PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (713250)

Clipboard (0)
None

Related Articles

1.  Structure–Activity Relationships of 9-Alkyladenine and Ribose-Modified Adenosine Derivatives at Rat A3 Adenosine Receptors† 
Journal of medicinal chemistry  1995;38(10):1720-1735.
9-Alkyladenine derivatives and ribose-modified N6-benzyladenosine derivatives were synthesized in an effort to identify selective ligands for the rat A3 adenosine receptor and leads for the development of antagonists. The derivatives contained structural features previously determined to be important for A3 selectivity in adenosine derivatives, such as an N6-(3-iodobenzyl) moiety, and were further substituted at the 2-position with halo, amino, or thio groups. Affinity was determined in radioligand binding assays at rat brain A3 receptors stably expressed in Chinese hamster ovary (CHO) cells, using [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)adenosine-5′-(N-methyluronamide)), and at rat brain A1 and A2a receptors using [3H]-N6-PIA ((R)-N6-phenylisopropyladenosine) and [3H]CGS 21680 (2-[[[4-(2-carboxyethyl)-phenyl]ethyl]amino]-5′-(N-ethylcarbamoyl)adenosine), respectively. A series of N6-(3-iodobenzyl) 2-amino derivatives indicated that a small 2-alkylamino group, e.g., methylamino, was favored at A3 receptors. N6-(3-Iodobenzyl)-9-methyl-2-(methylthio)adenine was 61-fold more potent than the corresponding 2-methoxy ether at A3 receptors and of comparable affinity at A1 and A2a receptors, resulting in a 3–6-fold selectivity for A3 receptors. A pair of chiral N6-(3-iodobenzyl) 9-(2,3-dihydroxypropyl) derivatives showed stereoselectivity, with the R-enantiomer favored at A3 receptors by 5.7-fold. 2-Chloro-9-(β-d-erythrofuranosyl)-N6-(3-iodobenzyl)adenine had a Ki value at A3 receptors of 0.28 µM. 2-Chloro-9-[2-amino-2,3-dideoxy-β-d-5-(methylcarbamoyl)-arabinofuranosyl]-N6-(3-iodobenzyl)adenine was moderately selective for A1 and A3 vs A2a receptors. A 3′-deoxy analogue of a highly A3-selective adenosine derivative retained selectivity in binding and was a full agonist in the inhibition of adenylyl cyclase mediated via cloned rat A3 receptors expressed in CHO cells. The 3′-OH and 4′-CH2OH groups of adenosine are not required for activation at A3 receptors. A number of 2′,3′-dideoxyadenosines and 9-acyclic-substituted adenines appear to inhibit adenylyl cyclase at the allosteric “P” site.
PMCID: PMC3445626  PMID: 7752196
2.  Xanthine Functionalized Congeners as Potent Ligands at A2-Adenosine Receptors†,‡ 
Journal of medicinal chemistry  1987;30(1):211-214.
Amide derivatives of a carboxylic acid congener of 1,3-dialkylxanthine, having a 4-[(carboxymethyl)oxy]phenyl substituent at the 8-position, have been synthesized in order to identify potent antagonists at A2-adenosine receptors stimulatory to adenylate cyclase in platelets. Distal structural features of amide-linked chains and the size of the 1,3-dialkyl groups have been varied. 1,3-Diethyl groups, more than 1,3-dimethyl or 1,3-dipropyl groups, favor A2 potency, even in the presence of extended chains attached at the 8-(p-substituted-phenyl) position. Polar groups, such as amines, on the chain simultaneously enhance water solubility and A2 potency. Among the most potent A2 ligands are an amine congener, 8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-1,3-diethylxanthine, and its D-lysyl conjugate, which have KB values of 21 and 23 nM, respectively, for the antagonism of N-ethyl-adenosine-5′-uronamide-stimulated adenylate cyclase activity in human platelet membranes. Strategies for the selection and tritiation of new radioligands for use in competitive binding assays at A2-adenosine receptors have been considered.
PMCID: PMC3433718  PMID: 3806597
3.  Structure–Activity Relationships and Molecular Modeling of 3,5-Diacyl-2,4-dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists 
Journal of medicinal chemistry  1998;41(17):3186-3201.
The structure-activity relationships of 6-phenyl-1,4-dihydropyridine derivatives as selective antagonists at human A3 adenosine receptors have been explored (Jiang et al. J. Med. Chem. 1997, 39, 4667-4675). In the present study, related pyridine derivatives have been synthesized and tested for affinity at adenosine receptors in radioligand binding assays. Ki values in the nanomolar range were observed for certain 3,5-diacyl-2,4-dialkyl-6-phenylpyridine derivatives in displacement of [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyladenosine) at recombinant human A3 adenosine receptors. Selectivity for A3 adenosine receptors was determined vs radioligand binding at rat brain A1 and A2A receptors. Structure–activity relationships at various positions of the pyridine ring (the 3- and 5-acyl substituents and the 2- and 4-alkyl substituents) were probed. A 4-phenylethynyl group did not enhance A3 selectivity of pyridine derivatives, as it did for the 4-substituted dihydropyridines. At the 2-and 4-positions ethyl was favored over methyl. Also, unlike the dihydropyridines, a thioester group at the 3-position was favored over an ester for affinity at A3 adenosine receptors, and a 5-position benzyl ester decreased affinity. Small cycloalkyl groups at the 6-position of 4-phenylethynyl-1,4-dihydropyridines were favorable for high affinity at human A3 adenosine receptors, while in the pyridine series a 6-cyclopentyl group decreased affinity. 5-Ethyl 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate, 38, was highly potent at human A3 receptors, with a Ki value of 20 nM. A 4-propyl derivative, 39b, was selective and highly potent at both human and rat A3 receptors, with Ki values of 18.9 and 113 nM, respectively. A 6-(3-chlorophenyl) derivative, 44, displayed a Ki value of 7.94 nM at human A3 receptors and selectivity of 5200-fold. Molecular modeling, based on the steric and electrostatic alignment (SEAL) method, defined common pharmacophore elements for pyridine and dihydropyridine structures, e.g., the two ester groups and the 6-phenyl group. Moreover, a relationship between affinity and hydrophobicity was found for the pyridines.
doi:10.1021/jm980093j
PMCID: PMC3474377  PMID: 9703464
4.  Sulfur-Containing 1,3-Dialkylxanthine Derivatives as Selective Antagonists at A1-Adenosine Receptors 
Journal of medicinal chemistry  1989;32(8):1873-1879.
Sulfur-containing analogues of 8-substituted xanthines were prepared in an effort to increase selectivity or potency as antagonists at adenosine receptors. Either cyclopentyl or various aryl substituents were utilized at the 8-position, because of the association of these groups with high potency at A1-adenosine receptors. Sulfur was incorporated on the purine ring at positions 2 and/or 6, in the 8-position substituent in the form of 2- or 3-thienyl groups, or via thienyl groups separated from an 8-aryl substituent through an amide-containing chain. The feasibility of using the thienyl group as a prosthetic group for selective iodination via its Hg2+ derivative was explored. Receptor selectivity was determined in binding assays using membrane homogenates from rat cortex [[3H]-N6-(phenylisopropyl) adenosine as radioligand] or striatum [[3H]-5′-(N-ethylcarbamoyl)adenosine as radioligand] for A1- and A2-adenosine receptors, respectively. Generally, 2-thio-8-cycloalkylxanthines were at least as A1 selective as the corresponding oxygen analogue. 2-Thio-8-aryl derivatives tended to be more potent at A2 receptors than the oxygen analogue. 8-[4-[(Carboxymethyl)oxy]phenyl]-1,3-dipropyl-2-thioxanthine ethyl ester was >740-fold A1 selective.
PMCID: PMC3479653  PMID: 2754711
5.  A Binding Site Model and Structure-Activity Relationships for the Rat A3 Adenosine Receptor 
Molecular pharmacology  1994;45(6):1101-1111.
SUMMARY
A novel adenosine receptor, the A3 receptor, has recently been cloned. We have systematically investigated the hitherto largely unexplored structure-activity relationships (SARs) for binding at A3 receptors, using 125I-N6-2-(4-aminophenyl)ethyladenosine as a radioligand and membranes from Chinese hamster ovary cells stably transfected with the rat A3-cDNA. As is the case for A1 and A2a, receptors, substitutions at the N6 and 5′ positions of adenosine, the prototypic agonist ligand, may yield fairly potent compounds. However, the highest affinity and A3 selectivity is found for N6,5′-disubstituted compounds, in contrast to A1 and A2a receptors. Thus, N6-benzyladenosine-5′-N-ethylcarboxamide is highly potent (Ki, 6.8 nM) and moderately selective (13- and 14-fold versus A1 and A2a). The N6 region of the A3 receptor also appears to tolerate hydrophilic substitutions, in sharp contrast to the other subtypes. Potencies of N6,5′-disubstituted compounds in inhibition of adenylate cyclase via A3 receptors parallel their high affinity in the binding assay. None of the typical xanthine or nonxanthine (A1/A2) antagonists tested show any appreciable affinity for rat A3 receptors. 1,3-Dialkylxanthines did not antagonize the A3 agonist-induced inhibition of adenylate cyclase. A His residue in helix 6 that is absent in A3 receptors but present in A1/A2 receptors may be causal in this respect. In a molecular model for the rat A3 receptor, this mutation, together with an increased bulkiness of residues surrounding the ligand, make antagonist binding unfavorable when compared with a previously developed A1 receptor model. Second, this A3 receptor model predicted similarities with A1 and A2 receptors in the binding requirements for the ribose moiety and that xanthine-7-ribosides would bind to rat A3 receptors. This hypothesis was supported experimentally by the moderate affinity (Ki 6 μM) of 7-riboside of 1,3-dibutylxanthine, which appears to be a partial agonist at rat A3 receptors. The model presented here, which is consistent with the detailed SAR found in this study, may serve to suggest future chemical modification, site-directed mutagenesis, and SAR studies to further define essential characteristics of the ligand-receptor interaction and to develop even more potent and selective A3 receptor ligands.
PMCID: PMC3479652  PMID: 8022403
6.  2-Substitution of N6-Benzyladenosine-5′-uronamides Enhances Selectivity for A3 Adenosine Receptors 
Journal of medicinal chemistry  1994;37(21):3614-3621.
Adenosine derivatives bearing an N6-(3-iodobenzyl) group, reported to enhance the affinity of adenosine-5′-uronamide analogues as agonists at A3 adenosine receptors (J. Med. Chem. 1994, 37, 636–646), were synthesized starting from methyl β-d-ribofuranoside in 10 steps. Binding affinities at A1 and A2a receptors in rat brain membranes and at cloned rat A3 receptors from stably transfected CHO cells were compared. N6-(3-Iodobenzyl)adenosine was 2-fold selective for A3 vs A1 or A2a receptors; thus it is the first monosubstituted adenosine analogue having any A3 selectivity. The effects of 2-substitution in combination with modifications at the N6- and 5′-positions were explored. 2-Chloro-N6-(3-iodobenzyl)adenosine had a Ki value of 1.4 nM and moderate selectivity for A3 receptors. 2-Chloro-N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide, which displayed a Ki value of 0.33 nM, was selective for A3 vs A1 and A2a receptors by 2500- and 1400-fold, respectively. It was 46,000-fold selective for A3 receptors vs the Na+-independent adenosine transporter, as indicated in displacement of [3H]N6-(4-nitrobenzyl)-thioinosine binding in rat brain membranes. In a functional assay in CHO cells, it inhibited adenylate cyclase via rat A3 receptors with an IC50 of 67 nM. 2-(Methylthio)-N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide and 2-(methylamino)-N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide were less potent, but nearly as selective for A3 receptors. Thus, 2-substitution (both small and sterically bulky) is well-tolerated at A3 receptors, and its A3 affinity-enhancing effects are additive with effects of uronamides at the 5′-position and a 3-iodobenzyl group at the N6-position.
PMCID: PMC3468333  PMID: 7932588
7.  Functionalized Congeners of 1,3-Dialkylxanthines: Preparation of Analogues with High Affinity for Adenosine Receptors 
Journal of medicinal chemistry  1985;28(9):1334-1340.
A series of functionalized congeners of 1,3-dialkylxanthines has been prepared as adenosine receptor antagonists. On the basis of the high potency of 8-(p-hydroxyphenyl)-1,3-dialkylxanthines, the parent compounds were 8-[4-[(carboxymethyl)oxy]phenyl] derivatives of theophylline and 1,3-dipropylxanthine. A series of analogues including esters of ethanol and N-hydroxysuccinimide, amides, a hydrazide, an acylurea, and anilides were prepared. The potency in blocking A1-adenosine receptors (inhibition of binding of N6-[3H]cyclohexyladenosine to brain membranes) and A2-adenosine receptors (inhibition of 2-chloroadenosine-elicited accumulations of cyclic AMP in brain slices) was markedly affected by structural changes distal to the primary pharmacophore (8-phenyl-1,3-dialkylxanthine). Potencies in the dipropyl series at the A1 receptor ranged from K1 values of 1.2 nM for a congener with a terminal amidoethyleneamine moiety to a K1 value of 58 nM for the parent carboxylic acid to a K1 of 96 nM for the bulky ureido congener. Certain congeners were up to 145-fold more active at A1 receptors than at A2 receptors. Various derivatives of the congeners should be useful as receptor probes and for radioidodination, avidin binding, and preparation of affinity columns.
PMCID: PMC3468300  PMID: 2993622
8.  NON-XANTHINE HETEROCYCLES: ACTIVITY AS ANTAGONISTS OF A1- AND A2-ADENOSINE RECEPTORS 
Biochemical pharmacology  1988;37(4):655-664.
A variety of non-xanthine heterocycles were found to be antagonists of binding of [3H]phenylisopropyladenosine to rat brain A1-adenosine receptors and of activation of adenylate cyclase via interaction of N-ethylcarboxarnidoadenosine with A2-adenosine receptors in human platelet and rat pheochromocytoma cell membranes. The pyrazolopyridines tracazolate, cartazolate and etazolate were several fold more potent than theophylline at both A1- and A2-adenosine receptors. The pyrazolopyridines, however, were still many fold less potent than 8-phenyltheophylline and other 8-phenyl-1,3-dialkylxanthines. A structurally related N6-substituted 9-methyladenine was also a potent adenosine antagonist with selectivity for A1 receptors. None of several aryl-substituted heterocycles, including a thiazolopyrimidine, imidazopyridines, benzimidazoles, a pyrazoloquinoline, a mesoionic xanthine analog and a triazolopyridazine exhibited the high potency typical of 8-phenyl-1,3-dialkylxanthines. A furyl-substituted triazoloquinazoline was very potent at both A1 and A2 receptors. A pteridin-2,4-dione, 1,3-dipropyllumazine, was somewhat less potent than theophylline at A1- and A2-adenosine receptors, whereas 1,3-dimethyllumazine was much less potent. A benzopteridin-2,4-dione, alloxazine, was somewhat more potent than theophylline. Other heterocycles with antagonist activity were the dibenzazepine carbamazepine and β-carboline-3-ethyl carboxylate. The phenylimidazoline clonidine had no activity, whereas a related dihydroxyphenylimidazoline was a weak non-competitive adenosine antagonist.
PMCID: PMC3445624  PMID: 2829919
9.  8-SUBSTITUTED XANTHINES AS ANTAGONISTS AT A1- AND A2-ADENOSINE RECEPTORS 
Biochemical pharmacology  1988;37(19):3653-3661.
Two classes of 8-substituted analogs of theophylline (1,3-dialkylxanthines), having 8-cycloalkyl, 8-cycloalkenyl or 8-(para-substituted aryl) groups, were shown to be potent and, in some cases, receptor subtype selective antagonists at A1- and A2-adenosine receptors. New analogs based on a functionalized cogener approach and on classical medicinal chemical approaches were prepared. Affinity at A1-adenosine receptors was evaluated by inhibition of binding of [3H)N6-phenylisopropyladenosine to rat brain membranes. Activity at A2A-adenosine receptors was measured by the reversal of 5′-N-ethylcarboxamidoadenosine (NECA)-stimulated production of cyclic AMP in membranes from rat pheochromocytoma PC12 cells. Cycloalkenyl analogs containing rigid olefinic bonds differed greatly in potency from the saturated analogs. The selectivity of phenylsulfonamide analogs depended on distal structural features. Novel xanthine analogs include diamino-, thiol-, aldehyde, and halogen-substituted derivatives, peptide conjugates of 8-[4-[2-aminoethylaminocarbonylmethyloxy]phenyl]1,3-dipropylxanthine (XAC), and a hydroxyethylamide analog of XAC.
PMCID: PMC3469272  PMID: 3178879
10.  Search for New Purine- and Ribose-Modified Adenosine Analogues as Selective Agonists and Antagonists at Adenosine Receptors† 
Journal of medicinal chemistry  1995;38(7):1174-1188.
The binding affinities at rat A1, A2a, and A3 adenosine receptors of a wide range of derivatives of adenosine have been determined. Sites of modification include the purine moiety (1-, 3-, and 7-deaza; halo, alkyne, and amino substitutions at the 2- and 8-positions; and N6-CH2-ring, -hydrazino, and -hydroxylamino) and the ribose moiety (2′-, 3′-, and 5′-deoxy; 2′- and 3′-O-methyl; 2′-deoxy 2′-fluoro; 6′-thio; 5′-uronamide; carbocyclic; 4′- or 3′-methyl; and inversion of configuration). (−)- and (+)-5′-Noraristeromycin were 48- and 21-fold selective, respectively, for A2a vs A1 receptors. 2-Chloro-6′-thioadenosine displayed a Ki value of 20 nM at A2a receptors (15-fold selective vs A1). 2-Chloroadenin-9-yl(β-L-2′-deoxy-6′-thiolyxofuranoside) displayed a Ki value of 8 μM at A1 receptors and appeared to be an antagonist, on the basis of the absence of a GTP-induced shift in binding vs a radiolabeled antagonist (8-cyclopentyl-1,3-dipropylxanthine). 2-Chloro-2′-deoxyadenosine and 2-chloroadenin-9-yl(β-D-6′-thioarabinoside) were putative partial agonists at A1 receptors, with Ki values of 7.4 and 5.4 μM, respectively. The A2a selective agonist 2-(1-hexynyl)-5′-(N-ethylcarbamoyl)adenosine displayed a Ki value of 26 nM at A3 receptors. The 4′-methyl substitution of adenosine was poorly tolerated, yet when combined with other favorable modifications, potency was restored. Thus, N6-benzyl-4′-methyladenosine-5′-(N-methyluronamide) displayed a Ki value of 604 nM at A3 receptors and was 103- and 88-fold selective vs A1 and A2a receptors, respectively. This compound was a full agonist in the A3-mediated inhibition of adenylate cyclase in transfected CHO cells. The carbocyclic analogue of N6-(3-iodobenzyl)adenosine-5′-(N-methyluronamide) was 2-fold selective for A3 vs A1 receptors and was nearly inactive at A2a receptors.
PMCID: PMC3457658  PMID: 7707320
11.  A Functionalized Congener Approach to Adenosine Receptor Antagonists: Amino Acid Conjugates of 1,3-Dipropylxanthine 
Molecular pharmacology  1986;29(2):126-133.
SUMMARY
1,3-Dipropyl-8-phenylxanthine, a synthetic analog of theophylline and a potent antagonist of adenosine at A1 and A2-adenosine receptors, has been attached covalently through a functionalized chain to amino acids and oligopeptides. The xanthine conjugates have been studied as competitive inhibitors of the specific binding of [3H]N6-cyclohexyladenosine to A1-receptors of rat cerebral cortical membranes and for inhibition of cyclic AMP accumulation elicited by 2-chloroadenosine in guinea pig brain slices through A2-receptors. A free amino group on the extended chain generally resulted in high potency at A1-receptors. The potency (in some cases extending into the subnanomolar range) and selectivity for A1-receptors (up to 200-fold) suggest that this approach can yield a versatile class of “functionalized congeners” of adenosine receptor antagonists in which distal modifications of the attached moiety (“carrier”) can serve also to improve pharmacodynamic and pharmacokinetic parameters. The water solubility in many of the more potent analogs has been enhanced by two orders of magnitude over that of simple, uncharged 8-phenyl xanthine derivatives. Analogs in which the carrier contains d-tyrosine have potential for development of iodinated radioligands for adenosine receptors. The functionalized congener approach is potentially applicable to other drugs and for development of prodrugs.
PMCID: PMC3459325  PMID: 3005825
12.  High Affinity Acylating Antagonists for the A1 Adenosine Receptor: Identification of Binding Subunit 
Molecular pharmacology  1988;34(6):724-728.
SUMMARY
Two isomenc isothiocyanate derivatives of the A1 adenosine receptor antagonist xanthine amine cogener (XAC) have been synthesized and found to be potent affinity labels (irreversibly bound ligands) for A1 adenosine receptors. The interaction of m- and p-isomers of 1,3-dipropyl-8-isothiocyanatophenyl(aminothiocarbonyl(2-aminoethylaminocarbonyl(4-methyloxy(phenyl)))))-xanthine (DITC-XAC) with rat brain A1 receptors is of high affinity (EC50 = 27 and 52 nm, respectively) as determined by radioligand competition curves. These compounds reduced the number of A1 receptors (>90% at 500 nm m-DITC-XAC) in brain membranes, without any change in the affinity of the remaining receptors for [125I]N6-2-(4-aminophenyl)ethyladenosine. Prior reaction of the isothiocyanate moiety with ethylenediamine did not alter the affinity of the XAC derivative for the A1 receptor but eliminated its ability to covalently incorporate into the receptor. Incubation of brain membranes with radiolabeled p- and m-DITC-XAC results in the specific labeling of a Mr 38,000 peptide. This labeling can be blocked with both an A1 adenosine receptor-specific agonist and an antagonist. This specific protein has the same molecular weight as the protein labeled with A1-selective photoaffinity probes. The much higher efficiency of incorporation of these affinity probes compared with photoaffinity probes should make them extremely useful for structural studies of A1 adenosine receptors.
PMCID: PMC3557832  PMID: 3200248
13.  A SELECTIVE AGONIST AFFINITY LABEL FOR A3 ADENOSINE RECEPTORS 
A newly synthesized, chemically reactive adenosine derivative, N6-(3-isothiocyanatobenzyl)adenosine-5'-N-methyluronamide, was found to bind selectively to A3 receptors. Ki values for this isothiocyanate derivative in competition binding at rat brain A1, A2a, and A3 receptors were 145, 272 and 10.0 nM, respectively. A preincubation with this derivative resulted in irreversible inhibition of radioligand binding at rat A3 receptors in membranes of transfected CHO cells or RBL-2H3 mast cells, but not at rat A1 or A2a receptors. The loss of binding sites for 0.1 nM [125I]N6-(4-aminobenzyl)adenosine-5'-N-methyluronamide, a high affinity A3 receptor radioligand, in transfected CHO cell membranes was concentration-dependent with an IC50 of 50 nM. No change was observed in the Kd value of the remaining A3 receptor sites. The inhibition was also insensitive to theophylline (1 mM), consistent with the pharmacology of rat A3 receptors. Structurally similar adenosine analogues lacking the chemically reactive isothiocyanate group failed to irreversibly inhibit A3-binding.
PMCID: PMC3425636  PMID: 8074705
14.  Allosteric Modulation of A3 Adenosine Receptors by a Series of 3-(2-Pyridinyl)isoquinoline Derivatives 
Molecular pharmacology  2001;60(5):1057-1063.
Allosteric modulators of A1 and A2A adenosine receptors have been described; however, for the A3 adenosine receptor, neither an allosteric site nor a compound with allosteric effects has been described. In this study, the allosteric modulation of human A3 adenosine receptors by a series of 3-(2-pyridinyl)isoquinoline derivatives was investigated by examining their effects on the dissociation of the agonist radioligand, [125I]N6-(4-amino-3-iodobenzyl)-5′ -N-methylcarboxamidoadenosine (I-AB-MECA), from the receptor. Several 3-(2-pyridinyl)isoquinoline derivatives, including VUF5455, VUF8502, VUF8504, and VUF8507, slowed the dissociation of the agonist radioligand [125I]I-AB-MECA in a concentration-dependent manner, suggesting an allosteric interaction. These compounds had no effect on the dissociation of the radiolabeled antagonist [3H]PSB-11 from the A3 adenosine receptor, suggesting a selective enhancement of agonist binding. By comparison, compounds of similar structure (VUF8501, VUF8503, VUF8505), the classical adenosine receptor antagonist CGS15943 and the A1 receptor allosteric enhancer PD81723 did not significantly influence the dissociation rate of [125I]I-AB-MECA. The effect of agonist on forskolin-induced cAMP production was significantly enhanced by VUF5455. When the subtype-selectivity of the allosteric enhancement was tested the compounds had no effect on the dissociation of either [3H]N6-[(R)-phenylisopropyl]adenosine from the A1 adenosine receptor or [3H]CGS21680 from the A2A adenosine receptor. Probing of structure-activity relationships suggested that a carbonyl group is essential for allosterism but preferred only for competitive antagonism. The presence of a 7-methyl group decreased the competitive binding affinity without a major loss of the allosteric enhancing activity, suggesting that the structural requirements for allosteric enhancement might be distinct from those for competitive antagonism.
PMCID: PMC3953614  PMID: 11641434
15.  Functionalized Congeners of 1,4-Dihydropyridines as Antagonist Molecular Probes for A3 Adenosine Receptors 
Bioconjugate chemistry  1999;10(4):667-677.
4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chemically reactive adenosine A3 antagonists, for the purpose of synthesizing molecular probes for this receptor subtype. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined in radioligand binding in comparison to binding at rat brain A1 and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and phenyl groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure–activity analysis at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-diphenyl groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain derivative containing terminal amine functionalization at the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride derivative appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 μM.
doi:10.1021/bc9900136
PMCID: PMC3446815  PMID: 10411465
16.  Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists 
Journal of medicinal chemistry  2000;43(11):2196-2203.
Adenosine receptor agonists have cardioprotective, cerebroprotective, and antiinflammatory properties. We report that a carbocyclic modification of the ribose moiety incorporating ring constraints is a general approach for the design of A1 and A3 receptor agonists having favorable pharmacodynamic properties. While simple carbocyclic substitution of adenosine agonists greatly diminishes potency, methanocarba-adenosine analogues have now defined the role of sugar puckering in stabilizing the active adenosine receptor-bound conformation and thereby have allowed identification of a favored isomer. In such analogues a fused cyclopropane moiety constrains the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle. In binding assays at A1, A2A, and A3 receptors, (N)-methanocarba-adenosine was of higher affinity than the (S)-analogue, particularly at the human A3 receptor (N/S affinity ratio of 150). (N)-Methanocarba analogues of various N6-substituted adenosine derivatives, including cyclopentyl and 3-iodobenzyl, in which the parent compounds are potent agonists at either A1 or A3 receptors, respectively, were synthesized. The N6-cyclopentyl derivatives were A1 receptor-selective and maintained high efficacy at recombinant human but not rat brain A1 receptors, as indicated by stimulation of binding of [35S]GTP-γ-S. The (N)-methanocarba-N6-(3-iodobenzyl)adenosine and its 2-chloro derivative had Ki values of 4.1 and 2.2 nM at A3 receptors, respectively, and were highly selective partial agonists. Partial agonism combined with high functional potency at A3 receptors (EC50 < 1 nM) may produce tissue selectivity. In conclusion, as for P2Y1 receptors, at least three adenosine receptors favor the ribose (N)-conformation.
PMCID: PMC3471159  PMID: 10841798
17.  Mutagenesis Reveals Structure–Activity Parallels between Human A2A Adenosine Receptors and Biogenic Amine G Protein-Coupled Receptors 
Journal of medicinal chemistry  1997;40(16):2588-2595.
Structure–affinity relationships for ligand binding at the human A2A adenosine receptor have been probed using site-directed mutagenesis in the transmembrane helical domains (TMs). The mutant receptors were expressed in COS-7 cells and characterized by binding of the radioligands [3H]CGS21680, [3H]NECA, and [3H]XAC. Three residues, at positions essential for ligand binding in other G protein-coupled receptors, were individually mutated. The residue V(3.32) in the A2A receptor that is homologous to the essential aspartate residue of TM3 in the biogenic amine receptors, i.e., V84(3.32), may be substituted with L (present in the A3 receptor) but not with D (in biogenic amine receptors) or A. H250(6.52), homologous to the critical N507 of rat m3 muscarinic acetylcholine receptors, may be substituted with other aromatic residues or with N but not with A (Kim et al. J. Biol. Chem. 1995, 270, 13987–13997). H278(7.43), homologous to the covalent ligand anchor site in rhodopsin, may not be substituted with either A, K, or N. Both V84L(3.32) and H250N(6.52) mutant receptors were highly variable in their effect on ligand competition depending on the structural class of the ligand. Adenosine-5′-uronamide derivatives were more potent at the H250N(6.52) mutant receptor than at wild type receptors. Xanthines tended to be close in potency (H250N(6.52)) or less potent (V84L-(3.32)) than at wild type receptors. The affinity of CGS21680 increased as the pH was lowered to 5.5 in both the wild type and H250N(6.52) mutant receptors. Thus, protonation of H250-(6.52) is not involved in this pH dependence. These data are consistent with a molecular model predicting the proximity of bound agonist ligands to TM3, TM5, TM6, and TM7.
doi:10.1021/jm970084v
PMCID: PMC3449164  PMID: 9258366
18.  Agonist Derived Molecular Probes for A2A Adenosine Receptors 
The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology.
doi:10.1002/jmr.300020406
PMCID: PMC3157953  PMID: 2561548
19.  Electrophilic Derivatives of Purines as Irreversible Inhibitors of A1 Adenosine Receptors 
Journal of medicinal chemistry  1989;32(5):1043-1051.
Functionalized congeners derived from 1,3-dipropyl-8-phenylxanthine and from N6-phenyladenosine were derivatized to contain electrophilic groups (isothiocyanate, N-hydroxysuccinimide ester, maleimide, sulfonyl chloride, or α-haloacyl group) capable of reaction with nucleophiles on biopolymers. The goal was to inhibit chemically the A1 adenosine receptor by using reactive agonist and antagonist ligands. Some of the electrophilic derivatives were synthesized through acylation of amine-functionalized congeners using hetero- or homobifunctional reagents available for protein cross-linking. The affinity for A1 adenosine receptors was evaluated in competitive binding assays by using rat and bovine brain membranes. Several xanthine and adenosine thiourea derivatives prepared from 1,3- and l,4-phenylene diisothiocyanate (DITC) were potent irreversible inhibitors of adenosine receptors. Derivatives of m-DITC, at concentrations between 10 and 500 nM, irreversibly eliminated binding at 90% of the A1-receptor sites. Receptor affinity of both xanthine and adenosine derivatives containing distal phenylthiourea substituents was diminished by electron-donating groups on the ring.
PMCID: PMC3442263  PMID: 2709373
20.  Trifunctional Agents as a Design Strategy for Tailoring Ligand Properties: Irreversible Inhibitors of A1 Adenosine Receptors† 
Bioconjugate chemistry  1991;2(2):77-88.
The 1,3-phenylene diisothiocyanate conjugate of XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]-oxy]phenyl]-l,3-dipropylxanthine, a potent A1 selective adenosine antagonist) has been characterized as an irreversible inhibitor of A1 adenosine receptors. To further extend this work, a series of analogues were prepared containing a third substituent in the phenyl isothiocyanate ring, incorporated to modify the physiochemical or spectroscopic properties of the conjugate. Symmetrical trifunctional cross-linking reagents bearing two isothiocyanate groups were prepared as general intermediates for cross-linking functionalized congeners and receptors. Xanthine isothiocyanate derivatives containing hydrophilic, fluorescent, or reactive substituents, linked via an amide, thiourea, or methylene group in the 5-position, were synthesized and found to be irreversible inhibitors of A1 adenosine receptors. The effects of the 5-substituent on water solubility and on the A1/A2 selectivity ratio derived from binding assays in rat brain membranes were examined. Inhibition of binding of [3H]-N6-(2-phenylisopropyl)-adenosine and [3H]CGS21680 (2-[[2-[4-(2-carboxyethyl)phenyl]ethyl]amino]adenosine-5′-N-ethylcarboxamide) at central A1 and A2 adenosine receptors, respectively, was measured. A conjugate of XAC and 1,3,5-triisothiocyanatobenzene was 894-fold selective for A1 receptors. Reporter groups, such as fluorescent dyes and a spin-label, were included as chain substituents in the irreversibly binding analogues, which were designed for spectroscopic assays, histochemical characterization, and biochemical characterization of the receptor protein.
PMCID: PMC3427756  PMID: 1868116
21.  Activation of Phosphoinositide Breakdown and Elevation of Intracellular Calcium in a Rat RBL-2H3 Mast Cell Line by Adenosine Analogs: Involvement of A3-Adenosine Receptors? 
Drug development research  1996;39(1):36-46.
A variety of adenosine analogs activate phosphoinositide breakdown in a rat RBL-2H3 mast cell line. It is presumed that an A3-adenosine receptor is involved, since the phosphoinositide response is insensitive to xanthines. However, the very potent A3- receptor agonist 2-chloro-N6-iodobenzyl-N-methylcarboxamidoadenosine (2-CI-IBMECA) with an EC50 of 4.1 µM is about twofold less potent (and less efficacious) than N-ethylcarboxamidoadenosine (NECA) with an EC50 of 2.1 µM. The other agents consisting of N6-p-aminophenylethyladenosine (APNEA), N6-iodobenzylMECA (IB-MECA), N6-R- phenylisopropyladenosine (R-PIA), 2-chloroadenosine, N6-benzyladenosine, N6- cyclohexyladenosine (CHA), N6-cyclohexylNECA (CHNECA), 2-(p- carboxyethylphenyl-ethylaminoNECA (CGS 21680), 1,3-dibutylxanthine 7-riboside-5′-N-methylcarboxamide (DBXRM), adenosine, and 8-bromoadenosine are all nearly equipotent with EC50 values of 5.5-13.9 µM. The rank order of potencies of the analogs in causing an elevation of intracellular calcium is quite different. The potent A3 receptor agonists 2-CI-IBMECA and IB-MECA with EC50 values of 0.07 and 0.11 µM, respectively, are about fourfold more potent than N6-cyclohexylNECA and about 15-fold more potent than NECA. The other analogs are comparable or somewhat less potent than NECA, some are less efficacious, and 8-bromoadenosine is inactive. The results suggest that stimulation of phosphoinositide breakdown by adenosine analogs in RBL-2H3 cells as measured by IP1 accumulation is not predictive of IP3-mediated elevations of intracellular calcium. Rank order of potency for the calcium response is consonant with intermediacy of A3-adenosine receptors, while the former, as measured by [3H]IP1-formation, probably reflects contributions from both an A3-mediated response and some other mechanism. Combinations of subthreshold concentrations of 2-CI-IBMECA with either the A1-selective agonist CHA or the A2A-selective agonist CGS 21680 caused a marked stimulation of phosphoinositide breakdown, providing further evidence for dual mechanisms. The selective A3-adenosine receptor antagonist 3,6-dichloro-2′-(isopropyloxy)-4′-methylflavone (MRS 1067) inhibits 2-CI-IBMECA- and NECA-elicited elevation of calcium levels, and had differential effects on phosphoinositide breakdown, blocking [3H]IP3 accumulation and either blocking (NECA) or having no effect (2-CI-IBMECA) on [3H]IP1 accumulation.
PMCID: PMC3475513  PMID: 23087534
adenosine receptors; phosphoinositides; calcium; xanthines
22.  Chemical Modification and Irreversible Inhibition of Striatal A2a Adenosine Receptors 
Molecular pharmacology  1992;42(1):123-133.
SUMMARY
The ligand recognition site of A2a-adenosine receptors in rabbit striatal membranes was probed using non-site-directed labeling reagents and specific affinity labels. Exposure of membranes to diethylpyrocarbonate at a concentration of 2.5 mm, followed by washing, was found to inhibit the binding of [3H]CGS 21680 and [3H]xanthine amine congener to A2a receptors, by 86 and 30%, respectively. Protection from diethylpyrocarbonate inactivation by an adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine, and an antagonist, theophylline, suggested the presence of two histidyl residues on the receptor, one associated with agonist binding and the other with antagonist binding. Binding of [3H]CGS 21680 or [3H]xanthine amine congener was partially restored after incubation with 250 mm hydroxylamine, further supporting histidine as the modification site. Preincubation with disulfide-reactive reagents, dithiothreitol or sodium dithionite, at >5 mm inhibited radioligand binding, indicating the presence of essential disulfide bridges in A2a receptors, whereas the concentration of mercaptoethanol required to inhibit binding was >50 mm. A number of isothiocyanate-bearing affinity labels derived from the A2a-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine (APEC) were synthesized and found to inhibit A2a receptor binding in rabbit and bovine striatal membranes. Binding to rabbit A1 receptors was not inhibited. Preincubation with the affinity label 4-isothiocyanatophenylaminothiocarbonyl-APEC (100 nm) diminished the Bmax for [3H]CGS 21680 binding by 71%, and the Kd was unaffected, suggesting a direct modification of the ligand binding site. Reversal of 4-isothiocyanatophenylaminothiocarbonyl-APEC inhibition of [3H]CGS 21680 binding with hydroxylamine suggested that the site of modification by the isothiocyanate is a cysteine residue. A bromoacetyl derivative of APEC was ineffective as an affinity label at submicromolar concentrations.
PMCID: PMC3429947  PMID: 1635550
23.  RADIOLABELING AND EFFICIENT SYNTHESIS OF TRITIATED 2-CHLORO-N6-(3-IODOBENZYL)ADENOSINE-5'-N-METHYLURON-AMIDE, A POTENT, SELECTIVE A3 ADENOSINE RECEPTOR AGONIST 
SUMMARY
We recently reported that 2-substitution of N6-benzyladenosine-5'-uronamides greatly enhances selectivity of agonists for rat A3 adenosine receptors J. Med. Chem. 1994, 37, 3614–3621). Specifically, 2-Chloro-N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (2-CI-IB-MECA), which displayed a K1 value of 0.33 nM, is the most selective for A3 receptors yet reported with selectivity versus A1 and A2a receptors of 2500- and 1400-fold, respectively. In order to obtain pharmacological tools for the study of A3 adenosine receptors, two routes for radiolabeling of 2-CI-IB-MECA through incorporation of tritium at the 5'-methylamido group were compared. One route formed a 2',3'-protected nucleoside 5'-carboxylic acid (9), which was condensed with methylamine and deprotected. The more efficient synthesis started from D-ribose and provided 2-CI-IB-MECA (12) in six steps with an overall yield of 5.6 %. Tritium was introduced in the penultimate step by heating N6-(3-iodobenzyl)-2-chloro-2',3'-di-O-acetyl-5'-(methoxycarbonyl)adenosine (17) with [3H]methylamine in methanol at 60 °C for 2 h. The specific activity of [3H]2-CI-IB-MECA was 29 Ci/mmol with a radiochemical purity of 99%.
doi:10.1002/(SICI)1099-1344(199606)38:6<547::AID-JLCR870>3.0.CO;2-Y
PMCID: PMC3572746  PMID: 23598401
Adenosine Derivatives; Radioligands; Adenosine Receptors; Tritium; Nucleosides
24.  Synthesis, biological activity and molecular modelling studies of tricyclic alkylimidazo-, pyrimido- and diazepinopurinediones 
Purinergic Signalling  2013;9(3):395-414.
Syntheses and biological activities of imidazo-, pyrimido- and diazepino[2,1-f]purinediones containing N-alkyl substituents (with straight, branched or unsaturated chains) are described. Tricyclic derivatives were synthesized by the cyclization of 8-bromo-substituted 7-(2-bromoethyl)-, 7-(3-chloropropyl)- or 7-(4-bromobutyl)-theophylline with primary amines under various conditions. Compound 22 with an ethenyl substituent was synthesized by dehydrohalogenation of 9-(2-bromoethyl)-1,3-dimethyltetrahydropyrimido[2,1-f]purinedione. The obtained derivatives (5–35) were initially evaluated for their affinity at rat A1 and A2A adenosine receptors (AR), showing moderate affinity for both adenosine receptor subtypes. The best ligands were diazepinopurinedione 28 (Ki = 0.28 μM) with fivefold A2A selectivity and the non-selective A1/A2A AR ligand pyrimidopurinedione 35 (Ki A1 = 0.28 μM and Ki A2A = 0.30 μM). The compounds were also evaluated for their affinity at human A1, A2A, A2B and A3 ARs. All of the obtained compounds were docked to the A2A AR X-ray structure in complex with the xanthine-based, potent adenosine receptor antagonist—XAC. The likely interactions of imidazo-, pyrimido- and diazepino[2,1-f]purinediones with the residues forming the A2A binding pocket were discussed. Furthermore, the new compounds were tested in vivo as anticonvulsants in maximal electroshock, subcutaneous pentylenetetrazole (ScMet) and TOX tests in mice (i.p.). Pyrimidopurinediones showed anticonvulsant activity mainly in the ScMet test. The best derivative was compound 11, showing 100 % protection at a dose of 100 mg/kg without symptoms of neurotoxicity. Compounds 6, 7, 8 and 14 with short substituents showed neurotoxicity and caused death. In rat tests (p.o.), 9 was characterized by a high protection index (>13.3). AR affinity did not apparently correlate with the antiepileptic potency of the compounds.
Electronic supplementary material
The online version of this article (doi:10.1007/s11302-013-9358-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s11302-013-9358-3
PMCID: PMC3757144  PMID: 23543220
Tricyclic xanthine derivatives; Adenosine A1, A2A, A2B and A3 receptor affinity; Anticonvulsant activity; Molecular modelling studies
25.  Adenosine receptor activation ameliorates type 1 diabetes 
Growing evidence indicates that adenosine receptors could be promising therapeutic targets in autoimmune diseases. Here we studied the role of adenosine receptors in controlling the course of type 1 diabetes. Diabetes in CD-1 mice was induced by multiple-low-dose-streptozotocin (MLDS) treatment and in nonobese diabetic (NOD) mice by cyclophosphamide injection. The nonselective adenosine receptor agonist 5′-N-ethylcarboxamidoadenosine (NECA) prevented diabetes development in both MLDS-challenged mice and in cyclophosphamide-treated NOD mice. The effect of NECA was reversed by the selective A2B receptor antagonist N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]acetamide (MRS 1754). The selective A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) and A3 receptor agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) were less efficacious in ameliorating the course of diabetes. NECA inhibited diabetes in A2A receptor KO mice and the selective A2A receptor agonist 2-p-(2-carboxyethyl)phenethyl-amino-5′-N-ethyl-carboxamidoadenosine (CGS21680) had no effect in normal mice, indicating a lack of role of A2A receptors. NECA failed to prevent cytokine-induced β-cell death in vitro, but NECA strongly suppressed expression of the proinflammatory cytokines TNF-α, MIP-1α, IL-12, and IFN-γ in pancreata, endotoxin, or anti-CD3-stimulated splenic cells, and T helper 1 lymphocytes, indicating that the beneficial effect of NECA was due to immunomodulation. These results demonstrate that adenosine receptor ligands are potential candidates for the treatment of type 1 diabetes.
doi:10.1096/fj.07-8213com
PMCID: PMC2225539  PMID: 17405852
immune; islet; inflammation

Results 1-25 (713250)