Search tips
Search criteria

Results 1-25 (939946)

Clipboard (0)

Related Articles

1.  Actin Stabilization by Jasplakinolide Affects the Function of Bone Marrow-Derived Late Endothelial Progenitor Cells 
PLoS ONE  2012;7(11):e50899.
Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.
Methodology/Principal Finding
Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.
A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.
PMCID: PMC3511387  PMID: 23226422
2.  Identification of mouse colony-forming endothelial progenitor cells for postnatal neovascularization: a novel insight highlighted by new mouse colony-forming assay 
Endothelial progenitor cells (EPCs) play a critical role in restoration of ischemic diseases. However, the actual status of EPC development and the mechanisms of EPC dysfunctions in patients with various ischemic diseases remain unknown.
To investigate the detailed function of EPCs in experimental murine models, we have established an EPC colony forming assay (EPC-CFA) in murine EPCs. The abilities of murine EPCs in differentiation, adhesive capacity, proliferative potency, and transplantation in vitro and in vivo were then examined.
Peripheral blood mononuclear cells (PB-MNCs), bone marrow mononuclear cells (BM-MNCs) or bone marrow c-Kit+/Sca-1+ lineage negative (BM-KSL) cells differentiated into two types of EPC colony forming units (EPC-CFUs), large sized EPC (large-EPC)-CFUs and small sized EPC (small-EPC)-CFUs. Gene expression analysis demonstrated that both EPC-CFU-derived cells expressed eNOS, Flk-1 and VE-cadherin, markers of endothelial cells (ECs), although the small-EPCs derived from small-EPC-CFU were higher in number and showed more immature features (higher population of KSL cells). Functionally, the large-EPCs derived from large-EPC-CFU had higher adhesive capacity but lower proliferative potency than small-EPCs, showing improved tubular forming capacity and incorporation potency into primary EC-derived tube formation. Importantly, hindlimb ischemia increased the frequencies of large-EPC-CFUs differentiated from PB-MNCs and bone marrow. Actually, transplantation of large-EPCs into ischemic hindlimb enhanced neovascularization in hindlimb ischemia model, although small-EPCs or murine ECs did not, suggesting that large-EPC-CFUs might play an important role in restoration of ischemic diseases.
We demonstrated, using a murine ischemia model, that the EPC-CFA could be a useful way to investigate the differentiation levels of murine EPCs, further providing a crucial clue that large-EPC-CFU status may be more functional or effective EPCs to promote neovascularization.
PMCID: PMC3706928  PMID: 23448126
3.  Downregulation of MicroRNA-130a Contributes to Endothelial Progenitor Cell Dysfunction in Diabetic Patients via Its Target Runx3 
PLoS ONE  2013;8(7):e68611.
Dysfunction of endothelial progenitor cells (EPCs) contributes to diabetic vascular disease. MicroRNAs (miRs) have emerged as key regulators of diverse cellular processes including angiogenesis. We recently reported that miR-126, miR-130a, miR-21, miR-27a, and miR-27b were downregulated in EPCs from type II diabetes mellitus (DM) patients, and downregulation of miR-126 impairs EPC function. The present study further explored whether dysregulated miR-130a were also related to EPC dysfunction. EPCs were cultured from peripheral blood mononuclear cells of diabetic patients and healthy controls. Assays on EPC function (proliferation, migration, differentiation, apoptosis, and colony and tubule formation) were performed. Bioinformatics analyses were used to identify the potential targets of miR-130a in EPCs. Gene expression of miR-103a and Runx3 was measured by real-time PCR, and protein expression of Runx3, extracellular signal-regulated kinase (ERK), vascular endothelial growth factor (VEGF) and Akt was measured by Western blotting. Runx3 promoter activity was measured by luciferase reporter assay. A miR-130a inhibitor or mimic and lentiviral vectors expressing miR-130a, or Runx3, or a short hairpin RNA targeting Runx3 were transfected into EPCs to manipulate miR-130a and Runx3 levels. MiR-130a was decreased in EPCs from DM patients. Anti-miR-130a inhibited whereas miR-130a overexpression promoted EPC function. miR-130a negatively regulated Runx3 (mRNA, protein and promoter activity) in EPCs. Knockdown of Runx3 expression enhanced EPC function. MiR-130a also upregulated protein expression of ERK/VEGF and Akt in EPCs. In conclusion, miR-130a plays an important role in maintaining normal EPC function, and decreased miR-130a in EPCs from DM contributes to impaired EPC function, likely via its target Runx3 and through ERK/VEGF and Akt pathways.
PMCID: PMC3709913  PMID: 23874686
4.  Transfusion of CXCR4-Primed Endothelial Progenitor Cells Reduces Cerebral Ischemic Damage and Promotes Repair in db/db Diabetic Mice 
PLoS ONE  2012;7(11):e50105.
This study investigated the role of stromal cell-derived factor-1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) axis in brain and endothelial progenitor cells (EPCs), and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were measured. Brain SDF-1α and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO). In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null) or CXCR4 (Ad-CXCR4) followed with high glucose (HG) treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS) inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1) The levels of plasma SDF-1α and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2) The basal level of SDF-1α and MCAO-induced up-regulation of SDF-1α/CXCR4 axis were reduced in the brain of db/db mice; 3) Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4) Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation) and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4) Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.
PMCID: PMC3503762  PMID: 23185548
5.  IL-10 deficiency impairs bone marrow-derived endothelial progenitor cell (EPC) survival and function in ischemic myocardium 
Circulation research  2011;109(11):1280-1289.
Endothelial progenitor cell (EPC) survival and function in the injured myocardium is adversely influenced by hostile microenvironment like ischemia, hypoxia and inflammatory response, thereby compromising full benefits of EPC-mediated myocardial repair.
We hypothesized that interleukin-10 (IL-10) modulates EPC biology leading to enhanced survival and function following transplantation in the ischemic myocardium.
Methods and Results
Myocardial infarction (MI)-induced mobilization of bone marrow EPC (Sca-1+Flk1+ cells) into the circulation was significantly impaired in IL-10 KO-mice. Bone marrow transplantation (BMT) to replace IL-10 KO-marrow with WT-marrow attenuated these effects. Impaired mobilization was associated with lower SDF-1 expression levels in the myocardium of KO-mice. Interestingly, SDF-1 administration reversed mobilization defect in KO-mice. In vitro, hypoxia-mediated increases in CXCR4 expression and cell survival were lower in IL-10-deficient-EPCs. Furthermore, SDF-1-induced migration of WT-EPCs was inhibited by AMD3100, an inhibitor of CXCR4. To further study the effect of IL-10 on in vivo EPC survival and engraftment into vascular structures, GFP-labeled EPC were injected intramyocardially after induction of MI, and the mice were treated with either saline or recombinant IL-10. IL-10-treated group showed increased retention of transplanted EPCs in the myocardium and was associated with significantly reduced EPC apoptosis post-MI. Interestingly, increased EPC retention and their association with the vascular structures was observed in IL-10 treated mice. Increased EPC survival and angiogenesis in the myocardium of IL-10-treated mice corroborated with improved LV function, reduced infarct size and fibrosis in the myocardium. In vitro, IL-10-induced increase in VEGF expression in WT-EPC was abrogated by STAT3 inhibitor suggesting IL-10 signals via STAT3 activation.
Taken together, our studies demonstrate that MI-induced EPC mobilization was impaired in IL-10 KO-mice and that IL-10 increases EPC survival and function possibly via activation of STAT3/VEGF signaling cascades, leading to attenuation of MI-induced LV dysfunction and remodeling.
PMCID: PMC3235675  PMID: 21959218
Endothelial progenitor cells; survival; myocardial infarction; IL-10; bone marrow transplantation; inflammation; angiogenesis; left ventricular remodeling
6.  Zoledronate Attenuates Angiogenic Effects of Angiotensin II-Stimulated Endothelial Progenitor Cells via RhoA and MAPK Signaling 
PLoS ONE  2012;7(10):e46511.
New vessel formation plays a pivotal role in the pathogenesis of neovascular-related diseases. Endothelial progenitor cells (EPCs) were found to contribute to neovascular-related diseases and interference with EPC neovascularization may be a novel target for these diseases. Zoledronate (Zol) was reported to exhibit anti-angiogenic effect. Basing on these evidences, we proposed that Zol may affect EPC function to exert novel anti-angiogenic effect. In this study, we therefore investigated the effects of Zol on multiple aspects of EPC function and explored the underlying mechanisms involved.
Methodology/Principal Findings
EPCs were cultured from bone marrow derived mononuclear cells. The potential effects of Zol on Angiotensin II (Ang II)-stimulated EPC proliferation, migration, adhesion, in vitro tube formation were investigated. The results showed that Ang II (1 µM) enhanced EPC migration, adhesion, in vitro tube formation but had no effect on cell proliferation. Zol (75 and 100 µM) inhibited proliferation of EPCs and 50 µM geranylgeranyol (GGOH) could reverse the decrease of EPC proliferation. We found for the first time that Zol (50–100 µM) dose dependently attenuated migration, adhesion, and in vitro tube formation of EPCs stimulated by Ang II. GGOH could reverse the attenuation of EPC function induced by Zol. However, Zol did not induce EPC apoptosis. In addition, the underlying mechanisms were determined. The results revealed that Zol markedly down-regulated active RhoA stimulated by Ang II and inhibited the phosphorylation of Erk1/2 and JNK. Moreover, RhoA silencing resulted in a notable inhibition of EPC in vitro tube formation, suggesting that RhoA suppression played a pivotal role in Zol antiangiogenic effect.
These findings suggested that Zol attenuated the promotion of EPC function stimulated by Ang II and exhibited novel antiangiogenic effect via RhoA and MAPK signaling. Thus, Zol may be served as a novel therapeutic agent for neovascular-related diseases treatment.
PMCID: PMC3469623  PMID: 23071580
7.  Validation study to compare effects of processing protocols on measured Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in blood 
Epidemiological studies show that elevated plasma levels of advanced glycation end products (AGEs) are associated with diabetes, kidney disease, and heart disease. Thus AGEs have been used as disease progression markers. However, the effects of variations in biological sample processing procedures on the level of AGEs in plasma/serum samples have not been investigated. The objective of this investigation was to assess the effect of variations in blood sample collection on measured Nε-(carboxymethyl)lysine (CML), the best characterised AGE, and its homolog, Nε-(carboxyethyl)lysine (CEL). The investigation examined the effect on CML and CEL of different blood collection tubes, inclusion of a stabilising cocktail, effect of freeze thaw cycles, different storage times and temperatures, and effects of delaying centrifugation on a pooled sample from healthy volunteers. CML and CEL were measured in extracted samples by ultra-performance liquid chromatography-tandem mass spectrometry. Median CML and CEL ranged from 0.132 to 0.140 mM/M lys and from 0.053 to 0.060 mM/M lys, respectively. No significant difference was shown CML or CEL in plasma/serum samples. Therefore samples collected as part of epidemiological studies that do not undergo specific sample treatment at collection are suitable for measuring CML and CEL.
PMCID: PMC3818270  PMID: 24249965
advanced glycation end-products; Nε-(carboxymethyl)lysine; Nε-(carboxyethyl)lysine; epidemiology; blood sampling
8.  Advanced glycation end products impair the migration, adhesion and secretion potentials of late endothelial progenitor cells 
Endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Advanced glycation end products (AGEs) have been shown to impair EPC functions, such as proliferation, migration and adhesion. However, their role in the regulation of the production of vasoactive substances in late EPCs is less well defined.
Passages of 3~5 EPCs, namely late EPCs, were cultured with different concentrations (0~500 μg/ml) of AGEs, and the apoptosis, adhesion and migration were subsequently determined. The release of vasoactive substances, such as stromal cell-derived factor-1 (SDF-1), nitric oxide (NO), prostaglandin I2 (PGI2), plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and in addition the activity of superoxide dismutase (SOD), were evaluated by ELISA. At the same time, the gene and protein expressions of CXCR4 were assayed by real-time RT-PCR and western-blot.
AGEs promoted late EPC apoptosis. Moreover, AGEs impaired late EPC migration and adhesion in a concentration-dependent manner. Accordingly, the production of SDF-1 was decreased by AGEs. Although the CXCR4 expressions of late EPCs were up-regulated for AGE concentrations of 50, 100 or 200 μg/ml, a marked decrease was observed for the higher concentration of 500 μg/ml. Furthermore, co-culturing with AGEs decreased the levels of NO, t-PA, PGI2, and the activity of SOD but up-regulated the production of PAI-1.
Our data provide evidence that AGEs play an important role in impairing late EPC functions, which could contribute to the development of vascular diseases in diabetes.
PMCID: PMC3403843  PMID: 22545734
Endothelial progenitor cells; AGEs; Diabetes; Vasoactive substances
9.  Cleaved high molecular weight kininogen inhibits tube formation of endothelial progenitor cells via suppression of matrix metalloproteinase 2 
Background and objective
Endothelial progenitor cells (EPCs) contribute to postnatal neovascularization, thus promoting wide interest in their therapeutic potential in vascular injury and prevention of their dysfunction in cardiovascular diseases. Cleaved high molecular weight kininogen (HKa), an activation product of the plasma kallikrein-kinin system (KKS), inhibits the functions of differentiated endothelial cells including in vitro and in vivo angiogenesis. In this study, our results provided the first evidence that HKa is able to target EPCs and inhibits their tube forming capacity.
Methods and results
We determined the effect of HKa on EPCs using a three-dimensional vasculogenesis assay. Upon stimulation with vascular endothelial growth factor (VEGF) alone, EPCs formed vacuoles and tubes, and differentiated into capillary-like networks. As detected by gelatinolytic activity assay, VEGF stimulated secretion and activation of matrix metallopeptidase 2 (MMP-2), but not MMP-9, in the conditioned medium of 3D culture of EPCs. Specific inhibition or gene ablation of MMP-2, but not MMP-9, blocked the vacuole and tube formation by EPCs. Thus, MMP-2 is selectively required for EPC vasculogenesis. In a concentration-dependent manner, HKa significantly inhibited tube formation by EPCs and the conversion of pro-MMP-2 to MMP-2. Moreover, HKa completely blocked the association between pro-MMP- 2 and αvβ3 integrin, and its inhibition of MMP-2 activation was dependent on the presence of αvβ3 integrin. In a purified system, HKa did not directly inhibit MMP-2 activity.
HKa inhibits tube forming capacity of EPCs by suppression of MMP-2 activation, which may constitute a novel link between activation of the KKS and EPC dysfunction.
PMCID: PMC3142619  PMID: 19874467
endothelial progenitor cells; kininogen; matrix metalloproteinase; vasculogenesis
10.  Novel Cell-Free Strategy for Therapeutic Angiogenesis: In Vitro Generated Conditioned Medium Can Replace Progenitor Cell Transplantation 
PLoS ONE  2009;4(5):e5643.
Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy.
Methodology/Principal Findings
EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2±2.9% and 83.7±3.0% vs. 53.5±2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62±0.03 and 1.68±0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6±0.3 and 8.1±0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7±44.1 vs. 340.0±29.1 CD34+/CD45− cells/1×105 mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9±0.7 vs. 2.6±0.4 CD34+ cells/HPF, P<0.001) 3 days after the last injection.
Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
PMCID: PMC2682571  PMID: 19479066
11.  Dextran induces differentiation of circulating endothelial progenitor cells 
Physiological Reports  2014;2(3):e00261.
Endothelial progenitor cells (EPCs) have been demonstrated to be effective for the treatment of cardiovascular diseases. However, the differentiation process from circulation to adhesion has not been clarified because circulating EPCs rarely attached to dishes in EPC cultures previously. Here we investigated whether immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran. When floating‐circulating EPCs derived from ex vivo expanded human cord blood were cultured with 5% and 10% dextran, they attached to fibronectin‐coated dishes and grew exponentially. The bioactivities of adhesion, proliferation, migration, tube formation, and differentiated type of EPC colony formation increased in EPCs exposed to dextran. The surface protein expression rate of the endothelial markers vascular endothelial growth factor (VEGF)‐R1/2, VE‐cadherin, Tie2, ICAM1, VCAM1, and integrin αv/β3 increased in EPCs exposed to dextran. The mRNA levels of VEGF‐R1/2, VE‐cadherin, Tie2, endothelial nitric oxide synthase, MMP9, and VEGF increased in EPCs treated with dextran. Those of endothelium‐related transcription factors ID1/2, FOXM1, HEY1, SMAD1, FOSL1, NFkB1, NRF2, HIF1A, EPAS1 increased in dextran‐treated EPCs; however, those of hematopoietic‐ and antiangiogenic‐related transcription factors TAL1, RUNX1, c‐MYB, GATA1/2, ERG, FOXH1, HHEX, SMAD2/3 decreased in dextran‐exposed EPCs. Inhibitor analysis showed that PI3K/Akt, ERK1/2, JNK, and p38 signal transduction pathways are involved in the differentiation in response to dextran. In conclusion, dextran induces differentiation of circulating EPCs in terms of adhesion, migration, proliferation, and vasculogenesis. The differentiation mechanism in response to dextran is regulated by multiple signal transductions including PI3K/Akt, ERK1/2, JNK, and p38. These findings indicate that dextran is an effective treatment for EPCs in regenerative medicines.
Circulating endothelial progenitor cells (EPCs) rarely attach to dishes. Here, we showed immature circulating EPCs differentiate into mature adhesive EPCs in response to dextran.
PMCID: PMC4002241  PMID: 24760515
Culture; endothelial progenitor cell; signal transduction; transcription
12.  Impairment of endothelial progenitor cell function and vascularization capacity by aldosterone in mice and humans 
European Heart Journal  2010;32(10):1275-1286.
Hyperaldosteronism is associated with vascular injury and increased cardiovascular events. Bone marrow-derived endothelial progenitor cells (EPCs) play an important role in endothelial repair and vascular homeostasis. We hypothesized that hyperaldosteronism impairs EPC function and vascularization capacity in mice and humans.
Methods and results
We characterized the effects of aldosterone and mineralocorticoid receptor (MR) blockade on EPC number and function as well as vascularization capacity and endothelial function. Treatment of human EPC with aldosterone induced translocation of the MR and impaired multiple cellular functions of EPC, such as differentiation, migration, and proliferation in vitro. Impaired EPC function was rescued by pharmacological blockade or genetic ablation of the MR. Aldosterone protein kinase A (PKA) dependently increased reactive oxygen species formation in EPC. Aldosterone infusion in mice impaired EPC function, EPC homing to vascular structures and vascularization capacity in a MR-dependent but blood pressure-independent manner. Endothelial progenitor cells from patients with primary hyperaldosteronism compared with controls of similar age displayed reduced migratory potential. Impaired EPC function was associated with endothelial dysfunction. MR blockade in patients with hyperaldosteronism improved EPC function and arterial stiffness.
Endothelial progenitor cells express a MR that mediates functional impairment by PKA-dependent increase of reactive oxygen species. Normalization of EPC function may represent a novel mechanism contributing to the beneficial effects of MR blockade in cardiovascular disease prevention and treatment.
PMCID: PMC3094546  PMID: 20926363
Aldosterone; Primary hyperaldosteronism; Endothelial progenitor cells; Endothelial function; Reactive oxygen species
13.  Decreased Circulating Endothelial Progenitor Cell Levels and Function in Patients with Nonalcoholic Fatty Liver Disease 
PLoS ONE  2012;7(2):e31799.
Nonalcoholic fatty liver disease (NAFLD) is associated with advanced atherosclerosis and a higher risk of cardiovascular disease. Increasing evidence suggests that injured endothelial monolayer is regenerated by circulating bone marrow derived-endothelial progenitor cells (EPCs), and levels of circulating EPCs reflect vascular repair capacity. However, the relation between NAFLD and EPC remains unclear. Here, we tested the hypothesis that patients with nonalcoholic fatty liver disease (NAFLD) might have decreased endothelial progenitor cell (EPC) levels and attenuated EPC function.
Methods and Results
A total of 312 consecutive patients undergoing elective coronary angiography because of suspected coronary artery disease were screened and received examinations of abdominal ultrasonography between July 2009 and November 2010. Finally, 34 patients with an ultrasonographic diagnosis of NAFLD, and 68 age- and sex-matched controls without NAFLD were enrolled. Flow cytometry with quantification of EPC markers (defined as CD34+, CD34+KDR+, and CD34+KDR+CD133+) in peripheral blood samples was used to assess circulating EPC numbers. The adhesive function, and migration, and tube formation capacities of EPCs were also determined in NAFLD patients and controls. Patients with NAFLD had a significantly higher incidence of metabolic syndrome, previous myocardial infarction, hyperuricemia, and higher waist circumference, body mass index, fasting glucose and triglyceride levels. In addition, patients with NAFLD had significantly decreased circulating EPC levels (all P<0.05), attenuated EPC functions, and enhanced systemic inflammation compared to controls. Multivariate logistic regression analysis showed that circulating EPC level (CD34+KDR+ [cells/105 events]) was an independent reverse predictor of NAFLD (Odds ratio: 0.78; 95% confidence interval: 0.69–0.89, P<0.001).
NAFLD patients have decreased circulating EPC numbers and functions than those without NAFLD, which may be one of the mechanisms to explain atherosclerotic disease progression and enhanced cardiovascular risk in patients with NAFLD.
PMCID: PMC3280999  PMID: 22359630
14.  Lovastatin restores the function of endothelial progenitor cells damaged by oxLDL 
Acta Pharmacologica Sinica  2009;30(5):545-552.
The aim of the study was to investigate whether lovastatin restores the survival and function of endothelial progenitor cells (EPCs) damaged by oxLDL.
EPCs were preincubated with different concentrations of lovastatin (2, 10, and 50 μmol/L) with or without the Akt inhibitor triciribine for 24 h and were then exposed to 50 μg/mL oxLDL for 48 h. The survival of EPCs, as well as the cellular migration, adhesion, and tube formation of these cells, was examined. To explore the mechanisms of lovastatin's effects on EPCs, the levels of phosphorylated Akt and eNOS and of total eNOS protein and mRNA were assayed.
Incubation of EPCs with oxLDL resulted in significant apoptosis and impaired cellular migration, adhesion and tube structure formation. The detrimental effects of oxLDL on EPC survival and function were attenuated by pretreatment of EPCs with lovastatin. However, when EPCs were pretreated with lovastatin and triciribine at the same time, the beneficial effects of lovastatin were abolished by triciribine. Furthermore, oxLDL caused a significant downregulation of eNOS mRNA and protein expression, as well as a suppression of Akt and eNOS phosphorylation. However, the effects of oxLDL on Akt/eNOS activity and eNOS expression were reversed by lovastatin.
Lovastatin reverses the survival and function of EPCs by regulating the Akt/eNOS signaling pathway and the gene transcription of eNOS.
PMCID: PMC4002826  PMID: 19417733
oxidized low density lipoprotein; endothelial progenitor cells; endothelial nitric oxide synthase
Journal of human hypertension  2010;25(1):57-62.
Prehypertension is associated with significant damage to the coronary vasculature and increased rates of adverse cardiovascular events. Circulating endothelial progenitor cells (EPCs) are critical to vascular repair and the formation of new blood vessels. We tested the hypothesis that prehypertension is associated with EPC dysfunction. Peripheral blood samples were collected from 83 middle-aged and older adults (51 M/32 F): 40 normotensive (age 53±2 yr; BP 111/74±1/1 mmHg) and 43 prehypertensive (54±2; 128/77±1/1 mmHg). EPCs were isolated from peripheral blood and EPC colony-forming capacity (colony-forming unit assay), migratory activity (Boyden chamber) and apoptotic susceptibility (active caspase-3 concentrations) were determined. There were no significant differences in either the number of EPC CFUs (10±2 vs. 9±1), EPC migration (1165±82 vs. 1120±84 fluorescent units), or active intracellular caspase-3 concentrations (2.7±0.3 vs. 2.3±0.2 ng/mL) between the normotensive and prehypertensive groups. When groups were stratified into low prehypertension (n=27; systolic BP: 120–129 mmHg) and high prehypertension (n=16; 130–139 mmHg), it was found that EPCs from the high prehypertensive group produced fewer (~65%, P<0.05) CFUs compared with the low prehypertensive (4±1 vs. 12±2) and normotensive adults. In conclusion, EPC colonyforming capacity is impaired only in prehypertensive adults with systolic BP greater than 130 mmHg. Prehypertension is not associated with migratory dysfunction or enhanced apoptosis of EPCs.
PMCID: PMC2895004  PMID: 20336149
endothelial progenitor cells; prehypertension
16.  A role for plasma kallikrein-kinin system activation in the synovial recruitment of endothelial progenitor cells in arthritis 
Arthritis and rheumatism  2012;64(11):3574-3582.
To examine whether the activation of plasma kallikrein-kinin system (KKS) mediates synovial recruitment of endothelial progenitor cells (EPCs) in arthritis.
EPCs were isolated from Lewis rat bone marrow and characterized by the expression of progenitor cell lineage markers and functional property. EPCs were intravenously injected into Lewis rats bearing arthritis, their recruitment and formation of de novo blood vessels in inflamed synovium were evaluated. The role of plasma KKS was examined using a plasma kallikrein inhibitor EPI-KAL2 and an anti-kallikrein antibody 13G11. Transendothelial migration (TEM) assay was used to determine the role of bradykinin and its receptor in EPC mobilization.
Lewis rat EPCs exhibited strong capacities to form tubes and vacuoles, and expressed higher level of bradykinin type 2 receptor (B2R) and progenitor cell markers CD34 and Sca-1. In Lewis rats bearing arthritis, EPCs were recruited into inflamed synovium at acute phase and formed de novo blood vessels. Inhibition of plasma kallikrein by EPI-KAL2 and 13G11 significantly suppressed synovial recruitment of EPCs and hyperproliferation of synovial cells. Bradykinin concentration-dependently stimulated TEM of EPCs, which was mediated by B2R, as the knockdown of B2R by silencing RNA completely blocked bradykinin-stimulated TEM. Moreover, bradykinin selectively upregulated the expression of homing receptor C-X-C chemokine receptor type 4 (CXCR-4) in EPCs.
These observations demonstrate a novel role for plasma KKS activation in the synovial recruitment of EPCs in arthritis, acting via kallirein activation and B2R-dependent mechanisms. B2R might be involved in the mobilization of EPCs via upregulation of CXCR-4.
PMCID: PMC3477304  PMID: 22739815
17.  Notch Signaling Regulates Endothelial Progenitor Cell Activity During Recovery From Arterial Injury in Hypercholesterolemic Mice 
Circulation  2010;121(9):1104-1112.
Little is known about the role of endothelial progenitor cells (EPCs) in atherosclerosis. Accordingly, we performed a series of assessments with hypercholesterolemic (ApoE−/−) and wild type (WT) mice to evaluate how cholesterol influences re-endothelialization, atherosclerosis, and EPC function after arterial injury.
Methods and Results:
Unexpectedly, re-endothelialization (assesed via resistance to Evans blue staining) and circulating EPC counts (EPC-culture assay) were greater in ApoE−/− mice than in WT mice, and transplantation of ApoE−/− bone marrow (BM) in WT mice accelerated endothelial recovery and increased recruitment of BM-derived EPCs to the neo-endothelium. Cholesterol concentration-dependently promoted the proliferation (MTS assay) of both ApoE−/− and WT EPCs, and the concentration dependence of EPC adhesion (to vitronectin-, collagen type I-, fibronectin-, and laminin-coated plates), migration (modified Boyden's-chamber assay), and anti-apoptotic (TUNEL staining) activity was biphasic. Cholesterol enhanced the mRNA expression (quantitative, real-time RT-PCR) of vascular endothelial growth factor and inhibited Notch1 mRNA expression in both ApoE−/− and WT EPCs; whereas eNOS mRNA expression increased in ApoE−/− EPCs and declined in WT EPCs after cholesterol exposure. EPC activity was greater in Notch1+/– EPCs than in WT EPCs, and transplantation of Notch1+/– BM accelerated endothelial recovery after arterial injury in WT mice.
The results presented here provide novel insights into the role of EPCs during atherosclerosis and suggest that cholesterol and Notch1 may be involved in the regulation of EPC activity.
PMCID: PMC2838724  PMID: 20176991
Atherosclerosis; Endothelial progenitor cells; Hypercholesterolemia; Notch; Nitric oxide synthase
18.  Habitual short sleep duration and circulating endothelial progenitor cells 
Chronic short sleep duration has been linked to endothelial dysfunction and increased risk of cardiovascular disease. Circulating endothelial progenitor cells (EPCs) are vital to endogenous vascular repair processes and cardiovascular health. We tested the hypothesis that habitual short sleep duration is associated with impairment in EPC number and function. Cells with phenotypic EPC characteristics were isolated from 37 healthy, sedentary adults: 20 with normal sleep duration (13M/7F; age: 59±1 years; sleep duration: 7.7±0.1 h/night) and 17 with short sleep duration (9M/8F; 56±2 years; 6.0±0.2 h/night). EPC number was assessed by flow cytometric analysis of the percentage of peripheral blood mononuclear cells negative for CD45 and positive for CD34, VEGFR-2, and CD133 antigens. EPC colony-forming capacity was determined by colony-forming unit (CFU) assay; migration by Boyden chamber; and intracellular caspase-3 concentrations by immunoassay. There were no significant differences between groups in EPC number (0.001±0.0004 vs. 0.001±0.0003 %), colony-forming capacity (6.1±1.5 vs. 5.4±1.7 CFUs), or migration to VEGF (1410.1±151.2 vs. 1334.3±111.1 AU). Furthermore, there were no group differences in basal and staurosporine-stimulated intracellular concentrations of active caspase-3 (0.3±0.03 vs. 0.5±0.1 ng/mL; and 2.9±0.4 vs. 2.7±0.3 ng/mL), a marker of apoptotic susceptibility. Taken together, these data indicate that short sleep duration is not associated with EPC dysfunction in healthy adults. Numerical and functional impairment in circulating EPCs may not contribute to the increased cardiovascular risk with habitual short sleep duration.
PMCID: PMC3144618  PMID: 21814415
Endothelium; progenitors; sleep
19.  Period 2 is essential to maintain early endothelial progenitor cell function in vitro and angiogenesis after myocardial infarction in mice 
Cellular therapeutic neovascularization has been successfully performed in clinical trials for patients with ischaemia diseases. Despite the vast knowledge of cardiovascular disease and circadian biology, the role of the circadian clock in regulating angiogenesis in myocardial infarction (MI) remains poorly understood. In this study, we aimed to investigate the role and underlying mechanisms of Period 2 (Per2) in endothelial progenitor cell (EPC) function. Flow cytometry revealed lower circulating EPC proportion in per2−/− than in wild-type (WT) mice. PER2 was abundantly expressed in early EPCs in mice. In vitro, EPCs from per2−/− mice showed impaired proliferation, migration, tube formation and adhesion. Western blot analysis demonstrated inhibited PI3k/Akt/FoxO signalling and reduced C-X-C chemokine receptor type 4 (CXCR4) protein level in EPCs of per2−/− mice. The impaired proliferation was blocked by activated PI3K/Akt/FoxO signalling. Direct interaction of CXCR4 and PER2 was detected in WT EPCs. To further study the effect of per2 on in vivo EPC survival and angiogenesis, we injected saline or DiI-labelled WT or per2−/− EPC intramyocardially into mice with induced MI. Per2−/− reduced the retention of transplanted EPCs in the myocardium, which was associated with significantly reduced DiI expression in the myocardium of MI mice. Decreased angiogenesis in the myocardium of per2−/− EPC-treated mice coincided with decreased LV function and increased infarct size in the myocardium. Per2 may be a key factor in maintaining EPC function in vitro and in therapeutic angiogenesis in vivo.
PMCID: PMC4119396  PMID: 24621388
period 2; endothelial progenitor cells; myocardial infarction; angiogenesis
20.  The Role of Endothelial Progenitor Cells in Postnatal Vasculogenesis: Implications for Therapeutic Neovascularization and Wound Healing 
Advances in Wound Care  2013;2(6):283-295.
Postnatal vasculogenesis mediated via endothelial progenitor cells (EPCs) contributes to re-endothelialization and augments neovascularization after ischemia and tissue injury, providing a novel therapeutic application. However, controversy exists with respect to the origin, identification, and contributions of the EPCs to neovascularization, necessitating further study.
Recent Advances
Bone marrow (BM) or circulating cells expressing cd133/vascular endothelial growth factor receptor 2 include those with endothelial progenitor capacity. Increasing evidence suggests that there are additional BM-derived (myeloid; mesenchymal cells) and non-BM-derived (peripheral and cord-blood; tissue-resident) cell populations which also give rise to endothelial cells (ECs) and contribute to re-endothelialization and growth factor release after ischemia and tissue injury. Currently, EPCs are being used as diagnostic markers for the assessment of cardiovascular and tumor risk/progression. Techniques aimed at enhancing ex vivo expansion and the therapeutic potential of these cells are being optimized.
Critical Issues
Mobilization and EPC-mediated neovascularization are critically regulated. Stimulatory (growth factors, statins, and exercise) or inhibitory factors (obesity, diabetes, and other cardiovascular diseases) modulate EPC numbers and function. Recruitment and incorporation of EPCs require a coordinated sequence of signaling events, including adhesion, migration (by integrins), and chemoattraction. Finally, EPCs differentiate into ECs and/or secrete angiogenic growth factors. These cells are highly plastic, and depending on the microenvironment and presence of other cells, EPCs transdifferentiate and/or undergo cell fusion and become cells of a different lineage. Therefore, in vitro culture conditions should be optimized to mimic the in vivo milieu to fully characterize the biological function and contribution of EPCs to postnatal vasculogenesis.
Future Directions
Advances in characterization of the EPC biology and enhancement of EPC functions are required. In addition, innovative tissue-engineered carrier matrices that permit embedding of EPCs and provide optimal conditions for EPC survival and endothelial outgrowth will further contribute to EPC-mediated therapeutic applications in wound healing and ischemia repair.
PMCID: PMC3751266  PMID: 24527350
21.  Role of Inflammation and Insulin Resistance in Endothelial Progenitor Cell Dysfunction 
Diabetes  2011;60(4):1286-1294.
Endothelial progenitor cells (EPCs) are decreased in number and function in type 2 diabetes. Mechanisms by which this dysfunction occurs are largely unknown. We tested the hypothesis that a chronic inflammatory environment leads to insulin signaling defects in EPCs and thereby reduces their survival. Modifying EPCs by a knockdown of nuclear factor-κB (NF-κB) can reverse the insulin signaling defects, improve EPC survival, and decrease neointimal hyperplasia in Zucker fatty rats postangioplasty.
EPCs from Zucker fatty insulin-resistant rats were cultured and exposed to tumor necrosis factor-α (TNF-α). Insulin signaling defects and apoptosis were measured in the presence and absence of an NF-κB inhibitor, BAY11. Then, EPCs were modified by a knockdown of NF-κB (RelA) and exposed to TNF-α. For in vivo experiments, Zucker fatty rats were given modified EPCs post–carotid angioplasty. Tracking of EPCs was done at various time points, and neointimal hyperplasia was measured 3 weeks later.
Insulin signaling as measured by the phosphorylated–to–total AKT ratio was reduced by 56% in EPCs exposed to TNF-α. Apoptosis was increased by 71%. These defects were reversed by pretreatment with an NF-κB inhibitor, BAY11. Modified EPCs exposed to TNF-α showed a lesser reduction (RelA 20%) in insulin-stimulated AKT phosphorylation versus a 55% reduction in unmodified EPCs. Apoptosis was 41% decreased for RelA knockdown EPCs. Noeintimal hyperplasia postangioplasty was significantly less in rats receiving modified EPCs than in controls (intima-to-media ratio 0.58 vs. 1.62).
In conclusion, we have shown that insulin signaling and EPC survival is impaired in Zucker fatty insulin resistant rats. For the first time, we have shown that this defect can be significantly ameliorated by a knockdown of NF-κB and that these EPCs given to Zucker fatty rats decrease neointimal hyperplasia post–carotid angioplasty.
PMCID: PMC3064102  PMID: 21346178
22.  Effects of Endothelial Progenitor Cell-Derived Microvesicles on Hypoxia/Reoxygenation-Induced Endothelial Dysfunction and Apoptosis 
Oxidative stress-induced endothelial dysfunction plays a key role in ischemia/reperfusion injury. Recent evidence indicates that endothelial progenitor cell-derived microvesicles (EPC-MVs) can promote angiogenesis of endothelial cells (ECs). Here, we investigated the potential effects of EPC-MVs on hypoxia/reoxygenation (H/R) injury in human brain microvascular ECs (hb-ECs). MVs were prepared from EPCs cultured in a serum deprivation (SD) medium (starving stress, sEPC-MVs) or SD medium containing tumor necrosis factor-α (TNFα) (apoptotic stress, aEPC-MVs). H/R injury model of hb-ECs was produced by 6 hr hypoxia (1% O2) and 24 hr reoxygenation. The H/R hb-ECs were co-cultured with EPC-MVs. Results showed that (1) H/R hb-ECs were dysfunctional and coupled with increased apoptosis and ROS overproduction; (2) under two different conditions, EPCs displayed remarkable difference in caspase 3 and miR126 expression, which were carried by the corresponsive EPC-MVs; (3) functionally, sEPC-MVs had beneficial effects on H/R hb-ECs, whereas aEPC-MVs had detrimental effects; (4) the diverse effects of sEPC-MVs and aEPC-MVs were associated with the changes in miR126 and eNOS expression and were abolished by PI3K inhibitor. In conclusion, sEPCs-MVs and aEPC-MVs are functionally different on hb-EC apoptosis and dysfunction via their carried RNAs associated with ROS production and PI3K/eNOS/NO pathway.
PMCID: PMC3830832  PMID: 24288585
23.  Effects of pitavastatin versus atorvastatin on the peripheral endothelial progenitor cells and vascular endothelial growth factor in high-risk patients: a pilot prospective, double-blind, randomized study 
Circulating endothelial progenitor cells (EPCs) reflect endothelial repair capacity and may be a significant marker for the clinical outcomes of cardiovascular disease. While some high-dose statin treatments may improve endothelial function, it is not known whether different statins may have similar effects on EPCs.This study aimed to investigate the potential class effects of different statin treatment including pitavastatin and atorvastatin on circulating EPCs in clinical setting.
A pilot prospective, double-blind, randomized study was conducted to evaluate the ordinary dose of pitavastatin (2 mg daily) or atorvastatin (10 mg daily) treatment for 12 weeks on circulating EPCs in patients with cardiovascular risk such as hypercholesterolemia and type 2 diabetes mellitus (T2DM). Additional in vitro study was conducted to clarify the direct effects of both statins on EPCs from the patients.
A total of 26 patients (19 with T2DM) completed the study. While the lipid-lowering effects were similar in both treatments, the counts of circulating CD34+KDR+EPCs were significantly increased (from 0.021 ± 0.015 to 0.054 ± 0.044% of gated mononuclear cells, P < 0.05) only by pitavastatin treatment. Besides, plasma asymmetric dimethylarginine level was reduced (from 0.68 ± 0.10 to 0.53 ± 0.12 μmol/L, P < 0.05) by atorvastatin, and plasma vascular endothelial growth factor (VEGF) level was increased (from 74.33 ± 32.26 to 98.65 ± 46.64 pg/mL, P < 0.05) by pitavastatin. In the in vitro study, while both statins increased endothelial nitric oxide synthase (eNOS) expression, only pitavastatin increased the phosphorylation of eNOS in EPCs. Pitavastatin but not atorvastatin ameliorated the adhesion ability of early EPCs and the migration and tube formation capacities of late EPCs.
While both statins similarly reduced plasma lipids, only pitavastatin increased plasma VEGF level and circulating EPCs in high-risk patients, which is probably related to the differential pleiotropic effects of different statins.
Trial registration
This trial is registered at, NCT01386853.
PMCID: PMC4223413  PMID: 25027585
Pitavastatin; Atorvastatin; Hypercholesterolemia; Endothelial progenitor cell; Endothelial nitric oxide synthase; Vascular endothelial growth factor
24.  Diagnostic potential of plasma carboxymethyllysine and carboxyethyllysine in multiple sclerosis 
This study compared the level of advanced glycation end products (AGEs), N-(Carboxymethyl)lysine (CML) and N-(Carboxyethyl)lysine (CEL), in patients with multiple sclerosis (MS) and healthy controls (HCs), correlating these markers with clinical indicators of MS disease severity.
CML and CEL plasma levels were analyzed in 99 MS patients and 43 HCs by tandem mass spectrometry (LC/MS/MS). Patients were stratified based on drug modifying therapies (DMTs) including interferon beta, glatiramer acetate and natalizumab.
The level of plasma CEL, but not CML, was significantly higher in DMT-naïve MS patients when compared to HCs (P < 0.001). Among MS patients, 91% had higher than mean plasma CEL observed in HCs. DMTs reduced CML and CEL plasma levels by approximately 13% and 40% respectively. CML and CEL plasma levels correlated with the rate of MS clinical relapse.
Our results suggest that AGEs in general and CEL in particular could be useful biomarkers in MS clinical practice. Longitudinal studies are warranted to determine any causal relationship between changes in plasma level of AGEs and MS disease pathology. These studies will pave the way for use of AGE inhibitors and AGE-breaking agents as new therapeutic modalities in MS.
PMCID: PMC2984414  PMID: 21034482
25.  Genetic module and miRNome trait analyses reflect the distinct biological features of endothelial progenitor cells from different anatomic locations 
BMC Genomics  2012;13:447.
Endothelial progenitor cells (EPCs) play a fundamental role in post-natal vascular repair, yet EPCs from different anatomic locations possess unique biological properties. The underlying mechanisms are unclear.
EPCs from CB expressed abundant genes involved in cell cycle, hypoxia signalling and blood vessel development, correlating with the phenotypes that CB-EPCs proliferated more rapidly, migrated faster, and formed tubule structure more efficiently. smRNA-seq further deciphered miRNome patterns in EPCs isolated from CB or PB: 54 miRNAs were enriched in CB-EPCs, while another 50 in PB-EPCs. Specifically, CB-EPCs expressed more angiogenic miRNAs such as miR-31, while PB-EPCs possessed more tumor suppressive miRNAs including miR-10a. Knocking down miR-31 levels in CB-EPCs suppressed cell migration and microtubule formation, while overexpressing miR-31 in PB-EPCs helped to recapitulate some of CB-EPC functions.
Our results show the foundation for a more detailed understanding of EPCs from different anatomic sources. Stimulating the expression of angiogenic microRNAs or genes in EPCs of low activity (such as those from patients with cardiovascular diseases) might allow the development of novel therapeutic strategies.
PMCID: PMC3443421  PMID: 22943456

Results 1-25 (939946)