Search tips
Search criteria

Results 1-25 (860916)

Clipboard (0)

Related Articles

1.  miR-17 deregulates a core RUNX1-miRNA mechanism of CBF acute myeloid leukemia 
Molecular Cancer  2015;14:7.
Core Binding Factor acute myeloid leukemia (CBF-AML) with t(8;21) RUNX1-MTG8 or inv(16) CBFB-MYH11 fusion proteins often show upregulation of wild type or mutated KIT receptor. However, also non-CBF-AML frequently displays upregulated KIT expression. In the first part of this study we show that KIT expression can be also upregulated by miR-17, a regulator of RUNX1, the gene encoding a CBF subunit. Interestingly, both CBF leukemia fusion proteins and miR-17, which targets RUNX1-3′UTR, negatively affect a common core RUNX1-miRNA mechanism that forces myeloid cells into an undifferentiated, KIT-induced, proliferating state. In the second part of this study we took advantage of the conservation of the core RUNX1-miRNA mechanism in mouse and human, to mechanistically demonstrate in a mouse myeloid cell model that increased KIT-induced proliferation is per se a mechanism sufficient to delay myeloid differentiation.
Human (U937) or mouse (32D) myeloid clonal lines were used, respectively, to test: 1) the effect of RUNX1-MTG8 and CBFB-MYH11 fusion proteins, or upregulation of miR-17, on KIT-induced proliferation and myeloid differentiation, and 2) the effect of upregulation of KIT-induced proliferation per se on myeloid cell differentiation.
In the first part of this study we found that stable miR-17 upregulation affects, like the CBF-AML fusion proteins (RUNX1-MTG8 or CBFB-MYH11), a core RUNX1-miRNA mechanism leading to KIT-induced proliferation of differentiation-arrested U937 myeloid cells. In the second part of the study we harnessed the conservation of this core mechanism in human and mouse to demonstrate that the extent of KIT upregulation in 32D mouse myeloid cells with wild type RUNX1 can per se delay G-CSF-induced differentiation. The integrated information gathered from the two myeloid cell models shows that RUNX1 regulates myeloid differentiation not only by direct transcriptional regulation of coding and non-coding myeloid differentiation functions (e.g. miR-223), but also by modulating KIT-induced proliferation via non-coding miRNAs (e.g. miR-221).
The novelty of this study is dual. On the one hand, miRNAs (e.g. miR-17) can mimic the effects of CBF-AML fusion proteins by affecting a core RUNX1-miRNA mechanism of KIT-induced proliferation of undifferentiated myeloid cells. On the other hand, the extent of KIT-induced proliferation itself can modulate myeloid differentiation of cells with wild type RUNX1 function.
Electronic supplementary material
The online version of this article (doi:10.1186/s12943-014-0283-z) contains supplementary material, which is available to authorized users.
PMCID: PMC4351976  PMID: 25612891
Core Binding Factor; Acute myeloid leukemia; RUNX1; microRNAs; KIT; Proliferation; Myeloid differentiation
2.  The AML1-MTG8 Leukemic Fusion Protein Forms a Complex with a Novel Member of the MTG8(ETO/CDR) Family, MTGR1 
Molecular and Cellular Biology  1998;18(2):846-858.
The AML1-CBFβ transcription factor complex is essential for the definitive hematopoiesis of all lineages and is the most frequent target of chromosomal rearrangements in human leukemia. In the t(8;21) translocation associated with acute myeloid leukemia (AML), the AML1(CBFA2/PEBP2αB) gene is juxtaposed to the MTG8(ETO/CDR) gene. We show here that the resultant AML1-MTG8 gene product specifically and strongly interacts with an 85-kDa phosphoprotein. Molecular cloning of cDNA indicated that the AML1-MTG8-binding protein (MTGR1) is highly related to MTG8 and similar to Drosophila Nervy. Comparison of amino acid sequences among MTGR1, MTG8, and Nervy revealed four evolutionarily conserved regions (NHR1 to NHR4). Ectopic expression of AML1-MTG8 in L-G murine myeloid progenitor cells inhibits differentiation to mature neutrophils and induces cell proliferation in response to granulocyte colony-stimulating factor (G-CSF). Analysis with C-terminal deletion mutants of AML1-MTG8 indicated that the region of 51 residues (488 to 538), which contains NHR2, is essential for the induction of G-CSF-dependent cell proliferation. Immunoprecipitation analysis indicates that this region is required for AML1-MTG8 to form a stable complex with MTGR1. Overexpression of MTGR1 stimulates AML1-MTG8 to induce G-CSF-dependent proliferation of L-G cells and to interfere with AML1-dependent transcription. These results suggest that AML1-MTG8 could function as a complex with MTGR1 and that the complex might be important in promoting leukemogenesis.
PMCID: PMC108796  PMID: 9447981
3.  Down-regulation of MicroRNAs 222/221 in Acute Myelogenous Leukemia with Deranged Core-Binding Factor Subunits12 
Neoplasia (New York, N.Y.)  2010;12(11):866-876.
Core-binding factor leukemia (CBFL) is a subgroup of acutemyeloid leukemia (AML) characterized by genetic mutations involving the subunits of the core-binding factor (CBF). The leukemogenesis model for CBFL posits that one, or more, gene mutations inducing increased cell proliferation and/or inhibition of apoptosis cooperate with CBF mutations for leukemia development. One of the most commonmutations associated with CBF mutations involves the KIT receptor. A high expression of KIT is a hallmark of a high proportion of CBFL. Previous studies indicate that microRNA (MIR) 222/221 targets the 3′ untranslated region of the KIT messenger RNA and our observation that AML1 can bind the MIR-222/221 promoter, we hypothesized that MIR-222/221 represents the link between CBF and KIT. Here, we show that MIR-222/221 expression is upregulated after myeloid differentiation of normal bone marrow AC133+ stem progenitor cells. CBFL blasts with either t(8;21) or inv(16) CBF rearrangements with high expression levels of KIT (CD117) display a significantly lower level of MIR-222/221 expression than non-CBFL blasts. Consistently, we found that the t(8;21) AML1-MTG8 fusion protein binds the MIR-222/221 promoter and induces transcriptional repression of a MIR-222/221-LUC reporter. Because of the highly conserved sequence homology, we demonstrated concomitant MIR-222/221 down-regulation and KIT up-regulation in the 32D/WT1 mouse cell model carrying the AML1-MTG16 fusion protein. This study provides the first hint that CBFL-associated fusion proteins may lead to up-regulation of the KIT receptor by down-regulating MIR-222/221, thus explaining the concomitant occurrence of CBF genetic rearrangements and overexpression of wild type or mutant KIT in AML.
PMCID: PMC2978910  PMID: 21076613
4.  A distinct epigenetic signature at targets of a leukemia protein 
BMC Genomics  2007;8:38.
Human myelogenous leukemia characterized by either the non random t(8; 21)(q22; q22) or t(16; 21)(q24; q22) chromosome translocations differ for both their biological and clinical features. Some of these features could be consequent to differential epigenetic transcriptional deregulation at AML1 targets imposed by AML1-MTG8 and AML1-MTG16, the fusion proteins deriving from the two translocations. Preliminary findings showing that these fusion proteins lead to transcriptional downregulation of AML1 targets, marked by repressive chromatin changes, would support this hypothesis. Here we show that combining conventional global gene expression arrays with the power of bioinformatic genomic survey of AML1-consensus sequences is an effective strategy to identify AML1 targets whose transcription is epigenetically downregulated by the leukemia-associated AML1-MTG16 protein.
We interrogated mouse gene expression microarrays with probes generated either from 32D cells infected with a retroviral vector carrying AML1-MTG16 and unable of granulocyte differentiation and proliferation in response to the granulocyte colony stimulating factor (G-CSF), or from 32D cells infected with the cognate empty vector. From the analysis of differential gene expression alone (using as criteria a p value < 0.01 and an absolute fold change > 3), we were unable to conclude which of the 37 genes downregulated by AML1-MTG16 were, or not, direct AML1 targets. However, when we applied a bioinformatic approach to search for AML1-consensus sequences in the 10 Kb around the gene transcription start sites, we closed on 17 potential direct AML1 targets. By focusing on the most significantly downregulated genes, we found that both the AML1-consensus and the transcription start site chromatin regions were significantly marked by aberrant repressive histone tail changes. Further, the promoter of one of these genes, containing a CpG island, was aberrantly methylated.
This study shows that a leukemia-associated fusion protein can impose a distinct epigenetic repressive signature at specific sites in the genome. These findings strengthen the conclusion that leukemia-specific oncoproteins can induce non-random epigenetic changes.
PMCID: PMC1796549  PMID: 17266773
5.  Novel RNA-binding properties of the MTG chromatin regulatory proteins 
The myeloid translocation gene (MTG) proteins are non-DNA-binding transcriptional regulators capable of interacting with chromatin modifying proteins. As a consequence of leukemia-associated chromosomal translocations, two of the MTG proteins, MTG8 and MTG16, are fused to the DNA-binding domain of AML1, a transcriptional activator crucial for hematopoiesis. The AML1-MTG fusion proteins, as the wild type MTGs, display four conserved homology regions (NHR1-4) related to the Drosophila nervy protein. Structural protein analyses led us to test the hypothesis that specific MTG domains may mediate RNA binding.
By using an RNA-binding assay based on synthetic RNA homopolymers and a panel of MTG deletion mutants, here we show that all the MTG proteins can bind RNA. The RNA-binding properties can be traced to two regions: the Zinc finger domains in the NHR4, which mediate Zinc-dependent RNA binding, and a novel short basic region (SBR) upstream of the NHR2, which mediates Zinc-independent RNA binding. The two AML1-MTG fusion proteins, retaining both the Zinc fingers domains and the SBR, also display RNA-binding properties.
Evidence has been accumulating that RNA plays a role in transcriptional control. Both wild type MTGs and chimeric AML1-MTG proteins display in vitro RNA-binding properties, thus opening new perspectives on the possible involvement of an RNA component in MTG-mediated chromatin regulation.
PMCID: PMC2579434  PMID: 18950503
6.  Dichotomy of AML1-ETO Functions: Growth Arrest versus Block of Differentiation† 
Molecular and Cellular Biology  2001;21(16):5577-5590.
The fusion gene AML1-ETO is the product of t(8;21)(q22;q22), one of the most common chromosomal translocations associated with acute myeloid leukemia. To investigate the impact of AML1-ETO on hematopoiesis, tetracycline-inducible AML1-ETO-expressing cell lines were generated using myeloid cells. AML1-ETO is tightly and strongly induced upon tetracycline withdrawal. The proliferation of AML1-ETO+ cells was markedly reduced, and most of the cells eventually underwent apoptosis. RNase protection assays revealed that the amount of Bcl-2 mRNA was decreased after AML1-ETO induction. Enforced expression of Bcl-2 was able to significantly delay, but not completely overcome, AML1-ETO-induced apoptosis. Prior to the onset of apoptosis, we also studied the ability of AML1-ETO to modulate differentiation. AML1-ETO expression altered granulocytic differentiation of U937T-A/E cells. More significantly, this change of differentiation was associated with the down-regulation of CCAAT/enhancer binding protein α (C/EBPα), a key regulator of granulocytic differentiation. These observations suggest a dichotomy in the functions of AML1-ETO: (i) reduction of granulocytic differentiation correlated with decreased expression of C/EBPα and (ii) growth arrest leading to apoptosis with decreased expression of CDK4, c-myc, and Bcl-2. We predict that the preleukemic AML1-ETO+ cells must overcome AML1-ETO-induced growth arrest and apoptosis prior to fulfilling their leukemogenic potential.
PMCID: PMC87279  PMID: 11463839
7.  The leukemogenic t(8;21) fusion protein AML1-ETO controls ribosomal RNA genes and associates with nucleolar organizing regions at mitotic chromosomes 
Journal of cell science  2008;121(Pt 23):3981-3990.
RUNX1/AML1 is required for definitive hematopoiesis and is frequently targeted by chromosomal translocation in acute myeloid leukemias (AML). The t(8;21) related AML1-ETO fusion protein blocks differentiation of myeloid progenitors. Here, we show by immunofluorescence microscopy that during interphase, endogenous AML1-ETO localizes to nuclear microenvironments distinct from those containing native RUNX1/AML1 protein. At mitosis, we clearly detect binding of AML1-ETO to nucleolar organizing regions (NORs) in AML derived Kasumi-1 cells and binding of RUNX1/AML1 to NORs in Jurkat cells. Both RUNX1/AML1 and AML1-ETO occupy ribosomal DNA repeats during interphase, as well as interact with the endogenous RNA Pol I transcription factor UBF-1. Promoter cytosine methylation analysis indicates that RUNX1/AML1 binds to rDNA repeats that are more highly CpG methylated than those bound by AML1-ETO. Down-regulation by RNA interference reveals that RUNX1/AML1 negatively regulates rDNA transcription, while AML1-ETO is a positive regulator in Kasumi-1 cells. Taken together, our findings identify a novel role for the leukemia-related AML1-ETO protein in epigenetic control of cell growth through upregulation of RNA Pol I-mediated ribosomal gene transcription, consistent with the hyper-proliferative phenotype of myeloid cells in AML patients.
PMCID: PMC2904240  PMID: 19001502
acute myelogenous leukemia; Runx1; ribosomal DNA transcription; RNA polymerase I; UBF1; nucleolar organizing region
8.  AML1/ETO proteins control POU4F1/BRN3A expression and function in t(8;21) acute myeloid leukaemia 
Cancer research  2010;70(10):3985-3995.
A variety of genetic lesions, including chromosomal translocations, internal tandem duplications and mutations have been described in acute myeloid leukaemia (AML). Expression profiling has shown that chromosomal translocations, in particular, are associated with distinctive patterns of gene expression. AML exhibiting the translocation t(8;21), which fuses the AML1 and ETO genes, has such a characteristic expression profile. One gene whose expression is highly correlated with the presence of the AML1/ETO fusion is POU4F1, which encodes the POU homeodomain transcription factor BRN3A. Here we demonstrate using specific siRNA in t(8;21) cells and overexpression studies in progenitor cells that AML1/ETO promotes expression of POU4F1/BRN3A. This effect requires DNA-binding function of AML1/ETO, and accordingly AML1/ETO is bound to the POU4F1 locus in t(8;21) cells. Functionally, while over-expression of Brn3a in murine haematopoietic progenitor cells induces terminal myeloid differentiation, co-expression of AML1/ETO or AML/ETO9a blocks this effect. Furthermore, Brn3a reduction by shRNA impairs AML1/ETO-induced immortalisation of murine progenitors. In summary, we identify POU4F1/BRN3A as a novel potential up-regulated AML1/ETO target gene whose dramatically high expression may co-operate with AML1/ETO in t(8;21) cells.
PMCID: PMC2883733  PMID: 20460523
AML1/ETO; BRN3A; AML; transcription; myeloid
9.  A Histone Acetyltransferase p300 Inhibitor C646 Induces Cell Cycle Arrest and Apoptosis Selectively in AML1-ETO-Positive AML Cells 
PLoS ONE  2013;8(2):e55481.
AML1-ETO fusion protein (AE) is generated by t(8;21)(q22;q22) chromosomal translocation, which is one of the most frequently observed structural abnormalities in acute myeloid leukemia (AML) and displays a pivotal role in leukemogenesis. The histone acetyltransferase p300 promotes self-renewal of leukemia cells by acetylating AE and facilitating its downstream gene expression as a transcriptional coactivator, suggesting that p300 may be a potential therapeutic target for AE-positive AML. However, the effects of p300 inhibitors on leukemia cells and the underlying mechanisms have not been extensively investigated. In the current study, we analyzed the anti-leukemia effects of C646, a selective and competitive p300 inhibitor, on AML cells. Results showed that C646 inhibited cellular proliferation, reduced colony formation, evoked partial cell cycle arrest in G1 phase, and induced apoptosis in AE-positive AML cell lines and primary blasts isolated from leukemic mice and AML patients. Nevertheless, no significant inhibitory effects were observed in granulocyte colony-stimulating factor-mobilized normal peripheral blood stem cells. Notably, AE-positive AML cells were more sensitive to lower C646 doses than AE-negative ones. And C646-induced growth inhibition on AE-positive AML cells was associated with reduced global histone H3 acetylation and declined c-kit and bcl-2 levels. Therefore, C646 may be a potential candidate for treating AE-positive AML.
PMCID: PMC3563640  PMID: 23390536
10.  High Expression of c-kit mRNA Predicts Unfavorable Outcome in Adult Patients with t(8;21) Acute Myeloid Leukemia 
PLoS ONE  2015;10(4):e0124241.
The reason that a certain subgroup of acute myeloid leukemia (AML) patients with t(8;21) translocation (generating the AML1/ETO fusion gene) displays a poor survival remains elusive. The proto-oncogene c-kit is expressed in approximately 80% of AML cases. The kinase domain mutation of the c-kit gene, one of the most common gain-of-function mutations associated with t(8;21) AML, predicts higher relapse risk and poor prognosis. However, the role of c-kit high expression in t(8;21) AML remains poorly understood. Here we evaluated the prognostic significance of c-kit expression levels in AML patients. The mRNA expression of c-kit was determined by real-time quantitative reverse transcription PCR in 132 adult AML patients. Patients were grouped into quartiles according to c-kit expression levels (Q1–Q4, each quartile containing 25% of patients) and divided into c-kit high (Q4; n = 33) and c-kit low (Q1–Q3; n = 99). High c-kit expression was associated with AML1/ETO-positive and with c-kit mutation. Of note, 35.8% of the AML1/ETO-positive AML patients carrying wild-type c-kit expressed high levels of c-kit, suggesting that other factors are involved in c-kit overexpression. High c-kit expression was associated with inferior overall and event-free survival in AML1/ETO-positive patients and was independently predictive for overall and event-free survival in multivariate analyses in a c-kit mutation-independent manner. Thus, high c-kit expression serves as a reliable molecular marker for poor prognosis, supporting a pathogenetic role of c-kit signaling in AML1/ETO-positive AML. AML1/ETO-positive patients with high c-kit expression might benefit from early treatment modifications and molecular target therapies.
PMCID: PMC4393018  PMID: 25860287
11.  POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature 
The t(8;21)(q22;q22) translocation, present in ~5% of adult acute myeloid leukemia (AML) cases, produces the AML1/ETO fusion protein. Dysregulation of the POU domain-containing transcription factor POU4F1 is a recurring abnormality in t(8;21) AML. Here, we show that POU4F1 over-expression is highly correlated with, but not caused by AML1/ETO. AML1/ETO markedly increases the self-renewal capacity of myeloid progenitors from murine bone marrow or fetal liver and drives expansion of these cells in liquid culture. POU4F1 is neither necessary nor sufficient for these AML1/ETO-dependent properties, suggesting that it contributes to leukemia through novel mechanisms. To identify targets of POU4F1, we performed gene expression profiling in primary mouse cells with genetically defined levels of POU4F1 and identified 140 differentially expressed genes. This expression signature was significantly enriched in human t(8;21) AML samples and was sufficient to cluster t(8;21) AML samples in an unsupervised hierarchical analysis. Among the most highly differentially expressed genes, half are known AML1/ETO targets, implying that the unique transcriptional signature of t(8;21) AML is, in part, attributable to POU4F1 and not AML1/ETO itself. These genes provide novel candidates for understanding the biology and developing therapeutic approaches for t(8;21) AML.
PMCID: PMC2868953  PMID: 20376082
POU4F1; AML1/ETO; acute myeloid leukemia; gene expression profiling
12.  The leukemia associated nuclear corepressor ETO homologue genes MTG16 and MTGR1 are regulated differently in hematopoietic cells 
BMC Molecular Biology  2012;13:11.
MTG16, MTGR1 and ETO are nuclear transcriptional corepressors of the human ETO protein family. MTG16 is implicated in hematopoietic development and in controlling erythropoiesis/megakaryopoiesis. Furthermore, ETO homologue genes are 3'participants in leukemia fusions generated by chromosomal translocations responsible of hematopoietic dysregulation. We tried to identify structural and functional promoter elements of MTG16 and MTGR1 genes in order to find associations between their regulation and hematopoiesis.
5' deletion examinations and luciferase reporter gene studies indicated that a 492 bp sequence upstream of the transcription start site is essential for transcriptional activity by the MTG16 promoter. The TATA- and CCAAT-less promoter with a GC box close to the start site showed strong reporter activity when examined in erythroid/megakaryocytic cells. Mutation of an evolutionary conserved GATA -301 consensus binding site repressed promoter function. Furthermore, results from in vitro antibody-enhanced electrophoretic mobility shift assay and in vivo chromatin immunoprecipitation indicated binding of GATA-1 to the GATA -301 site. A role of GATA-1 was also supported by transfection of small interfering RNA, which diminished MTG16 expression. Furthermore, expression of the transcription factor HERP2, which represses GATA-1, produced strong inhibition of the MTG16 promoter reporter consistent with a role of GATA-1 in transcriptional activation. The TATA-less and CCAAT-less MTGR1 promoter retained most of the transcriptional activity within a -308 to -207 bp region with a GC-box-rich sequence containing multiple SP1 binding sites reminiscent of a housekeeping gene with constitutive expression. However, mutations of individual SP1 binding sites did not repress promoter function; multiple active SP1 binding sites may be required to safeguard constitutive MTGR1 transcriptional activity. The observed repression of MTG16/MTGR1 promoters by the leukemia associated AML1-ETO fusion gene may have a role in hematopoietic dysfunction of leukemia.
An evolutionary conserved GATA binding site is critical in transcriptional regulation of the MTG16 promoter. In contrast, the MTGR1 gene depends on a GC-box-rich sequence for transcriptional regulation and possible ubiquitous expression. Our results demonstrate that the ETO homologue promoters are regulated differently consistent with hematopoietic cell-type- specific expression and function.
PMCID: PMC3364894  PMID: 22443175
13.  Inhibition of leukemic cells by valproic acid, an HDAC inhibitor, in xenograft tumors 
OncoTargets and therapy  2013;6:733-740.
The chimeric fusion protein, AML1-ETO, generated by translocation of t(8;21), abnormally recruits histone deacetylase (HDAC) to the promoters of AML1 target genes, resulting in transcriptional repression of the target genes and development of t(8;21) acute myeloid leukemia. Abnormal expression of cyclin-dependent kinase inhibitors, especially p21, is considered a possible mechanism of the arrested maturation and differentiation seen in leukemia cells. A new generation of HDAC inhibitors is becoming an increasing focus of attention for their ability to induce differentiation and apoptosis in tumor cells and to block the cell cycle. Our previous research had demonstrated that valproic acid induces G0/G1 arrest of Kasumi-1 cells in t(8;21) acute myeloid leukemia. In this study, we further confirmed that valproic acid inhibits the growth of Kasumi-1 cells in a murine xenograft tumor model, and that this occurs via upregulation of histone acetylation in the p21 promoter region, enhancement of p21 expression, suppression of phosphorylation of retinoblastoma protein, blocking of transcription activated by E2F, and induction of G0/G1 arrest.
PMCID: PMC3699303  PMID: 23836985
valproic acid; acute myeloid leukemia; AML1-ETO; p21; E2F
14.  ERK5 Pathway Regulates Transcription Factors Important for Monocytic Differentiation of Human Myeloid Leukemia Cells† 
Journal of cellular physiology  2014;229(7):856-867.
Mitogen-activated protein kinases (MAPKs) are important transducers of external signals for cell growth, survival and other cellular responses including cell differentiation. Several MAPK cascades are known with the MEK1/2-ERK1/2, JNK, and p38MAPKs receiving most attention, but the role of MEK5-ERK5 in intracellular signaling deserves more scrutiny, as this pathway transmits signals that can complement ERK/2 signaling. We hypothesized that the ERK5 pathway plays a role in the control of monocytic differentiation, which is disturbed in myeloid leukemia. We therefore examined the cellular phenotype and key molecular events which occur when human myeloid leukemia cells, acute (AML) or chronic (CML), are forced to differentiate by vitamin D derivatives (VDDs). This study was performed using established cell lines HL60 and U937, and primary cultures of blasts from 10 patients with ML. We found that ERK5 and its direct downstream target transcription factor MEF2C are upregulated by 1,25D in parallel with monocytic differentiation. Further, inhibition of ERK5 activity by specific pharmacological agents BIX02189 and XMD8-92 alters the phenotype of these cells by reducing the abundance of the VDD-induced surface monocytic marker CD14, and concomitantly increasing surface expression of the general myeloid marker CD11b. Similar results were obtained when the expression of ERK5 was reduced by siRNA or short hairpin (sh) RNA. ERK5 inhibition resulted in an expected decrease in MEF2C activation. We also found that in AML the transcription factor C/EBPβ is positively regulated, while C/EBPα is negatively regulated by ERK5. These findings provide new understanding of dysregulated differentiation in human myeloid leukemia.
PMCID: PMC4363988  PMID: 24264602
MAPKs; ERK5; vitamin D; MEF2C; C/EBP; Myeloid leukemia
15.  MEK/ERK Dependent Activation of STAT1 Mediates Dasatinib-Induced Differentiation of Acute Myeloid Leukemia 
PLoS ONE  2013;8(6):e66915.
Dasatinib (BMS-354825) is a FDA-approved multitargeted kinase inhibitor of BCR/ABL and Src kinases. It is now used in the treatment of chronic myelogenous leukemia (CML) with resistance or intolerance to prior therapies, including imatinib. Here we report a novel effect of dasatinib on inducing the differentiation of acute myeloid leukemia (AML) cells through MEK/ERK-dependent activation of signal transducer and activator of transcription 1 (STAT1). We found that dasatinib could induce the differentiation of AML cells as demonstrated by the expression of differentiation marker CD11b, G0/G1 phase arrest and decreased ratio of nucleus to cytoplasm. Of note, dasatinib induced robust phosphorylation of STAT1 both at Tyr701 and Ser727 as well as the redistribution of STAT1 from the cytoplasm to the nucleus, thus leading to the transcription of STAT1-targeted genes. Knocking down STAT1 expression by shRNA significantly attenuated dasatinib-induced differentiation, indicating an important role of STAT1 in myeloid maturation. We further found that dasatinib-induced activation of STAT1 was regulated by the MEK/ERK kinases. The phosporylation of MEK and ERK occurred rapidly upon dasatinib treatment and increased progressively as differentiation was induced. MEK inhibitors PD98059 and U0216 not only inhibited the phosphorylation of STAT1, but also abrogated dasatinib-induced myeloid differentiation, suggesting that MEK/ERK dependent phosphorylation of STAT1 might be indispensable for the differentiating effect of dasatinib in AML cells. Taken together, our study suggests that STAT1 is an important mediator in dasatinib-induced differentiation of AML cells, whose activation requires the activation of MEK/ERK cascades.
PMCID: PMC3692534  PMID: 23825585
16.  Inhibiting CCN1 blocks AML cell growth by disrupting the MEK/ERK pathway 
CCN1 plays distinct roles in various tumor types, but little is known regarding the role of CCN1 in leukemia.
We analyzed CCN1 protein expression in leukemia cell lines and in AML bone marrow samples. We also evaluated the effects of antibody- or siRNA-mediated inhibition of CCN1 on the growth of two AML cell lines (U937 and Kasumi-1 cells) and on the MEK/ERK pathway, β-catenin and other related genes.
U937 and Kasumi-1 cells had markedly higher CCN1 expression than the 5 other leukemia cell lines, and CCN1 protein expression was higher in the AML bone marrow samples than in the normal bone marrow samples. Blocking CCN1 with an antibody in U937 and Kasumi-1 cells suppressed proliferation, increased apoptosis, down-regulated Bcl-xL and c-Myc expression, up-regulated Bax expression, and had no effect on Survivin. siRNA-mediated down-regulation of CCN1 inhibited the proliferation and colony formation of U937 and Kasumi-1 cells and increased cytarabine-induced apoptosis. Furthermore, CCN1 siRNA reduced MEK and ERK phosphorylation without affecting β-catenin; the CCN1 antibody similarly affected MEK and ERK phosphorylation. These changes in phosphorylation could influence the expression of Bcl-xL, c-Myc and Bax in AML cells.
The data suggested that CCN1 is a tumor promoter in AML that acts through the MEK/ERK pathway to up-regulate c-Myc and Bcl-xL and to down-regulate Bax.
PMCID: PMC4153307  PMID: 25187756
17.  Isoform-Specific Potentiation of Stem and Progenitor Cell Engraftment by AML1/RUNX1  
PLoS Medicine  2007;4(5):e172.
AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo.
Methods and Findings
The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo.
These data demonstrate that the “a” isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood transplantation in adults, in whom stem and progenitor cell numbers are often limiting.
The truncated "a" isoform of AML1 is shown to have the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation.
Editors' Summary
Blood contains red blood cells (which carry oxygen round the body), platelets (which help the blood to clot), and white blood cells (which fight off infections). All these cells, which are regularly replaced, are derived from hematopoietic stem cells, blood-forming cells present in the bone marrow. Like all stem cells, hematopoietic stem cells self-renew (reproduce themselves) and produce committed progenitor cells, which develop into mature blood cells in a process called hematopoiesis. Many proteins control hematopoiesis, some of which are called transcription factors; these factors bind to DNA through their DNA-binding domain and then control the expression of genes (that is, how DNA is turned into proteins) through particular parts of the protein (their transcription regulatory domains). An important hematopoietic transcription factor is AML1—a protein first identified because of its involvement in acute myelogenous leukemia (AML, a form of blood cancer). Mutations (changes) in the AML1 gene are now known to be present in other types of leukemia, which are often characterized by overproliferation of immature blood cells.
Why Was This Study Done?
Because of AML1′s crucial role in hematopoiesis, knowing more about which genes it regulates and how its activity is regulated could provide clues to treating leukemia and to improving hematopoietic cell transplantation. Many cancer treatments destroy hematopoietic stem cells, leaving patients vulnerable to infection. Transplants of bone marrow or cord blood (the cord that links mother and baby during pregnancy contains peripheral blood stem cells) can replace the missing cells, but cord blood in particular often contains insufficient stem cells for successful transplantation. It would be useful, therefore, to expand the stem cell content of these tissues before transplantation. In this study, the researchers investigated the effect of AML1 on self-renewal and differentiation of hematopoietic stem and progenitor cells in the laboratory (in vitro) and in animals (in vivo). In particular, they have asked how two isoforms (closely related versions) of AML1 affect the ability of these cells to grow and differentiate (engraft) in mice after transplantation.
What Did the Researchers Do and Find?
The researchers artificially expressed AML1a and AML1b (both isoforms contain a DNA binding domain, but only AML1b has transcription regulatory domains) in mouse hematopoietic stem and progenitor cells and then tested the cells' ability to engraft in mice. AML1a-expressing cells engrafted better than unaltered cells and outgrew unaltered cells when transplanted as a mixture. AML1b-expressing cells, however, did not engraft. In vitro, AML1a-expressing cells grew more than AML1b-expressing cells, whereas differentiation was promoted in AML1b-expressing cells. To investigate whether the isoforms have the same effects in human cells, the researchers measured the amount of AML1a and AML1b mRNA (the template for protein production) made by progenitor cells in human cord blood. Although AML1b (together with AML1c, an isoform with similar characteristics) mRNA predominated in all the progenitor cell types, the relative abundance of AML1a was greatest in the stem and progenitor cells. Furthermore, forced expression of AML1a in these cells improved their ability to divide in vitro and to engraft in mice.
What Do These Findings Mean?
These findings indicate that AML1a expression increases the self-renewal capacity of hematopoietic stem and progenitor cells and consequently improves their ability to engraft in mice, whereas AML1b expression encourages the differentiation of these cell types. These activities are consistent with the expression patterns of the two isoforms in normal hematopoietic cells and in leukemic cells—the mutated AML made by many leukemic cells resembles AML1a. Because the AML1 isoforms were expressed at higher than normal levels in these experiments, the physiological relevance of these findings needs to be confirmed by showing that normal levels of AML1a and AML1b produce similar results. Nevertheless, these results suggest that manipulating the balance of AML1 isoforms made by hematopoietic cells might be useful clinically. In leukemia, a shift toward AML1b expression might slow the proliferation of leukemic cells and encourage their differentiation. Conversely, in cord blood transplantation, a shift toward AML1a expression might improve patient outcomes by expanding the stem and progenitor cell populations.
Additional Information.
Please access these Web sites via the online version of this summary at
Wikipedia has pages on hematopoiesis and hematopoietic stem cells (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The US National Cancer Institute has a fact sheet on bone marrow and peripheral blood stem cell transplantation (in English and Spanish) and information for patients and professionals on leukemia (in English)
The American Society of Hematology provides patient information about blood diseases, including information on bone marrow and stem cell transplantation
PMCID: PMC1868041  PMID: 17503961
18.  JAK inhibitors suppress t(8;21) fusion protein-induced leukemia 
Leukemia  2013;27(12):2272-2279.
Oncogenic mutations in components of the JAK/STAT pathway, including those in cytokine receptors and JAKs, lead to increased activity of downstream signaling and are frequently found in leukemia and other hematological disorders. Thus, small-molecule inhibitors of this pathway have been the focus of targeted therapy in these hematological diseases. We previously showed that t(8;21) fusion protein AML1-ETO and its alternatively spliced variant AML1-ETO9a (AE9a) enhance the JAK/STAT pathway via down-regulation of CD45, a negative regulator of this pathway. To investigate the therapeutic potential of targeting JAK/STAT in t(8;21) leukemia, we examined the effects of a JAK2-selective inhibitor TG101209 and a JAK1/2-selective inhibitor INCB18424 on t(8;21) leukemia cells. TG101209 and INCB18424 inhibited proliferation and promoted apoptosis of these cells. Furthermore, TG101209 treatment in AE9a leukemia mice reduced tumor burden and significantly prolonged survival. TG101209 also significantly impaired the leukemia-initiating potential of AE9a leukemia cells in secondary recipient mice. These results demonstrate the potential therapeutic efficacy of JAK inhibitors in treating t(8;21) AML.
PMCID: PMC3987672  PMID: 23812420
AML1-ETO; AML1-ETO9a; JAK/STAT; JAK2 inhibitors; t(8;21)
19.  Kaiso Directs the Transcriptional Corepressor MTG16 to the Kaiso Binding Site in Target Promoters 
PLoS ONE  2012;7(12):e51205.
Myeloid translocation genes (MTGs) are transcriptional corepressors originally identified in acute myelogenous leukemia that have recently been linked to epithelial malignancy with non-synonymous mutations identified in both MTG8 and MTG16 in colon, breast, and lung carcinoma in addition to functioning as negative regulators of WNT and Notch signaling. A yeast two-hybrid approach was used to discover novel MTG binding partners. This screen identified the Zinc fingers, C2H2 and BTB domain containing (ZBTB) family members ZBTB4 and ZBTB38 as MTG16 interacting proteins. ZBTB4 is downregulated in breast cancer and modulates p53 responses. Because ZBTB33 (Kaiso), like MTG16, modulates Wnt signaling at the level of TCF4, and its deletion suppresses intestinal tumorigenesis in the ApcMin mouse, we determined that Kaiso also interacted with MTG16 to modulate transcription. The zinc finger domains of Kaiso as well as ZBTB4 and ZBTB38 bound MTG16 and the association with Kaiso was confirmed using co-immunoprecipitation. MTG family members were required to efficiently repress both a heterologous reporter construct containing Kaiso binding sites (4×KBS) and the known Kaiso target, Matrix metalloproteinase-7 (MMP-7/Matrilysin). Moreover, chromatin immunoprecipitation studies placed MTG16 in a complex occupying the Kaiso binding site on the MMP-7 promoter. The presence of MTG16 in this complex, and its contributions to transcriptional repression both required Kaiso binding to its binding site on DNA, establishing MTG16-Kaiso binding as functionally relevant in Kaiso-dependent transcriptional repression. Examination of a large multi-stage CRC expression array dataset revealed patterns of Kaiso, MTG16, and MMP-7 expression supporting the hypothesis that loss of either Kaiso or MTG16 can de-regulate a target promoter such as that of MMP-7. These findings provide new insights into the mechanisms of transcriptional control by ZBTB family members and broaden the scope of co-repressor functions for the MTG family, suggesting coordinate regulation of transcription by Kaiso/MTG complexes in cancer.
PMCID: PMC3521008  PMID: 23251453
20.  Alternative splicing and genomic structure of the AML1 gene involved in acute myeloid leukemia. 
Nucleic Acids Research  1995;23(14):2762-2769.
We previously isolated the AML1 gene, which is rearranged by the t(8;21) translocation in acute myeloid leukemia. The AML1 gene is highly homologous to the Drosophila segmentation gene runt and the mouse transcription factor PEBP2 alpha subunit gene. This region of homology, called the Runt domain, is responsible for DNA-binding and protein--protein interaction. In this study, we isolated and characterized various forms of AML1 cDNAs which reflect a complex pattern of mRNA species. Analysis of these cDNAs has led to the identification of two distinct AML1 proteins, designated AML1b (453 amino acids) and AML1c (480 amino acids), which differ markedly from the previously reported AML1a (250 amino acids) with regard to their C-terminal regions, although all three contain the Runt domain. The large C-terminal region common to AML1b and AML1c is suggested to be a transcriptional activation domain. AML1c differs from AML1b by only 32 amino acids in the N-terminal. Characterization of the genomic structure revealed that the AML1 gene consists of nine exons and spans > 150 kb of genomic DNA. Northern blot analysis demonstrated the presence of six major transcripts, encoding AML1b or AML1c, which can all be explained by the existence of two promoters, alternative splicing and differential usage of three polyadenylation sites. A minor transcript encoding AML1a which results from alternative splicing of a separate exon can be detected only by reverse transcription-polymerase chain reaction amplification. The distinct proteins encoded by the AML1 gene may have different functions, which could contribute to regulating cell growth and/or differentiation through transcriptional regulation of a specific subset of target genes.
PMCID: PMC307102  PMID: 7651838
21.  MTG16 contributes to colonic epithelial integrity in experimental colitis 
Gut  2012;62(10):1446-1455.
The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8−/− and Mtgr1−/− mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity.
Baseline and stress induced colonic phenotypes were examined in Mtg16−/− mice. To unmask phenotypes, we treated Mtg16−/− mice with dextran sodium sulphate (DSS) or infected them with Citrobacter rodentium and the colons were examined for ulceration and for changes in proliferation, apoptosis and inflammation.
Mtg16−/− mice have altered immune subsets, suggesting priming towards Th1 responses. Mtg16−/− mice developed increased weight loss, diarrhoea, mortality and histological colitis and there were increased innate (Gr1+, F4/80+, CD11c+ and MHCII+; CD11c+) and Th1 adaptive (CD4) immune cells in Mtg16−/− colons after DSS treatment. Additionally, there was increased apoptosis and a compensatory increased proliferation in Mtg16−/− colons. Compared with wild-type mice, Mtg16−/− mice exhibited increased colonic CD4;IFN-γ cells in vehicle-treated and DSS-treated mice. Adoptive transfer of wildtype marrow into Mtg16−/− recipients did not rescue the Mtg16−/− injury phenotype. Isolated colonic epithelial cells from DSS-treated Mtg16−/− mice exhibited increased KC (Cxcl1) mRNA expression when compared with wild-type mice. Mtg16−/− mice infected with C rodentium had more severe colitis and greater bacterial colonisation. Last, MTG16 mRNA levels were reduced in human ulcerative colitis versus normal colon tissues.
These observations indicate that MTG16 is critical for colonocyte survival and regeneration in response to intestinal injury and provide evidence that this transcriptional corepressor regulates inflammatory recruitment in response to injury.
PMCID: PMC3663894  PMID: 22833394
22.  Transcriptional Repression of the Neurofibromatosis-1 Tumor Suppressor by the t(8;21) Fusion Protein 
Molecular and Cellular Biology  2005;25(14):5869-5879.
Von Recklinghausen's disease is a relatively common familial genetic disorder characterized by inactivating mutations of the Neurofibromatosis-1 (NF1) gene that predisposes these patients to malignancies, including an increased risk for juvenile myelomonocytic leukemia. However, NF1 mutations are not common in acute myeloid leukemia (AML). Given that the RUNX1 transcription factor is the most common target for chromosomal translocations in acute leukemia, we asked if NF1 might be regulated by RUNX1. In reporter assays, RUNX1 activated the NF1 promoter and cooperated with C/EBPα and ETS2 to activate the NF1 promoter over 80-fold. Moreover, the t(8;21) fusion protein RUNX1-MTG8 (R/M), which represses RUNX1-regulated genes, actively repressed the NF1 promoter. R/M associated with the NF1 promoter in vivo and repressed endogenous NF1 gene expression. In addition, similar to loss of NF1, R/M expression enhanced the sensitivity of primary myeloid progenitor cells to granulocyte-macrophage colony-stimulating factor. Our results indicate that the NF1 tumor suppressor gene is a direct transcriptional target of RUNX1 and the t(8;21) fusion protein, suggesting that suppression of NF1 expression contributes to the molecular pathogenesis of AML.
PMCID: PMC1168824  PMID: 15988004
23.  Gene Targeting Reveals a Crucial Role for MTG8 in the Gut 
Molecular and Cellular Biology  2001;21(16):5658-5666.
The MTG8 (ETO) locus is involved in a reciprocal exchange with runx1 in the t(8;21) of acute myeloid leukemia. It is a member of a small gene family encoding transcriptional regulators that interact with corepressors and histone deacetylase. However, the physiologic cellular processes controlled by MTG8 are not known. In order to gain an insight into the latter, we have generated mutant mice with an insertional inactivation at the locus, which disrupts transcription of exon 2. The postnatal viability of homozygous mutants was greatly reduced. In approximately 25% the midgut was missing, whereas practically all pups surviving past the first 2 days showed severe growth impairment, which was likely due to a gross disruption of the gut architecture. The latter phenotype could be traced back to late embryonic development. No difference in gut cell differentiation or proliferation was found compared to wild-type littermates. Levels of factors known to be involved in gut morphogenesis were also unchanged. MTG8 is expressed in the outermost layers of the developing gut from at least E9.5. Thus, MTG8 plays a novel, essential role in the gastrointestinal system.
PMCID: PMC87286  PMID: 11463846
24.  Translocation Products in Acute Myeloid Leukemia Activate the Wnt Signaling Pathway in Hematopoietic Cells 
Molecular and Cellular Biology  2004;24(7):2890-2904.
The acute myeloid leukemia (AML)-associated translocation products AML1-ETO, PML-retinoic acid receptor alpha (RARα), and PLZF-RARα encode aberrant transcription factors. Several lines of evidence suggest similar pathogenetic mechanisms for these fusion proteins. We used high-density oligonucleotide arrays to identify shared target genes in inducibly transfected U937 cells expressing AML1-ETO, PML-RARα, or PLZF-RARα. All three fusion proteins significantly repressed the expression of 38 genes and induced the expression of 14 genes. Several of the regulated genes were associated with Wnt signaling. One of these, plakoglobin (γ-catenin), was induced on the mRNA and protein level by all three fusion proteins. In addition, primary AML blasts carrying one of the fusion proteins significantly overexpressed plakoglobin. The plakoglobin promoter was cloned and shown to be induced by AML1-ETO, with promoter activation depending on the corepressor and histone deacetylase binding domains. The induction of plakoglobin by AML fusion proteins led to downstream signaling and transactivation of TCF- and LEF-dependent promoters, including the c-myc promoter, which was found to be bound by plakoglobin in vivo after AML1-ETO expression. β-Catenin protein levels and TCF and LEF target genes such as c-myc and cyclin D1 were found to be induced by the fusion proteins. On the functional level, a dominant negative TCF inhibited colony growth of AML1-ETO-positive Kasumi cells, whereas plakoglobin transfection into myeloid 32D cells enhanced proliferation and clonal growth. Injection of plakoglobin-expressing 32D cells into syngeneic mice accelerated the development of leukemia. Transduction of plakoglobin into primitive murine hematopoietic progenitor cells preserved the immature phenotype during colony growth, suggesting enhanced self-renewal. These data provide evidence that activation of Wnt signaling is a common feature of several balanced translocations in AML.
PMCID: PMC371102  PMID: 15024077
25.  The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. 
Molecular and Cellular Biology  1995;15(4):1974-1982.
The AML-1/CBF beta transcription factor complex is targeted by both the t(8;21) and the inv(16) chromosomal alterations, which are frequently observed in acute myelogenous leukemia. AML-1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. The t(8;21) translocation fuses the first 177 amino acids of AML-1 to MTG8 (also known as ETO), generating a chimeric protein that retains the DNA-binding domain of AML-1. Analysis of endogenous AML-1 DNA-binding complexes suggested the presence of at least two AML-1 isoforms. Accordingly, we screened a human B-cell cDNA library and isolated a larger, potentially alternatively spliced, form of AML1, termed AML1B. AML-1B is a protein of 53 kDa that binds to a consensus AML-1-binding site and complexes with CBF beta. Subcellular fractionation experiments demonstrated that both AML-1 and AML-1/ETO are efficiently extracted from the nucleus under ionic conditions but that AML-1B is localized to a salt-resistant nuclear compartment. Analysis of the transcriptional activities of AML-1, AML-1B, and AML-1/ETO demonstrated that only AML-1B activates transcription from the T-cell receptor beta enhancer. Mixing experiments indicated that AML-1/ETO can efficiently block AML-1B-dependent transcriptional activation, suggesting that the t(8;21) translocation creates a dominant interfering protein.
PMCID: PMC230424  PMID: 7891692

Results 1-25 (860916)