compound are not much likely to be targeted by the compound and vice versa. We integrated various resources, including chemical structures, chemical expression profiles and side effects of compounds, amino acid sequences, protein–protein interaction network and functional annotations of proteins, into a systematic screening framework. We first tested the screened negative samples on six classical classifiers, and all these classifiers achieved remarkably higher performance on our negative samples than on randomly generated negative samples for both human and Caenorhabditis elegans. We then verified the negative samples on three existing prediction models, including bipartite local model, Gaussian kernel profile and Bayesian matrix factorization, and found that the performances of these models are also significantly improved on the screened negative samples. Moreover, we validated the screened negative samples on a drug bioactivity dataset. Finally, we derived two sets of new interactions by training an support vector machine classifier on the positive interactions annotated in DrugBank and our screened negative interactions. The screened negative samples and the predicted interactions provide the research community with a useful resource for identifying new drug targets and a helpful supplement to the current curated compound–protein databases.
Availability: Supplementary files are available at:
Supplementary Information: Supplementary data are available at Bioinformatics online.
PMCID: PMC4765858  PMID: 26072486
13.  EPMA-World Congress 2015 
Abraham, Jella-Andrea | Golubnitschaja, Olga | Akhmetov, Ildar | Andrews, Russell J. | Quintana, Leonidas | Andrews, Russell J. | Baban, Babak | Liu, Jun Yao | Qin, Xu | Wang, Tailing | Mozaffari, Mahmood S. | Bati, Viktoriia V. | Meleshko, Tamara V. | Levchuk, Olga B. | Boyko, Nadiya V. | Bauer, Joanna | Boerner, Ewa | Podbielska, Halina | Bomba, Alojz | Petrov, Viktor O. | Drobnych, Volodymyr G. | Bubnov, Rostyslav V. | Bykova, Oksana M. | Boyko, Nadiya V. | Brunner-La Rocca, Hans-Peter | Fleischhacker, Lutz | Golubnitschaja, Olga | Heemskerk, Frank | Helms, Thomas | Jaarsma, Tiny | Kinkorová, Judita | Ramaekers, Jan | Ruff, Peter | Schnur, Ivana | Vanoli, Emilio | Verdu, Jose | Brunner-La Rocca, Hans-Peter | Bubnov, Rostyslav V. | Grabovetskyi, Sergiy A. | Mykhalchenko, Olena M. | Tymoshok, Natalia O. | Shcherbakov, Oleksandr B. | Semeniv, Igor P. | Spivak, Mykola Y. | Bubnov, Rostyslav V. | Ostapenko, Tetyana V. | Bubnov, Rostyslav V. | Kobyliak, Nazarii M. | Zholobak, Nadiya M. | Spivak, Mykola Ya. | Cauchi, John Paul | Cherepakhin, Dmitrii | Bakay, Marina | Borovikov, Artem | Suchkov, Sergey | Cieślik, Barbara | Migasiewicz, Agnieszka | Podbielska, Maria-Luiza | Pelleter, Markus | Giemza, Agnieszka | Podbielska, Halina | Cirak, Sebahattin | Del Re, Marzia | Bordi, Paola | Citi, Valentina | Palombi, Marta | Pinto, Carmine | Tiseo, Marcello | Danesi, Romano | Einhorn, Lukas | Fazekas, Judit | Muhr, Martina | Schoos, Alexandra | Panakova, Lucia | Herrmann, Ina | Manzano-Szalai, Krisztina | Oida, Kumiko | Fiebiger, Edda | Singer, Josef | Jensen-Jarolim, Erika | Elnar, Arpiné A. | Ouamara, Nadia | Boyko, Nadiya | Coumoul, Xavier | Antignac, Jean-Philippe | Le Bizec, Bruno | Eppe, Gauthier | Renaut, Jenny | Bonn, Torsten | Guignard, Cédric | Ferrante, Margherita | Chiusano, Maria Liusa | Cuzzocrea, Salvatore | O’Keeffe, Gerard | Cryan, John | Bisson, Michelle | Barakat, Amina | Hmamouchi, Ihsane | Zawia, Nasser | Kanthasamy, Anumantha | Kisby, Glen E. | Alves, Rui | Pérez, Oscar Villacañas | Burgard, Kim | Spencer, Peter | Bomba, Norbert | Haranta, Martin | Zaitseva, Nina | May, Irina | Grojean, Stéphanie | Body-Malapel, Mathilde | Harari, Florencia | Harari, Raul | Yeghiazaryan, Kristina | Golubnitschaja, Olga | Calabrese, Vittorio | Nemos, Christophe | Soulimani, Rachid | Evsevyeva, Maria E. | Mishenko, Elena A. | Kumukova, Zurida V. | Chudnovsky, Evgeniy V. | Smirnova, Tatyana A. | Evsevyeva, Maria E. | Ivanova, Ludmila V. | Eremin, Michail V. | Rostovtseva, Maria V. | Evsevyeva, Maria E. | Eremin, Michail V. | Koshel, Vladimir I. | Sergeeva, Oksana V. | Konovalova, Nadesgda M. | Girotra, Shantanu | Golubnitschaja, Olga | Golubnitschaja, Olga | Debald, Manuel | Kuhn, Walther | Yeghiazaryan, Kristina | Bubnov, Rostyslav V. | Goncharenko, Vadym M. | Lushchyk, Ulyana | Grech, Godfrey | Konieczka, Katarzyna | Golubnitschaja, Olga | Erwich, Jan Jaap | Costigliola, Vincenzo | Yeghiazaryan, Kristina | Gembruch, Ulrich | Goncharenko, Vadym M. | Beniuk, Vasyl O. | Kalenska, Olga V. | Bubnov, Rostyslav V. | Goncharenko, Vadym M. | Beniuk, Vasyl O. | Bubnov, Rostyslav V. | Melnychuk, Olga | Gorbacheva, Irina A. | Orekhova, Lyudmila Y. | Tachalov, Vadim V. | Grechanyk, Olena I. | Abdullaiev, Rizvan Ya. | Bubnov, Rostyslav V. | Hagan, Suzanne | Martin, Eilidh | Pearce, Ian | Oliver, Katherine | Haytac, Cenk | Salimov, Fariz | Yoksul, Servin | Kunin, Anatoly A. | Moiseeva, Natalia S. | Herrera-Imbroda, Bernardo | del Río-González, Sergio | Lara, Maria Fernanda | Angulo, Antonia | Machuca Santa-Cruz, Francisco Javier | Herrera-Imbroda, Bernardo | del Río-González, Sergio | Lara, Maria Fernanda | Ionescu, John | Isamulaeva, Alfiya Z. | Kunin, Anatoly A. | Magomedov, Shamil Sh. | Isamulaeva, Aida I. | Josifova, Tatjana | Kapalla, Marko | Kubáň, Juraj | Golubnitschaja, Olga | Costigliola, Vincenzo | Costigliola, Vincenzo | Kapalla, Marko | Kubáň, Juraj | Golubnitschaja, Olga | Kent, Anthony | Fisher, Tom | Dias, Tilak | Kinkorová, Judita | Topolčan, Ondřej | Kohl, Matthias | Kunin, Anatoly A. | Moiseeva, Natalia S. | Kurchenko, Andrii I. | Beniuk, Vasyl A. | Goncharenko, Vadym M. | Bubnov, Rostyslav V. | Boyko, Nadiya V. | Strokan, Andriy M. | Kzhyshkowska, Julia | Gudima, Alexandru | Stankevich, Ksenia S. | Filimonov, Victor D. | Klüter, Harald | Mamontova, Evgeniya M. | Tverdokhlebov, Sergei I. | Lushchyk, Ulyana B. | Novytskyy, Viktor V. | Babii, Igor P. | Lushchyk, Nadiya G. | Riabets, Lyudmyla S. | Legka, Ivanna I. | Marcus-Kalish, Mira | Mitelpunkt, Alexis | Galili, Tal | Shachar, Neta | Benjamini, Yoav | Migasiewicz, Agnieszka | Pelleter, Markus | Bauer, Joanna | Dereń, Ewelina | Podbielska, Halina | Moiseeva, Natalia S. | Kunin, Anatoly A. | Kunin, Dmitry A. | Moiseeva, Natalia S. | Ippolitov, Yury A. | Kunin, Dmitry A. | Morozov, Alexei N. | Chirkova, Natalia V. | Aliev, Nakhid T. | Mozaffari, Mahmood S. | Liu, Jun Yao | Baban, Babak | Mozaffari, Mahmood S. | Liu, Jun Yao | Abdelsayed, Rafik | Shi, Xing-Ming | Baban, Babak | Novák, Jaroslav | Štork, Milan | Zeman, Václav | Oosterhuis, Wytze P. | Theodorsson, Elvar | Orekhova, Lyudmila Y. | Kudryavtseva, Tatyana V. | Isaeva, Elena R. | Tachalov, Vadim V. | Loboda, Ekaterina S. | Pazzagli, Mario | Malentacchi, Francesca | Mancini, Irene | Brandslund, Ivan | Vermeersch, Pieter | Schwab, Matthias | Marc, Janja | van Schaik, Ron H. N. | Siest, Gerard | Theodorsson, Elvar | Di Resta, Chiara | Pleva, Matus | Juhar, Jozef | Pleva, Matus | Juhar, Jozef | Polívka jr., Jiří | Janků, Filip | Pešta, Martin | Doležal, Jan | Králíčková, Milena | Polívka, Jiří | Polívka, Jiří | Lukešová, Alena | Müllerová, Nina | Ševčík, Petr | Rohan, Vladimír | Richter, Kneginja | Miloseva, Lence | Niklewski, Günter | Richter, Kneginja | Acker, Jens | Niklewski, Guenter | Safonicheva, Olga | Costigliola, Vincenzo | Safonicheva, Olga | Sautin, Maxim | Sinelnikova, Janna | Suchkov, Sergey | Secer, Songül | von Bandemer, Stephan | Shapira, Niva | Shcherbakov, Aleksandr | Kunin, Anatoly A. | Moiseeva, Natalia S. | Shumilovich, Bogdan R. | Lipkind, Zhanna | Vorobieva, Yulia | Kunin, Dmitry A. | Sudareva, Anastasiia V. | Smokovski, Ivica | Milenkovic, Tatjana | Solís-Herrera, Arturo | Arias-Esparza, María del Carmen | Suchkov, Sergey | Sridhar, Krishna Chander | Golubnitschaja, Olga | Studneva, Maria | Song, Sihong | Creeden, James | Мandrik, Мark | Suchkov, Sergey | Theodorsson, Elvar | Tofail, Syed A. M. | Topolčan, Ondřej | Kinkorová, Judita | Fiala, Ondřej | Karlíková, Marie | Svobodová, Šárka | Kučera, Radek | Fuchsová, Radka | Třeška, Vladislav | Šimánek, Václav | Pecen, Ladislav | Šoupal, Jan | Svačina, Štěpán | Tretyak, Evgeniya | Studneva, Maria | Suchkov, Sergey | Trovato, Francesca M. | Martines, Giuseppe Fabio | Brischetto, Daniela | Catalano, Daniela | Musumeci, Giuseppe | Trovato, Guglielmo M. | Tsangaris, George Th. | Anagnostopoulos, Athanasios K. | Tsangaris, George Th. | Anagnostopoulos, Athanasios K. | Verdú, José | Gutiérrez, German | Rovira, Jordi | Martinez, Marta | Fleischhacker, Lutz | Green, Donna | Garson, Arthur | Tamburini, Elena | Cuomo, Stefano | Martinez-Leon, Juan | Abrisqueta, Teresa | Brunner-La Rocca, Hans-Peter | Jaarsma, Tiny | Arredondo, Teresa | Vera, Cecilia | Fico, Giuseppe | Golubnitschaja, Olga | Arribas, Fernando | Onderco, Martina | Vara, Isabel | Verdú, José | Sambo, Francesco | Di Camillo, Barbara | Cobelli, Claudio | Facchinetti, Andrea | Fico, Giuseppe | Bellazzi, Riccardo | Sacchi, Lucia | Dagliati, Arianna | Segnani, Daniele | Tibollo, Valentina | Ottaviano, Manuel | Gabriel, Rafael | Groop, Leif | Postma, Jacqueline | Martinez, Antonio | Hakaste, Liisa | Tuomi, Tiinamaija | Zarkogianni, Konstantia | Volchek, Igor | Pototskaya, Nina | Petrov, Andrey | Volchek, Igor | Pototskaya, Nadezhda | Petrov, Andrey | Voog-Oras, Ülle | Jagur, Oksana | Leibur, Edvitar | Niibo, Priit | Jagomägi, Triin | Nguyen, Minh Son | Pruunsild, Chris | Piikov, Dagmar | Saag, Mare | Wang, Wei | Wang, Wei | Weinhäusel, Andreas | Pulverer, Walter | Wielscher, Matthias | Hofner, Manuela | Noehammer, Christa | Soldo, Regina | Hettegger, Peter | Gyurjan, Istvan | Kulovics, Ronald | Schönthaler, Silvia | Beikircher, Gabriel | Kriegner, Albert | Pabinger, Stephan | Vierlinger, Klemens | Yüzbaşıoğlu, Ayşe | Özgüç, Meral
The EPMA Journal  2016;7(Suppl 1):9.
Table of contents
A1 Predictive and prognostic biomarker panel for targeted application of radioembolisation improving individual outcomes in hepatocellular carcinoma
Jella-Andrea Abraham, Olga Golubnitschaja
A2 Integrated market access approach amplifying value of “Rx-CDx”
Ildar Akhmetov
A3 Disaster response: an opportunity to improve global healthcare
Russell J. Andrews, Leonidas Quintana
A4 USA PPPM: proscriptive, profligate, profiteering medicine-good for 1 % wealthy, not for 99 % unhealthy
Russell J. Andrews
A5 The role of IDO in a murine model of gingivitis: predictive and therapeutic potentials
Babak Baban, Jun Yao Liu, Xu Qin, Tailing Wang, Mahmood S. Mozaffari
A6 Specific diets for personalised treatment of diabetes type 2
Viktoriia V. Bati, Tamara V. Meleshko, Olga B. Levchuk, Nadiya V. Boyko
A7 Towards personalized physiotherapeutic approach
Joanna Bauer, Ewa Boerner, Halina Podbielska
A8 Cells, animal, SHIME and in silico models for detection and verification of specific biomarkers of non-communicable chronic diseases
Alojz Bomba, Viktor O. Petrov, Volodymyr G. Drobnych, Rostyslav V. Bubnov, Oksana M. Bykova, Nadiya V. Boyko
A9 INTERACT-chronic care model: Self-treatment by patients with decision support e-Health solution
Hans-Peter Brunner-La Rocca, Lutz Fleischhacker, Olga Golubnitschaja, Frank Heemskerk, Thomas Helms, Tiny Jaarsma, Judita Kinkorova, Jan Ramaekers, Peter Ruff, Ivana Schnur, Emilio Vanoli, Jose Verdu
A10 PPPM in cardiovascular medicine in 2015
Hans-Peter Brunner-La Rocca
A11 Magnetic resonance imaging of nanoparticles in mice, potential for theranostic and contrast media development – pilot results
Rostyslav V. Bubnov, Sergiy A. Grabovetskyi, Olena M. Mykhalchenko, Natalia O. Tymoshok, Oleksandr B. Shcherbakov, Igor P. Semeniv, Mykola Y. Spivak
A12 Ultrasound diagnosis for diabetic neuropathy - comparative study
Rostyslav V. Bubnov, Tetyana V. Ostapenko
A13 Ultrasound for stratification patients with diabetic foot ulcers for prevention and personalized treatment - pilot results
Rostyslav V. Bubnov, Nazarii M. Kobyliak, Nadiya M. Zholobak, Mykola Ya. Spivak
A14 Project ImaGenX – designing and executing a questionnaire on environment and lifestyle risk of breast cancer
John Paul Cauchi
A15 Genomics – a new structural brand of predictive, preventive and personalized medicine or the new driver as well?
Dmitrii Cherepakhin, Marina Bakay, Artem Borovikov, Sergey Suchkov
A16 Survey of questionnaires for evaluation of the quality of life in various medical fields
Barbara Cieślik, Agnieszka Migasiewicz, Maria-Luiza Podbielska, Markus Pelleter, Agnieszka Giemza, Halina Podbielska
A17 Personalized molecular treatment for muscular dystrophies
Sebahattin Cirak
A18 Secondary mutations in circulating tumour DNA for acquired drug resistance in patients with advanced ALK + NSCLC
Marzia Del Re, Paola Bordi, Valentina Citi, Marta Palombi, Carmine Pinto, Marcello Tiseo, Romano Danesi
A19 Recombinant species-specific FcεRI alpha proteins for diagnosis of IgE-mediated allergies in dogs, cats and horses
Lukas Einhorn, Judit Fazekas, Martina Muhr, Alexandra Schoos, Lucia Panakova, Ina Herrmann, Krisztina Manzano-Szalai, Kumiko Oida, Edda Fiebiger, Josef Singer, Erika Jensen-Jarolim
A20 Global methodology for developmental neurotoxicity testing in humans and animals early and chronically exposed to chemical contaminants
Arpiné A. Elnar, Nadia Ouamara, Nadiya Boyko, Xavier Coumoul, Jean-Philippe Antignac, Bruno Le Bizec, Gauthier Eppe, Jenny Renaut, Torsten Bonn, Cédric Guignard, Margherita Ferrante, Maria Liusa Chiusano, Salvatore Cuzzocrea, Gerard O'Keeffe, John Cryan, Michelle Bisson, Amina Barakat, Ihsane Hmamouchi, Nasser Zawia, Anumantha Kanthasamy, Glen E. Kisby, Rui Alves, Oscar Villacañas Pérez, Kim Burgard, Peter Spencer, Norbert Bomba, Martin Haranta, Nina Zaitseva, Irina May, Stéphanie Grojean, Mathilde Body-Malapel, Florencia Harari, Raul Harari, Kristina Yeghiazaryan, Olga Golubnitschaja, Vittorio Calabrese, Christophe Nemos, Rachid Soulimani
A21 Mental indicators at young people with attributes hypertension and pre-hypertension
Maria E. Evsevyeva, Elena A. Mishenko, Zurida V. Kumukova, Evgeniy V. Chudnovsky, Tatyana A. Smirnova
A22 On the approaches to the early diagnosis of stress-induced hypertension in young employees of State law enforcement agencies
Maria E. Evsevyeva, Ludmila V. Ivanova, Michail V. Eremin, Maria V. Rostovtseva
A23 Сentral aortic pressure and indexes of augmentation in young persons in view of risk factors
Maria E. Evsevyeva, Michail V. Eremin, Vladimir I. Koshel, Oksana V. Sergeeva, Nadesgda M. Konovalova
A24 Breast cancer prediction and prevention: Are reliable biomarkers in horizon?
Shantanu Girotra, Olga Golubnitschaja
A25 Flammer Syndrome and potential formation of pre-metastatic niches: A multi-centred study on phenotyping, patient stratification, prediction and potential prevention of aggressive breast cancer and metastatic disease
Olga Golubnitschaja, Manuel Debald, Walther Kuhn, Kristina Yeghiazaryan, Rostyslav V. Bubnov, Vadym M. Goncharenko, Ulyana Lushchyk, Godfrey Grech, Katarzyna Konieczka
A26 Innovative tools for prenatal diagnostics and monitoring: improving individual pregnancy outcomes and health-economy in EU
Olga Golubnitschaja, Jan Jaap Erwich, Vincenzo Costigliola, Kristina Yeghiazaryan, Ulrich Gembruch
A27 Immunohistochemical assessment of APUD cells in endometriosis
Vadym M. Goncharenko, Vasyl O. Beniuk, Olga V. Kalenska, Rostyslav V. Bubnov
A28 Updating personalized management algorithm of endometrial hyperplasia in pre-menopause women
Vadym M. Goncharenko, Vasyl O. Beniuk, Rostyslav V. Bubnov, Olga Melnychuk
A29 The personified treatment approach of polimorbid patients with periodontal inflammatory diseases
Irina A. Gorbacheva, Lyudmila Y. Orekhova, Vadim V. Tachalov
A30 Ukrainian experience in hybrid war – the challenge to update algorithms for personalized care and early prevention of different military injuries
Olena I. Grechanyk, Rizvan Ya. Abdullaiev, Rostyslav V. Bubnov
A31 Tear fluid biomarkers: a comparison of tear fluid sampling and storage protocols
Suzanne Hagan, Eilidh Martin, Ian Pearce, Katherine Oliver
A32 The correlation of dietary habits with gingival problems during menstruation
Cenk Haytac, Fariz Salimov, Servin Yoksul, Anatoly A. Kunin, Natalia S. Moiseeva
A33 Genomic medicine in a contemporary Spanish population of prostate cancer: our experience
Bernardo Herrera-Imbroda, Sergio del Río-González, Maria Fernanda Lara, Antonia Angulo, Francisco Javier Machuca Santa-Cruz
A34 Challenges, opportunities and collaborations for personalized medicine applicability in uro-oncological disease
Bernardo Herrera-Imbroda, Sergio del Río-González, Maria Fernanda Lara
A35 Metabolic hallmarks of cancer as targets for a personalized therapy
John Ionescu
A36 Influence of genetic polymorphism as a predictor of the development of periodontal disease in patients with gastric ulcer and 12 duodenal ulcer
Alfiya Z. Isamulaeva, Anatoly A. Kunin, Shamil Sh. Magomedov, Aida I. Isamulaeva
A37 Challenges in diabetic macular edema
Tatjana Josifova
A38 Overview of the EPMA strategies in laboratory medicine relevant for PPPM
Marko Kapalla, Juraj Kubáň, Olga Golubnitschaja, Vincenzo Costigliola
A39 EPMA initiative for effective organization of medical travel: European concepts and criteria
Vincenzo Costigliola, Marko Kapalla, Juraj Kubáň, Olga Golubnitschaja
A40 Design and innovation in e-textiles: implications for PPPM
Anthony Kent, Tom Fisher, Tilak Dias
A41 Biobank in Pilsen as a member of national node BBMRI_CZ
Judita Kinkorová, Ondřej Topolčan
A42 Big data in personalized medicine: hype and hope
Matthias Kohl
A43 The 3P approach as the platform of the European Dentistry Department (DPPPD)
Anatoly A. Kunin, Natalia S. Moiseeva
A44 The endometrium cytokine patterns for predictive diagnosis of proliferation severity and cancer prevention
Andrii I. Kurchenko, Vasyl A. Beniuk, Vadym M. Goncharenko, Rostyslav V. Bubnov, Nadiya V. Boyko, Andriy M. Strokan
A45 A monocyte-based in-vitro system for testing individual responses to the implanted material: future for personalized implant construction
Julia Kzhyshkowska, Alexandru Gudima, Ksenia S. Stankevich, Victor D. Filimonov4, Harald Klüter, Evgeniya M. Mamontova, Sergei I. Tverdokhlebov
A46 Prediction and prevention of adverse health effects by meteorological factors: Biomarker patterns and creation of a device for self-monitoring and integrated care
Ulyana B. Lushchyk, Viktor V. Novytskyy, Igor P. Babii, Nadiya G. Lushchyk, Lyudmyla S. Riabets, Ivanna I. Legka
A47 Targeting "disease signatures" towards personalized healthcare
Mira Marcus-Kalish, Alexis Mitelpunkt, Tal Galili, Neta Shachar, Yoav Benjamini
A48 Influence of the skin imperfection on the personal quality of life and possible tools for objective diagnosis
Agnieszka Migasiewicz, Markus Pelleter, Joanna Bauer, Ewelina Dereń, Halina Podbielska
A49 The new direction in caries prevention based on the ultrastructure of dental hard tissues and filling materials
Natalia S. Moiseeva, Anatoly A. Kunin, Dmitry A. Kunin
A50 The use of LED radiation in prevention of dental diseases
Natalia S. Moiseeva, Yury A. Ippolitov, Dmitry A. Kunin, Alexei N. Morozov, Natalia V. Chirkova, Nakhid T. Aliev
A51 Status of endothelial progenitor cells in diabetic nephropathy: predictive and preventive potentials
Mahmood S. Mozaffari, Jun Yao Liu, Babak Baban
A52 The status of glucocorticoid-induced leucine zipper protein in salivary gland in Sjögren’s syndrome: predictive and personalized treatment potentials
Mahmood S. Mozaffari, Jun Yao Liu, Rafik Abdelsayed, Xing-Ming Shi, Babak Baban
A53 Maximal aerobic capacity - important quality marker of health
Jaroslav Novák, Milan Štork, Václav Zeman
A54 The EMPOWER project: laboratory medicine and Horizon 2020
Wytze P. Oosterhuis, Elvar Theodorsson
A55 Personality profile manifestations in patient’s attitude to oral care and adherence to doctor’s prescriptions
Lyudmila Y. Orekhova, Tatyana V. Kudryavtseva, Elena R. Isaeva, Vadim V. Tachalov, Ekaterina S. Loboda
A56 Results of an European survey on personalized medicine addressed to directions of laboratory medicine
Mario Pazzagli, Francesca Malentacchi, Irene Mancini, Ivan Brandslund, Pieter Vermeersch, Matthias Schwab, Janja Marc, Ron H.N. van Schaik, Gerard Siest, Elvar Theodorsson, Chiara Di Resta
A57 MCI or early dementia predictive speech based diagnosis techniques
Matus Pleva, Jozef Juhar
A58 Personalized speech based mobile application for eHealth
Matus Pleva, Jozef Juhar
A59 Circulating tumor cell-free DNA as the biomarker in the management of cancer patients
Jiří Polívka jr., Filip Janků, Martin Pešta, Jan Doležal, Milena Králíčková, Jiří Polívka
A60 Complex stroke care – educational programme in Stroke Centre University Hospital Plzen
Jiří Polívka, Alena Lukešová, Nina Müllerová, Petr Ševčík, Vladimír Rohan
A61 Sleep apnea and sleep fragmentation contribute to brain aging
Kneginja Richter, Lence Miloseva, Günter Niklewski
A62 Personalised approach for sleep disturbances in shift workers
Kneginja Richter, Jens Acker, Guenter Niklewski
A63 Medical travel and innovative PPPM clusters: new concept of integration
Olga Safonicheva, Vincenzo Costigliola
A64 Medical travel and women health
Olga Safonicheva
A65 Continuity of generations in the training of specialists in the field of reconstructive microsurgery
Maxim Sautin, Janna Sinelnikova, Sergey Suchkov
A66 Telemonitoring of stroke patients – empirical evidence of individual risk management results from an observational study in Germany
Songül Secer, Stephan von Bandemer
A67 Women’s increasing breast cancer risk with n-6 fatty acid intake explained by estrogen-fatty acid interactive effect on DNA damage: implications for gender-specific nutrition within personalized medicine
Niva Shapira
A68 Cytobacterioscopy of the gingival crevicular fluid as a method for preventive diagnosis of periodontal diseases
Aleksandr Shcherbakov, Anatoly A. Kunin, Natalia S. Moiseeva
A69 Use of specially treated composites in dentistry to avoid violations of aesthetics
Bogdan R. Shumilovich, Zhanna Lipkind, Yulia Vorobieva, Dmitry A. Kunin, Anastasiia V. Sudareva
A70 National eHealth system – platform for preventive, predictive and personalized diabetes care
Ivica Smokovski, Tatjana Milenkovic
A72 The common energy levels of Prof. Szent-Györgyi, the intrinsic chemistry of melanin, and the muscle physiopathology. Implications in the context of Preventive, Predictive, and Personalized Medicine
Arturo Solís-Herrera, María del Carmen Arias-Esparza, Sergey Suchkov
A73 Plurality and individuality of hepatocellular carcinoma: PPPM perspectives
Krishna Chander Sridhar, Olga Golubnitschaja
A74 Strategic aspects of higher medical education reforms to secure newer educational platforms for getting biopharma professionals matures
Maria Studneva, Sihong Song, James Creeden, Мark Мandrik, Sergey Suchkov
A75 Overview of the strategies and activities of the European Federation of Clinical Chemistry and Laboratory Medicine, (EFLM)
Elvar Theodorsson, EFLM
A76 New spectroscopic techniques for point of care label free diagnostics
Syed A. M. Tofail
A77 Tumor markers for personalized medicine and oncology - the role of Laboratory Medicine
Ondřej Topolčan, Judita Kinkorová, Ondřej Fiala, Marie Karlíková, Šárka Svobodová, Radek Kučera, Radka Fuchsová, Vladislav Třeška, Václav Šimánek, Ladislav Pecen, Jan Šoupal, Štěpán Svačina2
A78 Modern medical terminology (MMT) as a driver of the global educational reforms
Evgeniya Tretyak, Maria Studneva, Sergey Suchkov
A79 Juvenile hypertension; the relevance of novel predictive, preventive and personalized assessment of its determinants
Francesca M. Trovato, G. Fabio Martines, Daniela Brischetto, Daniela Catalano, Giuseppe Musumeci, Guglielmo M. Trovato
A80 Proteomarkers Biotech
George Th. Tsangaris, Athanasios K. Anagnostopoulos
A81 Proteomics and mass spectrometry based non-invasive prenatal testing of fetal health and pregnancy complications
George Th. Tsangaris, Athanasios K. Anagnostopoulos
A82 Integrated Ecosystem for an Integrated Care model for Heart Failure (HF) patients including related comorbidities (ZENITH)
José Verdú, German Gutiérrez, Jordi Rovira, Marta Martinez, Lutz Fleischhacker, Donna Green, Arthur Garson, Elena Tamburini, Stefano Cuomo, Juan Martinez-Leon, Teresa Abrisqueta, Hans-Peter Brunner-La Rocca, Tiny Jaarsma, Teresa Arredondo, Cecilia Vera, Giuseppe Fico, Olga Golubnitschaja, Fernando Arribas, Martina Onderco, Isabel Vara, on behalf of ZENITH consortium
A83 Predictive, preventive and personalized medicine in diabetes onset and complication (MOSAIC project)
José Verdú, Francesco Sambo, Barbara Di Camillo, Claudio Cobelli, Andrea Facchinetti, Giuseppe Fico, Riccardo Bellazzi, Lucia Sacchi, Arianna Dagliati, Daniele Segnani, Valentina Tibollo, Manuel Ottaviano, Rafael Gabriel, Leif Groop, Jacqueline Postma, Antonio Martinez, Liisa Hakaste, Tiinamaija Tuomi, Konstantia Zarkogianni, on behalf of MOSAIC consortium
A84 Possibilities for personalized therapy of diabetes using in vitro screening of insulin and oral hypoglycemic agents
Igor Volchek, Nina Pototskaya, Andrey Petrov
A85 The innovative technology for personalized therapy of human diseases based on in vitro drug screening
Igor Volchek, Nadezhda Pototskaya, Andrey Petrov
A86 Bone destruction and temporomandibular joint: predictive markers, pathogenetic aspects and quality of life
Ülle Voog-Oras, Oksana Jagur, Edvitar Leibur, Priit Niibo, Triin Jagomägi, Minh Son Nguyen, Chris Pruunsild, Dagmar Piikov, Mare Saag
A87 Sub-optimal health management – global vision for concepts in medical travel
Wei Wang
A88 Sub-optimal health management: synergic PPPM-TCAM approach
Wei Wang
A89 Innovative technologies for minimal invasive diagnostics
Andreas Weinhäusel, Walter Pulverer, Matthias Wielscher, Manuela Hofner, Christa Noehammer, Regina Soldo, Peter Hettegger, Istvan Gyurjan, Ronald Kulovics, Silvia Schönthaler, Gabriel Beikircher, Albert Kriegner, Stephan Pabinger, Klemens Vierlinger
A90 Rare disease diobanks for personalized medicine
Ayşe Yüzbaşıoğlu, Meral Özgüç, Member of EuroBioBank - European Network of DNA, Cell and Tissue Banks for Rare Diseases
PMCID: PMC4896262
14.  Genome-Wide Prediction and Validation of Peptides That Bind Human Prosurvival Bcl-2 Proteins 
PLoS Computational Biology  2014;10(6):e1003693.
Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models.
Author Summary
Bcl-2 family proteins regulate key cell death vs. survival decisions and are implicated in the development of many cancers. To understand the roles of Bcl-2 family proteins in both normal and diseased cells, it is important to map the interaction network of the family. Low sequence conservation in known Bcl-2 interaction motifs precludes easy identification of possible binding partners, but we developed computational models based on structure and experimental mutation data that show good predictive performance. We used our models to search the human proteome for new Bcl-2 interaction partners. We predicted and experimentally validated more than twice as many tight-binding peptides as were previously known.
PMCID: PMC4072508  PMID: 24967846
15.  Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens 
PLoS Computational Biology  2015;11(3):e1004153.
Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (
Author Summary
Determining the targets of compounds identified in cell-based high-throughput chemical screens is a critical step for downstream drug development and understanding of compound mechanism of action. However, current computational target prediction approaches like chemical similarity database searches are limited to single or sequential ligand analyses, which limits their ability to accurately deconvolve a large number of compounds that often have chemically diverse structures. Here, we have developed a new computational drug target prediction method, called CSNAP that is based on chemical similarity networks. By clustering diverse chemical structures into distinct sub-networks corresponding to chemotypes, we show that CSNAP improves target prediction accuracy and consistency over a board range of drug classes. We further coupled CSNAP to a mitotic database and successfully determined the major mitotic drug targets of a diverse compound set identified in a cell-based chemical screen. We demonstrate that CSNAP can easily integrate with diverse knowledge-based databases for on/off target prediction and post-target validation, thus broadening its applicability for identifying the targets of bioactive compounds from a wide range of chemical screens.
PMCID: PMC4380459  PMID: 25826798
16.  A systematic screen for protein–lipid interactions in Saccharomyces cerevisiae 
Lipids are important cellular metabolites, with a wide range of structural and functional diversity. Many operate as signaling molecules. Lipids though have rarely been studied in large-scale interaction screen; they are poorly represented in current biological networks.Here, we describe the use of miniaturized lipid–arrays for the large-scale study of protein–lipid interactions. In yeast, we show general feasibility with a systematic screen implying 172 proteins. We report 530 protein–lipid associations, the majority is novel and several were validated using other techniques.The screen uncovers numerous insights into lipid function in yeast and equivalent systems in humans. It revealed (i) previously undetected cryptic lipid-binding domains, (ii) series of new cellular targets for sphingolipids and (iii) new ligands for some PH domains that can cooperatively bind additional lipids and work as coincidence sensor to integrate both phosphatidylinositol phosphates and sphingolipid signaling pathways.The significant number of biological insights uncovered shows that even major classes of metabolites have been insufficiently studied. This illustrates the general relevance of such systematic screens and calls for further system-wide analyses.
Deciphering the molecular mechanisms behind cellular processes requires the systematic charting of the multitude of interactions between all cellular components. While protein–protein and protein–DNA networks have been the subject of many systematic surveys, other critically important cellular components, such as lipids, have to date rarely been studied in large-scale interaction screens. Growing numbers of lipids are known to operate as signaling molecules. The importance of protein–lipid interactions is evident from the variety of protein domains that have evolved to bind particular lipids (Lemmon, 2008 #392) and from the large list of disorders, such as cancer and bipolar disorder, arising from altered protein–lipid interactions. The current understanding of protein–lipid recognition comes from the study of a limited number of lipids, principally PtdInsPs (Zhu et al, 2001 #16), and lipid-binding domains (LBDs) in isolation (Dowler et al, 2000 #81; Yu and Lemmon, 2001 #396; Yu et al, 2004 #31). For other signaling lipids, such as sphingolipids, intracellular targets and molecular mechanisms are only partially understood (Hannun and Obeid, 2008 #397). The importance of lipids in biological processes and their under-representation in current biological networks suggest the need for systematic, unbiased biochemical screens.
To systematically study protein–lipid interactions, we developed miniaturized arrays that contained sets of 56 lipids covering the main lipid classes in yeast. We used the arrays to determine the binding profiles of 172 soluble proteins. The selection included proteins that contained one or several predicted LBD that were lipid regulated or enzymes involved in lipid metabolism (Figure 1). We obtained 530 protein–lipid interactions (accuracy and coverage: 61 and 60%, respectively). More than half were supported by additional experimental evidences obtained from a large validation effort using a variety of biochemical and cell biology approaches, and the integration of a data set of genetic interactions (Figure 1). As a substantial fraction (45%) of the analyzed proteins were conserved in humans, the protein–lipid data set will have functional implications for higher eukaryotes and thus for human biology.
Overall, 68% of all interactions were novel or unexpected from either protein sequences or known LBDs specificities. We discovered cryptic LBDs that were previously undetected in Ecm25 (a RhoGAP) and Ira2 (a RasGAP). We also identified a set of proteins that bound sphingolipids, a class of bioactive lipids that play important signaling functions in yeast and higher eukaryotes. The exact mode of action for these lipids remains elusive and the data set points to series of new cellular targets. We identified 63 proteins, involved in endocytosis, cell polarity and lipid metabolism that interacted with sphingoid long-chain bases (LCBs), ceramides or phosphorylated LCBs (Figure 5).
Despite the importance of sphingolipids in signaling processes, only a few domains, such as START or Saposins, have been reported to specifically bind these lipids in higher eukaryotes, and none of them have been found in yeast. Interestingly, almost 60% of proteins binding to phosphorylated LCBs in our assay also contained a pleckstrin homology (PH) domain and bound PtdInsPs (Figure 5). This suggests some PH domains might have unanticipated ligands and also have a function in sphingolipid recognition. We showed, using a variety of biochemical and cell-based assays, that the PH domain of Slm1, a component of the TORC2 signaling pathway (Fadri et al, 2005 #429), can bind PtdIns(4,5)P2 and sphingolipid cooperatively. The structure of Slm1-PH, which we solved by X-ray crystallography at 2 Å resolution, suggests the presence of two positively charged binding pockets for anionic lipids. These results indicate that the PH domain of Slm1 might work as a coincidence sensor to integrate both PtdInsP and sphingolipid signaling pathways. This reinforces the emerging notion that cooperative mechanisms have important functions in PH domains functioning (Maffucci and Falasca, 2001 #528). These mechanisms initially described between PtdInsPs and proteins can now be extended to new lipid classes, illustrating the benefit of unbiased and systematic analyses.
This work shows the feasibility and benefits of large-scale analyses combining biochemical arrays and live-cell imaging for charting protein–lipid interactions. Accurate representations of biological processes require systematic charting of the physical and functional links between all cellular components. There is a clear need to expand molecular interaction space from proteome- to metabolome-wide efforts and of systematic classifications of bioactive molecules based on their binding profiles. The data provided here represents an excellent resource to enhance the understanding of lipids function in eukaryotic systems.
Protein–metabolite networks are central to biological systems, but are incompletely understood. Here, we report a screen to catalog protein–lipid interactions in yeast. We used arrays of 56 metabolites to measure lipid-binding fingerprints of 172 proteins, including 91 with predicted lipid-binding domains. We identified 530 protein–lipid associations, the majority of which are novel. To show the data set's biological value, we studied further several novel interactions with sphingolipids, a class of conserved bioactive lipids with an elusive mode of action. Integration of live-cell imaging suggests new cellular targets for these molecules, including several with pleckstrin homology (PH) domains. Validated interactions with Slm1, a regulator of actin polarization, show that PH domains can have unexpected lipid-binding specificities and can act as coincidence sensors for both phosphatidylinositol phosphates and phosphorylated sphingolipids.
PMCID: PMC3010107  PMID: 21119626
interactome; lipid–array; network; pleckstrin homology domains; sphingolipids
17.  Nodes-and-connections RNAi knockdown screening: identification of a signaling molecule network involved in fulvestrant action and breast cancer prognosis 
Oncogenesis  2015;4(10):e172-.
Although RNA interference (RNAi) knockdown screening of cancer cell cultures is an effective approach to predict drug targets or therapeutic/prognostic biomarkers, interactions among identified targets often remain obscure. Here, we introduce the nodes-and-connections RNAi knockdown screening that generates a map of target interactions through systematic iterations of in silico prediction of targets and their experimental validation. An initial RNAi knockdown screening of MCF-7 human breast cancer cells targeting 6560 proteins identified four signaling molecules required for their fulvestrant-induced apoptosis. Signaling molecules physically or functionally interacting with these four primary node targets were computationally predicted and experimentally validated, resulting in identification of four second-generation nodes. Three rounds of further iterations of the prediction–validation cycle generated third, fourth and fifth generation of nodes, completing a 19-node interaction map that contained three predicted nodes but without experimental validation because of technical limitations. The interaction map involved all three members of the death-associated protein kinases (DAPKs) as well as their upstream and downstream signaling molecules (calmodulins and myosin light chain kinases), suggesting that DAPKs play critical roles in the cytocidal action of fulvestrant. The in silico Kaplan–Meier analysis of previously reported human breast cancer cohorts demonstrated significant prognostic predictive power for five of the experimentally validated nodes and for three of the prediction-only nodes. Immunohistochemical studies on the expression of 10 nodal proteins in human breast cancer tissues not only supported their prognostic prediction power but also provided statistically significant evidence of their synchronized expression, implying functional interactions among these nodal proteins. Thus, the Nodes-and-Connections approach to RNAi knockdown screening yields biologically meaningful outcomes by taking advantage of the existing knowledge of the physical and functional interactions between the predicted target genes. The resulting interaction maps provide useful information on signaling pathways cooperatively involved in clinically important features of the malignant cells, such as drug resistance.
PMCID: PMC4632093  PMID: 26479444
18.  Adverse Drug Reaction Prediction Using Scores Produced by Large-Scale Drug-Protein Target Docking on High-Performance Computing Machines 
PLoS ONE  2014;9(9):e106298.
Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60–0.69 and 0.61–0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number of CPUs to tens of thousands of protein targets and millions of potential drug candidates.
PMCID: PMC4156361  PMID: 25191698
19.  Structural Analysis of microRNA-Target Interaction by Sequential Seed Mutagenesis and Stem-Loop 3' RACE 
PLoS ONE  2013;8(11):e81427.
As a consequence of recent RNAseq efforts, miRNAomes of diverse tissues and species are available. However, most interactions between microRNAs and regulated mRNAs are still to be deciphered. While in silico analysis of microRNAs results in prediction of hundreds of potential targets, bona-fide interactions have to be verified e.g. by luciferase reporter assays using fused target sites as well as controls incorporating mutated seed sequences. The aim of this study was the development of a straightforward approach for sequential mutation of multiple target sites within a given 3’ UTR.
Methodology/Principal Findings
The established protocol is based on Seed Mutagenesis Assembly PCR (SMAP) allowing for rapid identification of microRNA target sites. Based on the presented approach, we were able to determine the transcription factor NKX3.1 as a genuine target of miR-155. The sequential mutagenesis of multiple microRNA target sites was examined by miR-29a mediated CASP7 regulation, which revealed one of two predicted target sites as the predominant site of interaction. Since 3’ UTR sequences of non-model organisms are either lacking in databases or computationally predicted, we developed a Stem-Loop 3’ UTR RACE PCR (SLURP) for efficient generation of required 3’ UTR sequence data. The stem-loop primer allows for first strand cDNA synthesis by nested PCR amplification of the 3’ UTR. Besides other applications, the SLURP method was used to gain data on porcine CASP7 3’UTR evaluating evolutionary conservation of the studied interaction.
Sequential seed mutation of microRNA targets based on the SMAP approach allows for rapid structural analysis of several target sites within a given 3’ UTR. The combination of both methods (SMAP and SLURP) enables targeted analysis of microRNA binding sites in hitherto unknown mRNA 3’ UTRs within a few days.
PMCID: PMC3839922  PMID: 24282594
20.  Prioritization of gene regulatory interactions from large-scale modules in yeast 
BMC Bioinformatics  2008;9:32.
The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources.
Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes.
We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for further experimental studies.
PMCID: PMC2244593  PMID: 18211684
21.  Predicting New Indications for Approved Drugs Using a Proteo-Chemometric Method 
Journal of medicinal chemistry  2012;55(15):6832-6848.
The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching or simple in silico ligand docking. We now describe a novel rapid computational proteo-chemometric method called “Train, Match, Fit, Streamline” (TMFS) to map new drug-target interaction space and predict new uses. The TMFS method combines shape, topology and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug-target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3,671 FDA approved drugs across 2,335 human protein crystal structures. The TMFS method predicts drug-target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84% and 91% for agents ranked in the top 10, 20, 30 and 40, respectively, out of all 3,671 drugs. Drugs ranked in the top 1–40, that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an anti-parasitic with recently discovered and unexpected anti-cancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity as well as angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS method to the >27,000 clinically active agents available worldwide across all targets will be most useful in the repositioning of existing drugs for new therapeutic targets.
PMCID: PMC3419493  PMID: 22780961
22.  Target Inhibition Networks: Predicting Selective Combinations of Druggable Targets to Block Cancer Survival Pathways 
PLoS Computational Biology  2013;9(9):e1003226.
A recent trend in drug development is to identify drug combinations or multi-target agents that effectively modify multiple nodes of disease-associated networks. Such polypharmacological effects may reduce the risk of emerging drug resistance by means of attacking the disease networks through synergistic and synthetic lethal interactions. However, due to the exponentially increasing number of potential drug and target combinations, systematic approaches are needed for prioritizing the most potent multi-target alternatives on a global network level. We took a functional systems pharmacology approach toward the identification of selective target combinations for specific cancer cells by combining large-scale screening data on drug treatment efficacies and drug-target binding affinities. Our model-based prediction approach, named TIMMA, takes advantage of the polypharmacological effects of drugs and infers combinatorial drug efficacies through system-level target inhibition networks. Case studies in MCF-7 and MDA-MB-231 breast cancer and BxPC-3 pancreatic cancer cells demonstrated how the target inhibition modeling allows systematic exploration of functional interactions between drugs and their targets to maximally inhibit multiple survival pathways in a given cancer type. The TIMMA prediction results were experimentally validated by means of systematic siRNA-mediated silencing of the selected targets and their pairwise combinations, showing increased ability to identify not only such druggable kinase targets that are essential for cancer survival either individually or in combination, but also synergistic interactions indicative of non-additive drug efficacies. These system-level analyses were enabled by a novel model construction method utilizing maximization and minimization rules, as well as a model selection algorithm based on sequential forward floating search. Compared with an existing computational solution, TIMMA showed both enhanced prediction accuracies in cross validation as well as significant reduction in computation times. Such cost-effective computational-experimental design strategies have the potential to greatly speed-up the drug testing efforts by prioritizing those interventions and interactions warranting further study in individual cancer cases.
Author Summary
Selective inhibition of specific panels of multiple protein targets provides an unprecedented potential for improving therapeutic efficacy of anticancer agents. We introduce a computational systems pharmacology strategy, which uses the concept of target inhibition networks to predict effective multi-target combinations for treating specific cancer types. The strategy is based on integration of two complementary information sources, drug treatment efficacies and drug-target binding affinities, which are readily available in drug screening labs. Compared to the cancer sequencing efforts, which often result in a huge number of non-targetable genetic alterations, the target combinations from our strategy are druggable, by definition, hence enabling more straightforward translation toward clinically actionable treatment strategies. The model predictions were experimentally validated using siRNA-mediated target silencing screens in three case studies involving MDA-MB-231 and MCF-7 breast cancer and BxPC-3 pancreatic cancer cells. In more general terms, the cancer cell-specific target inhibition networks provided additional insights into the drugs' mechanisms of action, for instance, how the cancer cell survival pathways can be targeted by synergistic and synthetic lethal interactions through multi–target perturbations. These results demonstrate that the principles introduced here offer the possibilities to move toward more systematic prediction and evaluation of the most effective drug target combinations.
PMCID: PMC3772058  PMID: 24068907
23.  Nonsense-Mediated mRNA Decay Immunity Can Help Identify Human Polycistronic Transcripts 
PLoS ONE  2014;9(3):e91535.
Eukaryotic polycistronic transcription units are rare and only a few examples are known, mostly being the outcome of serendipitous discovery. We claim that nonsense-mediated mRNA decay (NMD) immune structure is a common characteristic of polycistronic transcripts, and that this immunity is an emergent property derived from all functional CDSs. The human RefSeq transcriptome was computationally screened for transcripts capable of eliciting NMD, and which contain an additional ORF(s) potentially capable of rescuing the transcript from NMD. Transcripts were further analyzed implementing domain-based strategies in order to estimate the potential of the candidate ORF to encode a functional protein. Consequently, we predict the existence of forty nine novel polycistronic transcripts.
Experimental verification was carried out utilizing two different types of analyses. First, five Gene Expression Omnibus (GEO) datasets from published NMD-inhibition studies were used, aiming to explore whether a given mRNA is indeed insensitive to NMD. All known bicistronic transcripts and eleven out of the twelve predicted genes that were analyzed, displayed NMD insensitivity using various NMD inhibitors. For three genes, a mixed expression pattern was observed presenting both NMD sensitivity and insensitivity in different cell types. Second, we used published global translation initiation sequencing data from HEK293 cells to verify the existence of translation initiation sites in our predicted polycistronic genes. In five of our genes, the predicted rescuing uORFs are indeed identified as translation initiation sites, and in two additional genes, one of two predicted rescuing uORF is verified. These results validate our computational analysis and reinforce the possibility that NMD-immune architecture is a parameter by which polycistronic genes can be identified. Moreover, we present evidence for NMD-mediated regulation controlling the production of one or more proteins encoded in the polycistronic transcript.
PMCID: PMC3951408  PMID: 24621851
24.  Reconstruction and flux-balance analysis of the Plasmodium falciparum metabolic network 
In the paper we present a metabolic reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network of the parasite accounts for 1001 reactions and 616 metabolites. Enzyme–gene associations were established for 366 genes and 75% of all enzymatic reactions.The model was able to reproduce phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy. The model also can be used to efficiently integrate mRNA-expression data to improve the accuracy of metabolic predictions.Using FBA of the reconstructed metabolic network, we identified 40 enzymatic drug targets (i.e. in silico essential genes) with no or very low sequence identity to human proteins.We experimentally tested one of the identified drug targets, nicotinate mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor.
Malaria remains one of the most severe public health challenges worldwide (WHO, 2008). Although several available drugs have been successful in controlling malaria in the past, most of them are rapidly losing efficacy due to acquired drug resistance in the most lethal causative agent, Plasmodium falciparum (Mackinnon and Marsh, 2010). This creates an urgent need for new drugs and treatments, as well as better understanding of the parasite physiology. With this in mind, we built a genome-scale flux-balance model of the P. falciparum metabolism. Given the complex life cycle of Plasmodium, the flux-balanced model is of direct relevance to the ongoing search to identify new therapeutic drug targets. The model can be used to explore diverse metabolic states of the parasite and identify essential metabolic genes in the context of known alternative pathways (Oberhardt et al, 2009).
The reconstructed model, which is based on Plasmodium-specific databases, genomic annotations, and literature reports, includes 366 genes, 1001 reactions, 616 metabolic species, and 4 cellular compartments. We applied flux-balance analysis (FBA) (Orth et al, 2010) to identify the genes and reactions that are required to produce a set of necessary biomass components. Interestingly, compared with the yeast metabolic network (Duarte et al, 2004), a model eukaryote with a similar genome size, the Plasmodium network has a significantly higher proportion of essential genes; we confirmed this result using a comparative analysis of known gene knockouts in the two microbes. This low level of genetic robustness, which is likely due to the parasitic lifestyle, suggests that many metabolic genes of the parasite can be used as effective drug targets. Indeed, based on the in silico analysis we identified 40 essential P. falciparum genes with no or very little sequence identity to their human homologs.
We used a recently described small-molecule inhibitor (compound 1_03; Sorci et al, 2009) to experimentally verify one of the enzymes identified as essential: nicotinate mononucleotide adenylyltransferase (NMNAT; Figure 2A). This enzyme, and the corresponding NAD synthesis and recycling pathway, have been recently used for anti-microbial development (Magni et al, 2009). However, to the best of our knowledge, they have not been used against P. falciparum. The compound 1_03 was able to completely block host cell escape and reinvasion by arresting parasites in the trophozoite growth stage (Figure 2B). These results demonstrate that the inhibitory compound may be a good starting lead for new anti-malarials.
Importantly, the metabolic model of the parasite can be also used to integrate various genomic data, such as gene expression (Oberhardt et al, 2009). To illustrate these possibilities, we applied gene-expression data as constraints for the flux-balance model (Colijn et al, 2009) in order to predict changes in metabolic exchange fluxes. We found that the model was able to correctly predict the changes in external metabolite concentrations (Olszewski et al, 2009) with about 70% accuracy (Figure 3). The availability of a human metabolic network reconstruction (Duarte et al, 2007) would allow, in the future, to analyze the combined parasite–host network, which would deepen understanding of the P. falciparum metabolic vulnerabilities.
Future improvements of the presented P. falciparum metabolic model, for example incorporation of missing activities and yet undiscovered pathways, will lead to a better understanding of parasite physiology. Ultimately, the improved understanding should significantly accelerate the identification and development of desperately needed new drugs against this devastating disease.
Genome-scale metabolic reconstructions can serve as important tools for hypothesis generation and high-throughput data integration. Here, we present a metabolic network reconstruction and flux-balance analysis (FBA) of Plasmodium falciparum, the primary agent of malaria. The compartmentalized metabolic network accounts for 1001 reactions and 616 metabolites. Enzyme–gene associations were established for 366 genes and 75% of all enzymatic reactions. Compared with other microbes, the P. falciparum metabolic network contains a relatively high number of essential genes, suggesting little redundancy of the parasite metabolism. The model was able to reproduce phenotypes of experimental gene knockout and drug inhibition assays with up to 90% accuracy. Moreover, using constraints based on gene-expression data, the model was able to predict the direction of concentration changes for external metabolites with 70% accuracy. Using FBA of the reconstructed network, we identified 40 enzymatic drug targets (i.e. in silico essential genes), with no or very low sequence identity to human proteins. To demonstrate that the model can be used to make clinically relevant predictions, we experimentally tested one of the identified drug targets, nicotinate mononucleotide adenylyltransferase, using a recently discovered small-molecule inhibitor.
PMCID: PMC2964117  PMID: 20823846
flux-balance analysis; Plasmodium falciparum metabolism; systems biology
25.  Accurate Prediction of Peptide Binding Sites on Protein Surfaces 
PLoS Computational Biology  2009;5(3):e1000335.
Many important protein–protein interactions are mediated by the binding of a short peptide stretch in one protein to a large globular segment in another. Recent efforts have provided hundreds of examples of new peptides binding to proteins for which a three-dimensional structure is available (either known experimentally or readily modeled) but where no structure of the protein–peptide complex is known. To address this gap, we present an approach that can accurately predict peptide binding sites on protein surfaces. For peptides known to bind a particular protein, the method predicts binding sites with great accuracy, and the specificity of the approach means that it can also be used to predict whether or not a putative or predicted peptide partner will bind. We used known protein–peptide complexes to derive preferences, in the form of spatial position specific scoring matrices, which describe the binding-site environment in globular proteins for each type of amino acid in bound peptides. We then scan the surface of a putative binding protein for sites for each of the amino acids present in a peptide partner and search for combinations of high-scoring amino acid sites that satisfy constraints deduced from the peptide sequence. The method performed well in a benchmark and largely agreed with experimental data mapping binding sites for several recently discovered interactions mediated by peptides, including RG-rich proteins with SMN domains, Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with Argonaute PIWI domain. The method, and associated statistics, is an excellent tool for predicting and studying binding sites for newly discovered peptides mediating critical events in biology.
Author Summary
An important class of protein interactions in critical cellular processes, such as signaling pathways, involves a domain from one protein binding to a linear peptide stretch of another. Many methods identify peptides mediating such interactions but without details of how the interactions occur, even when excellent structural information is available for the unbound protein. Experimental studies are currently time consuming, while existing computational methods to predict protein–peptide structures mostly focus on interactions involving specific protein families. Here, we present a general approach for predicting protein–peptide interaction sites. We show that spatial atomic position specific scoring matrices of binding sites for each peptide residue can capture the properties important for binding and when used to scan the surface of target proteins can accurately identify candidate binding sites for interacting peptides. The resulting predictions are highly illuminating for several recently described protein–peptide complexes, including RG-rich peptides with SMN domains, the Epstein-Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with the Argonaute PIWI domain. The accurate prediction of protein–peptide binding without prior structural knowledge will ultimately enable better functional characterization of many protein interactions involved in vital biological processes and provide a better picture of cellular mechanisms.
PMCID: PMC2653190  PMID: 19325869

Results 1-25 (1489503)