PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (973390)

Clipboard (0)
None

Related Articles

1.  Enhanced pulsed magneto-motive ultrasound imaging using superparamagnetic nanoclusters 
Nanotechnology  2010;22(4):045502.
Recently, pulsed magneto-motive ultrasound (pMMUS) imaging augmented with ultra-small magnetic nanoparticles has been introduced as a tool capable of imaging events at molecular and cellular levels. The sensitivity of a pMMUS system depends on several parameters, including the size, geometry and magnetic properties of the nanoparticles. Under the same magnetic field, larger magnetic nanostructures experience a stronger magnetic force and produce larger displacement, thus improving the sensitivity and signal-to-noise ratio (SNR) of pMMUS imaging. Unfortunately, large magnetic iron-oxide nanoparticles are typically ferromagnetic and thus are very difficult to stabilize against colloidal aggregation. In the current study we demonstrate improvement of pMMUS image quality by using large size superparamagnetic nanoclusters characterized by strong magnetization per particle. Water-soluble magnetic nanoclusters of two sizes (15 and 55 nm average size) were synthesized from 3 nm iron precursors in the presence of citrate capping ligand. The size distribution of synthesized nanoclusters and individual nanoparticles was characterized using dynamic light scattering (DLS) analysis and transmission electron microscopy (TEM). Tissue mimicking phantoms containing single nanoparticles and two sizes of nanoclusters were imaged using a custom-built pMMUS imaging system. While the magnetic properties of citrate-coated nanoclusters are identical to those of superparamagnetic nanoparticles, the magneto-motive signal detected from nanoclusters is larger, i.e. the same magnetic field produced larger magnetically induced displacement. Therefore, our study demonstrates that clusters of superparamagnetic nanoparticles result in pMMUS images with higher contrast and SNR.
doi:10.1088/0957-4484/22/4/045502
PMCID: PMC3059156  PMID: 21157009
2.  Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes 
Molecular imaging  2011;10(2):102-110.
Nano-sized particles are widely regarded as a tool to study biologic events at the cellular and molecular levels. However, only some imaging modalities can visualize interaction between nanoparticles and living cells. We present a new technique, pulsed magneto-motive ultrasound imaging, which is capable of in vivo imaging of magnetic nanoparticles in real time and at sufficient depth. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce the motion within the magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. Our experiments demonstrated a sufficient contrast between normal and iron-laden cells labeled with ultrasmall magnetic nanoparticles. Therefore, pulsed magneto-motive ultrasound imaging could become an imaging tool capable of detecting magnetic nanoparticles and characterizing the cellular and molecular composition of deep-lying structures.
PMCID: PMC3101631  PMID: 21439255
3.  Magneto-Optical Relaxation Measurements of Functionalized Nanoparticles as a Novel Biosensor 
Sensors (Basel, Switzerland)  2009;9(6):4022-4033.
Measurements of magneto-optical relaxation signals of magnetic nanoparticles functionalized with biomolecules are a novel biosensing tool. Upon transmission of a laser beam through a nanoparticle suspension in a pulsed magnetic field, the properties of the laser beam change. This can be detected by optical methods. Biomolecular binding events leading to aggregation of nanoparticles are ascertainable by calculating the relaxation time and from this, the hydrodynamic diameters of the involved particles from the optical signal. Interaction between insulin-like growth factor 1 (IGF-1) and its antibody was utilized for demonstration of the measurement setup applicability as an immunoassay. Furthermore, a formerly developed kinetic model was utilized in order to determine kinetic parameters of the interaction. Beside utilization of the method as an immunoassay it can be applied for the characterization of diverse magnetic nanoparticles regarding their size and size distribution.
doi:10.3390/s90604022
PMCID: PMC3291896  PMID: 22408511
magnetic nanoparticles; magneto-optical relaxation; immunoassay; IGF-1 assay
4.  Magneto-photo-acoustic imaging 
Biomedical Optics Express  2011;2(2):385-396.
Magneto-photo-acoustic imaging, a technique based on the synergy of magneto-motive ultrasound, photoacoustic and ultrasound imaging, is introduced. Hybrid nanoconstructs, liposomes encapsulating gold nanorods and iron oxide nanoparticles, were used as a dual-contrast agent for magneto-photo-acoustic imaging. Tissue-mimicking phantom and macrophage cells embedded in ex vivo porcine tissue were used to demonstrate that magneto-photo-acoustic imaging is capable of visualizing the location of cells or tissues labeled with dual-contrast nanoparticles with sufficient contrast, excellent contrast resolution and high spatial resolution in the context of the anatomical structure of the surrounding tissues. Therefore, magneto-photo-acoustic imaging is capable of identifying the nanoparticle-labeled pathological regions from the normal tissue, providing a promising platform to noninvasively diagnose and characterize pathologies.
doi:10.1364/BOE.2.000386
PMCID: PMC3038453  PMID: 21339883
(170.5120) Photoacoustic imaging; (110.7170) Ultrasound; (170.3880) Medical and biological imaging; (170.6960) Tomography
5.  Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging 
Nanoscale Research Letters  2009;4(4):287-295.
Labeling of cells with nanoparticles for living detection is of interest to various biomedical applications. In this study, novel fluorescent/magnetic nanoparticles were prepared and used in high-efficient cellular imaging. The nanoparticles coated with the modified chitosan possessed a magnetic oxide core and a covalently attached fluorescent dye. We evaluated the feasibility and efficiency in labeling cancer cells (SMMC-7721) with the nanoparticles. The nanoparticles exhibited a high affinity to cells, which was demonstrated by flow cytometry and magnetic resonance imaging. The results showed that cell-labeling efficiency of the nanoparticles was dependent on the incubation time and nanoparticles’ concentration. The minimum detected number of labeled cells was around 104 by using a clinical 1.5-T MRI imager. Fluorescence and transmission electron microscopy instruments were used to monitor the localization patterns of the magnetic nanoparticles in cells. These new magneto-fluorescent nanoagents have demonstrated the potential for future medical use.
doi:10.1007/s11671-008-9239-9
PMCID: PMC2893437  PMID: 20596545
Magnetic nanoparticle; Fluorescence; Chitosan; Magnetic resonance imaging
6.  Fluorescence Modified Chitosan-Coated Magnetic Nanoparticles for High-Efficient Cellular Imaging 
Nanoscale Research Letters  2009;4(4):287-295.
Labeling of cells with nanoparticles for living detection is of interest to various biomedical applications. In this study, novel fluorescent/magnetic nanoparticles were prepared and used in high-efficient cellular imaging. The nanoparticles coated with the modified chitosan possessed a magnetic oxide core and a covalently attached fluorescent dye. We evaluated the feasibility and efficiency in labeling cancer cells (SMMC-7721) with the nanoparticles. The nanoparticles exhibited a high affinity to cells, which was demonstrated by flow cytometry and magnetic resonance imaging. The results showed that cell-labeling efficiency of the nanoparticles was dependent on the incubation time and nanoparticles’ concentration. The minimum detected number of labeled cells was around 104by using a clinical 1.5-T MRI imager. Fluorescence and transmission electron microscopy instruments were used to monitor the localization patterns of the magnetic nanoparticles in cells. These new magneto-fluorescent nanoagents have demonstrated the potential for future medical use.
doi:10.1007/s11671-008-9239-9
PMCID: PMC2893437  PMID: 20596545
Magnetic nanoparticle; Fluorescence; Chitosan; Magnetic resonance imaging
7.  Gold-Based Magneto/Optical Nanostructures: Challenges for In Vivo Applications in Cancer Diagnostics and Therapy 
Materials research bulletin  2009;34(6):415-421.
Nanoparticles with gold shell and iron core have unique optical and magnetic properties which can be utilized for simultaneous detection and treatment strategies. Several nanoparticles have been synthesized and shown to mediate a variety of potential applications in biomedicine, including cancer molecular optical and magnetic resonance imaging, controlled drug delivery, and photothermal ablation therapy. However, to be effective, these nanoparticles must be delivered efficiently into their targets. In this review, we will provide an updated summary of the gold-shelled magnetic nanoparticles that have been synthesized, methods for characterization, and their potential for cancer diagnosis and treatment. We will also discuss the biological barriers that need to be overcome for the effective delivery of these nanoparticles. The desired nanoparticle characteristics needed to evade these biological barriers were also explained. Hopefully, this review will help researchers in designing nanoparticles by carefully choosing the optimum size, shape, surface charge, and surface coating.
PMCID: PMC2891272  PMID: 20582234
8.  Nanoparticles as biochemical sensors 
There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body.
doi:10.2147/NSA.S8199
PMCID: PMC3781691  PMID: 24198472
nanoparticles; quantum dots; nanomedicine; biochemical sensors; antibodies; in vivo; in vivo
9.  Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques 
We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed.
doi:10.1155/2007/29817
PMCID: PMC2266791  PMID: 18354723
10.  Labeling TiO2 Nanoparticles with Dyes for Optical Fluorescence Microscopy and Determination of TiO2-DNA Nanoconjugate Stability 
Visualization of nanoparticles without intrinsic optical fluorescence properties is a significant problem when performing intracellular studies. Such is the case with titanium dioxide (TiO2) nanoparticles. These nanoparticles, when electronically linked to single stranded DNA oligonucleotides, have been proposed to be used both as gene knockout devices and as possible tumor imaging agents. By interacting with complementary target sequences in living cells, these photo-inducible TiO2-DNA nanoconjugates have the potential to cleave intracellular genomic DNA in a sequence specific and inducible manner. The nanoconjugates also become detectable by magnetic resonance imaging (MRI) with the addition of gadolinium Gd(III) contrast agents. Herein we describe two approaches for labeling TiO2 nanoparticles and TiO2-DNA nanoconjugates with optically fluorescent agents. This permits, for the first time, direct quantification of fluorescently labeled TiO2 nanoparticle uptake in a large population of living cells (>104 cells). X-Ray Fluorescence Microscopy (XFM) was combined with fluorescent microscopy to determine the relative intracellular stability of the nanoconjugates. It was also used to quantify intracellular nanoparticles. Imaging the DNA component of the TiO2-DNA nanoconjugate by fluorescent confocal microscopy within the same cell showed an overlap with the titanium signal as mapped by XFM. This strongly implies the intracellular integrity of the TiO2-DNA nanoconjugates in malignant cells.
doi:10.1002/smll.200801458
PMCID: PMC2787618  PMID: 19242946
TiO2-DNA Nanoconjugate; Nanoparticle; X-Ray Fluorescence Microscopy; Titanium Dioxide
11.  Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge 
Time-resolved quantitative colocalization analysis is a method based on confocal fluorescence microscopy allowing for a sophisticated characterization of nanomaterials with respect to their intracellular trafficking. This technique was applied to relate the internalization patterns of nanoparticles i.e. superparamagnetic iron oxide nanoparticles with distinct physicochemical characteristics with their uptake mechanism, rate and intracellular fate.
The physicochemical characterization of the nanoparticles showed particles of approximately the same size and shape as well as similar magnetic properties, only differing in charge due to different surface coatings. Incubation of the cells with both nanoparticles resulted in strong differences in the internalization rate and in the intracellular localization depending on the charge. Quantitative and qualitative analysis of nanoparticles-organelle colocalization experiments revealed that positively charged particles were found to enter the cells faster using different endocytotic pathways than their negative counterparts. Nevertheless, both nanoparticles species were finally enriched inside lysosomal structures and their efficiency in agarose phantom relaxometry experiments was very similar.
This quantitative analysis demonstrates that charge is a key factor influencing the nanoparticle-cell interactions, specially their intracellular accumulation. Despite differences in their physicochemical properties and intracellular distribution, the efficiencies of both nanoparticles as MRI agents were not significantly different.
doi:10.1186/1477-3155-10-28
PMCID: PMC3431280  PMID: 22781560
Superparamagnetic iron oxide nanoparticles (SPIONs); Intracellular distribution; Charge; Coating; Size; Quantitative correlation analysis; Colocalization
12.  Stability of antibody-conjugated gold nanoparticles in the endo-lysosomal nanoenvironment: Implications for non-invasive radiofrequency-based cancer therapy 
The use of non-invasive radiofrequency (RF) electric fields as an energy source for thermal activation of nanoparticles within cancer cells could be a valuable addition to the emerging field of nano-mediated cancer therapies. Based on investigations of cell death through hyperthermia, and offering the ability for total body penetration by RF fields, this technique is thought to compliment and possibly out-perform existing nano-heat-treatments that utilize alternative heat production via optical or magnetic stimuli. However, it remains a challenge to understand fully the complex RF-nanoparticle-intracellular interactions before full system optimization can be engineered. Herein we have shown that liver cancer cells can selectively internalize antibody-conjugated gold nanoparticles (AuNPs) through receptor-mediated endocytosis, with the nanoparticles predominantly accumulating and aggregating within cytoplasmic endo-lysosomes. After exposure to an external RF field, non-aggregated AuNPs absorbed and dissipated energy as heat causing thermal damage to the targeted cancer cells. We also observed that RF absorption and heat dissipation is dependent on solubility of AuNPs in the colloid, which is pH dependent. Furthermore, by modulating endo-lysosomal pH it is possible to prevent intracellular AuNP aggregation and enhance thermal cytotoxicity in hepatocellular cancer cells.
doi:10.1016/j.nano.2012.02.001
PMCID: PMC3392470  PMID: 22349096
pH; radiofrequency; gold nanoparticles; lysosomotropics; hyperthermia; cancer
13.  Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering 
In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation.
doi:10.1098/rsif.2012.0833
PMCID: PMC3565733  PMID: 23303218
nanocomposite; scaffold; poly(ε-caprolactone); magnetic hydroxyapatite; bone tissue regeneration
14.  Effect of large mechanical stress on the magnetic properties of embedded Fe nanoparticles 
Summary
Magnetic nanoparticles are promising candidates for next generation high density magnetic data storage devices. Data storage requires precise control of the magnetic properties of materials, in which the magnetic anisotropy plays a dominant role. Since the total magneto-crystalline anisotropy energy scales with the particle volume, the storage density in media composed of individual nanoparticles is limited by the onset of superparamagnetism. One solution to overcome this limitation is the use of materials with extremely large magneto-crystalline anisotropy. In this article, we follow an alternative approach by using magneto-elastic interactions to tailor the total effective magnetic anisotropy of the nanoparticles. By applying large biaxial stress to nanoparticles embedded in a non-magnetic film, it is demonstrated that a significant modification of the magnetic properties can be achieved. The stress is applied to the nanoparticles through expansion of the substrate during hydrogen loading. Experimental evidence for stress induced magnetic effects is presented based on temperature-dependent magnetization curves of superparamagnetic Fe particles. The results show the potential of the approach for adjusting the magnetic properties of nanoparticles, which is essential for application in future data storage media.
doi:10.3762/bjnano.2.31
PMCID: PMC3148048  PMID: 21977439
hydrogen in metals; magnetic anisotropy; magnetic data storage; magneto-elastic interactions; nanoparticles; superparamagnetism; thin films
15.  Comparative review of interferometric detection of plasmonic nanoparticles 
Biomedical Optics Express  2013;4(10):2166-2178.
Noble metal nanoparticles exhibit enhanced scattering and absorption at specific wavelengths due to a localized surface plamson resonance. This unique property can be exploited to enable the use of plasmonic nanoparticles as contrast agents in optical imaging. A range of optical techniques have been developed to detect nanoparticles in order to implement imaging schemes. Here we review several different approaches for using optical interferometry to detect the presence and concentration of nanoparticles. The strengths and weaknesses of the various approaches are discussed and quantitative comparisons of the achievable signal to noise ratios are presented. The benefits of each approach are outlined as they relate to specific application goals.
doi:10.1364/BOE.4.002166
PMCID: PMC3799674  PMID: 24156072
(160.4236) Nanomaterials; (120.3180) Interferometry; (170.1650) Coherence imaging
16.  A biomagnetic system for in vivo cancer imaging 
Physics in medicine and biology  2005;50(6):1273-1293.
An array of highly sensitive biomagnetic sensors of the superconducting quantum interference detector (SQUID) type can identify disease in vivo by detecting and imaging microscopic amounts of nanoparticles. We describe in detail procedures and parameters necessary for implementation of in vivo detection through the use of antibody-labelled magnetic nanoparticles as well as methods of determining magnetic nanoparticle properties. We discuss the weak field magnetic sensor SQUID system, the method of generating the magnetic polarization pulse to align the magnetic moments of the nanoparticles, and the measurement techniques to measure their magnetic remanence fields following this pulsed field. We compare these results to theoretical calculations and predict optimal properties of nanoparticles for in vivo detection.
doi:10.1088/0031-9155/50/6/016
PMCID: PMC2041897  PMID: 15798322
17.  Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer 
Accounts of chemical research  2011;44(10):936-946.
CONSPECTUS
Recent advances in theranostics have expanded our ability to design and construct multifunctional nanoparticles that will ultimately allow us to image and treat diseases in a single clinical procedure. Theranostic nanoparticles, combining targeting, therapeutic and diagnostic functions within a single nanoscale complex, have emerged as a result of this confluence of nanoscience and biomedicine. The theranostic capabilities of gold nanoshells -spherical, silica core, gold shell nanoparticles- have attracted tremendous attention over the past decade as nanoshells have emerged as a promising tool for cancer therapy and bioimaging enhancement. This account examines the design and synthesis of nanoshell-based theranostic agents, their plasmon-derived optical properties and their corresponding applications. Nanoshells illuminated with resonant light are either strong optical absorbers or scatterers, properties which give rise to their unique capabilities. In this account, we discuss the underlying physical principles contributing to the photothermal response of nanoshells. We elucidate the photophysics of nanoshell-induced fluorescence enhancement of weak near-infrared fluorophores. We then describe the application of nanoshells as a contrast agent for optical coherence tomography of breast carcinoma cells in vivo. We also examine the recent progress of nanoshells as a multimodal theranostic probe for near-infrared fluorescence and magnetic resonance imaging (MRI) combined with photothermal ablation of cancer cells. The design and preparation of nanoshell complexes is discussed, and their ability to enhance the photoluminescence of fluorophores while incorporating MR contrast is described. We show the theranostic potential of the multimodal nanoshells in vivo for imaging subcutaneous breast cancer tumors in animal models and their biodistribution in various tissues.
We then discuss the potential of nanoshells as light-triggered gene therapy vectors. The plasmonic properties of nanoshells make them highly effective as light controlled delivery vectors, adding temporal control to the spatial control characteristic of nanoparticle-based gene therapy approaches. We describe the fabrication of DNA-conjugated nanoshell complexes and compare the efficiency of light-induced and thermally-induced DNA release of DNA. We examine light-triggered release of DAPI (4',6-diamidino-2-phenylindole) molecules, which bind reversibly to double-stranded DNA, to visualize intracellular light-induced release. Finally, we look at future prospects of nanoshell-based theranostics, the potential impact and near-term challenges of theranostic nanomedicine in the next decade.
doi:10.1021/ar200023x
PMCID: PMC3888233  PMID: 21612199
18.  Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling 
Nano letters  2009;9(10):3612-3618.
We used molecular-specific gold nanoparticles to monitor epidermal growth factor receptors (EGFR) in live A431 cells over time. Dark-field hyperspectral imaging, electron microscopy, and electrodynamic modeling were used to correlate optical properties of EGFR-bound plasmonic nanoparticles with receptor regulation state. We showed that receptor trafficking resulted in a progressive red-shift of greater than 100nm in the nanoparticle plasmon resonance wavelength over a time period of 60 minutes. Furthermore, we demonstrated that changes in peak scattering wavelengths of gold nanoparticles from 546±15 nm to 574±20 nm and, to 597±44 nm are associated with EGFR trafficking from the cell membrane, to early endosomes and to late endosomes/multi-vesicular bodies, respectively. Finally, we used the changes in scattering spectra of EGFR-bound nanoparticles and a straightforward statistical analysis of RGB-channel color images of labeled cells to create near real-time maps of EGFR regulatory states in living cells.
doi:10.1021/nl9018275
PMCID: PMC2851229  PMID: 19645464
plasmonic nanoparticles; molecular imaging; functional imaging; growth factor receptors; molecular trafficking
19.  Plasmon-mediated magneto-optical transparency 
Nature Communications  2013;4:2128.
Magnetic field control of light is among the most intriguing methods for modulation of light intensity and polarization on sub-nanosecond timescales. The implementation in nanostructured hybrid materials provides a remarkable increase of magneto-optical effects. However, so far only the enhancement of already known effects has been demonstrated in such materials. Here we postulate a novel magneto-optical phenomenon that originates solely from suitably designed nanostructured metal-dielectric material, the so-called magneto-plasmonic crystal. In this material, an incident light excites coupled plasmonic oscillations and a waveguide mode. An in-plane magnetic field allows excitation of an orthogonally polarized waveguide mode that modifies optical spectrum of the magneto-plasmonic crystal and increases its transparency. The experimentally achieved light intensity modulation reaches 24%. As the effect can potentially exceed 100%, it may have great importance for applied nanophotonics. Further, the effect allows manipulating and exciting waveguide modes by a magnetic field and light of proper polarization.
Magneto-optical effects, where magnetic fields affect light propagating through a material, are of interest for photonic devices such as switches. The magneto-optical effect discovered here in metal-dielectric nanostructures shows a strong light modulation that is suitable for nanophotonic applications.
doi:10.1038/ncomms3128
PMCID: PMC3717503  PMID: 23839481
20.  Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications 
Nanomedicine (London, England)  2009;4(7):813-845.
This article is focused on the optical generation and detection of photothermal vapor bubbles around plasmonic nanoparticles. We report physical properties of such plasmonic nanobubbles and their biomedical applications as cellular probes. Our experimental studies of gold nanoparticle-generated photothermal bubbles demonstrated the selectivity of photothermal bubble generation, amplification of optical scattering and thermal insulation effect, all realized at the nanoscale. The generation and imaging of photothermal bubbles in living cells (leukemia and carcinoma culture and primary cancerous cells), and tissues (atherosclerotic plaque and solid tumor in animal) demonstrated a noninvasive highly sensitive imaging of target cells by small photothermal bubbles and a selective mechanical, nonthermal damage to the individual target cells by bigger photothermal bubbles due to a rapid disruption of cellular membranes. The analysis of the plasmonic nanobubbles suggests them as theranostic probes, which can be tuned and optically guided at cell level from diagnosis to delivery and therapy during one fast process.
doi:10.2217/nnm.09.59
PMCID: PMC2826979  PMID: 19839816
cell; imaging; laser; plasmonic nanoparticle; photothermal; theranostics; vapor bubble
21.  Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification 
BMC Plant Biology  2009;9:45.
Background
In recent years, the application of nanotechnology in several fields of bioscience and biomedicine has been studied. The use of nanoparticles for the targeted delivery of substances has been given special attention and is of particular interest in the treatment of plant diseases. In this work both the penetration and the movement of iron-carbon nanoparticles in plant cells have been analyzed in living plants of Cucurbita pepo.
Results
The nanoparticles were applied in planta using two different application methods, injection and spraying, and magnets were used to retain the particles in movement in specific areas of the plant. The main experimental approach, using correlative light and electron microscopy provided evidence of intracellular localization of nanoparticles and their displacement from the application point. Long range movement of the particles through the plant body was also detected, particles having been found near the magnets used to immobilize and concentrate them. Furthermore, cell response to the nanoparticle presence was detected.
Conclusion
Nanoparticles were capable of penetrating living plant tissues and migrating to different regions of the plant, although movements over short distances seemed to be favoured. These findings show that the use of carbon coated magnetic particles for directed delivery of substances into plant cells is a feasible application.
doi:10.1186/1471-2229-9-45
PMCID: PMC2680855  PMID: 19389253
22.  Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles** 
This paper reviews the recent research progress in syntheses and applications of dumbbell-like nanoparticles. It first describes the general synthesis of dumbbell-like nanoparticles containing noble metal and magnetic NPs/or quantum dots. It then outlines the interesting optical and magnetic properties found in these dumbbell nanoparticles. The review further highlights several exciting application potentials of these nanoparticles in catalysis and biomedicine.
doi:10.1002/adma.200900320
PMCID: PMC2792936  PMID: 20011128
Dumbbell nanoparticles; multifunctional nanoparticles; nanoparticle catalyst; nanomedicine
23.  Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials† 
Calixarenes are excellent surfactants for enhancing the dispersion and self-assembly of metal nanoparticles into well-defined structures, particularly those with unit length scales in the 10–100 nm size range. Particles within these ensembles are strongly coupled, giving rise to unique collective optical or magnetic properties. The self-assembled nanostructures described in this feature article include 2D arrays of colloidal Au nanoparticles with size-dependent plasmonic responses, and sub-100 nm Co nanoparticle rings with chiral magnetic states. These nanoparticle assemblies may be further developed for applications in chemical sensing based on surface-enhanced Raman scattering (SERS) and as binary elements for nonvolatile memory, respectively.
doi:10.1039/b515806k
PMCID: PMC1941661  PMID: 16582988
24.  Dual-Modal Nanoprobes for Imaging of Mesenchymal Stem Cell Transplant by MRI and Fluorescence Imaging 
Korean Journal of Radiology  2009;10(6):613-622.
Objective
To determine the feasibility of labeling human mesenchymal stem cells (hMSCs) with bifunctional nanoparticles and assessing their potential as imaging probes in the monitoring of hMSC transplantation.
Materials and Methods
The T1 and T2 relaxivities of the nanoparticles (MNP@SiO2[RITC]-PEG) were measured at 1.5T and 3T magnetic resonance scanner. Using hMSCs and the nanoparticles, labeling efficiency, toxicity, and proliferation were assessed. Confocal laser scanning microscopy and transmission electron microscopy were used to specify the intracellular localization of the endocytosed iron nanoparticles. We also observed in vitro and in vivo visualization of the labeled hMSCs with a 3T MR scanner and optical imaging.
Results
MNP@SiO2(RITC)-PEG showed both superparamagnetic and fluorescent properties. The r1 and r2 relaxivity values of the MNP@SiO2(RITC)-PEG were 0.33 and 398 mM-1 s-1 at 1.5T, respectively, and 0.29 and 453 mM-1 s-1 at 3T, respectively. The effective internalization of MNP@SiO2(RITC)-PEG into hMSCs was observed by confocal laser scanning fluorescence microscopy. The transmission electron microscopy images showed that MNP@SiO2(RITC)-PEG was internalized into the cells and mainly resided in the cytoplasm. The viability and proliferation of MNP@SiO2(RITC)-PEG-labeled hMSCs were not significantly different from the control cells. MNP@SiO2(RITC)-PEG-labeled hMSCs were observed in vitro and in vivo with optical and MR imaging.
Conclusion
MNP@SiO2(RITC)-PEG can be a useful contrast agent for stem cell imaging, which is suitable for a bimodal detection by MRI and optical imaging.
doi:10.3348/kjr.2009.10.6.613
PMCID: PMC2770830  PMID: 19885318
Stem cells; Nanoparticles; Magnetic resonance (MR); Optical imaging, contrast agent
25.  Synthesis of magnetic nanofibers using femtosecond laser material processing in air 
Nanoscale Research Letters  2011;6(1):375.
In this study, we report formation of weblike fibrous nanostructure and nanoparticles of magnetic neodymium-iron-boron (NdFeB) via femtosecond laser radiation at MHz pulse repetition frequency in air at atmospheric pressure. Scanning electron microscopy (SEM) analysis revealed that the nanostructure is formed due to aggregation of polycrystalline nanoparticles of the respective constituent materials. The nanofibers diameter varies between 30 and 70 nm and they are mixed with nanoparticles. The effect of pulse to pulse separation rate on the size of the magnetic fibrous structure and the magnetic strength was reported. X-ray diffraction (XRD) analysis revealed metallic and oxide phases in the nanostructure. The growth of magnetic nanostructure is highly recommended for the applications of magnetic devices like biosensors and the results suggest that the pulsed-laser method is a promising technique for growing nanocrystalline magnetic nanofibers and nanoparticles for biomedical applications.
doi:10.1186/1556-276X-6-375
PMCID: PMC3211468  PMID: 21711890

Results 1-25 (973390)