Search tips
Search criteria

Results 1-25 (650866)

Clipboard (0)

Related Articles

1.  Structure–Activity Relationships of 9-Alkyladenine and Ribose-Modified Adenosine Derivatives at Rat A3 Adenosine Receptors† 
Journal of medicinal chemistry  1995;38(10):1720-1735.
9-Alkyladenine derivatives and ribose-modified N6-benzyladenosine derivatives were synthesized in an effort to identify selective ligands for the rat A3 adenosine receptor and leads for the development of antagonists. The derivatives contained structural features previously determined to be important for A3 selectivity in adenosine derivatives, such as an N6-(3-iodobenzyl) moiety, and were further substituted at the 2-position with halo, amino, or thio groups. Affinity was determined in radioligand binding assays at rat brain A3 receptors stably expressed in Chinese hamster ovary (CHO) cells, using [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5′-(N-methyluronamide)), and at rat brain A1 and A2a receptors using [3H]-N6-PIA ((R)-N6-phenylisopropyladenosine) and [3H]CGS 21680 (2-[[[4-(2-carboxyethyl)-phenyl]ethyl]amino]-5′-(N-ethylcarbamoyl)adenosine), respectively. A series of N6-(3-iodobenzyl) 2-amino derivatives indicated that a small 2-alkylamino group, e.g., methylamino, was favored at A3 receptors. N6-(3-Iodobenzyl)-9-methyl-2-(methylthio)adenine was 61-fold more potent than the corresponding 2-methoxy ether at A3 receptors and of comparable affinity at A1 and A2a receptors, resulting in a 3–6-fold selectivity for A3 receptors. A pair of chiral N6-(3-iodobenzyl) 9-(2,3-dihydroxypropyl) derivatives showed stereoselectivity, with the R-enantiomer favored at A3 receptors by 5.7-fold. 2-Chloro-9-(β-d-erythrofuranosyl)-N6-(3-iodobenzyl)adenine had a Ki value at A3 receptors of 0.28 µM. 2-Chloro-9-[2-amino-2,3-dideoxy-β-d-5-(methylcarbamoyl)-arabinofuranosyl]-N6-(3-iodobenzyl)adenine was moderately selective for A1 and A3 vs A2a receptors. A 3′-deoxy analogue of a highly A3-selective adenosine derivative retained selectivity in binding and was a full agonist in the inhibition of adenylyl cyclase mediated via cloned rat A3 receptors expressed in CHO cells. The 3′-OH and 4′-CH2OH groups of adenosine are not required for activation at A3 receptors. A number of 2′,3′-dideoxyadenosines and 9-acyclic-substituted adenines appear to inhibit adenylyl cyclase at the allosteric “P” site.
PMCID: PMC3445626  PMID: 7752196
2.  N6-Substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors 
Biochemical pharmacology  2003;65(10):1675-1684.
The activation of the human A3 adenosine receptor (AR) by a wide range of N6-substituted adenosine derivatives was studied in intact CHO cells stably expressing this receptor. Selectivity of binding at rat and human ARs was also determined. Among N6-alkyl substitutions, small N6-alkyl groups were associated with selectivity for human A3ARs vs. rat A3ARs, and multiple points of branching were associated with decreased hA3AR efficacy. N6-Cycloalkyl-substituted adenosines were full (≤5 carbons) or partial (≥6 carbons) hA3AR agonists. N6-(endo-Norbornyl)adenosine 13 was the most selective for both rat and human A1ARs. Numerous N6-arylmethyl analogues, including substituted benzyl, tended to be more potent in binding to A1 and A3 vs. A2AARs (with variable degrees of partial to full A3AR agonisms). A chloro substituent decreased the efficacy depending on its position on the benzyl ring. The A3AR affinity and efficacy of N6-arylethyl adenosines depended highly on stereochemistry, steric bulk, and ring constraints. Stereoselectivity of binding was demonstrated for N6-(R-1-phenylethyl)adenosine vs. N6-(S-1-phenylethyl)adenosine, as well as for the N6-(1-phenyl-2-pentyl)adenosine, at the rat, but not human A3AR. Interestingly, DPMA, a potent agonist for the A2AAR (Ki = 4 nM), was demonstrated to be a moderately potent antagonist for the human A3AR (Ki = 106 nM). N6-[(1S,2R)-2-Phenyl-1-cyclopropyl]adenosine 48 was 1100-fold more potent in binding to human (Ki = 0.63 nM) than rat A3ARs. Dual acting A1/A3 agonists (N6-3-chlorobenzyl- 29, N6-(S-1-phenylethyl)- 39, and 2-chloro-N6-(R-phenylisopropyl)adenosine 53) might be useful for cardioprotection.
PMCID: PMC3142561  PMID: 12754103
Purines; Nucleosides; GPCR; Cyclic AMP; Receptor binding; Structure–activity relationships
3.  Structural determinants of efficacy at A3 adenosine receptors: modification of the ribose moiety 
Biochemical pharmacology  2004;67(5):893-901.
We have found previously that structural features of adenosine derivatives, particularly at the N6- and 2-positions of adenine, determine the intrinsic efficacy as A3 adenosine receptor (AR) agonists. Here, we have probed this phenomenon with respect to the ribose moiety using a series of ribose-modified adenosine derivatives, examining binding affinity and activation of the human A3 AR expressed in CHO cells. Both 2′- and 3′-hydroxyl groups in the ribose moiety contribute to A3 AR binding and activation, with 2′-OH being more essential. Thus, the 2′-fluoro substitution eliminated both binding and activation, while a 3′-fluoro substitution led to only a partial reduction of potency and efficacy at the A3 AR. A 5′-uronamide group, known to restore full efficacy in other derivatives, failed to fully overcome the diminished efficacy of 3′-fluoro derivatives. The 4′-thio substitution, which generally enhanced A3 AR potency and selectivity, resulted in 5′-CH2OH analogues (10 and 12) which were partial agonists of the A3 AR. Interestingly, the shifting of the N6-(3-iodobenzyl)adenine moiety from the 1′- to 4′-position had a minor influence on A3 AR selectivity, but transformed 15 into a potent antagonist (16) (Ki = 4.3 nM). Compound 16 antagonized human A3 AR agonist-induced inhibition of cyclic AMP with a KB value of 3.0 nM. A novel apio analogue (20) of neplanocin A, was a full A3 AR agonist. The affinities of selected, novel analogues at rat ARs were examined, revealing species differences. In summary, critical structural determinants for human A3 AR activation have been identified, which should prove useful for further understanding the mechanism of receptor activation and development of more potent and selective full agonists, partial agonists and antagonists for A3 ARs.
PMCID: PMC3150582  PMID: 15104242
Nucleosides; A3 adenosine receptor agonist; A3 adenosine receptor antagonist; Adenylyl cyclase; Phospholipase C; Partial agonist
4.  Identification of Potent, Selective P2Y-Purinoceptor Agonists: Structure–Activity Relationships for 2-Thioether Derivatives of Adenosine 5′-Triphosphate† 
Journal of medicinal chemistry  1993;36(24):3937-3946.
Study of P2-purinoceptor subtypes has been difficult due to the lack of potent and selective ligands. With the goal of developing high affinity P2-purinoceptor-selective agonists, we have synthesized a series of analogues of adenine nucleotides modified on the purine ring as chain-extended 2-thioethers or as N6-methyl-substituted compounds. Chemical functionality incorporated in the thioether moiety included cyanoalkyl, nitroaromatic, amino, thiol, cycloalkyl, n-alkyl, and olefinic groups. Apparent affinity of the compounds for P2Y-purinoceptors was established by measurement of P2Y-purinoceptor-promoted phospholipase C activity in turkey erythrocyte membranes and relaxation of carbachol-contracted smooth muscle in three different preparations (guinea pig taenia coil, rabbit aorta, and rabbit mesenteric artery). Activity at P2X-purinoceptors was established by measurement of contraction of rabbit saphenous artery and of the guinea pig vas deferens and urinary bladder. All 11 of the 2-thioethers of ATP stimulated the production of inositol phosphates with K0.5 values of 1.5–770 nM, with an (aminophenyl)ethyl derivative being most potent. Two adenosine diphosphate analogues were equipotent to the corresponding ATP analogues. Adenosine monophosphate analogues were full agonists, although generally 4 orders of magnitude less potent. ATP 2-thioethers displayed pD2 values in the range of 6–8 in smooth muscle assay systems for activity at P2Y-receptors. There was a significant correlation for the 2-thioether compounds between the pK0.5 values for inositol phosphate production and the pD2 values for relaxation mediated via the P2Y-purinoceptors in the guinea pig taenia coli, but not for the vascular P2Y-receptors or for the P2X-receptors. At P2X-receptors, no activity was observed in the rabbit saphenous artery, but variable degrees of activity were observed in the guinea pig vas deferens and bladder depending on distal substituents of the thioether moiety. N6-Methyl-ATP was inactive at P2X-receptors, and approximately equipotent to ATP at taenia coli P2Y-receptors. This suggested that hybrid N6-methyl and 2-thioether ATP derivatives might be potent and selective for certain P2Y-receptors, as was shown for one such derivative, N6-methyl-2-(5-hexenylthio)-ATP.
PMCID: PMC4431635  PMID: 8254622
5.  Structure–Activity Relationships and Molecular Modeling of 3,5-Diacyl-2,4-dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists 
Journal of medicinal chemistry  1998;41(17):3186-3201.
The structure-activity relationships of 6-phenyl-1,4-dihydropyridine derivatives as selective antagonists at human A3 adenosine receptors have been explored (Jiang et al. J. Med. Chem. 1997, 39, 4667-4675). In the present study, related pyridine derivatives have been synthesized and tested for affinity at adenosine receptors in radioligand binding assays. Ki values in the nanomolar range were observed for certain 3,5-diacyl-2,4-dialkyl-6-phenylpyridine derivatives in displacement of [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyladenosine) at recombinant human A3 adenosine receptors. Selectivity for A3 adenosine receptors was determined vs radioligand binding at rat brain A1 and A2A receptors. Structure–activity relationships at various positions of the pyridine ring (the 3- and 5-acyl substituents and the 2- and 4-alkyl substituents) were probed. A 4-phenylethynyl group did not enhance A3 selectivity of pyridine derivatives, as it did for the 4-substituted dihydropyridines. At the 2-and 4-positions ethyl was favored over methyl. Also, unlike the dihydropyridines, a thioester group at the 3-position was favored over an ester for affinity at A3 adenosine receptors, and a 5-position benzyl ester decreased affinity. Small cycloalkyl groups at the 6-position of 4-phenylethynyl-1,4-dihydropyridines were favorable for high affinity at human A3 adenosine receptors, while in the pyridine series a 6-cyclopentyl group decreased affinity. 5-Ethyl 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate, 38, was highly potent at human A3 receptors, with a Ki value of 20 nM. A 4-propyl derivative, 39b, was selective and highly potent at both human and rat A3 receptors, with Ki values of 18.9 and 113 nM, respectively. A 6-(3-chlorophenyl) derivative, 44, displayed a Ki value of 7.94 nM at human A3 receptors and selectivity of 5200-fold. Molecular modeling, based on the steric and electrostatic alignment (SEAL) method, defined common pharmacophore elements for pyridine and dihydropyridine structures, e.g., the two ester groups and the 6-phenyl group. Moreover, a relationship between affinity and hydrophobicity was found for the pyridines.
PMCID: PMC3474377  PMID: 9703464
6.  (N)-Methanocarba 2,N6-Disubstituted Adenine Nucleosides as Highly Potent and Selective A3 Adenosine Receptor Agonists 
Journal of medicinal chemistry  2005;48(6):1745-1758.
A series of ring-constrained (N)-methanocarba-5′-uronamide 2,N6-disubstituted adenine nucleosides have been synthesized via Mitsunobu condensation of the nucleobase precursor with a pseudosugar ring containing a 5′-ester functionality. Following appropriate functionalization of the adenine ring, the ester group was converted to the 5′-N-methylamide. The compounds, mainly 2-chloro substituted derivatives, were tested in both binding and functional assays at human adenosine receptors (ARs), and many were found to be highly potent and selective A3AR agonists. Selected compounds were compared in binding to the rat A3AR to assess their viability for testing in rat disease models. The N6-(3-chlorobenzyl) and N6-(3-bromobenzyl) analogues displayed Ki values at the human A3AR of 0.29 and 0.38 nM, respectively. Other subnanomolar affinities were observed for the following N6 derivatives: 2,5-dichlorobenzyl, 5-iodo-2-methoxybenzyl, trans-2-phenyl-1-cyclopropyl, and 2,2-diphenylethyl. Selectivity for the human A3AR in comparison to the A1AR was (fold): the N6-(2,2-diphenylethyl) analogue 34 (1900), the N6-(2,5-dimethoxybenzyl) analogue 26 (1200), the N6-(2,5-dichlorobenzyl) and N6-(2-phenyl-1-cyclopropyl) analogues 20 and 33 (1000), and the N6-(3-substituted benzyl) analogues 17, 18, 28, and 29 (700–900). Typically, even greater selectivity ratios were obtained in comparison with the A2A and A2BARs. The (N)-methanocarba-5′-uronamide analogues were full agonists at the A3AR, as indicated by the inhibition of forskolin-stimluated adenylate cyclase at a concentration of 10 µM. The N6-(2,2-diphenylethyl) derivative was an A3AR agonist in the (N)-methanocarba-5′-uronamide series, although it was an antagonist in the ribose series. Thus, many of the previously known groups that enhance A3AR affinity in the 9-riboside series, including those that reducing intrinsic efficacy, may be adapted to the (N)-methanocarba nucleoside series of full agonists.
PMCID: PMC3463111  PMID: 15771421
7.  Investigation of the prostacyclin (IP) receptor antagonist RO1138452 on isolated blood vessel and platelet preparations 
British Journal of Pharmacology  2006;149(1):110-120.
Background and purpose:
The current study examined the utility of the recently described prostacyclin (prostanoid IP) receptor antagonist RO1138452 (2-(4-(4-isopropoxybenzyl)-phenylamino) imidazoline) as a tool for classifying prostanoid receptors.
Experimental approach:
pA2 values were determined on isolated smooth muscle and platelet preparations.
Key results:
RO1138452 antagonized relaxation of human pulmonary artery, guinea-pig aorta and rabbit mesenteric artery induced by the selective IP agonist cicaprost. Schild plots had slopes close to unity, generating pA2 values of 8.20, 8.39 and 8.12 respectively. Non-surmountable antagonism was sometimes found with the higher concentrations of RO1138452, attributable to the EP3 contractile action of cicaprost. RO1138452 did not block relaxation of guinea-pig trachea induced by the EP2-selective agonist butaprost. In contrast, there was a modest inhibition of butaprost-induced relaxation of human pulmonary artery by RO1138452, implying activation of both EP2 and IP receptors by butaprost. RO1138452 did not affect relaxation induced by PGE2 (EP4 agonist) and substance P (NK1/endothelium-dependent agonist) in rabbit mesenteric artery. In human and rat platelet-rich plasmas, RO1138452 antagonized cicaprost-induced inhibition of platelet aggregation in a surmountable manner; pA2 values may have been affected by binding of RO1138452 to plasma protein. RO1138452 did not affect the inhibitory actions of PGD2 (DP1 agonist) and NECA (adenosine A2A agonist) in human platelets.
Conclusions and implications:
The data indicate that RO1138452 is a potent and selective IP receptor antagonist. RO1138452 represents an important addition to our armoury of prostanoid receptor antagonists and a potential clinical agent in situations where prostacyclin has a pathophysiological function.
PMCID: PMC1629403  PMID: 16880763
vascular smooth muscle; platelets; prostanoid IP receptors; prostanoid EP receptors; cicaprost; prostacyclin receptor antagonist
8.  Selective Allosteric Enhancement of Agonist Binding and Function at Human A3 Adenosine Receptors by a Series of Imidazoquinoline Derivatives 
Molecular pharmacology  2002;62(1):81-89.
We have identified a series of 1H-imidazo-[4,5-c]quinolines as selective allosteric enhancers of human A3 adenosine receptors. Several of these compounds potentiated both the potency and maximal efficacy of agonist-induced responses and selectively decreased the dissociation of the agonist N6-(4-amino-3-[125I]iodobenzyl)-5′-N-methylcarboxamidoadenosine from human A3 adenosine receptors. There was no effect on the dissociation of the antagonist [3H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2.1-i]purin-5-one (PSB-11) from the A3 receptors, as well as [3H]N6-[(R)-phenylisopropy-l]adenosine from rat brain A1 receptors and [3H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5′-N-ethylcarboxamidoad-enosine from rat striatal A2A receptors, suggesting the selective enhancement of agonist binding at A3 receptors. The analogs were tested as antagonists of competitive binding at human A3 receptors, and Ki values ranging from 120 nM to 101 μM were observed; as for many allosteric modulators of G protein-coupled receptors, an orthosteric effect was also present. The most promising leads from the present set of analogs seem to be the 2-cyclopentyl-1H-imidazo[4,5-c]quinoline derivatives, of which the 4-phenylamino analog DU124183 had the most favorable degree of allosteric modulation versus receptor antagonism. The inhibition of forskolin-stimulated cyclic AMP accumulation in intact cells that express human A3 receptors was employed as a functional index of A3 receptor activation. The enhancer DU124183 caused a marked leftward shift of the concentration-response curve of the A3 receptor agonists in the presence of antagonist and, surprisingly, a potentiation of the maximum agonist efficacy by approximately 30%. Thus, we have identified a novel structural lead for developing allosteric enhancers of A3 adenosine receptors; such enhancers may be useful for treating brain ischemia and other hypoxic conditions.
PMCID: PMC3953617  PMID: 12065758
9.  Reversine Increases the Plasticity of Long-Term Cryopreserved Fibroblasts to Multipotent Progenitor Cells through Activation of Oct4 
Reversine, a purine analog, had been evidenced that it could induce dedifferentiation of differentiated cells into multipotent progenitor cells. Here, we showed that reversine could increase the plasticity of long-term cryopreserved bovine fibroblasts, and reversine-treated cells achieved the ability to differentiate into all three germ layers cells, such as osteoblasts and adipocytes from mesoblast, neurocyte from ectoderm, hepatocytes and smooth muscle cells from endoderm. Moreover, treatment of reversine caused the grow arrest of fibroblasts at G2/M and distinct cell swelling resulting in the formation of polyploid cells. In parallel, reversine treatment induced a multipotency of fibroblasts might be attributed to the activation of histone modifications, especially the degression of DNA methylation. However, molecular and cellular experiments suggested that reversine treatment enhanced selectively the expression of pluripotent marker gene Oct4 and mesenchymal marker genes CD29, CD44 and CD73, but Sox2 and Nanog were not detected. Taken together, these results clearly demonstrate the ability of reversine to dedifferentiation of long-term cryopreserved somatic cells through activation of pluripotent gene Oct4.
PMCID: PMC4679398  PMID: 26722217
Reversine; Fibroblasts; Multipotency; Dedifferentiation; Oct4.
10.  Activity of Novel Adenine Nucleotide Derivatives as Agonists and Antagonists at Recombinant Rat P2X Receptors 
Drug development research  2000;49(4):253-259.
Strategy, Management and Health PolicyVenture Capital Enabling TechnologyPreclinical ResearchPreclinical Development Toxicology, Formulation Drug Delivery, PharmacokineticsClinical Development Phases I-III Regulatory, Quality, ManufacturingPostmarketing Phase IV
The effects of structural modifications of adenine nucleotides previously shown to enhance either agonist (2-thioether groups) or antagonist (additional phosphate moieties at the 3′- or 2′-position) properties at P2Y1 receptors were examined at recombinant rat P2X1, P2X2, P2X3, and P2X4 receptors expressed in Xenopus oocytes. The potency of P2Y1 agonists HT-AMP (2-(hexylthio)adenosine-5′-monophosphate) and PAPET (2-[2-(4-aminophenyl)ethylthio]adenosine-5′-triphosphate) was examined at P2X receptors. Both nucleotides showed a preference for the Group I (α,β-meATP-sensitive, fast-inactivating) P2X sub-units. HT-AMP was 5-fold more potent than ATP at P2X3 receptors and a partial agonist at all except P2X2 receptors, at which it was a full agonist. The efficacy of HT-AMP was as low as 23% at P2X4 receptors. PAPET was a weak partial agonist at rat P2X4 receptors and a nearly full agonist at the other subtypes. At rat P2X3 receptors, PAPET was more potent than any other known agonist (EC50 = 17 ± 3 nM). MRS 2179 (N6-methyl-2′-deoxyadenosine 3′, 5-bisphosphate, a potent P2Y1 receptor antagonist) inhibited ATP-evoked responses at rat P2X1 receptors with an IC50 value of 1.15 ± 0.21 μM. MRS 2179 was a weak antagonist at rat P2X3 receptors, with an IC50 value of 12.9 ± 0.1 μM, and was inactive at rat P2X2 and P2X4 receptors. Thus, MRS 2179 was 11-fold and 130-fold selective for P2Y1 receptors vs. P2X1 and P2X3 receptors, respectively. MRS 2209, the corresponding 3′-deoxy-2′-phosphate isomer, was inactive at rat P2X1 receptors, thus demonstrating its greater selectivity as a P2Y1 receptor antagonist. Various adenine bisphosphates in the family of MRS 2179 containing modifications of either the adenine (P2Y1 antagonists with 2- and 6-substitutions), the phosphate (a 3′,5′-cyclic diphosphate, inactive at P2Y1 receptors), or the ribose moieties (antagonist carbocyclic analogue), were inactive at both rat P2X1 and P2X3 receptors. An anhydrohexitol derivative (MRS 2269) and an acyclic derivative (MRS 2286), proved to be selective antagonists at P2Y1 receptors, since they were inactive as agonist or antagonist at P2X1 and P2X3 receptors.
PMCID: PMC3393598  PMID: 22791931
ion channel; oocytes; purines; ATP derivatives; bisphosphates; deoxyadenosine derivatives
11.  2-Substitution of Adenine Nucleotide Analogues Containing a Bicyclo[3.1.0]hexane Ring System Locked in a Northern Conformation: Enhanced Potency as P2Y1 Receptor Antagonists 
Journal of medicinal chemistry  2003;46(23):4974-4987.
Preference for the northern (N) ring conformation of the ribose moiety of adenine nucleotide 3′,5′-bisphosphate antagonists of P2Y1 receptors was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute (Nandanan et al. J. Med. Chem. 2000, 43, 829–842). We have now combined the ring-constrained (N)-methanocarba modification with other functionalities at the 2-position of the adenine moiety. A new synthetic route to this series of bisphosphate derivatives was introduced, consisting of phosphorylation of the pseudoribose moiety prior to coupling with the adenine base. The activity of the newly synthesized analogues was determined by measuring antagonism of 2-methylthio-ADP-stimulated phospholipase C (PLC) activity in 1321N1 human astrocytoma cells expressing the recombinant human P2Y1 receptor and by using the radiolabeled antagonist [3H]2-chloro-N6-methyl-(N)-methanocarba-2′-deoxyadenosine 3′,5′-bisphosphate 5 in a newly developed binding assay in Sf9 cell membranes. Within the series of 2-halo analogues, the most potent molecule at the hP2Y1 receptor was an (N)-methanocarba N6-methyl-2-iodo analogue 12, which displayed a Ki value in competition for binding of [3H]5 of 0.79 nM and a KB value of 1.74 nM for inhibition of PLC. Thus, 12 is the most potent antagonist selective for the P2Y1 receptor yet reported. The 2-iodo group was substituted with trimethyltin, thus providing a parallel synthetic route for the introduction of an iodo group in this high-affinity antagonist. The (N)-methanocarba-2-methylthio, 2-methylseleno, 2-hexyl, 2-(1-hexenyl), and 2-(1-hexynyl) analogues bound less well, exhibiting micromolar affinity at P2Y1 receptors. An enzymatic method of synthesis of the 3′,5′-bisphosphate from the corresponding 3′-monophosphate, suitable for the preparation of a radiophosphorylated analogue, was explored.
PMCID: PMC3408611  PMID: 14584948
12.  Functionalized Congeners of A3 Adenosine Receptor-Selective Nucleosides Containing a Bicyclo[3.1.0]hexane Ring System† 
Journal of medicinal chemistry  2009;52(23):7580-7592.
(N)-Methanocarba nucleosides containing bicyclo[3.1.0]hexane replacement of the ribose ring previously demonstrated selectivity as A3 adenosine receptor (AR) agonists (5′-uronamides) or antagonists (5′-truncated). Here, these two series were modified in parallel at the adenine C2 position. N6-3-Chlorobenzyl-5′-N-methyluronamides derivatives with functionalized 2-alkynyl chains of varying length terminating in a reactive carboxylate, ester, or amine group were full, potent human A3AR agonists. Flexibility of chain substitution allowed the conjugation with a fluorescent cyanine dye (Cy5) and biotin, resulting in binding Ki values of 17 and 36 nM, respectively. The distal end of the chain was predicted by homology modeling to bind at the A3AR extracellular regions. Corresponding l-nucleosides were nearly inactive in AR binding. In the 5′-truncated nucleoside series, 2-Cl analogues were more potent at A3AR than 2-H and 2-F, functional efficacy in adenylate cyclase inhibition varied, and introduction of a 2-alkynyl chain greatly reduced affinity. SAR parallels between the two series lost stringency at distal positions. The most potent and selective novel compounds were amine congener 15 (Ki = 2.1 nM) and truncated partial agonist 22 (Ki = 4.9 nM).
PMCID: PMC3109436  PMID: 19499950
13.  Activation of multiple sites by adenosine analogues in the rat isolated aorta. 
British Journal of Pharmacology  1996;118(6):1509-1517.
1. The presence of A2 receptors mediating relaxation in the rat isolated aorta has been previously demonstrated. However, agonist dependency of the degree of rightward shift elicited by 8-sulphophenyltheophylline (8-SPT) led to the suggestion that the population of receptors in this tissue is not a homogeneous one. In this study we have re-examined the effects of 8-SPT in the absence and presence of the NO synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester) and investigated antagonism of responses by the potent A2a receptor ligands PD 115,199 (N-[2-dimethylamino)ethyl]-N-methyl-4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3 dipropyl-1H-purin-8-yl)) benzene sulphonamidexanthine), ZM 241385 (4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-yl amino]ethyl)phenol), and CGS 21680 (2-[p-(2-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine). We have also investigated the antagonist effects of BWA1433 (1,3-dipropyl-8-(4-acrylate)phenylxanthine) which has been shown to have affinity at rat A3 receptors. 2. Adenosine, R-PIA (N6-R-phenylisopropyl adenosine), CPA (N6-cyclopentyladenosine) and NECA (5'-N-ethylcarboxamidoadenosine) all elicited relaxant responses in the phenylephrine pre-contracted rat isolated aorta with the following potency order (p[A50] values in parentheses): NECA (7.07 +/- 0.11) > R-PIA (5.65 +/- 0.10) > CPA (5.05 +/- 0.12) > adenosine (4.44 +/- 0.12). 3. 8-SPT (10-100 microM) caused parallel rightward shifts of the E/[A] curves to NECA (pKB = 5.23 +/- 0.16). A smaller rightward shift of E/[A] curves to CPA was observed (pA2 = 4.85 +/- 0.17). However, no significant shifts of E/[A] curves to either adenosine or R-PIA were observed. 4. In the absence of endothelium E/[A] curves to NECA and CPA were right-shifted compared to controls. However, removal of the endothelium did not produce a substantial shift of adenosine E/[A] curves, and E/[A] curves to R-PIA were unaffected by removal of the endothelium. 5. In the presence of L-NAME (100 microM) E/[A] curves to NECA and CPA were right-shifted. However, no further shift of the CPA E/[A] curve was obtained when 8-SPT (50 microM) was administered concomitantly. The locations of curves to R-PIA and adenosine were unaffected by L-NAME (100 microM). 6. In the presence of PD 115,199 (0.1 microM) a parallel rightward shift of NECA E/[A] curves was observed (pA2 = 7.50 +/- 0.19). PD 115,199 (0.1 and 1 microM) gave smaller rightward shifts of E/[A] curves to R-PIA and CPA, but E/[A] curves to adenosine were not significantly shifted in the presence of PD 115,199 (0.1 or 1 microM). 7. The presence of ZM 241385 (3 nM-0.3 microM) caused parallel rightwad shifts of NECA E/[A] curves (pKB = 8.73 +/- 0.11). No significant shifts of E/[A] curves to adenosine, CPA or R-PIA were observed in the presence of 0.1 microM ZM 241385. 8. CGS 21680 (1 microM) elicited a relaxant response equivalent to approximately 40% of the NECA maximum response. In the presence of this concentration of CGS 21680, E/[A] curves to NECA were right-shifted in excess of 2-log units, whereas E/[A] curves to R-PIA were not significantly shifted. 9. BWA1433 (100 microM) caused a small but significant right-shift of the E/[A] curve to R-PIA yielding a pA2 estimate of 4.1 IB-MECA (N6-(3-iodo-benzyl)adenosine-5(1)-N-methyl uronamide) elicited relaxant responses which were resistant to blockade by 8-SPT (p[A]50 = 5.26 +/- 0.13). 10. The results suggest that whereas relaxations to NECA (10 nM-1 microM) are mediated via adenosine A2a receptors, which are located at least in part on the endothelium, R-PIA and CPA may activate A2b receptors on the endothelium and an additional, as yet undefined site, which is likely to be located on the smooth muscle and which is not susceptible to blockade by 8-SPT, PD 115,199 or ZM 241385. This site is unlikely to be an A3 receptor since the very small shift obtained in the presence of BWA1433 (100 microM), and the low potency of IB-MECA is not consistent with the affin
PMCID: PMC1909666  PMID: 8832079
14.  Characterization of the adenosine receptor in porcine coronary arteries. 
British Journal of Pharmacology  1990;100(3):483-486.
1. Relaxant responses of ring preparations from porcine ventricular coronary arteries to adenosine and various stable adenosine analogues were investigated in vitro. 2. The adenosine analogues did not produce contraction but elicited almost complete relaxation of coronary arteries preconstricted with 3 microM prostaglandin F2 alpha (PGF2 alpha), even after removal of the endothelium. 3. The order of potency, was 5'-N-ethylcarboxamide-adenosine (NECA) greater than 2-(2-phenylethylamino)5'-N-ethylcarboxamide-adenosine (2-PEA-NECA) greater than 2-phenylamino-adenosine (CV-1808) greater than N6-[R(-)-1-phenyl-2-propyl]adenosine (R-PIA) greater than N6-[S(+)-1-phenyl-2-propyl]adenosine (S-PIA) greater than N6-cyclopentyl-adenosine (CPA) greater than adenosine greater than ATP offDP which suggested the presence of adenosine A2-receptor subtypes. 4. There was an excellent correlation between the calculated pD2 values on coronary arteries and the pKD values at adenosine A2 binding sites, whereas no correlation was obtained when the pD2 values were compared to the pKD values at adenosine A1-binding sites on membranes from porcine striata. 5. The relaxant effects of adenosine and its analogues were competitively antagonized by 8-(p-sulphophenyl)-theophylline (8-SPT), producing pA2 values similar to the respective pKD value of the antagonist at adenosine A2 binding sites. 6. It is suggested that the porcine coronary artery possesses adenosine A2 receptors which seem to be similar to the adenosine A2 binding site in pig striatum, whereas no evidence was obtained for the presence of adenosine A1 receptors.
PMCID: PMC1917790  PMID: 2390673
15.  Discovery of substituted 3-(phenylamino)benzoic acids as potent and selective inhibitors of type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) 
Aldo-keto reductase 1C3 (AKR1C3) also known as type 5 17β-hydroxysteroid dehydrogenase has been implicated as one of the key enzymes driving the elevated intratumoral androgen levels observed in castrate resistant prostate cancer (CRPC). AKR1C3 inhibition therefore presents a rational approach to managing CRPC. Inhibitors should be selective for AKR1C3 over other AKR1C enzymes involved in androgen metabolism. We have synthesized 2-, 3-, and 4- (phenylamino)benzoic acids and identified 3-(phenylamino)benzoic acids that have nanomolar affinity and exhibit over 200-fold selectivity for AKR1C3 versus other AKR1C isoforms. The AKR1C3 inhibitory potency of the 4′-substituted 3-(phenylamino)benzoic acids shows a linear correlation with both electronic effects of substituents and the pKa of the carboxylic acid and secondary amine groups, which are interdependent These compounds may be useful in treatment and/or prevention of CRPC as well as understanding the role of AKR1C3 in endocrinology
PMCID: PMC3057412  PMID: 21277203
Aldo-keto reductase (AKR); Castrate resistant prostate cancer (CRPC); Non steroidal anti-inflammatory drugs (NSAIDs); N-Phenylanthranilic acids; Androgen biosynthesis
16.  2-Substituted adenosine derivatives: affinity and efficacy at four subtypes of human adenosine receptors 
Biochemical pharmacology  2004;68(10):1985-1993.
The affinity and efficacy at four subtypes (A1, A2A, A2B and A3) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N6-position, several 2-substituents were found to be critical structural determinants for the A3AR activation. The following adenosine 2-ethers were moderately potent partial agonists (Ki, nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A3AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)a-denosine as an A3AR antagonist right-shifted the concentration–response curve for the inhibition by NECA of cyclic AMP accumulation with a KB value of 212 nM, which is similar to its binding affinity (Ki = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A1AR in comparison to the A3AR, but fully efficacious, with binding Ki values over 100 nM. The 2-phenylethyl moiety resulted in higher A3AR affinity (Ki in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (Ki = 3.8 nM) was found to be the most potent and selective (>50-fold) A2A agonist in this series. Mixed A2A/A3AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A2BAR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC50 = 1.4 µM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC50 = 1.8 (M) were found to be relatively potent A2B agonists, although less potent than NECA (EC50 = 140 nM).
PMCID: PMC3408601  PMID: 15476669
Adenosine receptors; Purines; Nucleosides; GPCR; Efficacy; Structure–activity relationships
17.  Synthesis and Opioid Receptor Binding Affinities of 2-Substituted and 3-Aminomorphinans: Ligands for mu, kappa and delta Opioid Receptors 
The phenolic group of the potent μ and κ opioid morphinan agonist/antagonists cyclorphan and butorphan was replaced by phenylamino and benzylamino groups including compounds with p-substituents in the benzene ring. These compounds are highly potent μ and κ ligands, e. g. p-methoxyphenylaminocyclorphan showing a Ki of 0.026 nM at the mu and a Ki of 0.03 nM at the kappa receptor. Phenyl carbamates and phenylureas were synthesized and investigated. Selective o-formylation of butorphan and levorphanol was achieved. This reaction opened the way to a large set of 2-substituted 3-hydroxymorphinans, including 2-hydroxymethyl-, 2-aminomethyl-, and N-substituted 2-aminomethyl-3-hydroxymorphinans. Bivalent ligands bridged in the 2-position were also synthesized and connected with secondary and tertiary aminomethyl groups, amide bonds or hydroxymethylene groups, respectively. Although most of the 2-substituted morphinans showed considerably lower affinities compared to their parent compounds, the bivalent ligand approach led to significantly higher affinities compared to the univalent aminomethylmorphinans.
PMCID: PMC2814335  PMID: 19928862
18.  Purine antagonists in the identification of adenosine-receptors in guinea-pig trachea and the role of purines in non-adrenergic inhibitory neurotransmission 
British Journal of Pharmacology  1980;69(3):359-366.
1 To test the possibility that adenosine receptors exist within the trachea of the guinea-pig, an attempt has been made to identify a compound with adenosine antagonist activity in this tissue.
2 Quinidine, phentolamine, phenoxybenzamine, 2-2′-pyridylisatogen tosylate (PIT) and caffeine were tested for antagonism of spasmolytic responses to adenosine, adenosine 5′-triphosphate (ATP) and adenine on the guinea-pig isolated trachea.
3 Quinidine (10 and 25 μg/ml), phentolamine (10 and 30 μg/ml) and phenoxybenzamine (10 μg/ml) had little or no effect on response to adenosine, ATP and adenine. PIT (21 μg/ml) potentiated responses to adenosine, ATP and adenine by an unexplained mechanism.
4 Caffeine (25 μg/ml) partially relaxed the trachea and inhibited spasmolytic responses to both adenosine and ATP, but not to adenine, isoprenaline, aminophylline or prostaglandin E2 (PGE2).
5 A number of compounds related to caffeine (xanthine, hypoxanthine, theophylline and theobromine) were tested for adenosine antagonist activity. Xanthine (300 μg/ml) and hypoxanthine (300 μg/ml) did not relax the trachea or antagonize spasmolytic responses to adenosine. Both theophylline (10 μg/ml) and theobromine (30 μg/ml) partially relaxed the trachea; theophylline, but not theobromine, antagonized spasmolytic responses to adenosine.
6 pA2 values for caffeine and theophylline as antagonists of adenosine were 4.3 and 4.7 respectively. However, the slopes of the Schild plot regressions were significantly less than 1.0 for both compounds.
7 Four compounds, adenine, AH 8883, M30966 and ICI 63197, which like caffeine and theophylline, have phosphodiesterase inhibitory activity were tested for adenosine antagonist activity in the trachea. Adenine and AH 8883 had no effect and M30966 and ICI 63197 caused significant potentiation.
8 The effects of caffeine and theophylline were also investigated on the non-adrenergic inhibitory response to nerve stimulation (NAIR). Both caffeine (100 μg/ml, n = 4) and theophylline (30 μg/ml, n = 4) enhanced the NAIR (20 Hz) while virtually abolishing matched responses to exogenous adenosine.
9 The results support the existence of adenosine receptors in the guinea-pig trachea.
PMCID: PMC2044281  PMID: 6249433
19.  2-Dialkynyl Derivatives of (N)-Methanocarba Nucleosides: “Clickable” A3 Adenosine Receptor-Selective Agonists 
We modified a series of (N)-methanocarba nucleoside 5 -uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A3 adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A3AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A3AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (Ki 6.5 nM), although some of the click products had Ki values in the range of 200–400 nM. Other potent, selective derivatives (Ki at A3AR in nM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), α-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A3AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A3AR agonists to reporter groups of diverse structure and to carrier moieties.
PMCID: PMC2818678  PMID: 20036562
G protein-coupled receptor; purines; azide; structure activity relationship; radioligand binding
20.  Quantitation of the P2Y1 Receptor with a High Affinity Radiolabeled Antagonist 
Molecular pharmacology  2002;62(5):1249-1257.
2-Chloro-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate (MRS2279) was developed previously as a selective high-affinity, non-nucleotide P2Y1 receptor (P2Y1-R) antagonist (J Med Chem 43:829–842, 2002; Br J Pharmacol 135:2004–2010, 2002). We have taken advantage of the N6-methyl substitution in the adenine base to incorporate [3H]methylamine into the synthesis of [3H]MRS2279 to high (89 Ci/mmol) specific radioactivity and have used this molecule as a radioligand for the P2Y1-R. [3H]MRS2279 bound to membranes from Sf9 insect cells expressing recombinant human P2Y1-R but not to membranes from wild-type Sf9 cells or Sf9 cells expressing high levels of recombinant P2Y2 or P2Y12 receptors. Equilibrium binding of [3H]MRS2279 to P2Y1-R expressed in Sf9 membranes was with a high affinity (Kd = 8 nM) essentially identical to the apparent affinity of MRS2279 determined previously in studies of P2Y1-R–promoted inositol phosphate accumulation or platelet aggregation. A kinetically derived Kd calculated from independent determinations of the rate constants of association (7.15 × 107 M−1 min−1) and dissociation (0.72 min−1) of [3H]MRS2279 also was in good agreement with the Kd derived from equilibrium binding studies. Competition binding assays with [3H]MRS2279 and P2Y1-R expressing Sf9 cell membranes revealed Ki values for the P2Y1-R antagonists MRS2279 (Ki = 13 nM), N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate (MRS2179; Ki = 84 nM), adenosine-3′, 5′-bisphosphate (Ki = 900 nM), and pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (Ki = 6 µM) that were in good agreement with antagonist activities of these molecules previously determined at the P2Y1-R in intact tissues. Moreover, [3H]MRS2279 also bound with high affinity (Kd = 4–8 nM) to Chinese hamster ovary (CHO) or 1321N1 human astrocytoma cells stably expressing the human P2Y1-R, but specific binding was not observed in wild-type CHO or 1321N1 cells. [3H]MRS2279 bound with high affinity (Kd = 16 nM) to a binding site on out-dated human platelets (5–35 receptors/platelet) and rat brain membranes (210 fmol/mg protein) that fit the expected drug selectivity of a P2Y1-R. Taken together, these results indicate that [3H]MRS2279 is the first broadly applicable antagonist radioligand for a P2Y receptor.
PMCID: PMC4367814  PMID: 12391289
21.  Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. 
British Journal of Pharmacology  1996;119(5):1006-1012.
1. Adenine dinucleotides (Ap3A, x = 2-6) are naturally-occurring polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. The selectivity and activity of adenine dinucleotides for neuronally-derived recombinant P2 purinoceptors were studied using P2X2 and P2Y1 subtypes expressed in Xenopus oocytes. 2. For the P2Y1 subtype derived from chick brain, Ap3A was equipotent and as active as ATP (EC50 values: 375 +/- 86 nM and 334 +/- 25 nM, respectively). Ap4A was a weak partial agonist and other dinucleotides were inactive as agonists. None of the inactive dinucleotides were antagonists nor modulated the activity of Ap3A and ATP. 3. For the P2X2 subtype derived from rat PC12 cells, Ap4A was as active as ATP but less potent (EC50 values: 15.2 +/- 1 microM and 3.7 +/- 0.7 microM, respectively). Other adenosine dinucleotides were inactive as either agonists or antagonists. 4. Ap5A (1-100 nM) potentiated ATP-responses at the P2X2 subtype, showing an EC50 of 2.95 +/- 0.7 nM for this modulatory effect. Ap5A (10 nM) shifted the concentration-response curves for ATP to the left by one-half log10 unit but did not alter the Hill co-efficient for ATP (nH = 2.1 +/- 0.1). Ap5A (10 nM) failed to potentiate Ap4A-responses but did enhance the efficacy of the P2 purinoceptor antagonist, suramin, by 12 fold at the P2X2 subtype. 5. In conclusion, the results show that ionotropic (P2X2) and metabotropic (P2Y1) ATP receptors which occur in the CNS are activated selectively by naturally-occurring adenine dinucleotides which are known to be released with nucleotides from storage vesicles. The observed potentiation of P2X2-responses by Ap5A, where co-released with ATP by brain synaptosomes, may have a functional bearing in purinergic signalling in the CNS.
PMCID: PMC1915941  PMID: 8922753
22.  125I-4-(2-[7-Amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol, a High Affinity Antagonist Radioligand Selective for the A2a Adenosine Receptor 
Molecular pharmacology  1995;48(6):970-974.
The A2a adenosine receptor (AR) mediates several important physiological effects of adenosine, including vasodilation and inhibition of platelet aggregation. Until recently, no antagonist radioligand of sufficient selectivity or affinity was available. We describe the synthesis and characterization by radioligand binding of 125I-4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a}-{1,3,5}triazin-5-yl-amino]ethyl)phenol (125I-ZM241385) in membranes from two cell types that express A2a ARs. Membranes from Chinese hamster ovary (CHO) cells expressing a recombinant canine A2a AR bound 125I-ZM241385 with high affinity, and agonist competition experiments with 2-(p-carboxyethyl)-phenylamino-5′-N-carboxamidoadenosine, 5′-N-ethylcarboxamidoadenosine, and (−)-N6-[(R)-phenylisopropyl]adenosine revealed a potency order characteristic of an A2a AR binding site. Membranes from bovine striatum, which contain a native A2a AR, also bound 125I-ZM241385 with similarly high affinity and also displayed a pharmacological profile for displacement of radioligand binding that was consistent with that of an A2a AR. Also, under conditions in which 125I-ZM241385 bound with high affinity to a recombinant rat A2a AR expressed in CHO cells, no specific binding was detectable in membranes from CHO cells expressing functional rat A1, A2b, or A3 ARs, indicating that over the range of concentrations used in radioligand binding assays, 125I-ZM241385 is a highly selective antagonist radioligand for study of A2a ARs within a given species.
PMCID: PMC3479638  PMID: 8848012
23.  Medicinal Chemistry of the A3 Adenosine Receptor: Agonists, Antagonists, and Receptor Engineering 
A3 adenosine receptor (A3AR) ligands have been modified to optimize their interaction with the A3AR. Most of these modifications have been made to the N6 and C2 positions of adenine as well as the ribose moiety, and using a combination of these substitutions leads to the most efficacious, selective, and potent ligands. A3AR agonists such as IB-MECA and Cl-IB-MECA are now advancing into Phase II clinical trials for treatments targeting diseases such as cancer, arthritis, and psoriasis. Also, a wide number of compounds exerting high potency and selectivity in antagonizing the human (h)A3AR have been discovered. These molecules are generally characterized by a notable structural diversity, taking into account that aromatic nitrogen-containing monocyclic (thiazoles and thiadiazoles), bicyclic (isoquinoline, quinozalines, (aza)adenines), tricyclic systems (pyrazoloquinolines, triazoloquinoxalines, pyrazolotriazolopyrimidines, triazolopurines, tricyclic xanthines) and nucleoside derivatives have been identified as potent and selective A3AR antagonists. Probably due to the “enigmatic” physiological role of A3AR, whose activation may produce opposite effects (for example, concerning tissue protection in inflammatory and cancer cells) and may produce effects that are species dependent, only a few molecules have reached preclinical investigation. Indeed, the most advanced A3AR antagonists remain in preclinical testing. Among the antagonists described above, compound OT-7999 is expected to enter clinical trials for the treatment of glaucoma, while several thiazole derivatives are in development as antiallergic, antiasthmatic and/or antiinflammatory drugs.
PMCID: PMC3413728  PMID: 19639281
A3 adenosine receptor; A3 adenosine receptor agonist; A3 adenosine receptor antagonist; Purines; Structure activity relationship; Nucleoside; G protein-coupled receptor; Neoceptor
24.  Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A2A receptor agonists 
British Journal of Pharmacology  2001;132(5):1017-1026.
Novel 2-propynylcyclohexyl-5′-N-ehtylcarboxamidoadenosines, trans-substituted in the 4-position of the cyclohexyl ring, were evaluated in binding assays to the four subtypes of adenosine receptors (ARs). Two esters, 4-{3-[6-amino-9-(5-ethylcarbamoyl-3,4-dihydroxy-tetrahydro-furan-2-yl)-9H-purin-2-yl]-prop-2-ynyl}-cyclohexanecarboxylic acid methyl ester (ATL146e) and acetic acid 4-{3-[6-amino-9-(5-ethylcarbamoyl-3, 4-dihydroxy-tetrahydro-furan -2-yl)-9H-purin-2-yl] -prop-2-ynyl}-cyclohexylmethyl ester (ATL193) were >50×more potent than 2-[4-(2-carboxyethyl)phenethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680) for human A2A AR binding. Human A2A AR affinity for substituted cyclohexyl-propynyladenosine analogues was inversely correlated with the polarity of the cyclohexyl side chain. There was a comparable order of potency for A2A AR agonist stimulation of human neutrophil [cyclic AMP]i, and inhibition of the neutrophil oxidative burst. ATL146e and CGS21680 were ∼equipotent agonists of human A3 ARs.We measured the effects of selective AR antagonists on agonist stimulated neutrophil [cyclic AMP]i and the effect of PKA inhibition on A2A AR agonist activity. ATL193-stimulated neutrophil [cyclic AMP]i was blocked by antagonists with the potency order: ZM241385 (A2A-selective)>MRS1220 (A3-selective)>>N-(4-Cyano-phenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hexahydro-1H-purin-8-yl)-phenoxy]-acetamide (MRS1754; A2B-selective) ≈amp; 8-(N-methylisopropyl)amino-N6-(5′-endohydroxy-endonorbornyl)-9-methyladenine (WRC0571; A1-selective). The type IV phosphodiesterase inhibitor, rolipram (100 nM) potentiated ATL193 inhibition of the oxidative burst, and inhibition by ATL193 was counteracted by the PKA inhibitor H-89.The data indicate that activation of A2AARs inhibits neutrophil oxidative activity by activating [cyclic AMP]i/PKA.
PMCID: PMC1572638  PMID: 11226132
A2A adenosine receptors; neutrophil; oxidative burst; cyclic AMP-dependent protein kinase
Biochemical pharmacology  1988;37(19):3653-3661.
Two classes of 8-substituted analogs of theophylline (1,3-dialkylxanthines), having 8-cycloalkyl, 8-cycloalkenyl or 8-(para-substituted aryl) groups, were shown to be potent and, in some cases, receptor subtype selective antagonists at A1- and A2-adenosine receptors. New analogs based on a functionalized cogener approach and on classical medicinal chemical approaches were prepared. Affinity at A1-adenosine receptors was evaluated by inhibition of binding of [3H)N6-phenylisopropyladenosine to rat brain membranes. Activity at A2A-adenosine receptors was measured by the reversal of 5′-N-ethylcarboxamidoadenosine (NECA)-stimulated production of cyclic AMP in membranes from rat pheochromocytoma PC12 cells. Cycloalkenyl analogs containing rigid olefinic bonds differed greatly in potency from the saturated analogs. The selectivity of phenylsulfonamide analogs depended on distal structural features. Novel xanthine analogs include diamino-, thiol-, aldehyde, and halogen-substituted derivatives, peptide conjugates of 8-[4-[2-aminoethylaminocarbonylmethyloxy]phenyl]1,3-dipropylxanthine (XAC), and a hydroxyethylamide analog of XAC.
PMCID: PMC3469272  PMID: 3178879

Results 1-25 (650866)