PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (516100)

Clipboard (0)
None

Related Articles

1.  ICGC PedBrain: Dissecting the genomic complexity underlying medulloblastoma 
Jones, David TW | Jäger, Natalie | Kool, Marcel | Zichner, Thomas | Hutter, Barbara | Sultan, Marc | Cho, Yoon-Jae | Pugh, Trevor J | Hovestadt, Volker | Stütz, Adrian M | Rausch, Tobias | Warnatz, Hans-Jörg | Ryzhova, Marina | Bender, Sebastian | Sturm, Dominik | Pleier, Sabrina | Cin, Huriye | Pfaff, Elke | Sieber, Laura | Wittmann, Andrea | Remke, Marc | Witt, Hendrik | Hutter, Sonja | Tzaridis, Theophilos | Weischenfeldt, Joachim | Raeder, Benjamin | Avci, Meryem | Amstislavskiy, Vyacheslav | Zapatka, Marc | Weber, Ursula D | Wang, Qi | Lasitschka, Bärbel | Bartholomae, Cynthia C | Schmidt, Manfred | von Kalle, Christof | Ast, Volker | Lawerenz, Chris | Eils, Jürgen | Kabbe, Rolf | Benes, Vladimir | van Sluis, Peter | Koster, Jan | Volckmann, Richard | Shih, David | Betts, Matthew J | Russell, Robert B | Coco, Simona | Tonini, Gian Paolo | Schüller, Ulrich | Hans, Volkmar | Graf, Norbert | Kim, Yoo-Jin | Monoranu, Camelia | Roggendorf, Wolfgang | Unterberg, Andreas | Herold-Mende, Christel | Milde, Till | Kulozik, Andreas E | von Deimling, Andreas | Witt, Olaf | Maass, Eberhard | Rössler, Jochen | Ebinger, Martin | Schuhmann, Martin U | Frühwald, Michael C | Hasselblatt, Martin | Jabado, Nada | Rutkowski, Stefan | von Bueren, André O | Williamson, Dan | Clifford, Steven C | McCabe, Martin G | Collins, V. Peter | Wolf, Stephan | Wiemann, Stefan | Lehrach, Hans | Brors, Benedikt | Scheurlen, Wolfram | Felsberg, Jörg | Reifenberger, Guido | Northcott, Paul A | Taylor, Michael D | Meyerson, Matthew | Pomeroy, Scott L | Yaspo, Marie-Laure | Korbel, Jan O | Korshunov, Andrey | Eils, Roland | Pfister, Stefan M | Lichter, Peter
Nature  2012;488(7409):100-105.
Summary
Medulloblastoma is an aggressively-growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and displays tremendous biological and clinical heterogeneity1. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life.
Four tumour subgroups with distinct clinical, biological and genetic profiles are currently discriminated2,3. WNT tumours, displaying activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens4. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis2. Group 3 & 4 tumours are molecularly less well-characterised, and also present the greatest clinical challenges2,3,5. The full repertoire of genetic events driving this distinction, however, remains unclear.
Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs. Tetraploidy was identified as a frequent early event in Group 3 & 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA-sequencing confirmed these alterations, and revealed the expression of the first medulloblastoma fusion genes. Chromatin modifiers were frequently altered across all subgroups.
These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 & 4 patients.
doi:10.1038/nature11284
PMCID: PMC3662966  PMID: 22832583
2.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma 
Jones, David T.W. | Hutter, Barbara | Jäger, Natalie | Korshunov, Andrey | Kool, Marcel | Warnatz, Hans-Jörg | Zichner, Thomas | Lambert, Sally R. | Ryzhova, Marina | Quang, Dong Anh Khuong | Fontebasso, Adam M. | Stütz, Adrian M. | Hutter, Sonja | Zuckermann, Marc | Sturm, Dominik | Gronych, Jan | Lasitschka, Bärbel | Schmidt, Sabine | Şeker-Cin, Huriye | Witt, Hendrik | Sultan, Marc | Ralser, Meryem | Northcott, Paul A. | Hovestadt, Volker | Bender, Sebastian | Pfaff, Elke | Stark, Sebastian | Faury, Damien | Schwartzentruber, Jeremy | Majewski, Jacek | Weber, Ursula D. | Zapatka, Marc | Raeder, Benjamin | Schlesner, Matthias | Worth, Catherine L. | Bartholomae, Cynthia C. | von Kalle, Christof | Imbusch, Charles D. | Radomski, Sylwester | Lawerenz, Chris | van Sluis, Peter | Koster, Jan | Volckmann, Richard | Versteeg, Rogier | Lehrach, Hans | Monoranu, Camelia | Winkler, Beate | Unterberg, Andreas | Herold-Mende, Christel | Milde, Till | Kulozik, Andreas E. | Ebinger, Martin | Schuhmann, Martin U. | Cho, Yoon-Jae | Pomeroy, Scott L. | von Deimling, Andreas | Witt, Olaf | Taylor, Michael D. | Wolf, Stephan | Karajannis, Matthias A. | Eberhart, Charles G. | Scheurlen, Wolfram | Hasselblatt, Martin | Ligon, Keith L. | Kieran, Mark W. | Korbel, Jan O. | Yaspo, Marie-Laure | Brors, Benedikt | Felsberg, Jörg | Reifenberger, Guido | Collins, V. Peter | Jabado, Nada | Eils, Roland | Lichter, Peter | Pfister, Stefan M.
Nature genetics  2013;45(8):927-932.
Pilocytic astrocytoma, the most common childhood brain tumor1, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations2. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression3 and often becoming a chronic disease with substantial morbidities4.
Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n=73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and novel NTRK2 fusion genes in non-cerebellar tumors. New BRAF activating changes were also observed. MAPK pathway alterations affected 100% of tumors analyzed, with no other significant mutations, indicating pilocytic astrocytoma as predominantly a single-pathway disease.
Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in NF15. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
doi:10.1038/ng.2682
PMCID: PMC3951336  PMID: 23817572
3.  International Cancer Genome Consortium Data Portal—a one-stop shop for cancer genomics data 
The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal.
Database URL: http://dcc.icgc.org
doi:10.1093/database/bar026
PMCID: PMC3263593  PMID: 21930502
4.  Recovery and characterization of a Citrus clementina Hort. ex Tan. 'Clemenules' haploid plant selected to establish the reference whole Citrus genome sequence 
BMC Plant Biology  2009;9:110.
Background
In recent years, the development of structural genomics has generated a growing interest in obtaining haploid plants. The use of homozygous lines presents a significant advantage for the accomplishment of sequencing projects. Commercial citrus species are characterized by high heterozygosity, making it difficult to assemble large genome sequences. Thus, the International Citrus Genomic Consortium (ICGC) decided to establish a reference whole citrus genome sequence from a homozygous plant. Due to the existence of important molecular resources and previous success in obtaining haploid clementine plants, haploid clementine was selected as the target for the implementation of the reference whole genome citrus sequence.
Results
To obtain haploid clementine lines we used the technique of in situ gynogenesis induced by irradiated pollen. Flow cytometry, chromosome counts and SSR marker (Simple Sequence Repeats) analysis facilitated the identification of six different haploid lines (2n = x = 9), one aneuploid line (2n = 2x+4 = 22) and one doubled haploid plant (2n = 2x = 18) of 'Clemenules' clementine. One of the haploids, obtained directly from an original haploid embryo, grew vigorously and produced flowers after four years. This is the first haploid plant of clementine that has bloomed and we have, for the first time, characterized the histology of haploid and diploid flowers of clementine. Additionally a double haploid plant was obtained spontaneously from this haploid line.
Conclusion
The first haploid plant of 'Clemenules' clementine produced directly by germination of a haploid embryo, which grew vigorously and produced flowers, has been obtained in this work. This haploid line has been selected and it is being used by the ICGC to establish the reference sequence of the nuclear genome of citrus.
doi:10.1186/1471-2229-9-110
PMCID: PMC2747335  PMID: 19698121
5.  Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome 
Journal of Clinical Oncology  2010;29(11):1424-1430.
Purpose
Medulloblastomas are heterogeneous tumors that collectively represent the most common malignant brain tumor in children. To understand the molecular characteristics underlying their heterogeneity and to identify whether such characteristics represent risk factors for patients with this disease, we performed an integrated genomic analysis of a large series of primary tumors.
Patients and Methods
We profiled the mRNA transcriptome of 194 medulloblastomas and performed high-density single nucleotide polymorphism array and miRNA analysis on 115 and 98 of these, respectively. Non-negative matrix factorization–based clustering of mRNA expression data was used to identify molecular subgroups of medulloblastoma; DNA copy number, miRNA profiles, and clinical outcomes were analyzed for each. We additionally validated our findings in three previously published independent medulloblastoma data sets.
Results
Identified are six molecular subgroups of medulloblastoma, each with a unique combination of numerical and structural chromosomal aberrations that globally influence mRNA and miRNA expression. We reveal the relative contribution of each subgroup to clinical outcome as a whole and show that a previously unidentified molecular subgroup, characterized genetically by c-MYC copy number gains and transcriptionally by enrichment of photoreceptor pathways and increased miR-183∼96∼182 expression, is associated with significantly lower rates of event-free and overall survivals.
Conclusion
Our results detail the complex genomic heterogeneity of medulloblastomas and identify a previously unrecognized molecular subgroup with poor clinical outcome for which more effective therapeutic strategies should be developed.
doi:10.1200/JCO.2010.28.5148
PMCID: PMC3082983  PMID: 21098324
6.  The Pancreatic Expression database: 2011 update 
Nucleic Acids Research  2010;39(Database issue):D1023-D1028.
The Pancreatic Expression database (PED, http://www.pancreasexpression.org) has established itself as the main repository for pancreatic-derived -omics data. For the past 3 years, its data content and access have increased substantially. Here we describe several of its new and improved features, such as data content, which now includes over 60 000 measurements derived from transcriptomics, proteomics, genomics and miRNA profiles from various pancreas-centred reports on a broad range of specimen and experimental types. We also illustrate the capabilities of its interface, which allows integrative queries that can combine PED data with a growing number of biological resources such as NCBI, Ensembl, UniProt and Reactome. Thus, PED is capable of retrieving and integrating different types of -omics, annotations and clinical data. We also focus on the importance of data sharing and interoperability in the cancer field, and the integration of PED into the International Cancer Genome Consortium (ICGC) data portal.
doi:10.1093/nar/gkq937
PMCID: PMC3013788  PMID: 20959292
7.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS 
Nature  2012;488(7409):106-110.
Medulloblastomas are the most common malignant brain tumors in children1. Identifying and understanding the genetic events that drive these tumors is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma based on transcriptional and copy number profiles2–5. Here, we utilized whole exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas exhibit low mutation rates consistent with other pediatric tumors, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR, and LDB1, novel findings in medulloblastoma. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant but not wild type beta-catenin. Together, our study reveals the alteration of Wnt, Hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signaling in medulloblastoma.
doi:10.1038/nature11329
PMCID: PMC3413789  PMID: 22820256
8.  Returning individual research results for genome sequences of pancreatic cancer 
Genome Medicine  2014;6(5):42.
Background
Disclosure of individual results to participants in genomic research is a complex and contentious issue. There are many existing commentaries and opinion pieces on the topic, but little empirical data concerning actual cases describing how individual results have been returned. Thus, the real life risks and benefits of disclosing individual research results to participants are rarely if ever presented as part of this debate.
Methods
The Australian Pancreatic Cancer Genome Initiative (APGI) is an Australian contribution to the International Cancer Genome Consortium (ICGC), that involves prospective sequencing of tumor and normal genomes of study participants with pancreatic cancer in Australia. We present three examples that illustrate different facets of how research results may arise, and how they may be returned to individuals within an ethically defensible and clinically practical framework. This framework includes the necessary elements identified by others including consent, determination of the significance of results and which to return, delineation of the responsibility for communication and the clinical pathway for managing the consequences of returning results.
Results
Of 285 recruited patients, we returned results to a total of 25 with no adverse events to date. These included four that were classified as medically actionable, nine as clinically significant and eight that were returned at the request of the treating clinician. Case studies presented depict instances where research results impacted on cancer susceptibility, current treatment and diagnosis, and illustrate key practical challenges of developing an effective framework.
Conclusions
We suggest that return of individual results is both feasible and ethically defensible but only within the context of a robust framework that involves a close relationship between researchers and clinicians.
doi:10.1186/gm558
PMCID: PMC4067993  PMID: 24963353
9.  Computational approaches to identify functional genetic variants in cancer genomes 
Nature methods  2013;10(8):723-729.
The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype.
doi:10.1038/nmeth.2562
PMCID: PMC3919555  PMID: 23900255
10.  Dickkopf-1 is an epigenetically silenced candidate tumor suppressor gene in medulloblastoma1 
Neuro-Oncology  2007;9(2):135-144.
Medulloblastoma is a heterogeneous pediatric brain tumor with significant therapy-related morbidity, its five-year survival rates ranging from 30% to 70%. Improvement in diagnosis and therapy requires better understanding of medulloblastoma pathology. We used whole-genome microarray analysis to identify putative tumor suppressor genes silenced by epigenetic mechanisms in medulloblastoma. This analysis yielded 714 up-regulated genes in immortalized medulloblastoma cell line D283 on treatment with histone deacetylase (HDAC) inhibitor trichostatin A (TSA). Dickkopf-1 (DKK1), a Wnt antagonist, was found to be up-regulated on HDAC inhibition. We examined DKK1 expression in primary medulloblastoma cells and patient samples by reverse transcriptase PCR and found it to be significantly down-regulated relative to normal cerebellum. Transfection of a DKK1 gene construct into D283 cell lines suppressed medulloblastoma tumor growth in colony focus assays by 60% (P < 0.001). In addition, adenoviral vector– mediated expression of DKK1 in medulloblastoma cells increased apoptosis fourfold (P < 0.001). These data reveal that inappropriate histone modifications might deregulate DKK1 expression in medulloblastoma tumorigenesis and block its tumor-suppressive activity.
doi:10.1215/15228517-2006-038
PMCID: PMC1871668  PMID: 17329407
Dickkopf-1; epigenetic; histone deacetylation; medulloblastoma; tumor suppressor
11.  Genetic and Epigenetic Inactivation of Kruppel-like Factor 4 in Medulloblastoma1 
Neoplasia (New York, N.Y.)  2010;12(1):20-27.
Although medulloblastoma is the most common pediatric malignant brain tumor, its molecular underpinnings are largely unknown. We have identified rare, recurrent homozygous deletions of Kruppel-like Factor 4 (KLF4) in medulloblastoma using high-resolution single nucleotide polymorphism arrays, digital karyotyping, and genomic real-time polymerase chain reaction (PCR). Furthermore, we show that there is loss of physiological KLF4 expression in more than 40% of primary medulloblastomas both at the RNA and protein levels. Medulloblastoma cell lines drastically increase the expression of KLF4 in response to the demethylating agent 5-azacytidine and demonstrate dense methylation of the promoter CpG island by bisulfite sequencing. Methylation-specific PCR targeting the KLF4 promoter demonstrates CpG methylation in approximately 16% of primary medulloblastomas. Reexpression of KLF4 in the D283 medulloblastoma cell line results in significant growth suppression both in vitro and in vivo. We conclude that KLF4 is inactivated by either genetic or epigenetic mechanisms in a large subset of medulloblastomas and that it likely functions as a tumor suppressor gene in the pathogenesis of medulloblastoma.
PMCID: PMC2805880  PMID: 20072650
12.  Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2 
Neuro-Oncology  2008;10(6):981-994.
Candidate gene investigations have indicated a significant role for epigenetic events in the pathogenesis of medulloblastoma, the most common malignant brain tumor of childhood. To assess the medulloblastoma epigenome more comprehensively, we undertook a genomewide investigation to identify genes that display evidence of methylation-dependent regulation. Expression microarray analysis of medulloblastoma cell lines following treatment with a DNA methyltransferase inhibitor revealed deregulation of multiple transcripts (3%–6% of probes per cell line). Eighteen independent genes demonstrated >3-fold reactivation in all cell lines tested. Bisulfite sequence analysis revealed dense CpG island methylation associated with transcriptional silencing for 12 of these genes. Extension of this analysis to primary tumors and the normal cerebellum revealed three major classes of epigenetically regulated genes: (1) normally methylated genes (DAZL, ZNF157, ASN) whose methylation reflects somatic patterns observed in the cerebellum, (2) X-linked genes (MSN, POU3F4, HTR2C) that show disruption of their sex-specific methylation patterns in tumors, and (3) tumor-specific methylated genes (COL1A2, S100A10, S100A6, HTATIP2, CDH1, LXN) that display enhanced methylation levels in tumors compared with the cerebellum. Detailed analysis of COL1A2 supports a key role in medulloblastoma tumorigenesis; dense biallelic methylation associated with transcriptional silencing was observed in 46 of 60 cases (77%). Moreover, COL1A2 status distinguished infant medulloblastomas of the desmoplastic histopathological subtype, indicating that distinct molecular pathogenesis may underlie these tumors and their more favorable prognosis. These data reveal a more diverse and expansive medulloblastoma epigenome than previously understood and provide strong evidence that the methylation status of specific genes may contribute to the biological subclassification of medulloblastoma.
doi:10.1215/15228517-2008-048
PMCID: PMC2719012  PMID: 18664619
COL1A2; desmoplasia; epigenetics; hypermethylation; medulloblastoma
13.  Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1 
Brain  2008;131(7):1831-1844.
Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.
doi:10.1093/brain/awn113
PMCID: PMC2442425  PMID: 18577546
GLUT1; paroxysmal dyskinesia; exercise-induced; GLUT1 deficiency syndrome; ketogenic diet
14.  Medulloblastomas and primitive neuroectodermal tumors rarely contain polyomavirus DNA sequences. 
Neuro-Oncology  2002;4(3):165-170.
To address the hypothesis that medulloblastoma or supratentorial primitive neuroectodermal tumor (sPNET) can arise through infection by polyomaviruses, we examined genomic DNA isolated from 15 primary medulloblastoma and 5 sPNET biopsy specimens and from 2 medulloblastoma cell lines for the presence of DNA sequences from the polyomaviruses simian virus 40 (SV40), JC virus, and BK virus. These polyomaviruses have oncogenic potential in animals, and their DNA sequences have been detected in other surveys of various solid tumors, including childhood brain tumors. The tumor DNA samples were analyzed by Southern blot hybridization of polymerase chain reaction products that employed probes designed to detect specific polyomavirus sequences. Neither JC virus nor BK virus DNA sequences were detected in any of the specimens. None of the primary medulloblastoma or sPNET specimens contained SV40 sequences. However, SV40 DNA coding and noncoding sequences were detected in the D283-Med (medulloblastoma) cell line. Immunocytochemical studies of D283-Med revealed nuclear expression of SV40 large T antigen. In contrast to childhood ependymomas and choroid plexus tumors, medulloblastomas and sPNETs infrequently express evidence of polyomavirus infection.
PMCID: PMC1920639  PMID: 12084346
15.  Functional Genomics Identifies Drivers of Medulloblastoma Dissemination 
Cancer research  2012;72(19):4944-4953.
Medulloblastomas are malignant brain tumors that arise in the cerebellum in children and disseminate via the cerebrospinal fluid to the leptomeningeal spaces of the brain and spinal cord. Challenged by the poor prognosis for patients with metastatic dissemination, pediatric oncologists have developed aggressive treatment protocols, combining surgery, craniospinal radiation, and high-dose chemotherapy that often cause disabling neurotoxic effects in long-term survivors. Insights into the genetic control of medulloblastoma dissemination have come from transposon insertion mutagenesis studies. Mobilizing the Sleeping Beauty transposon in cerebellar neural progenitor cells caused widespread dissemination of typically nonmetastatic medulloblastomas in Patched+/− mice, in which Sonic Hedgehog (Shh) signaling is hyperactive. Candidate metastasis genes were identified by sequencing the insertion sites and then mapping these sequences back to the mouse genome. To determine whether genes located at transposon insertion sites directly caused medulloblastomas to disseminate, we overexpressed candidate genes in Nestin+ neural progenitors in the cerebella of mice by retroviral transfer in combination with Shh. We show here that ectopic expression of Eras, Lhx1, Ccrk, and Akt shifted the in vivo growth characteristics of Shh-induced medulloblastomas from a localized pattern to a disseminated pattern in which tumor cells seeded the leptomeningeal spaces of the brain and spinal cord.
doi:10.1158/0008-5472.CAN-12-1629
PMCID: PMC3463769  PMID: 22875024
medulloblastoma; metastasis; leptomeningeal dissemination
16.  Joint Binding of OTX2 and MYC in Promotor Regions Is Associated with High Gene Expression in Medulloblastoma 
PLoS ONE  2011;6(10):e26058.
Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around −250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma.
doi:10.1371/journal.pone.0026058
PMCID: PMC3189962  PMID: 22016811
17.  Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma 
Molecular Cancer  2014;13:72.
Background
Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity.
Methods
To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods. Gene expression profiling in 16 medulloblastoma patient samples and subsequent gene set enrichment analysis indicated that cell cycle-related kinases were associated with disease development. In addition a kinome-wide small interfering RNA (siRNA) screen was performed to identify kinases that, when inhibited, could prevent cell proliferation. The two genome-scale analyses were combined to identify key vulnerabilities in medulloblastoma. The inhibition of one of the identified targets was further investigated using RNAi and a small molecule inhibitor.
Results
Combining the two analyses revealed that mitosis-related kinases were critical determinants of medulloblastoma cell proliferation. RNA interference (RNAi)-mediated knockdown of WEE1 kinase and other mitotic kinases was sufficient to reduce medulloblastoma cell proliferation. These data prompted us to examine the effects of inhibiting WEE1 by RNAi and by a small molecule inhibitor of WEE1, MK-1775, in medulloblastoma cell lines. MK-1775 inhibited the growth of medulloblastoma cell lines, induced apoptosis and increased DNA damage at nanomolar concentrations. Further, MK-1775 was synergistic with cisplatin in reducing medulloblastoma cell proliferation and resulted in an associated increase in cell death. In vivo MK-1775 suppressed medulloblastoma tumor growth as a single agent.
Conclusions
Taken together, these findings highlight mitotic kinases and, in particular, WEE1 as a rational therapeutic target for medulloblastoma.
doi:10.1186/1476-4598-13-72
PMCID: PMC3987923  PMID: 24661910
Medulloblastoma; WEE1; Mitosis; MK-1775; Integrated genomics
18.  Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma 
Oncotarget  2014;5(9):2355-2371.
Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo.
PMCID: PMC4058011  PMID: 24796395
Medulloblastoma; MYC; BRD4; JQ1; Senescence
19.  Novel mutations target distinct subgroups of medulloblastoma 
Nature  2012;488(7409):43-48.
Summary
Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. To identify mutations that drive medulloblastoma we sequenced the entire genomes of 37 tumours and matched normal blood. One hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma: several target distinct components of the epigenetic machinery in different disease subgroups, e.g., regulators of H3K27 and H3K4 trimethylation in subgroup-3 and 4 (e.g., KDM6A and ZMYM3), and CTNNB1-associated chromatin remodellers in WNT-subgroup tumours (e.g., SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours, identified genes that maintain this cell lineage (DDX3X) as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumourigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.
doi:10.1038/nature11213
PMCID: PMC3412905  PMID: 22722829
20.  Targeting the Enhancer of Zeste Homologue 2 in Medulloblastoma 
Enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 that catalyzes the trimethylation of histone H3 on Lys 27, and represses gene transcription. EZH2 enhances cancer-cell proliferation and regulates stem cell maintenance and differentiation. Here, we demonstrate that EZH2 is highly expressed in medulloblastoma, a highly malignant brain tumor of childhood, and this altered expression is correlated with genomic gain of chromosome 7 in a subset of medulloblastoma. Inhibition of EZH2 by RNAi suppresses medulloblastoma tumor cell growth. We show that 3-deazaneplanocin A, a chemical inhibitor of EZH2, can suppress medulloblastoma cell growth partially by inducing apoptosis. Suppression of EZH2 expression diminishes the ability of tumor cells to form spheres in culture and strongly represses the ability of known oncogenes to transform neural stem cells. These findings establish a role of EZH2 in medulloblastoma and identify EZH2 as a potential therapeutic target especially in high-risk tumors.
doi:10.1002/ijc.27455
PMCID: PMC3375399  PMID: 22287205
EZH2; Medulloblastoma; Polycomb repressive complex 2; histone lysine methylation; DZNEP
21.  MicroRNA-31 suppresses medulloblastoma cell growth by inhibiting DNA replication through minichromosome maintenance 2 
Oncotarget  2014;5(13):4821-4833.
Medulloblastoma is an aggressive childhood brain tumor with poor prognosis. Recent studies indicate that dys-regulation of microRNA expression plays important roles in tumorigenesis. By comparing microRNA levels between mouse medulloblastoma and normal cerebellar tissues, we identified a set of down-regulated microRNAs including miR-31. Here, we show that the genomic region surrounding human miR-31 at 9p21.3 is frequently deleted in many solid tumor cell lines, and reintroducing miR-31 into DAOY cells, a line of human medulloblastoma cells devoid of miR-31, strongly suppresses cell growth, causes cell cycle arrest at the G1/S boundary, and inhibits colony formation in vitro and xenograft tumorigenesis in nude mice. Global gene expression profiling of mouse medulloblastomas and bioinformatics analyses of microRNA targets suggest that minichromosome maintenance complex component 2 (MCM2) is a likely target gene of miR-31 in suppressing cell growth. We demonstrate that miR-31 inhibits MCM2 expression via its 3'-untranslated region, that knockdown of MCM2 in DAOY cells leads to a degree of growth inhibition comparable to that by miR-31 restoration, and that overexpression of miR-31 reduces the chromatin loading of MCM2 at the point of G1/S transition. Taken together, these data indicate that miR-31 suppresses medulloblastoma tumorigenesis by negatively regulating DNA replication via MCM2.
PMCID: PMC4148102  PMID: 24970811
medulloblastoma; miR-31; tumorigenesis; MCM2; tumor cell growth
22.  Update on molecular and genetic alterations in adult medulloblastoma 
Memo  2012;5(3):228-232.
Medulloblastoma encompasses a group of aggressively growing cancers that arise either in the cerebellum or brain stem. They present primarily in children, with 80–85 % of medulloblastomas being diagnosed in patients of 16 years and younger. In adults, medulloblastomas are rare and account for less than 1 % of intracranial malignancies. Due to the low incidence of medulloblastoma in adults, the biology and genetics of adult medulloblastomas have long been poorly understood. Many centers therefore still treat adults either by radiotherapy only or by using glioblastoma protocols (both often noncurative), or with standard pediatric medulloblastoma regimes (often associated with dose-limiting toxicity).Current clinical staging systems discriminate between standard-risk or high-risk patients based on clinical and histological parameters. However, clinico-pathological features often fail to accurately predict treatment response. In children, molecularly defined risk assessment has become important to improve survival of high-risk patients and to decrease treatment-related toxicity and long-term sequelae in standard-risk patients. However, several recent studies have shown that adult and pediatric medulloblastomas are genetically distinct and may require different algorithms for molecular risk stratification. Moreover, four subtypes of medulloblastoma have been identified that appear at different frequencies in children and adults and that have a different prognostic impact depending on age. Molecular markers such as chromosome 10q and chromosome 17 statuses can be used for molecular risk stratification of adult medulloblastoma, but only in a subgroup-specific context. Here we present an overview of the current knowledge of the genomics of adult medulloblastoma and how these tumors differ from their pediatric counterparts.
doi:10.1007/s12254-012-0037-9
PMCID: PMC3458193  PMID: 23864912
Medulloblastoma; Adults; Molecular stratification
23.  Amplification and Overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in Medulloblastoma 
PLoS ONE  2009;4(7):e6159.
Background
Medulloblastoma is the most common malignant brain tumour of childhood. The identification of critical genes involved in its pathogenesis will be central to advances in our understanding of its molecular basis, and the development of improved therapeutic approaches.
Methodology/Principal Findings
We performed a SNP-array based genome-wide copy number analysis in medulloblastoma cell lines, to identify regions of genomic amplification and homozygous deletion, which may harbour critical disease genes. A series of novel and established medulloblastoma defects were detected (MYC amplification (n = 4), 17q21.31 high-level gain (n = 1); 9p21.1–p21.3 (n = 1) and 6q23.1 (n = 1) homozygous deletion). Most notably, a novel recurrent region of genomic amplification at 8q24.22–q24.23 was identified (n = 2), and selected for further investigation. Additional analysis by interphase fluorescence in situ hybridisation (iFISH), PCR-based mapping and SNP-array revealed this novel amplification at 8q24.22–q24.23 is independent of MYC amplification at 8q24.21, and is unique to medulloblastoma in over 800 cancer cell lines assessed from different tumour types, suggesting it contains key genes specifically involved in medulloblastoma development. Detailed mapping identified a 3Mb common minimal region of amplification harbouring 3 coding genes (ZFAT1, LOC286094, KHDRBS3) and two genes encoding micro-RNAs (hsa-miR-30b, hsa-miR-30d). Of these, only expression of hsa-miR-30b, hsa-miR-30d and KHDRBS3 correlated with copy number status, and all three of these transcripts also displayed evidence of elevated expression in sub-sets of primary medulloblastomas, measured relative to the normal cerebellum.
Conclusions/Significance
These data implicate hsa-miR-30b, hsa-miR-30d and KHDRBS3 as putative oncogenic target(s) of a novel recurrent medulloblastoma amplicon at 8q24.22–q24.23. Our findings suggest critical roles for these genes in medulloblastoma development, and further support the contribution of micro-RNA species to medulloblastoma pathogenesis.
doi:10.1371/journal.pone.0006159
PMCID: PMC2702821  PMID: 19584924
24.  The miR-17/92 polycistron is up-regulated in Sonic hedgehog-driven medulloblastomas and induced by N-myc in Sonic hedgehog-treated cerebellar neural precursors 
Cancer research  2009;69(8):3249-3255.
Medulloblastoma is the most common malignant pediatric brain tumour and mechanisms underlying its development are poorly understood. We identified recurrent amplification of the miR-17/92 polycistron proto-oncogene in 6% of pediatric medulloblastomas by high-resolution SNP genotyping arrays and subsequent interphase FISH on a human medulloblastoma tissue microarray. Profiling the expression of 427 mature microRNAs in a series of 90 primary human medulloblastomas revealed that components of the miR-17/92 polycistron are the most highly up-regulated microRNAs in medulloblastoma. Expression of miR-17/92 was highest in the subgroup of medulloblastomas associated with activation of the Sonic Hedgehog (Shh) signaling pathway as compared to other subgroups of medulloblastoma. Medulloblastomas in which miR-17/92 was up-regulated also had elevated levels of MYC/MYCN expression. Consistent with its regulation by Shh, we observed that Shh treatment of primary cerebellar granule neuron precursors (CGNPs), proposed cells-of-origin for the Shh-associated medulloblastomas, resulted in increased miR-17/92 expression. In CGNPs, the Shh effector N-myc, but not Gli1, induced miR-17/92 expression. Ectopic miR-17/92 expression in CGNPs synergized with exogenous Shh to increase proliferation and also enabled them to proliferate in the absence of Shh. We conclude that miR-17/92 is a positive effector of Shh-mediated proliferation, and that aberrant expression/amplification of this miR confers a growth advantage to medulloblastomas.
doi:10.1158/0008-5472.CAN-08-4710
PMCID: PMC2836891  PMID: 19351822
medulloblastoma; miR-17/92; microRNA; sonic hedgehog; cerebellar neural precursor; N-myc
25.  High resolution array-based comparative genomic hybridisation of medulloblastomas and supra-tentorial primitive neuroectodermal tumours 
Medulloblastomas and supratentorial primitive neuroectodermal tumours are aggressive childhood tumours. We report our findings using array comparative genomic hybridisation (CGH) on a whole-genome BAC/PAC/cosmid array with a median clone separation of 0.97Mb to study 34 medulloblastomas and 7 supratentorial primitive neuroectodermal tumours. Array CGH allowed identification and mapping of numerous novel small regions of copy number change to genomic sequence, in addition to the large regions already known from previous studies. Novel amplifications were identified, some encompassing oncogenes, MYCL1, PDGFRA, KIT and MYB, not previously reported to show amplification in these tumours. In addition, one supratentorial primitive neuroectodermal tumour had lost both copies of the tumour suppressor genes CDKN2A & CDKN2B. Ten medulloblastomas had findings suggestive of isochromosome 17q. In contrast to previous reports using conventional CGH, array CGH identified three distinct breakpoints in these cases: Ch 17: 17940393-19251679 (17p11.2, n=6), Ch 17: 20111990-23308272 (17p11.2-17q11.2, n=4) and Ch 17: 38425359-39091575 (17q21.31, n=1). Significant differences were found in the patterns of copy number change between medulloblastomas and supratentorial primitive neuroectodermal tumours, providing further evidence that these tumours are genetically distinct despite their morphological and behavioural similarities.
PMCID: PMC2816352  PMID: 16783165
Medulloblastoma; supratentorial primitive neuroectodermal tumour; array-CGH; genomic copy number

Results 1-25 (516100)